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FOREWORD

The Consumer Price Index Manual: Theory is the companion publication to the Consumer Price Index Manual: 
Concepts and Methods. The Theory publication provides a comprehensive overview of the conceptual and theoreti-
cal issues that drive the methods and practices described in the CPI Manual.

The chapters cover many topics. They elaborate on the theories underlying the different practices currently in 
use, including the four main approaches to index number theory, calculation of elementary indices, quality adjust-
ment methods, seasonal products, durable goods, and the treatment of owner-occupied housing. This publication 
also discusses the chain drift problem and multilateral indices and provides empirical examples, based on actual 
data, for upper-level index calculation formulae.

This publication and the companion on the practice of compiling consumer price indices (CPIs) are an update 
of the Consumer Price Index Manual: Theory and Practice, published in 2004. Through the mechanism of the 
Inter-Secretariat Working Group on Price Statistics (IWGPS), the update has been managed by the International 
Monetary Fund (IMF) and jointly published by the organizations of the IWGPS: the Statistical Office of the Euro-
pean Union (Eurostat), the International Labour Organization (ILO), the IMF, the Organisation for Economic 
Co-operation and Development (OECD), the United Nations Economic Commission for Europe (UNECE), and 
the World Bank.

Given that many of the theoretical issues included in this volume continue to evolve, this publication will be 
disseminated in an electronic format only at https://www.imf.org/en/Data/Statistics/cpi-manual#companion and 
on the websites of the IWGPS member agencies. This will more readily facilitate chapter updates as the research 
on these topics continues to advance and emerging topics are included.

Mariana Kotzeva, 
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PREFACE

The Consumer Price Index Manual: Theory, herewith referred to simply as the Theory publication, is the com-
panion publication to the Consumer Price Index Manual: Concepts and Methods. These two volumes represent an 
update of the 2004 publication, Consumer Price Index Manual: Theory and Practice. Since 2004, methods and best 
practices have continued to evolve. Big data sources have become increasingly accessible, and updated calculation 
methods are being developed to account for these new sources. The Theory publication was prepared under the 
auspices of the Intersecretariat Working Group on Price Statistics (IWGPS), which consists of six organizations: 
the Statistical Office of the European Union (Eurostat), the International Labour Organization (ILO), the Inter-
national Monetary Fund (IMF), the Organisation for Economic Co-operation and Development (OECD), the 
United Nations Economic Commission for Europe (UNECE), and the World Bank. The Theory publication is 
published jointly by the six organizations.

The IWGPS endorses this publication as a valuable overview of the main index number theories underlying the 
principles and recommendations used for compiling consumer price indices (CPIs). The authors of the Theory 
publication have included references to papers and books on index number theory that could be useful to compil-
ers and data users who want to explore the subject in more depth.

The Consumer Price Index
The CPI is an index that measures the rate at which the prices of consumption goods and services are changing 
from one period to another. The prices are collected from shops or other retail outlets. The usual method of cal-
culation is to take an average of the period-to-period price changes for different products, using as weights the 
average amounts that households spend on them. CPIs are official statistics that are usually produced by national 
statistical offices (NSOs), ministries of labor, or central banks.1 They are published as quickly as possible, gener-
ally within four weeks after the reference period.

The Theory publication intends to benefit agencies that compile CPIs as well as the users of CPI data. It explains 
the economic and statistical theory on which the methods used to calculate a CPI are based. The Manual details 
the practical methods that are recommended to calculate a CPI.

A CPI is a measure of price changes of the goods and services purchased by households for their consumption. 
It is also widely used as a measure of inflation for the economy as a whole, partly because of the frequency and 
timeliness with which it is produced. It has become a key statistic used in policymaking, especially monetary 
policy. It is often specified in legislation and in a wide variety of contracts as the appropriate measure for adjusting 
payments (such as wages, rents, interest, social security, other benefits, and pensions) for the effects of inflation. It 
can therefore have substantial and wide-ranging financial implications for governments and businesses, as well as 
for households.

This publication provides compilers and users with a broader understanding of the conceptual and theoretical 
foundations of the methods used in practice. Calculating a CPI cannot be reduced to a simple set of rules or a 
standard set of procedures that can be mechanically followed in all circumstances. While there are certain general 
principles that may be universally applicable, the procedures followed in practice, whether they concern the col-
lection or processing of the prices or the methods of aggregation, must take account of particular circumstances. 
These include the main use of the index, the nature of the markets and pricing practices within the country, and 
the resources available to the NSO. The Theory publication explains the underlying economic and theoretical 
concepts and principles needed to enable NSOs to make their choices in efficient and cost-effective ways and to be 
aware of the full implications of their choices.

The procedures used to compile CPIs are not static but continue to evolve and improve in response to several 
factors. First, research continually refines and strengthens the economic and statistical theory underpinning CPIs. 
For example, clearer insights have recently been obtained on the relative strengths and weaknesses of the various 
formulae and methods used to process the basic price data collected for CPI purposes. Second, recent advances 
in information and communications technology, such as the availability and the technical capabilities to make 
effective use of large-scale administrative data sets, have affected CPI methods. Both of these theoretical and data 
developments can impinge on all the stages of compiling a CPI. New technology can affect the methods used to 
collect prices and transmit them to the NSO. It can also improve the ways of processing and checking, including 
the methods used to adjust prices for changes in the quality of the goods and services covered. Finally, improved 
formulae help in calculating more accurate and reliable higher-level indices, including the overall CPI itself.
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History of International Standards for CPIs
The objectives of the international standards for CPI compilation are to provide guidelines on best practices that 
can be used by countries when developing or revising a CPI and to promote the quality and international compara-
bility of national CPIs. The theories and concepts discussed in this publication drive the discussions on standards 
and best practices.

In many countries, CPIs were first compiled mainly to be able to adjust wages to compensate for the loss of 
purchasing power caused by inflation. Consequently, the responsibility for compiling CPIs was often entrusted to 
ministries, or departments, of labor. The International Conference of Labour Statisticians (ICLS), convened by 
the Governing Body of the ILO, therefore provided the natural forum to discuss CPI methodology and develop 
guidelines.

The first international standards for CPIs were promulgated in 1925 by the Second ICLS. The first set of stan-
dards referred to “cost of living” indices rather than CPIs. A distinction is now drawn between the two different 
types of index. A CPI can be defined simply as measuring the change in the cost of purchasing a given “basket” of 
consumption goods and services, whereas a cost-of-living index is defined as measuring the change in the cost of 
maintaining a given standard of living or level of utility. For this reason, the Tenth ICLS in 1962 decided to adopt 
the more general term “consumer price index,” which should be understood to embrace both concepts. There 
need not be a conflict between the two. As explained in the Manual, the best-practice methods are likely to be very 
similar, whichever approach is adopted.

The international standards for calculating CPIs have been revised four times in 1947, 1962, 1987, and 2003 in 
the form of resolutions adopted by the ICLS. The 1987 standards on CPI were followed by a manual on methods 
(Turvey, Ralph et. al., Consumer Price Indices: An ILO Manual. Geneva:  International Labour Office (1989)) which 
provided guidance to countries on the practical application of the 1987 standards. The 1989 manual on meth-
ods was revised, expanded, and published in 2004 (Consumer Price Index Manual: Theory and Practice, Geneva: 
International Labour Office, International Labour Organization, International Monetary Fund, Organisation for 
Economic Co-operation and Development, Eurostat, UN Economic Commission for Europe, and World Bank 
(2004)).

The Background to the Present Update
Since 2004, substantial progress has been made in developing new data sources, price collection methods, and 
related index calculation methods. This update incorporates these developments and reflects experience gained by 
improving CPI compilation methods. Finally, evolving user needs and the need for greater international compara-
bility contributed to the necessity of updating the 2004 manual.

In response to the various developments in CPI compilation methods and the emergence of new data sources, 
the need to update the 2004 manual was recognized and agreed to in 2014. A formal recommendation to revise 
the Manual was made at the meeting of the UNECE Expert Group on Consumer Price Indices, Geneva, May 
2014, jointly organized with the ILO. The participants of this meeting noted a need for clearer, more prescriptive 
recommendations where research, methodological development, and practical experience support such recom-
mendations and guidelines.

Following the 2014 meeting in Geneva, the IWGPS agreed to initiate an update of the 2004 manual with the 
IMF as the lead agency to manage the update. When updated, the Manual was split into two volumes. The first 
volume, Consumer Price Index Manual: Concepts and Methods, was endorsed by the United Nations Statistical 
Commission in 2020 as an international statistical standard for the compilation of the CPIs. The second volume, 
Consumer Price Index Manual: Theory, complements the first one by presenting the theories behind the methods 
and practices in the first volume.

The electronic version of the Theory publication is available on the Internet at https://www.imf.org/en/Data/
Statistics/cpi-manual#companion. The Theory publication, available only in electronic format, will be updated as 
needed. This is especially true for emerging discussions and recommendations to be made by international groups 
reviewing the CPIs, such as the ICLS, the United Nations City Group on Price Indices (the “Ottawa Group”), and 
the UNECE Expert Group on Consumer Price Indices.

Comments and suggestions on the Theory publication are welcomed by the IWGPS and should be sent to the 
International Monetary Fund (e-mail: STARECPIM@imf.org). They will be considered for any future revisions.

1 For simplicity, the Theory publication refers in general to NSOs as the statistical agencies responsible for compiling the CPIs.

https://www.imf.org/en/Data/Statistics/cpi-manual#companion
https://www.imf.org/en/Data/Statistics/cpi-manual#companion
mailto:STARECPIM@imf.org
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INTRODUCTION 1
1. The Basket, Axiomatic, and 
Stochastic Approaches to Index 
Number Theory
This is a book about index number theory in general and the 
construction of a consumer price index (CPI) in particular. 
It turns out that there is no single approach to index num-
ber theory that experts agree is the “right” approach. Thus, 
this volume will cover the four main approaches to index 
number theory that are used today by national and interna-
tional statistical agencies. These four main approaches are 
as follows:

•	 The	fixed	basket	approach	(and	averages	of	fixed	baskets)
• The test or axiomatic approach
• The stochastic approach
• The economic approach

In order to measure aggregate consumer price change 
between two periods, the fixed basket approach takes a 
“representative” basket of goods and services that house-
holds purchase in the two periods under consideration 
and prices out the cost of the basket using the prices of the 
current period for the numerator of the CPI and using the 
prices of the base period for the denominator of the index. 
This type of index dates back to the Middle Ages, but it was 
studied in some detail by the English economist Lowe in 
the early 1800s and as a result is known as Lowe Index. It is 
useful to introduce some notation at this point so that the 
basket approach can be explained more precisely. Suppose 
the base period is called period 0 and the current period is 
called period 1. Suppose that there are N goods and ser-
vices	that	a	specified	group	of	households	purchase	in	each	
period and the total quantity purchased by the households 
in period t of product n is qtn for t = 0,1 and n = 1,…,N. Sup-
pose further that the average price for product n in period 
t is ptn for t = 0,1 and n = 1,…,N. Denote the set of period t 
prices as pt ≡ [pt1,…,ptN] and the corresponding set of period 
t quantities as qt ≡ [qt1,…,qtN] for t = 0,1. A possible choice of 
a “representative” basket of goods and services is the base 
period quantity vector, q0. This leads to the Laspeyres price 
index PL( p0,p1,q0) ≡ Σn=1

N p1nq0n/Σn=1
N p0nq0n. Another possible 

choice of a “representative” basket of goods and services is 
the current period quantity vector, q1. This leads to the Paas-
che price index PP( p0,p1,q1) ≡ Σn=1

N p1nq1n/Σn=1
N p0nq1n. Since 

each of these two quantity vectors is equally representative 
and	they	both	measure	overall	inflation	going	from	period	
0 price to period 1 prices, it may make sense to take a sym-
metric	average	of	these	two	estimates	of	overall	inflation	as	
our	final	point	estimate	for	consumer	price	inflation	over	the	
two periods under consideration. This leads to the Fisher 
price index, PF( p0,p1,q0,q1) ≡ [PL( p0,p1,q0)PP( p0,p1,q1)]1/2,  

which is the geometric average of the Laspeyres and Paasche 
price indices.1	Another	variant	of	the	fixed	basket	approach	
to	index	number	theory	is	to	take	the	fixed	basket	as	the	prod-
uct by product geometric average of the quantities consumed 
in periods 0 and 1. Thus, the Walsh price index	 is	defined	
as PW( p0,p1,q0,q1) ≡ Σn=1

N p1n(q0nq1n)
1/2/Σn=1

N p0n(q0nq1n)
1/2. The 

fixed	basket	approach	to	index	number	theory	is	explained	 
in some detail in Chapter 2.
Note	 that	 these	 fixed	 basket	 indices	 are	 all	 functions of  

the two price vectors, p0 and p1, and the two quantity vec-
tors, q0 and q1, that pertain to the two periods under con-
sideration; that is, these price index functions are all of the 
form P( p0,p1,q0,q1), where this bilateral index number formula 
is a function of the 4N variables contained in the vectors 
p0,p1,q0,q1.

The axiomatic or test approach to index number theory 
starts with a (unknown) bilateral index number formula, 
P( p0,p1,q0,q1), and attempts to determine the functional form 
for the index number function by placing restrictions on the 
function, or in other words, asking that the index function 
satisfy certain tests. An example of a test is the weak identity 
test; that is, we ask that the index number function satisfy 
the following property: P( p0,p1,q0,q1) = 1 if p0 = p1 and q0 = q1. 
Thus, if product prices and quantities consumed are exactly 
the same in the two periods being compared, then the price 
index	should	be	equal	to	1	(indicating	that	there	is	no	infla-
tion between the two periods). Another example of a test is 
the strong identity test; that is, we ask that the index number 
function satisfy the following property: P( p0,p1,q0,q1) = 1 if 
p0 = p1. Thus, if product prices are exactly the same in the 
two periods being compared, then the price index should 
be	equal	to	1	even	if	the	quantity	vectors	are	different	over	
the two periods under consideration. Another test is lin-
early homogeneity in the prices of period 1; that is, we ask 
that the index function P( p0,p1,q0,q1) satisfy the following 
property: P( p0,λp1,q0,q1) = λP( p0,p1,q0,q1) for all numbers λ 
> 0. If P( p0,p1,q0,q1)	satisfies	this	property	and	if	all	prices	in	
period 1 double, then the price level in period 1 also doubles. 
The test approach to index number theory is explained in 
some detail in Chapter 3 of this volume. It turns out that the 
Fisher index that emerged as a “best” index from the view-
point	of	the	fixed	basket	approach	to	index	number	theory	
also emerges as a “best” index from the viewpoint of the test 
approach.2

1 Detailed references to the works of Laspeyres, Paasche, and Fisher will 
be found in the subsequent chapters. A similar comment applies to other 
authors who will be mentioned in this introductory chapter.
2 It should be noted that the “best” index cannot be unambiguously deter-
mined. When using the basket approach, there is a problem in choosing 
the “best” average of the Laspeyres and Paasche indices. When using the 
test approach, there is a problem of deciding which tests are the most 
important	 ones	 for	 the	 index	number	 formula	 to	 satisfy.	Different	 sets	
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because they did not take into account the economic impor-
tance of each product in the budgets of the consumers of 
the N products. The economic importance of products can 
be taken into account by replacing the unweighted least 
squares minimization problems (2) or (4) by weighted least 
squares minimization problems. A measure of the economic 
importance of product n is its share of total consumer expen-
ditures on the N goods and services in both periods 0 and 1. 
Define	 the	 inner	product	of	 the	vectors	pt and qt as pt⋅qt ≡ 
Σn=1

N ptnqtn. The period t share of consumer expenditures on 
product n	is	defined	as	stn ≡ ptnqtn/p

t·qt for n = 1,…,N and t = 
0,1.	Define	the	arithmetic	average	of	the	expenditure	shares	
for product n over the two periods as

 s(n) ≡ (½)s0n + (½)s1n; n = 1,…,N. (7)

A useful weighted by economic importance version of the 
least	squares	minimization	problem	defined	by	(4)	is	the	fol-
lowing weighted least squares minimization problem:

 min β {Σn=1
N s(n)[ln( p1n/p0n) – β]2}. (8)

The	solution	to	the	minimization	problem	defined	by	(8)	is

 β** ≡ Σn=1
N s(n)ln( p1n/p0n), (9)

where β** is an estimator for the logarithm of the price index 
going from period 0 to period 1 prices. To obtain an estima-
tor for the price index α***, we need to exponentiate β** to 
obtain α***:

 α*** ≡ exp[β**]	=	Πn=1
N ( p1n/p0n)

s(n) ≡ PT( p0,p1,q0,q1). (10)

Thus,	the	new	stochastic	specification	leads	to	a	new	estima-
tor for the price index, a share-weighted geometric average 
of the N individual price ratios, PT( p0,p1,q0,q1), which is the 
Törnqvist–Theil index number formula. This index emerges 
as a “best” index number formula from the viewpoint of the 
stochastic or descriptive statistics approach to index num-
ber theory. For a more detailed description of this third 
approach to index number theory, see Chapter 4.

The economic approach to index number theory is the 
most complicated of the four main approaches to index 
number theory, and it is explained in detail in Chapter 5. 
An overview of the economic approach is presented in the 
following section.

2. The Economic Approach to  
Index Number Theory
Chapter 5 develops the economic approach to index num-
ber theory. The economic approach is based on the assump-
tion that consumers choose their consumption bundles to 
maximize an index of well-being or utility subject to a bud-
get constraint. This approach to index number theory will 
appear to be rather unrealistic to many price statisticians. 
However, it is empirically observed that consumers will 
purchase more of a product when its price is relatively low 
and less of it when its price is relatively high. Thus, as rela-
tive prices change, consumers substitute cheaper products 
for more expensive products in an attempt to maintain their 

The stochastic approach to index number theory dates 
back to the work of the English economists Jevons and 
Edgeworth in the 1800s. This approach to index number 
theory will be explained in detail in Chapter 4. However, a 
brief outline of this approach follows.
Using	the	notation	for	prices	defined	earlier,	the	simplest	

example of the stochastic approach works as follows. Treat 
each price ratio for product n, p1n/p0n, as an estimate of gen-
eral	inflation	going	from	period	0	to	period	1.3 Thus, a sta-
tistical model for this situation might be the following one:

 p1n/p0n = α + etn; n = 1,…,N, (1)

where α	 is	 the	 general	 measure	 of	 inflation	 going	 from	
period 0 to 1 and etn are independently distributed error 
terms with 0 means and constant variances. Now choose α 
as the solution to the following least squares minimization 
problem:

 minα {Σn=1
N etn

2 } = min α {Σn=1
N [(p1n/p0n) – α]2}. (2)

The	solution	to	the	minimization	problem	defined	by	(2)	is

 α* ≡ (1/N)Σn=1
N ( p1n/p0n) ≡ PC( p0,p1), (3)

where the Carli index, PC( p0,p1),	 is	defined	as	 the	arithme-
tic average of the N price ratios, p1n/p0n. Note that the Carli 
index depends only on prices over the two periods under 
consideration in contrast to the Fisher index, which depends 
on both prices and quantities.
Now	 suppose	 we	 changed	 the	 stochastic	 specification	

from (1) to ln( p1n/p0n) = lnα + etn for n = 1,…,N, where etn are 
the independently distributed error terms with 0 means and 
constant	variances.	Define	β ≡ lnα as the natural logarithm 
of α. The new least squares minimization problem is

 min β {Σn=1
N [ln( p1n/p0n) – β]2}. (4)

The	solution	to	the	minimization	problem	defined	by	(4)	is

 β* ≡ (1/N)Σn=1
N ln( p1n/p0n). (5)

β* is an estimator for the logarithm of the price index going 
from period 0 to period 1 prices. To obtain an estimator for 
the price index α**, we need to exponentiate β* to obtain α**:

 α** ≡ exp[β*]	=	Πn=1
N ( p1n/p0n)

1/N ≡ PJ( p
0,p1). (6)

Thus,	 the	new	stochastic	 specification	 leads	 to	a	new	esti-
mator for the price index, the geometric average of the N 
individual price ratios, PJ( p

0,p1), which is the Jevons index 
number formula.

The Carli and Jevons index number formulae are exam-
ples of unweighted indices.4 Keynes criticized these indices 

of	admissible	tests	will	lead	to	different	“best”	index	number	formulae.	
When	using	the	stochastic	approach,	different	methods	of	averaging	the	
prices	or	different	stochastic	specifications	of	the	error	terms	will	lead	to	
different	“best”	indices.
3 It is assumed that all prices are positive in what follows.
4 Unweighted in this context means that the price ratios are equally 
weighted.
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C(u,p) factors into the product of the utility level u times the 
unit cost function c( p), which is equal to the minimum cost of 
achieving one unit of utility, C(1,p). Thus, we have C(u,p) =  
uc(p) and hence

PK(u,p0,p1) ≡ C(u,p1)/C(u,p0) = uc(p1)/uc(p0)  
 = c( p1)/c( p0), (14)

where c( p1)/c( p0) is the ratio of unit cost in period 1 to unit 
cost in period 0.
Chapters	2,	3,	and	4	defined	various	bilateral	index	num-

ber formulae of the general form P(p0,p1,q0,q1). Sections 5–9 
in Chapter 5 show that various true cost of living indices 
of	the	form	defined	by	(14)	are	equal	to	many	of	the	bilat-
eral	 index	number	 formulae	 that	were	defined	 in	previous	
chapters. These relationships are derived assuming that 
consumer	preferences	can	be	represented	by	certain	specific	
functional forms for either the linearly homogeneous utility 
function f(q) or the corresponding unit cost function c(p). 
For example, if we assume that the consumer’s unit cost func-
tion is a linear function of prices, so that c( p) = Σn=1

N αnpn,  
then it can be shown that the Laspeyres price index, PL = 
p1·q0/p0·q0, is exactly equal to the true cost of living index 
c( p1)/c( p0). Thus, the Laspeyres bilateral price index is an 
example of an exact index number formula. The theory of 
exact index number formulae was developed by Konüs and 
Byushgens	and	Pollak.	If	we	can	find	a	bilateral	index	num-
ber formula that is exact for a unit cost function c( p) that 
can provide a second-order Taylor series approximation 
to	 an	 arbitrary	 twice	 continuously	 differentiable	 unit	 cost	
function, then Diewert called the bilateral index a superla-
tive index. various examples of superlative index number 
formulae are given in Chapter 5. It turns out that the Fisher, 
Törnqvist–Theil, and Walsh bilateral price indices are all 
superlative indices.

Section 8 in Chapter 5 shows that these three indices all 
approximate each other to the second order around a point 
where prices and quantities are equal (so that p0 = p1 and  
q0 = q1 at the point of approximation). This means that these 
three indices will tend to approximate each other reason-
ably well, particularly if there is no too much variation in 
prices and quantities going from period 0 to period 1. From 
the viewpoint of the basket approaches to index number 
theory, the Fisher and Walsh indices got good grades. The 
axiomatic approach to index number theory favored the 
Fisher index, while the stochastic approach to index number 
theory gave good grades to the Törnqvist–Theil index. The 
Walsh	index	is	a	special	case	of	a	fixed	basket	index	or	Lowe	
index, which is an advantage since many price statisticians  
prefer	fixed	basket	 indices	because	they	are	relatively	easy	
to explain to the public. All three indices are equally good 
from the viewpoint of the economic approach to index num-
ber theory. Thus, it seems that it does not matter all that 
much on which approach to index number theory one takes: 
The	 four	 approaches	 lead	 to	 three	 specific	 index	 number	
formulae that will generate much the same answer in many 
situations.5

5 This	is	true	if	there	are	no	missing	prices	and	fluctuations	in	prices	and	
quantities	are	not	too	great.	If	there	are	missing	prices	or	severe	fluctua-
tions	in	prices	and	quantities,	then	the	three	indices	can	differ	significantly.

standard of living. The economic approach to index num-
ber	theory	takes	these	substitution	effects	into	account	and	
as a result provides a more realistic measure of consumer 
price	inflation.	Moreover,	the	economic	approach	to	index	
number theory provides economists and policy makers with 
(approximate) measures of consumer welfare change; that 
is, the economic approach to index number theory provides 
us	not	only	with	measures	of	household	 inflation	but	also	
with measures of real consumption. Finally, the economic 
approach	 is	 necessary	 to	 measure	 the	 effects	 of	 quality	
change	and	to	take	into	account	the	welfare	effects	of	new	
and disappearing products.

The consumer’s period t budget-constrained utility maxi-
mization problem is equivalent to the problem of minimiz-
ing the cost of achieving the period t level of utility when the 
economic approach is used. Suppose the consumer’s utility 
function is f(q), where q ≡ [q1,…,qN] is a consumption vector. 
The consumer’s cost function, C(u,p), that corresponds to 
the given utility function f(q)	is	defined	as	follows:

 C(u,p) ≡ min q { p·q : f(q)	≥	u}, (11)

where p ≡ [ p1,…,pN] is a vector of positive prices that the 
consumer faces and q ≡ [q1,…,qN] is a nonnegative consump-
tion vector. Thus, the consumer chooses the consumption 
bundle that minimizes the cost of achieving the target utility 
level u and C(u,p) is the resulting minimum cost of achieving 
this target level of utility.
Using	the	notation	defined	in	the	previous	section,	let	qt 

be the consumer’s observed consumption vector in period t 
and suppose the consumer faces the price vector pt in period 
t for t = 0,1. The consumer’s period t level of utility is ut ≡ 
f(qt) for t = 0,1. It is assumed that the consumer minimizes 
the cost of achieving their period t utility level ut in periods 
0 and 1. Thus, we have the following equalities:

 pt·qt = C(ut,pt); t = 0,1. (12)

The Konüs family of true cost of living indices that pro-
vides	a	measure	of	price	inflation	between	periods	0	and	1,	
PK(u,p0,p1),	is	defined	for	each	reference	utility	level	u using 
the cost function as follows:

 PK(u,p0,p1) ≡ C(u,p1)/C(u,p0). (13)

Section 2 in Chapter 5 develops the properties of this fam-
ily	 of	 price	 indices.	Note	 that	 there	 is	 a	 possibly	 different	
true cost of living index for each choice of the reference level 
of utility, u. It is natural to choose u to be either u0 = f(q0) 
or u1 = f(q1) when making price comparisons between the 
two periods 0 and 1. This leads to the Laspeyres type true 
cost of living index, PK(u0,p0,p1) ≡ C(u0,p1)/C(u0,p0), and the 
Paasche type true cost of living index, PK(u1,p0,p1) ≡ C(u1,p1)/ 
C(u1,p0).

Section 3 makes an additional assumption that f(q) is a 
linearly homogeneous function so that f(λq) = λf(q) for all 
numbers λ > 0. This assumption is not supported by empiri-
cal evidence using aggregate price and quantity data. But it 
is a very useful assumption because it leads to true cost of 
living indices PK(u,p0,p1) that are independent of the refer-
ence utility level u. It turns out that when the utility function 
is linearly homogeneous, the corresponding cost function 
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preferences are estimated for both the pre-COVID period 
and	the	COVID	period.	National	Statistical	Offices	are	not	
well equipped to undertake econometric investigations. 
This is an area where further research is required.

Section 13 of Chapter 5 explores the conditional cost of 
living concept. In this section, it is assumed that the con-
sumer’s preference function, f(q,z),	 is	defined	over	a	vector	
of market goods and services q and a vector of environmen-
tal or household demographic variables, z. The consum-
er’s minimum (market) cost of achieving the utility level u 
given that he or she faces the vector of market prices p is 
the cost C(u,p,z) ≡ min q {p·q : f(q,z)	≥	u}. Pollak’s condi-
tional cost of living index is the cost ratio C(u,p1,z)/C(u,p0,z). 
Thus, this CPI is conditional not only on the chosen util-
ity level, u, but it also depends on the environmental vec-
tor z. As usual, two special cases of this family of indices 
is of interest when comparing the prices of periods 0 and 
1: the Laspeyres type conditional index C(u0,p1,z0)/C(u0,p0,z0) 
and the Paasche type conditional index C(u1,p1,z1)/C(u1,p0,z1). 
The main result in Section 13 shows that for a certain fairly 
general functional form for the conditional cost func-
tion, one can show that the Törnqvist–Theil price index PT
(p0,p1,q0,q1)	defined	earlier	is	exactly	equal	to	the	geometric	 
mean of the theoretical Laspeyres and Paasche type condi-
tional cost of living indices; that is, we have PT(p0,p1,q0,q1) = 
{[C(u0,p1,z0)/C(u0,p0,z0)][ C(u1,p1,z1)/C(u1,p0,z1)]}1/2.

Section 14 provides a framework for dealing with new 
and disappearing products in a CPI. When a new product 
appears	for	the	first	time,	there	is	no	price	in	a	prior	period	
for that product, so typically, the new product is ignored in 
the CPI for the period of introduction. From the viewpoint 
of the economic approach to index number theory, an appro-
priate price for the new product in the prior base period of 
the index is the consumer’s reservation price for the product. 
It is the price that is just high enough to deter the consumer 
from purchasing the product during the base period. This 
reservation price concept was proposed by Hicks, and it is 
explained more fully in Section 14 of Chapter 5 and in even 
more detail in Chapter 8.

Section 15 of Chapter 5 introduces household production 
and the consumer’s allocation of time into the CPI frame-
work. Up to this point, the economic approach to index 
number theory assumes that the consumer chooses its con-
sumption vector to maximize a utility function subject to 
a budget constraint. But in reality, consumers get utility 
by spending time on enjoying their purchases subject to a 
budget constraint and a time constraint. The addition of 
the time constraint to the consumer’s utility maximization 
problem greatly complicates the construction of a CPI. Sec-
tion 15 follows the path-breaking work of Becker in adding 
the time constraint to the consumer’s utility maximization 
problem. This section is perhaps the most complicated sec-
tion	 in	 the	entire	volume.	National	Statistical	Offices	have	
not really embraced the integration of the time constraint 
with the budget constraint due to the complexity of integra-
tion	and	perhaps	due	also	to	the	difficulty	in	collecting	data	
on the household’s allocation of time across various activi-
ties. Section 15 does provide a framework for organizing the 
data and integrating the time constraint with the budget 
constraint.

Up to this point, the economic approach to index num-
ber theory has presented the theory as it applies to a single 

Section 11 of Chapter 5 discusses theoretical quantity 
indices that are counterparts to the Konüs family of true 
cost of living indices of the form C(u,p1)/C(u,p0). The family 
of Allen quantity indices	 is	defined	for	each	reference	price	
vector, p, as follows:

 QA( p,q0,q1) ≡ C( f(q1),p)/C( f(q0),p). (15)

Thus, the Allen quantity index is the ratio of the cost of 
achieving the period 1 level of utility, f(q1), to the cost of 
achieving the period 0 level of utility, f(q0), using the same 
reference price vector p in both the numerator and the 
denominator of the ratio. The two most relevant choices for 
the reference price vector when comparing utility levels in 
periods 0 and 1 are the period 0 and 1 price vectors, p0 and 
p1. This leads to the Laspeyres type Allen index, QA( p0,q0,q1), 
and to the Paasche type Allen index, QA(p1,q0,q1). If we make 
the additional assumption that the utility function is lin-
early homogeneous, then we have C( f(qt),p) = f(qt)c(p) for 
t	=	0,1	and	the	Allen	quantity	index	simplifies	to	the	follow-
ing utility ratio:

QA(p,q0,q1) ≡ C( f(q1),p)/C( f(q0),p)  
 = f(q1)c(p)/f(q0)c(p) = f(q1)/f(q0). (16)

As was the case with the Konüs price index, it is possible to 
show that QA(p,q0,q1) = f(q1)/f(q0) is exactly equal to various 
bilateral price indices of the form Q(p0,p1,q0,q1)6 for certain 
functional forms for f(q) and Q(p0,p1,q0,q1).

Section 12 in Chapter 5 provides a brief discussion on the 
problems associated with constructing true cost of living 
indices when there are taste changes. The period t cost func-
tion for the consumer is the function Ct(u,p) for t = 0,1; that 
is, we allow the cost function to change when going from 
period	0	to	1,	reflecting	a	change	in	the	consumer’s	prefer-
ences	over	different	combinations	of	the	N consumer goods 
and services. The true cost of living index using the prefer-
ences of period 0 and the reference utility level of period 0 
is C0(u0,p1)/C0(u0,p0), while the true cost of living index using 
the preferences of period 1 and the reference utility level of 
period 1 is C1(u1,p1)/C1(u1,p0). Each of these measures is of 
interest, and each measure is equally valid. If we require a 
single estimate for real price change between the two peri-
ods, then taking the geometric average of these two estimates 
seems to be a reasonable procedure. The analysis in Section 
12 shows how the Törnqvist–Theil index could provide an 
observable approximation to this average measure of price 
change. However, it should be noted that the results in Sec-
tion 12 do not allow for completely general taste changes. 
The issue of taste change is of some importance since the 
COVID pandemic, which started in 2020, surely changed 
consumer preferences. In order to model the transition 
from pre-COVID preferences to COVID preferences while 
allowing	for	completely	different	preferences,	it	seems	that	
econometric methods would have to be used where separate  

6 various bilateral quantity indices can be obtained from counterpart 
bilateral price indices by interchanging the role of prices and quantities. 
Thus	the	bilateral	Laspeyres	and	Paasche	quantity	indices	are	defined	as	
QL ≡ p0·q1/p0·q0 and QP ≡ p1·q1/p1·q0.	The	Fisher	quantity	index	is	defined	as	
QF ≡ [QLQP]1/2.
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the price ratios, p1n/p0n. The Dutot index	is	defined	using	our	
usual notation as follows:

 PD(p0,p1) ≡ [Σn=1
N (1/N)p1n]/[Σn=1

N (1/N)p0
n]. (17)

Thus, the Dutot index is a ratio of the average price in 
period 1 to the average price in period 0. Unfortunately, this 
index is not invariant to changes in the units of measure-
ment, whereas the Carli and Jevons indices are invariant. 
Applying the test approach to bilateral index number theory 
in the prices-only case leads to the Jevons index as being a 
“best” index.

In this chapter, it is assumed that all prices are positive, 
and this is a limitation of the analysis. The problems asso-
ciated with missing prices will be discussed in Chapters 7 
and 9.

Chapter 6 also discusses in some detail some of the prob-
lems associated with determining the scope of an index. For 
example,	how	exactly	should	a	product	be	defined?	Should	
the elementary aggregate have a regional or type of house-
hold	dimension	in	addition	to	a	product	dimension?	Should	
prices be collected from households directly or from outlets 
servicing	households?

An annex to Chapter 6 discusses another interesting mea-
surement	problem	that	arises	at	 the	first	 stage	of	aggrega-
tion. Some retail outlets charge a fixed monthly or annual fee 
in order to give customers access to their products (or to give 
members a lower price on products). For example, telecom-
munications	firms	often	charge	a	fixed	monthly	access	 fee	
that is independent of the usage of their services. The annex 
discusses	alternative	methods	for	treating	these	fixed	access	
fees in a CPI.

4. The Chain Drift Problem and 
Multilateral Indices
Chapter 7 deals with possible solutions to the chain drift 
problem,	which	will	 be	 defined	 subsequently.	 This	 chap-
ter also addresses the problems associated with missing 
prices.

Up to this point, we have focused on the problem of mea-
suring	consumer	price	inflation	over	the	two	periods,	a	base	
period 0 and a current period 1; that is, we have been discuss-
ing bilateral index number theory. In Chapter 7, the focus 
is on constructing an index over many periods. A simple 
method for adapting bilateral index number theory to the 
case of many periods is to choose the bilateral index number 
formula	and	fix	 the	base	period,	and	as	new	data	become	
available, we simply compute the bilateral index linking the 
current period to the base period. This method generates a 
sequence of fixed-base index numbers. The problem with this 
strategy is that the structure of the economy changes over 
time with new products appearing and old products disap-
pearing so that one is eventually forced to give up on the use 
of	fixed-base	index	numbers.
An	 alternative	 to	 fixed-base	 index	 numbers	 is	 to	 use	

chained indices. Chained indices work as follows. Suppose 
we have chosen a suitable bilateral index number formula, 
say P(p0,p1,q0,q1) and we want to use this formula to com-
pute chained indices over time periods 1,2,…,T. Suppose 
the price and quantity vectors for period t are pt and qt for 
t = 1,…,T. For period 1, we set the price level P1 equal to 

household. Section 16 looks at methods to aggregate over 
households to form what Pollak calls a social cost of living 
index. The material presented in this section assumes that 
price and quantity information is available for individual 
households. Section 16 also discusses democratic and pluto-
cratic price indices.

Section 17 looks at the problems associated with aggregat-
ing over households in order to form measures of economy 
wide real consumption. The analysis in this section supports 
the construction of aggregate Fisher quantity indices.

Section 18 generalizes the discussion in Section 17 in 
order to discuss alternative measures of social welfare and 
the relationship of measures of income inequality to social 
welfare. The work of Atkinson, Kolm, Sen, Jorgenson, 
and	Schreyer	figures	prominently	in	this	section.	A	simple	
social welfare function is suggested that is equal to the 
product of per capita real consumption times one minus 
the	Gini	 coefficient	 for	 the	distribution	of	 real	 income	 in	
the economy.

Section 19 addresses an important shortcoming of most 
of the analysis presented in Chapters 2–5 up to this point: 
It is usually assumed that all prices are positive in the two 
periods being compared. However, the shorter the length 
of the time period7 and the longer the time series of prices 
and quantities, the greater will be the likelihood of a lack 
of matching of prices. This problem is due to the following 
explanatory factors:

• The existence of seasonal products that are only available 
in certain seasons.

• When a durable good or storable product goes on sale, 
consumers can purchase multiple units of the product 
during the sale period and then purchase zero units of 
the product for subsequent periods until their inventory 
of the product is depleted or the durable good is worn out.

• Product churn—that is, producers are constantly modi-
fying their products and replacing “old” products with 
perhaps	slightly	different	“new”	products.

Section 19 discusses possible solutions to the lack of match-
ing problem. In addition, Chapters 7–10 all deal with miss-
ing prices in more detail.

3. Elementary Indices
Chapter 6 discusses the problems associated with choosing 
a	bilateral	index	number	formula	at	the	first	stage	of	aggre-
gation in constructing a CPI. In particular, the problem of 
formula choice is discussed when only price information is 
available. This type of index is frequently called an elemen-
tary index. In this case, the economic approach to index 
number theory cannot be applied and so only the test and 
stochastic approaches to index number theory can be used in 
this “prices only” context. Examples of elementary indices  
that use only price information for the two periods under 
consideration are the Carli, Dutot, and Jevons indices. The 
Carli	and	Jevons	indices	were	defined	earlier	by	(5)	and	(6)	
and were equal to the arithmetic and geometric averages of 

7 If the time period is very short (for example, one day) hardly any pur-
chases made by a single household will be matched over a sequence of 
days.
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1. For period 2, we set the price level P2 equal to the index  
P(p1,p2,q1,q2). For period 3, we set the price level P3 equal to P(p
2,p3,q2,q3) times the price level in period 2, P2. Thus, we have P3 
= P2×P(p2,p3,q2,q3) = 1×P(p1,p2,q1,q2)×P(p2,p3,q2,q3). Similarly, 
the price level in period 4 is P4 = P3×P(p3,p4,q3,q4) = 1×P(p1,p
2,q1,q2)×P(p2,p3,q2,q3)×P(p3,p4,q3,q4) and so on. Thus, we build 
up the overall price change going from period 1 to period T 
by multiplying together the period-to-period chain links P(pt–

1,pt,qt–1,qt) that link the prices of period t to the prices of the pre-
vious period t–1. Thus, it appears that chained indices will be 
more	reliable	than	fixed-base	indices	when	there	is	a	great	deal	
of product churn because the chained indices will have more 
matched	prices	on	average	than	fixed-base	indices.	The	use	of	
chained indices was endorsed by Marshall many years ago.

The 2004 Consumer Price Index Manual endorsed the use 
of a superlative index number formula (like the Fisher bilat-
eral	price	index)	at	the	first	stages	of	aggregation	if	price	and	
quantity data were available, and the Manual also endorsed the 
use of chained indices. However, when this chaining strategy  
was	implemented	at	the	first	stage	of	aggregation	when	price	
and quantity data were available (say at the level of a retail out-
let for some class of products), it was found that the resulting 
indices often led to unusually low price levels as time marched 
on. A way of formalizing this chain drift problem is to look at a 
series of chained indices over T periods and add the data of the 
base	period	as	an	artificial	final	period	T + 1. Ideally, we would 
like the resulting period T + 1 price level to equal the period 1 
price level; that is, we would like the bilateral index number for-
mula to satisfy Walsh’s multiperiod identity test. In recent years, 
with the increasing availability of retail scanner data, statistical 
agencies have found that this test often fails quite spectacularly.

The chain drift problem is mainly caused by consumer 
stockpiling behavior. Thus, when the price of a product is 
particularly low, consumers tend to purchase a large amount 
of it (thus driving the overall price index down), but when 
prices return to normal in a subsequent time period, consum-
ers purchase less than the normal amount of the product, and 
this means that the index does not recover to its pre-sale level. 
An example in Chapter 7 illustrates this phenomenon. Thus, 
the normal case of chain drift is downward chain drift. But 
upward chain drift can also occur (due to incomplete adjust-
ment on the part of households). The case of upward chain 
drift is also explained in Chapter 7.

As statistical agencies and academics worked on con-
structing subindices of the CPI using scanner data over the 
past 20 years, they discovered that the use of multilateral 
indices could reduce chain drift. A multilateral index simul-
taneously determines price levels for a window of say T 
periods, so the attention shifts to the determination of price 
levels	 rather	 than	 rates	 of	 inflation	 over	 two	 periods	 (the	
bilateral approach to index number theory). Multilateral 
price indices were introduced by Gini in order to measure 
price	levels	across	the	different	regions	of	Italy.	Balk	was	an	
early pioneer in applying multilateral methods in the time 
series context. Ivancic, Diewert, and Fox stimulated general 
interest in the use of rolling window multilateral index num-
ber methods in the time series context.

Chapter 7 has treatments of several related topics:

•	 A	comparison	of	likely	differences	in	many	bilateral	and	
multilateral index number formulae is made under the 
assumption that there are long-run trends in prices.

•	 The	problems	raised	by	missing	prices	are	discussed	briefly	
in this chapter and in Chapter 8.

•	 The	main	multilateral	indices	are	defined	and	compared,	
which includes the GEKS, Geary–Khamis (GK), time 
product dummy (TPD), and relative price similarity-
linked indices.

• A new test approach to multilateral indices is developed 
where the objective is to construct price and quanity lev-
els rather than a bilateral ratio of prices or quantities.

•	 The	various	indices	defined	in	the	chapter	are	computed	
for	a	small	artificial	scanner	data	set,	which	is	listed	in	an	
annex to the chapter.

From the viewpoint of the axiomatic approach to multilateral 
index number theory, similarity-linked price indices appear to 
have very good properties. The basic idea behind similarity-
linked price indices is as follows. If prices between the two 
periods are proportional, then any “reasonable” price index 
will	 be	 equal	 to	 the	 factor	 of	 proportionality.	Hence,	 define	
a suitable measure of relative price dissimilarity between the 
prices of any two periods. The nonnegative dissimilarity mea-
sure must have the property that if  prices in the two periods 
are proportional, then the dissimilarity measure is equal to 0. 
Larger measures of dissimilarity indicate larger deviations 
from price proportionality. When the prices of the current 
period become available, calculate the chosen measure of rela-
tive price dissimilarity with the prices of each prior period in 
a window of observations. The prior period with the lowest 
measure of dissimilarity is chosen as the link observation, and 
the bilateral Fisher index for the current period relative to the 
chosen link period is calculated and used to update the price 
level of the link period. This method of linking leads to price 
levels that will always satisfy Walsh’s multiperiod identity test 
for prices. Using the predicted share measure of relative price 
dissimilarity is recommended because it can deal with missing 
prices (and zero quantities) and it penalizes a lack of matching 
of prices between the two periods. The SPQ similarity link-
ing method is a bit more complicated, but it leads to quan-
tity indices (as well as price indices) that satisfy a multiperiod  
identity test for quantities. However, it turns out that similarity 
linking works best when making international comparisons of 
prices or when constructing price indices for seasonal products. 
For “regular” products, real-time similarity linking can lead to 
bilateral links that are very close to chained links and thus, 
chain drift can still occur using similarity linking methods. It 
turns out that satisfying Walsh’s multiperiod identity test is a 
necessary condition for a multilateral method to avoid chain 
drift	but	is	not	a	sufficient	condition.	In	order	to	completely	
rule out the possibility of chain drift, the multilateral method 
must satisfy Fisher’s circularity test. The real-time similarity 
linking method can be adapted to satisfy the Circularity Test. 
However, all of the multilateral methods explained in Chapter 
7	suffer	from	a	common	problem:	they	are	not	able	to	properly	
measure	the	benefits	of	new	products.	In	the	next	chapter,	the	
quality adjustment problem is addressed.

5. Quality Adjustment Methods
Chapter 8 presents a general framework for measuring the 
effects	of	quality	change	in	a	CPI	context.	Most	of	the	exist-
ing methods for adjusting for quality change can be regarded 
as special cases of this framework.
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Here is the basic problem: a new product suddenly 
appears. It could be a genuinely new product or a possibly 
improved version of an existing product. How can we cap-
ture	the	possible	benefits	of	this	new	product	in	a	CPI	or	in	
the	companion	index	of	real	consumption?
It	is	not	possible	to	measure	the	effects	of	quality	change	

without using the economic approach to index number the-
ory	since	we	are	trying	to	measure	the	benefit	or	utility	of	the	
new product relative to existing products. We use the utility 
function f(q)	that	was	defined	in	the	beginning	of	Section	2.	
Again, we assume that the utility function is linearly homo-
geneous	so	 that	 it	 satisfies	 the	property	 f(λq) = f(λq1,λq2,…
,λqN) = λf(q) for all numbers λ > 0. The chapter develops 
alternative quality adjustment methods that depend on alter-
native assumptions about the functional form of the utility 
function.

Chapter 8 studies four types of models depending on the 
assumptions made about f(q):

• f(q) is a linear function of the form f(q) = α·q ≡ Σn=1
N αnqn. 

This class of models includes methods used by statisti-
cal agencies as well as the time dummy hedonic regression 
model studied in Chapters 6 and 7.

• f(q) is again a linear function of q,	but	the	coefficients	αn 
are now functions of various amounts of K price-deter-
mining characteristics, z1,…,zK. Thus, we have f(q,z) =  
Σn=1

N αn(zn1,zn2,…,znK)qn, where zn1,zn2,…,znK are the 
amounts of characteristic 1, 2,…,K that one unit of prod-
uct n contains for n = 1,…,N. This class of models leads 
to general hedonic regression models with characteristics.

• f(q) is a Constant Elasticity of Substitution (CES) utility 
function. This class of utility functions includes the linear 
utility	function	defined	earlier	as	a	special	case	but	it	is	
more	flexible;	that	is,	it	is	consistent	with	a	wider	range	
of consumer substitution responses to changes in prices. 
Feenstra worked out a very elegant method for dealing 
with this case that does not require extensive econo-
metric estimation; only an estimate for the elasticity of 
substitution is required in order to implement Feenstra’s 
method.

• f(q) is a more general functional form that allows for a 
wider range of consumer responses to changes in prices. 
This framework has been used by Hausman and Diewert 
and Feenstra.

The problem with the CES approach is that the reser-
vation prices that this approach generates for missing 
products are infinite. Typically, it does not require an 
infinite price to discourage a consumer from purchas-
ing a product. Another problem is that the elasticity of 
substitution must be estimated somehow and estimates 
tend to be quite variable. The fourth class of methods 
that uses more f lexible functional forms generates finite 
reservation prices but has the disadvantage that the asso-
ciated econometric estimation is quite complex and dif-
ficult to implement at scale. However, a special case of 
the Diewert and Feenstra methodology does have the 
potential to be implemented at scale. This special case 
also satisfies the Circularity Test and hence is not subject 
to chain drift.

Chapter 8 discusses some additional approaches to the 
treatment of quality change such as clustering.

6. Seasonal Products
Chapter 9 deals with the problem of seasonal products. A 
seasonal	good	or	service	has	regular	fluctuations	 in	prices	
and quantities that are synchronized with the seasons of the 
year. A strongly seasonal product is a seasonal product that 
is not available in all months of the year. Thus, strongly sea-
sonal products create a missing price problem for the sea-
sons where the product is simply not available.

The problems associated with missing prices are 
addressed in Chapters 7 and 8, and so the methods for deal-
ing with missing prices suggested in these chapters can be 
used to deal with missing prices in the strongly seasonal 
context. However, the fact that there is a degree of regular-
ity in the appearance and disappearance of strongly sea-
sonal products means that alternative methods for dealing 
with missing seasonal prices can be devised. In particular,  
indices that match the prices and quantities of December for 
the current year to the prices and quantities of December 
for the base year are likely to have fewer missing prices and 
quantities than an index that compares the prices of the cur-
rent month with the prices of the previous month. In other 
words, year-over-year December indices and year-over-year 
January indices are likely to be more reliable than an index 
that compares January prices to February prices. Thus, Sec-
tions 2 and 3 of Chapter 9 present the algebra for construct-
ing year-over-year indices for each month of the year. Section 
2 uses carry-forward prices for any prices that are missing 
when a product is not present. A carry-forward price is sim-
ply the last observed price for the product that is used as 
an imputed price for the product when it is missing.8 Since 
seasons are not perfectly synchronized with months of the 
year, carry-forward prices can occur in the year-over-year 
context.9 In general, it is not a good idea to use carry-for-
ward	prices,	particularly	 in	conditions	of	general	 inflation	
(or	deflation),	since	the	carry-forward	price	in	the	inflation	
context will tend to give the index a downward bias. Hence, 
in Section 3, the various year-over-year monthly indices are 
recalculated using only matched prices in the two periods 
being compared.

Sections 4 and 5 of Chapter 9 construct annual indices in 
the seasonal products context. The most accurate method 
for constructing an annual index in this context is to treat 
each product in each period (month or quarter) as a separate 
annual	product.	This	type	of	annual	index	was	first	suggested	
by Mudgett and Stone in separate publications. Section 4 uses 
the carry-forward prices constructed in Section 2 in order to 
calculate various Mudgett Stone annual indices, while Sec-
tion 5 uses only matched prices in constructing the various 
annual	 indices.	National	 Statistical	Offices	 do	 not	 use	 the	
Mudgett Stone methodology when they construct annual 
CPIs; instead, they usually just take the arithmetic average of 
their monthly year-over-year indices to construct an annual 

8 A carry-forward price for the year-over-year monthly indices will in gen-
eral	be	different	from	a	carry-forward	price	for	a	month-to-month	index.	
As described in the CPI Manual (Chapter 6), carry-forward prices are 
not the preferred imputation method for temporarily missing varieties.
9 For example, weather can delay or bring forward harvests of fresh fruits 
and vegetables. Similarly snowfall conditions can delay the opening of 
ski lifts and so on. As described in the CPI Manual (Chapter 6), carry 
forward is not the recommended approach for the treatment of missing 
seasonal items.
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index (or they take the arithmetic average of their month-to-
month CPIs for the calendar year). Using our Israeli data on 
fresh fruits, we found that there was a substantial amount 
of bias using the usual method for forming annual indices 
compared to the Mudgett Stone method. The bias is due to 
the fact that expenditures on strongly seasonal products are 
not spread evenly over all months.

Sections 6 and 7 construct month-to-month price indices 
using various index number formulae. The computations 
in Section 6 used carry-forward prices for missing prices,10 
while the computations in Section 7 used only matched 
product prices. Our “best” month-to-month indices used 
the predicted share methodology (explained in Chapter 7) 
for linking the current month to the previous month that 
had the most similar structure of relative prices. The down-
ward bias in using carry-forward prices (instead of matched 
prices) in the context of month-to-month indices was much 
more pronounced than it was in the context of constructing 
year-over-year monthly indices.

Up to this point, the various indices used monthly price 
and quantity data. It is of interest to use only the price data 
to construct various month-to-month indices. Thus, Sec-
tions 8 and 9 construct various indices such as the Carli, 
Dutot, and Jevons indices (and the TPD indices that use 
only price data). These indices that use only price informa-
tion can then be compared with our “best” similarity-linked 
indices that used monthly price and quantity information. 
Section 8 used month-to-month carry-forward prices, while 
Section 9 used only prices that were actually observed. Sec-
tion	9	also	modified	the	predicted	share	relative	price	simi-
larity linking methodology to the prices-only situation. In 
place of the maximum overlap bilateral Fisher index (which 
was used to link the current period prices to the prices of 
a prior period with the most similar structure of relative 
prices), the maximum overlap Jevons index was used to link 
the current period prices to the prices of a prior period. This 
new prices-only multilateral method seemed to work well 
using	the	Israeli	data	set,	in	the	sense	that	seasonal	fluctua-
tions were muted using the prices-only predicted share indi-
ces and these indices were reasonably close to our “best” 
predicted share similarity-linked indices that used both 
price and quantity information.11

Section 10 looked at various annual basket indices and 
compared these indices to our “best” similarity-linked 
indices. Several of these annual basket indices captured 
trend	 inflation	 rather	 well,	 but	 the	 seasonal	 fluctuations	
were often very large (and in opposite directions) compared 
to our “best” index. It seems to be worthwhile for National 
Statistical	Offices	 to	 invest	 in	obtaining	monthly	 expendi-
ture weights in order to produce more accurate price indices 
for seasonal commodity groups.

Finally, in Section 11, some of the problems associated 
with	 measuring	 trend	 inflation	 and	 seasonal	 adjustment	
are	 discussed.	 The	 basic	 problem	 is	 that	 it	 is	 difficult	 to	

10 Section 7 uses month-to-month carry-forward prices for missing prod-
ucts	which	are	different	from	the	carry-forward	prices	used	in	Section	2.	
For the Israeli data set, the probability that a month-to-month price for 
the same product was missing turned out to be 0.447. There were very few 
missing prices in the year-over-year context that was used in Section 2.
11 This new similarity-linked multilateral method that used only price 
information also penalized a lack of price matching.

distinguish	 trend	 inflation	 from	 changes	 in	 seasonal	 price	
patterns. Thus, in Chapter 9, our focus is on obtaining mea-
sures of price change before seasonal adjustment. There are 
many methods suggested in the literature on how to season-
ally adjust an economic time series. But all of these methods 
require as an input an unadjusted series. Thus, producing 
the best possible unadjusted series should be the main task 
of	a	National	Statistical	Office.

7. The Treatment of Durable Goods 
and Owner-Occupied Housing
Chapter 10 looks at the treatment of durable goods in a CPI. 
The basic problem is the following one. When a household 
purchases a durable good,12 a certain price is paid for the 
ownership of it in the period of purchase. However, the ben-
efits	from	the	use	of	the	durable	good	persist	into	the	future	
for many periods, and thus, it does not seem to be fair to 
charge the entire purchase price of the durable to its period 
of purchase. But how exactly are we to decompose the pur-
chase price of the durable into period-by-period charges for 
the	 use	 of	 the	 durable	 over	 its	 useful	 lifetime?	This	 is	 the	
fundamental problem of accounting.

There is no universally agreed answer to this problem. 
However, there are three main approaches to addressing this 
problem:

• The acquisitions approach: This approach simply allo-
cates the entire purchase price to the period of purchase.

• The rental equivalence approach: If rental markets for the 
durable good exist, then use the current period rental 
price as an imputed price for the use of the durable in the 
current period. By using the services of the durable dur-
ing a period, the owner forgoes the opportunity cost of 
renting the services of the durable to another user.

• The user cost approach.	This	is	the	financial	opportunity	
cost of using the services of the durable, which will be 
explained in more detail subsequently.

It is obvious that the acquisitions approach will not mea-
sure	 the	 service	 flow	 yielded	 by	 ownership	 of	 a	 durable	
good	 beyond	 the	 first	 period,	 and	 so	 for	 durables	 that	
have a long useful life (such as housing), the acquisitions 
approach	 will	 not	 be	 suitable	 for	 measuring	 the	 flow	 of	
utility to the consumer that using the services of the dura-
ble good generates.

The rental equivalence approach does measure the utility 
flow	generated	by	using	the	services	of	the	durable	good,	but	
it may fail in situations where the rental market is thin or 
nonexistent or heavily regulated by the government.
The	user	cost	approach	is	more	complicated	than	the	first	

two approaches. Here is an explanation of how the approach 
works. Suppose that a household purchases a new unit of 
the durable good at the beginning of period t at price P0

t. 
The 0 subscript indicates that the age of the purchased good 
is 0, indicating that it is a new unit of the durable good. The 
consumer uses the services of the durable during period t. 
At the end of period t (which is the beginning of period t + 
1), the consumer observes that the used durable good could 

12 A	durable	good	provides	a	flow	of	services	to	the	household	that	per-
sists for more than one accounting period.
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be sold at price P1
t + 1, where the subscript 1 indicates that 

the durable good has been used for 1 period so it is now 
a secondhand good. Thus, it appears that the consumer’s 
total cost of using the services of the durable good during 
period t is simply the purchase price less the selling price or 
P0

t – P1
t + 1. But in purchasing the durable good at the begin-

ning of period t,	the	household	ties	up	its	financial	capital	
for the period, and thus there is a financial opportunity cost 
of holding the durable good	over	the	period.	This	financial	
opportunity cost is rtP0

t, where rt is the relevant interest rate 
that the household faces.13 Thus, the full user cost is Ut ≡ 
P0

t(1 + rt) – P1
t + 1. This user cost formula is not the usual one 

used by economists. Suppose that the price of a new unit of 
the durable good at the beginning of period t + 1 is P0

t + 1. 
We can use the end of period t (or beginning of period t + 1) 
prices P0

t + 1 and P1
t + 1 for a new and used unit of the durable 

good	in	order	to	define	a	depreciation rate for the durable 
good, δt,	defined	as	follows:	(1–δt) ≡ P1

t + 1/P0
t + 1. We can also 

use the new good prices P0
t and P0

t + 1	in	order	to	define	the	
period t asset appreciation rate, it, as follows: (1 + it) ≡ P1

t + 

1/P0
t + 1.	Using	 these	definitions,	we	can	express	 the	end	of	

period t price for a unit of the used durable, P1
t + 1, in terms 

of the price of a new unit of the durable at the beginning of 
period t, P0

t, as follows:

 P1
t + 1 = (1–δt)(1 + it)P0

t. (18)

Using (18), the user cost Ut can be obtained as follows:

Ut = P0
t(1 + rt) – P1

t + 1

  = P0
t(1 + rt) – (1–δt)(1 + it)P0

t

 = [rt – it + δt(1 + it)]P0
t. (19)

Although the user cost concept is used by many National 
Statistical	Offices	in	their	productivity	accounts	in	order	
to measure capital services if they provide measures of 
the Multifactor Productivity or Total Factor Productiv-
ity for their economy, countries have been reluctant to 
use the user cost methodology to measure the services of 
consumer durables in their CPIs. The problem is that it 
is not straightforward to determine what exactly is the 
appropriate interest rate rt, depreciation rate δt, and asset 
appreciation rate it	to	use	in	the	user	cost	formula	defined	
by (19). In particular, the use of ex-post asset apprecia-
tion rates it in formula (19) is not recommended due to the 
volatility in asset prices; instead, predicted or smoothed 
asset appreciation rates should probably be used. But 
this raises the question: Which of many possible meth-
ods should be used in order to smooth asset appreciation 
rates?	It	is	also	difficult	to	determine	the	“right”	opportu-
nity	cost	of	financial	capital	rt, and it is not easy to deter-
mine depreciation rates δt either. Nevertheless, sometimes 
countries are forced to use the user cost approach to 
value the services of owner-occupied housing (OOH) due  

13 If	 the	household	borrows	money	 to	finance	 the	purchase	of	 the	 con-
sumer durable, then rt is the rate of interest that the household pays in 
order to secure the loan. If the household does not have to borrow funds 
to	 finance	 the	 purchase	 and	 has	 investments,	 then	 the	 relevant	 rate	 of	
interest rt is the rate of return on a marginal investment made at the 
beginning of period t.

to the lack of comparable rental markets. Making some-
what arbitrary decisions about rt, it, and δt is acceptable 
if these decisions are explained to users. After all, user 
costs are routinely used by academic economists and by 
national statistical agencies that produce estimates of 
Multifactor Productivity.
National	Statistical	Offices	for	the	most	part	just	use	the	

acquisitions approach to value the services of consumer 
durables in their CPIs. The exception to this rule is OOH. 
For the most countries, the rental equivalence approach is 
used, but for a few countries where rental markets are thin, 
a	simplified	user	cost	approach	 is	used.	Eurostat’s	harmo-
nized index of consumer prices (HICP) has simply omitted 
the services of OOH, but this may change in the future.

Chapter 10 discusses the three main approaches to the 
treatment of durables in a CPI in more detail in Sections 2–5. 
Sections	6–8	look	at	different	models	of	depreciation	that	are	
of interest if  the user cost approach to the treatment of dura-
bles is implemented. Section 9 shows how the acquisitions 
approach	will	in	general	understate	the	flow	of	services	from	
the use of durable goods in the national accounts.

Section 10 of Chapter 10 looks at the accounting prob-
lems that are posed by stockpiling behavior on the part of 
households.

Sections 11–18 deal with the complications associated 
with including housing services in a CPI. A main problem 
is that housing consists of two main assets: (i) the structure 
(which depreciates) and (ii) the land plot that supports the 
structure (which does not depreciate). Thus, it is not possible 
to exactly match the prices of the same property over time 
due to depreciation of the structure (and possible renova-
tions and additions to an existing structure). Thus, we have 
a	difficult	quality	adjustment	problem.	Hedonic	regression	
techniques	 offer	 the	 best	 solution	 to	 these	 measurement	
problems.

Section 18 looks at a fourth approach to the treatment of 
OOH, namely the payments approach. Some of the problems 
associated with the use of this approach are discussed in this 
section.

8. Lowe, Young, and Superlative 
Indices: An Empirical Study for 
Denmark
Chapter 11 concludes this Consumer Price Index Theory 
volume by looking at the components of the Danish CPI 
and experimenting with alternative methods of aggre-
gating the data. Thus, Statistics Denmark has provided 
its data for 402 monthly elementary price indices for the 
seven years from 2012 to 2018 along with the annual bas-
ket weights used to aggregate these elementary indices 
into an overall index.

This chapter computes various “practical” monthly indi-
ces such as the annual basket Lowe and Young indices along 
with various superlative annual indices. Thus, estimates of 
the amount of substitution bias in the annual indices can be 
computed.

An annex to the chapter explains the computation of 
various elementary indices and some approximate Fisher 
and relative price similarity-linked indices using the same 
data set.
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9. Conclusion
This volume started at the Ottawa Group meeting in Tokyo, 
Japan, in 2015. Thus, it has been in progress for some seven 
years. The authors of the various chapters are as follows: W. 
Erwin Diewert wrote Chapters 1–8; the authors of Chap-
ter 9 are Diewert, Yoel Finkel, Doron Sayag, and Graham 
White; the authors of Chapter 10 are Diewert and Chihiro 
Shimizu; the authors of the main text of Chapter 11 are 
Martin Nielsen, Martin Larsen, and Carsten Boldsen; and 
the author of the annex to Chapter 11 is Diewert. The edi-
tor of the overall volume is Diewert. The authors would like 
to thank all of the persons who provided comments on the 
various chapters; these commentators are listed in a foot-
note at the beginning of each chapter. Needless to say, the 
commentators are not responsible for any remaining errors. 
The authors want to thank Chihiro Shimizu in particular 
for carefully reading the manuscript of each chapter and 
checking each equation for errors.

The main purpose of the volume is to provide an overview 
of the main index number theories that have been suggested 
over the past 150 years and could be useful to statisticians 

who construct CPIs. The volume contains hundreds of ref-
erences to papers and books on index number theory that 
could be useful to readers who want to explore the subject 
more deeply. This book could also be useful to academics 
who wish to learn more about the problems facing price stat-
isticians in their attempts to produce accurate CPIs. There 
are many unsolved problems that could be usefully studied 
by academics. Parts of the various chapters could be used 
as supplementary reading material for courses in advanced 
macroeconomics.14 This book could also be useful to pri-
vate sector economists who are processing micro data into 
aggregates to be used by management.

This volume does require some mathematical background 
in order to follow completely all of the various arguments 
made in the text. Basically, matrix algebra and advanced 
calculus are used in many of the chapters. Some knowledge 
of microeconomics is also helpful.

An important topic that is not covered in the present vol-
ume is sampling theory. The application of multilateral indi-
ces to cross-country and cross-region comparisons is also 
not covered but, of course, multilateral indices are studied 
in some detail in this volume.

14 Another fairly recent book that could be used to teach economists and 
economic statisticians the fundamentals of index number theory is Bert 
Balk’s 2008 book, Price and Quantity Index Numbers. His book is par-
ticularly good on the early history of index number theory and on the test 
and stochastic approaches to index number theory. He does not cover the 
economic approach.
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1. Introduction

The answer to the question what is the Mean of a given 
set of magnitudes cannot in general be found, unless 
there is given also the object for the sake of which a mean 
value is required. There are as many kinds of average as 
there are purposes; and we may almost say in the matter 
of prices as many purposes as writers. Hence much vain 
controversy between persons who are literally at cross 
purposes. 

Francis Ysidro Edgeworth (1888; 347)

The number of physically distinct goods and unique 
types of services that consumers can purchase is in the 
millions. On the business or production side of the econ-
omy, there are even more commodities that are actively 
traded. This is because firms produce not only commodi-
ties for final consumption but also export and intermedi-
ate commodities that are demanded by other producers. 
Firms collectively also use millions of imported goods 
and services, thousands of different types of labor ser-
vices, and hundreds of thousands of specific types of 
capital. If we further distinguish physical commodities 
by their geographic location or by the season or time of 
day that they are produced or consumed, then there are 
billions of commodities that are traded within each year 
in any advanced economy. For many purposes, it is nec-
essary to summarize this vast amount of price and quan-
tity information into a much smaller set of numbers. The 
question that this chapter addresses is: How exactly should 
the microeconomic information involving possibly millions 
of prices and quantities be aggregated into a smaller num-
ber of price and quantity variables? This is the basic index  
number problem.

It is possible to pose the index number problem in the con-
text of microeconomic theory; that is, given that we wish to 
implement some economic model based on producer or con-
sumer theory, what is the “best” method for constructing a 
set of aggregates for the model? However, when construct-
ing aggregate prices or quantities, other points of view (that 
do not rely on economics) are possible. Some of these alter-
native points of view will be considered in this chapter and 
the following two chapters. Economic approaches to index 
number theory will be pursued in Chapters 5 and 8.

The index number problem can be framed as the problem 
of decomposing the value of a well-defined set of transac-
tions in a period of time into an aggregate price term times 
an aggregate quantity term. This is the price and quantity 
levels approach to index number theory. This approach will 
be pursued in subsequent chapters, but there are some dif-
ficulties with the use of this approach, and so in Section 
2, the problem of decomposing a value ratio pertaining to 
two periods of time into a component that measures the 
overall change in prices between the two periods (this is the 
price index) times a term that measures the overall change 
in quantities between the two periods (this is the quantity 
index) is considered. Thus, instead of attempting to con-
struct aggregate price and quantity levels for each period, a 
ratio approach is adopted. The simplest price index is a fixed 
basket type index; that is, fixed amounts of the N quantities 
in the value aggregate are chosen, and then this fixed basket 
of quantities at the prices of period 0 and at the prices of 
period 1 are calculated. Thus, the fixed basket price index 
is simply the ratio of these two values, where the prices vary 
but the quantities are held fixed. Two natural choices for the 
fixed basket are the quantities transacted in the base period, 
period 0, or the quantities transacted in the current period, 
period 1. These two choices lead to the Laspeyres (1871) and 
Paasche (1874) price indices, respectively.

Unfortunately, the Paasche and Laspeyres measures of 
aggregate price change can differ, sometimes substantially. 
Thus in Section 4, taking an average of these two indices to 
come up with a single measure of price change is considered. 
In this section, it is argued that the “best” average to take 
is the geometric mean, which is Irving Fisher’s (1922) ideal 
price index. In Section 5, instead of geometric average of 
the Paasche and Laspeyres measures of price change, tak-
ing an arithmetic average of the two baskets is considered. 
This fixed basket approach to index number theory leads to 
a price index advocated by Walsh (1901) (1921a). However, 
other fixed basket approaches are also possible. Instead of 
choosing the basket of period 0 or 1 (or an average of these 
two baskets), it is possible to choose a basket that pertains to 
an entirely different period, say period b. In fact, it is typical 
statistical agency practice to pick a basket that pertains to 
an entire year (or even two years) of transactions in a year 
prior to period 0, which is usually a month. Indices of this 
type, where the weight reference period differs from the price 
reference period, were originally proposed by Joseph Lowe 
(1823), and in Section 6, indices of this type will be studied.

In Section 7, another approach to the use of annual weights 
with monthly prices will be discussed. This approach was 
developed by Young (1812).

* The author thanks Paul Armknecht, Carsten Boldsen, Valery 
Dongmo-Jiongo, Heidi Ertl, Karen Fong, Zachary Glazier, Ronald 
Johnson, Gerry O’Donnell, Marshall Reinsdorf, Mark Ruddock, and 
Chihiro Shimizu for their helpful comments.
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transacted in the time period under consideration, and the 
subscript n identifies the nth elementary item in the group 
of N items that make up the chosen value aggregate V. Con-
sidered in this definition of a value aggregate is the specifi-
cation of the group of included commodities3 (which items 
to include) and of the economic agents engaging in trans-
actions involving those commodities (which transactions 
to include), as well as the valuation and time of recording 
principles motivating the behavior of the economic agents 
undertaking the transactions (determination of prices). The 
included elementary items, their valuation (pn), the eligibility 
of the transactions, and the item weights (qn) are all within 
the domain of definition of the value aggregate. The precise 
determination of pn and qn can be a tricky business.4

The value aggregate V defined by (1) referred to a cer-
tain set of transactions pertaining to a single (unspecified) 
time period. Now the same value aggregate for two places 
or time periods, periods 0 and 1, is considered. For the 
sake of definiteness, period 0 is called the base period, and 
period 1 is called the current period, and it is assumed that 
observations on the base period price and quantity vectors,  
p0 ≡ [p1

0,. . .,pN
0] and q0 ≡ [q1

0,. . .,qN
0], respectively, have been 

collected.5 The value aggregates in the two periods are 
defined as

 V0 ≡ Σn=1
N pn

0qn
0 and V1 ≡ Σn=1

N pn
1qn

1. (2)

In the previous paragraph, a price index was defined as 
a function or measure that summarizes the change in the 
prices of the N commodities in the value aggregate from 
situation 0 to situation 1. In this paragraph, a price index 
P(p0,p1,q0,q1) along with the corresponding quantity index 
(or volume index) Q(p0,p1,q0,q1) is defined to be two functions 
of the 4N variables p0,p1,q0,q1 (these variables describe the 
prices and quantities pertaining to the value aggregate for 
periods 0 and 1) where these two functions satisfy the fol-
lowing equation:6

 V1/V0 = P(p0, p1, q0, q1) Q(p0, p1, q0, q1). (3)

If there is only one item in the value aggregate, then the 
price index P should collapse down to the single price ratio 
p1

1/p1
0 and the quantity index Q should collapse down to the 

single quantity ratio q1
1/q1

0. In the case of many items, the 
price index P is to be interpreted as some sort of weighted 
average of the individual price ratios, p1

1/p1
0,. . ., pn

1/pn
0.

Thus, the first approach to index number theory can be 
regarded as the problem of decomposing the change in a 

3 The terms “commodity,” “item,” and “product” will be used inter-
changeably in what follows. Different statistical agencies may have more 
specific definitions for these terms.
4 Ralph Turvey has noted that some values may be difficult to decompose 
into unambiguous price and quantity components. Some examples of dif-
ficult to decompose values are bank charges, gambling expenditures, and 
life insurance payments. The problems associated with precisely defining 
pn

t and qn
t are discussed in some detail in Eurostat (2018). There is a great 

deal of valuable information in this Manual.
5 Note that it is assumed that there are no new or disappearing commodi-
ties in the value aggregates. Approaches to the “new goods problem” and 
the problem of accounting for quality change are discussed in Chapter 8.
6 The first person to suggest that the price and quantity indices should be 
jointly determined in order to satisfy equation (3) was Fisher (1911; 418). 
Frisch (1930; 399) called (3) the product test.

In Section 8, the advantages and disadvantages of using a 
fixed-base period in the bilateral index number comparison 
are considered versus always comparing the current period 
with the previous period, which is called the chain system. In 
the chain system, a link is an index number comparison of one 
period with the previous period. These links are multiplied 
together in order to make comparisons over many periods. 
Fixed-base or direct indices will be studied and compared to 
their chained counterparts in more detail in Chapter 7.1

In practice, CPIs are usually constructed in two or more 
stages of aggregation. For example, at the first stage of aggre-
gation, subindices for various consumption categories, like 
food, clothing, transportation, and so on, are constructed, 
and then in the second stage of aggregation, an overall CPI 
is constructed. Does a CPI constructed in two stages coin-
cide with a CPI constructed in a single stage? In Section 9, 
this question is addressed for some of the more commonly 
used index number formulae. In Annex 5, the consistency in 
aggregation of various formulae over three (or more) stages 
of aggregation will be discussed.

The Appendices 1–4 look at the numerical relationships 
between the Laspeyres, Paasche, Lowe, and Young indices.

2. The Decomposition of Value 
Aggregates and the Product Test
A price index is a measure or function that summarizes the 
change in the prices of many commodities from one situa-
tion 0 (a time period or place) to another situation 1. A price 
level can be thought of as an average of the prices pertaining 
to a single period. More specifically, for most practical pur-
poses, a price index can be regarded as a weighted average of 
the relative prices of the commodities under consideration 
in the two situations. To determine a price index, it is neces-
sary to know the following:

• which commodities or items to include in the index;
• how to determine the item prices;
• which transactions that involve these items to include in 

the index;
• how to determine the weights, and from which sources 

these weights should be drawn;
• what formula or type of mean should be used to average 

the selected item relative prices.

All of these price index definition questions except the last 
can be answered by appealing to the definition of the value 
aggregate to which the price index refers. A value aggregate 
V for a given collection of N items and transactions is com-
puted as2

 V = Σn=1
N pnqn, (1)

where pn represents the price of the nth item in national 
currency units, qn represents the corresponding quantity 

1 In order to compare the advantages and disadvantages of fixed-base ver-
sus chained indices, it is useful to be able to draw on other approaches to 
index number theory, which will be studied in Chapters 3–5.
2 Notation: The sum of terms, Σn=1

N pnqn, will at times be written as Σi=1
N piqi 

or as Σk=1
N pkqk. In subsequent chapters, Σn=1

N pnqn will sometimes be writ-
ten as p·q, which is called the inner product of the vectors p and q defined as  
p ≡ [p1,. . .,pN] and q ≡ [q1,. . .,qN].
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PL defined by (5) and the Paasche (1874) price index9 PP 
defined by (6):10

 PL(p0,p1,q0,q1) ≡ Σn=1
N pn

1qn
0/Σi=1

N pi
0qi

0; (5)
 PP(p0,p1,q0,q1) ≡ Σn=1

N pn
1qn

1/Σi=1
N pi

0qi
1 . (6)

These formulae can be rewritten in an alternative manner 
that is more useful for statistical agencies. Define the period 
t expenditure share on commodity n as follows:

 sn
t ≡ pn

tqn
t/Σi=1

N pi
tqi

t for n = 1,. . ., N and t = 0,1. (7)

Then the Laspeyres index (5) can be rewritten as follows:11

 PL(p0,p1,q0,q1) ≡ Σn=1
N pn

1qn
0/Σi=1

N pi
0qi

0

 = Σn=1
N (pn

1/pn
0)pn

0qn
0/Σi=1

N pi
0qi

0

 = Σn=1
N (pn

1/pn
0)sn

0, (8)

where the last equality follows from definitions (7).
Thus, the Laspeyres price index PL can be written as a 

base period expenditure share-weighted arithmetic average 
of the N price ratios, pn

1/pn
0. The Laspeyres formula (until 

the recent past) has been widely used as the target index 
number concept for CPIs around the world. To implement 
it, a statistical agency needs only to collect information on 
expenditure shares sn

0 for the index domain of  definition 
for the base period 0 and then on item prices alone on an 
ongoing basis. Thus, the Laspeyres CPI can be produced on 
a timely basis without having to know current period quantity 
information.

The Paasche index can also be written in expenditure 
share and price ratio form as follows:12

 PP(p0,p1,q0,q1) ≡ Σn=1
N pn

1qn
1/Σi=1

N pi
0qi

1 
 = 1/[Σi=1

N pi
0qi

1/Σn=1
N pn

1qn
1]

 = 1/[Σi=1
N (pi

0/pi
1)pi

1qi
1/Σn=1

N pn
1qn

1]

 = 1/[Σi=1
N (pi

0/pi
1)si

1]
 = [Σi=1

N si
1(pi

1/pi
0)–1]–1, (9)

9 Again Drobisch (1871b; 424) appears to have been the first to define 
explicitly and justify this formula. However, he rejected this formula in 
favor of his preferred formula, the ratio of unit values, and so again he did 
not get any credit for his early suggestion of the Paasche formula.
10 Note that PL(p0,p1,q0,q1) does not actually depend on q1, and 
PP( p0,p1,q0, q1) does not actually depend on q0. However, it does no harm 
to include these vectors, and the notation indicates that the reader is in 
the realm of bilateral index number theory; that is, the prices and quan-
tities for a value aggregate pertaining to the two periods are compared.
11 This method of rewriting the Laspeyres index (or any fixed basket index) 
as a share-weighted arithmetic average of price ratios was developed by 
Fisher (1897; 517) (1911; 397) (1922; 51) and Walsh (1901; 506) (1921a; 92). 
Note that this alternative formula for the Laspeyres price index requires 
that all base period prices be positive.
12 This method of rewriting the Paasche index (or any fixed basket index) as a 
share-weighted harmonic average of the price ratios was developed by Walsh 
(1901; 511) (1921a; 93) and Fisher (1911; 397–398). Note that this alternative 
formula for the Paasche price index requires all current period prices to be 
positive.

value aggregate, V1/V0, into the product of a part that is due 
to price change, P(p0,p1,q0,q1), and a part that is due to quan-
tity change, Q(p0,p1,q0,q1). This approach to the determina-
tion of the price index is the approach that is taken in the 
national accounts, where a price index is used to deflate a 
value ratio in order to obtain an estimate of quantity change. 
Thus, in this approach to index number theory, the primary 
use for the price index is as a deflator. Note that once the 
functional form for the price index P(p0,p1,q0,q1) is known, 
then the corresponding quantity or volume index Q(p0,p1,q0, 
q1) is completely determined by P; that is, rearranging (3), 
we get

 Q(p0,p1,q0,q1) = [V1/V0]/P(p0,p1,q0,q1). (4)

Conversely, if  the functional form for the quantity index Q(p0,
p1,q0,q1) is known, then the corresponding price index function 
P(p0,p1,q0,q1) is completely determined by the quantity index 
function Q(p0,p1,q0,q1). Thus, using this deflation approach to 
index number theory, separate theories for the determination 
of the price and quantity indices are not required: If  either P 
or Q is determined, then the other function is implicitly deter-
mined by the product test (3).

In the next subsection, two concrete choices for the price 
index P(p0,p1,q0,q1) are considered, and the corresponding 
quantity indices Q(p0,p1,q0,q1) that result from using equa-
tion (4) are also calculated. These are the two choices used 
most frequently by national income accountants.

3. The Laspeyres and Paasche 
Indices
One of the easiest approaches to the determination of the 
price index formula was described in great detail by Lowe 
(1823). His approach to measuring the price change between 
periods 0 and 1 was to specify an approximate representative 
commodity basket,7 which is a quantity vector q ≡ [q1,. . .,qN] 
that is representative of purchases made during the two 
periods under consideration, and then calculate the level 
of prices in period 1 relative to period 0 as the ratio of the 
period 1 cost of the basket, Σn=1

N pn
1qn, to the period 0 cost 

of the basket, Σn=1
N pn

0qn. This fixed basket approach to the 
determination of the price index leaves open the question as 
to how exactly is the fixed basket vector q to be chosen.

As time passed, economists and price statisticians 
demanded a bit more precision with respect to the speci-
fication of  the basket vector q. There are two natural 
choices for the reference basket: the base period 0 commod-
ity vector q0 or the current period 1 commodity vector q1. 
These two choices lead to the Laspeyres (1871) price index8  

7 Lowe (1823; Annex page 95) suggested that the commodity basket vector 
q should be updated every five years. Lowe indices will be studied in more 
detail in Sections 5 and 6.
8 This index was actually introduced and justified by Drobisch (1871a; 
147) slightly earlier than Laspeyres. Laspeyres (1871; 305) in fact explicitly 
acknowledged that Drobisch showed him the way forward. However, the 
contributions of Drobisch have been forgotten for the most part by later 
writers because Drobisch aggressively pushed for the ratio of two unit val-
ues as being the “best” index number formula. While this formula has some 
excellent properties if  all of the N commodities being compared have the 
same unit of measurement, the formula is useless when, say, both goods and 
services are in the index basket. Unit value price indices will be studied in 
more detail in subsequent chapters.
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presented.16 This divergence between PL and PP suggests that 
if a single estimate for the price change between the two peri-
ods is required, then some sort of evenly weighted average of 
the two indices should be taken as the final estimate of price 
change between periods 0 and 1. As mentioned earlier, this 
strategy will be pursued in the following section. However, 
it should be kept in mind that usually statistical agencies 
will not have information on current expenditure weights, 
and hence averages of Paasche and Laspeyres indices can 
only be produced on a delayed basis (perhaps using national 
accounts information) or not at all.

4. The Fisher Index as an Average 
of the Paasche and Laspeyres 
Indices
As was mentioned in the previous paragraph, since the 
Paasche and Laspeyres price indices are equally plausible 
but often give different estimates of the amount of aggregate 
price change between periods 0 and 1, it is useful to con-
sider taking an evenly weighted average of these fixed basket 
price indices as a single estimator of price change between 
the two periods. Examples of such symmetric averages17 are 
the arithmetic mean, which leads to the Drobisch (1871b; 
425), Sidgwick (1883; 68), and Bowley (1901; 227)18 index, 
PD ≡ (1/2)PL + (1/2)PP, and the geometric mean, which leads 
to the Fisher19 (1922) ideal index, PF, defined as follows:

  PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1)PP(p0,p1,q0,q1)]1/2. (12)

At this point, the fixed basket approach to index number 
theory is transformed into the test approach to index number 
theory; that is, in order to determine which of these fixed 
basket indices or which averages of them might be “best,” 
desirable criteria or tests or properties are needed for the 

become relatively more expensive. In the vast majority of situations cov-
ered by index numbers, the price and quantity relatives turn out to be 
negatively correlated so that Laspeyres indices tend systematically to 
record greater increases than Paasche with the gap between them tending 
to widen with time.”
16 There is another way to see why PP will often be less than PL. If the 
period 0 expenditure shares si

0 are exactly equal to the corresponding 
period 1 expenditure shares si

1, then by Schlömilch's (1858) Inequality (see 
Hardy, Littlewood, and Pólya (1934; 26)), it can be shown that a weighted 
harmonic mean of N numbers is equal to or less than the corresponding 
arithmetic mean of the N numbers, and the inequality is strict if the N 
numbers are not all equal. If expenditure shares are approximately con-
stant across periods, then it follows that PP will usually be less than PL 
under these conditions.
17 For a discussion of the properties of symmetric averages, see Diewert 
(1993b). Formally, an average m(a,b) of two numbers a and b is symmetric 
if m(a,b) = m(b,a). In other words, the numbers a and b are treated in the 
same manner in the average. An example of a nonsymmetric average of a 
and b is (1/4)a + (3/4)b. In general, Walsh (1901; 105) argued for a symmet-
ric treatment if the two periods (or countries) under consideration were 
to be given equal importance.
18 Walsh (1901; 99) also suggested this index. See Diewert (1993a; 36) for 
additional references to the early history of index number theory.
19 Bowley (1899; 641) appears to have been the first to suggest the use of this 
index. Walsh (1901; 428–429) also suggested this index while commenting 
on the big differences between the Laspeyres and Paasche indices in one  
of his numerical examples: “The figures in columns (2) [Laspeyres] and (3) 
[Paasche] are, singly, extravagant and absurd. But there is order in their 
extravagance; for the nearness of their means to the more truthful results 
shows that they straddle the true course, the one varying on the one side 
about as the other does on the other.”

where definitions (7) for t = 1 were used to derive this equal-
ity. Thus, the Paasche price index PP can be written as a 
period 1 (or current period) expenditure share-weighted 
harmonic average of the N item price ratios pi

1/pi
0.13 Note that 

if the statistical agency lacks timely information on quanti-
ties, then the Paasche index cannot be produced in a timely 
manner.

The quantity index that corresponds to the Laspeyres 
price index using the product test (3) is the Paasche quantity 
index; that is, if P in (4) is replaced by PL defined by (5), then 
the following Paasche quantity index QP is obtained:

 QP(p0,p1,q0,q1) ≡ Σn=1
N pn

1qn
1/Σi=1

N pi
1qi

0. (10)

Note that QP is the value of the period 1 quantity vector val-
ued at the period 1 prices, Σ n=1

N pn
1qn

1, divided by the (hypo-
thetical) value of the period 0 quantity vector valued at the 
period 1 prices, Σn=1

N pn
1qn

0. Thus, the period 0 and 1 quan-
tity vectors are valued at the same set of prices, the current 
period prices, p1.

The quantity index that corresponds to the Paasche price 
index using the product test (3) is the Laspeyres quantity 
index; that is, if P in (4) is replaced by PP defined by (6), then 
the following quantity index QL is obtained:

 QL(p0,p1,q0,q1) ≡ Σn=1
N pn

0qn
1/Σi=1

N pi
0qi

0. (11)

Note that QL is the (hypothetical) value of the period 1 
quantity vector valued at the period 0 prices, Σn=1

N pn
0qn

1, 
divided by the value of the period 0 quantity vector valued 
at the period 0 prices, Σn=1

N pn
0qn

0. Thus, the period 0 and 
1 quantity vectors are valued at the same set of prices, the 
base period prices, p0.

The problem with the Laspeyres and Paasche index num-
ber formulae is that they are equally plausible, but in gen-
eral, they will give different answers. For most purposes, it 
is not satisfactory for the statistical agency to provide two 
answers to the question:14 what is the “best” overall sum-
mary measure of price change for the value aggregate over 
the two periods in question? Thus in the following section, 
it is considered how “best” averages of these two estimates 
of price change can be constructed. Before doing this, it is 
asked what is the “normal” relationship between the Paas-
che and Laspeyres indices? Under “normal” economic con-
ditions when the price ratios pertaining to the two situations 
under consideration are negatively correlated with the corre-
sponding quantity ratios, it can be shown that the Laspeyres 
price index will be larger than the corresponding Paasche 
index.15 In Annex 1, a precise statement of this result is 

13 Note that the derivation in (9) shows how harmonic averages arise in 
index number theory in a very natural way.
14 In principle, instead of averaging the Paasche and Laspeyres indices, 
the statistical agency could think of providing both (the Paasche index 
on a delayed basis). This suggestion would lead to a matrix of price com-
parisons between every pair of periods instead of a time series of com-
parisons. Walsh (1901; 425) noted this possibility: “In fact, if we use such 
direct comparisons at all, we ought to use all possible ones.”
15 P. Hill (1993; 383) summarized this inequality as follows: “It can be 
shown that relationship (13) [that is, that PL is greater than PP] holds 
whenever the price and quantity relatives (weighted by values) are neg-
atively correlated. Such negative correlation is to be expected for price 
takers who react to changes in relative prices by substituting goods and 
services that have become relatively less expensive for those that have 
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When estimating the factor necessary for the correc-
tion of a change found in money wages to obtain the 
change in real wages, statisticians have not been content 
to follow Method II only [to calculate a Laspeyres price 
index], but have worked the problem backwards [to 
calculate a Paasche price index] as well as forwards. . . . 
They have then taken the arithmetic, geometric or har-
monic mean of the two numbers so found.

Arthur. L. Bowley (1919; 348)23

The quantity index that corresponds to the Fisher price 
index using the product test (3) is the Fisher quantity index; 
that is, if P in (4) is replaced by PF defined by (12), then the 
following quantity index is obtained:

 QF(p0,p1,q0,q1) = [QL(p0,p1,q0,q1)QP(p0,p1,q0,q1)]1/2. (14)

Thus, the Fisher quantity index is equal to the square root of 
the product of the Laspeyres and Paasche quantity indices. 
It should also be noted that QF(p0,p1,q0,q1) = PF(q0,q1,p0,p1); 
that is, if the role of prices and quantities is interchanged 
in the Fisher price index formula, then the Fisher quantity 
index is obtained.24

Rather than take a symmetric average of the two basic 
fixed basket price indices pertaining to two situations, 
PL and PP, it is also possible to return to Lowe’s basic 
formulation and choose the basket vector q to be a sym-
metric average of the base and current period basket vec-
tors, q0 and q1. This approach to index number theory is 
pursued in the following subsection.

5. The Walsh Index and the Theory 
of the “Pure” Price Index
Price statisticians tend to be very comfortable with a con-
cept of the price index that is based on pricing out a constant 
“representative” basket of commodities, q ≡ (q1,q2,. . .,qN), at 
the prices of period 0 and 1, p0 ≡ (p1

0,p2
0,.  .  .,pN

0) and p1 ≡ 
(p1

1,p2
1,.  .  .,pN

1) respectively. Price statisticians refer to this 
type of index as a fixed basket index or a pure price index,25 
and it corresponds to Knibbs’ (1924; 43) unequivocal price 
index.26 Since Lowe (1823) was the first person to describe 

23 Fisher (1911; 417–418) (1922) also considered the arithmetic, geometric, 
and harmonic averages of the Paasche and Laspeyres indices.
24 Fisher (1922; 72) said that P and Q satisfied the factor reversal test if Q(p0, 
p1,q0,q1) = P(q0,q1,p0,p1) and P and Q satisfied the product test (3) as well.
25 See section 7 in Diewert (2001).
26 “Suppose however that, for each commodity, Q′ = Q, then the fraction, 
Σ(P′Q) / Σ(PQ), namely, the ratio of aggregate value for the second unit-
period to the aggregate value for the first unit-period is no longer merely 
a ratio of totals, it also shows unequivocally the effect of the change 
in price. Thus, it is an unequivocal price index for the quantitatively 
unchanged complex of commodities, A, B, C, and so on.

It is obvious that if  the quantities were different on the two occa-
sions, and if  at the same time the prices had been unchanged, the pre-
ceding formula would become Σ(PQ′)/Σ(PQ). It would still be the ratio 
of the aggregate value for the second unit-period to the aggregate value 
for the first unit period. But it would be also more than this. It would 
show in a generalized way the ratio of the quantities on the two occa-
sions. Thus, it is an unequivocal quantity index for the complex of com-
modities, unchanged as to price and differing only as to quantity.

Let it be noted that the mere algebraic form of these expressions 
shows at once the logic of the problem of finding these two indices is 
identical” (Sir George H. Knibbs (1924; 43–44)).

price index. This topic will be pursued in more detail in the 
next chapter, but an introduction to the test approach is pro-
vided in the present section because a test is used to deter-
mine which average of the Paasche and Laspeyres indices 
might be the “best.”

What is the “best” symmetric average of PL and PP to 
use as a point estimate for the theoretical consumer price 
index (CPI)? It is very desirable for a price index formula 
that depends on the price and quantity vectors pertaining 
to the two periods under consideration to satisfy the time 
reversal test.20 An index number formula P(p0,p1,q0,q1) satis-
fies this test if

 P(p1,p0,q1,q0) = 1/P(p0,p1,q0,q1); (13)

that is, if the period 0 and period 1 price and quantity data 
are interchanged and the index number formula is evalu-
ated, then this new index P(p1,p0,q1,q0) should be equal to 
the reciprocal of the original index P(p0,p1,q0,q1). This is a 
property that is satisfied by a single price ratio, and it seems 
desirable that the measure of aggregate price change should 
also satisfy this property so that it does not matter which 
period is chosen as the base period. Put another way, the 
index number comparison between any two points of time 
should not depend on the choice of which period we regard 
as the base period: If the other period is chosen as the base 
period, then the new index number should simply equal the 
reciprocal of the original index. It should be noted that the 
Laspeyres and Paasche price indices do not satisfy this time 
reversal property.

Having defined what it means for a price index P to satisfy 
the time reversal test, it is possible to establish the following 
result:21 The Fisher ideal price index defined by (12) is the 
only index that is a homogeneous22 symmetric average of the 
Laspeyres and Paasche price indices, PL and PP, and satisfies 
the time reversal test (13). Thus, the Fisher ideal price index 
emerges as perhaps the “best” evenly weighted average of 
the Paasche and Laspeyres price indices.

It is interesting to note that this symmetric basket approach 
to index number theory dates back to one of the early pio-
neers of index number theory, Bowley, as the following quo-
tations indicate:

If  [the Paasche index] and [the Laspeyres index] lie 
close together there is no further difficulty; if  they 
differ by much they may be regarded as inferior 
and superior limits of the index number, which may 
be estimated as their arithmetic mean .  .  . as a first 
approximation.

Arthur. L. Bowley (1901; 227)

20 See Diewert (1992; 218) for early references to this test. If we want the 
price index to have the same property as a single price ratio, then it is 
important to satisfy the time reversal test. However, other points of view 
are possible. For example, we may want to use our price index for com-
pensation purposes, in which case satisfaction of the time reversal test 
may not be so important.
21 See Diewert (1997; 138).
22 An average or mean of two numbers a and b, m(a,b), is homogeneous if 
when both numbers a and b are multiplied by a positive number λ, then 
the mean is also multiplied by λ; that is, m satisfies the following prop-
erty: m(λa,λb) = λm(a,b). The importance of linear homogeneity will be 
explained in Chapter 3 when the test approach to index number theory 
is studied.
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systematically this type of index, it is referred to as a Lowe 
index. Thus, the general functional form for the Lowe price 
index is

 PLo(p0,p1,q) ≡ Σi=1
N pi

1qi/Σn=1
N pn

0qn = Σi=1
N si(pi

1/pi
0), (15)

where the (hypothetical) hybrid expenditure shares si 
27 cor-

responding to the quantity weights vector q are defined by

  si ≡ pi
0qi/Σk=1

N pn
0qn for i = 1,. . .,N. (16)

The main reason why price statisticians might prefer a mem-
ber of the family of Lowe or fixed basket price indices defined 
by (15) is that the fixed basket concept is easy to explain to the 
public. Note that the Laspeyres and Paasche indices are spe-
cial cases of the pure price concept if we choose q = q0 (which 
leads to the Laspeyres index) or if we choose q = q1 (which 
leads to the Paasche index).28 The practical problem of pick-
ing q remains to be resolved, and that problem is addressed 
in this section.

It should be noted that Walsh (1901; 105) (1921a) also saw 
the price index number problem in this framework:

Commodities are to be weighted according to their 
importance, or their full values. But the problem of 
axiometry always involves at least two periods. There 
is a first period, and there is a second period which 
is compared with it. Price variations have taken place 
between the two, and these are to be averaged to get 
the amount of their variation as a whole. But the 
weights of the commodities at the second period are 
apt to be different from their weights at the first pe-
riod. Which weights, then, are the right ones—those 
of the first period? Or those of the second? Or should 
there be a combination of the two sets? There is no 
reason for preferring either the first or the second. 
Then the combination of both would seem to be the 
proper answer. And this combination itself  involves 
an averaging of the weights of the two periods.

Correa Moylan Walsh (1921a; 90)

Walsh’s suggestion will be followed here, and thus the ith 
quantity weight, qi, is restricted to be an average or mean of 
the base period quantity qi

0 and the current period quantity 
for commodity i qi

1, say m(qi
0,qi

1), for i = 1,2,. . .,N.29 Under 
this assumption, the Lowe price index (15) becomes

 PLo(p0,p1,q*) ≡ Σn=1
N pn

1qn
*/Σn=1

N pn
0qn

*, (17)

where qn
* ≡ m(qn

0,qn
1) for n = 1,. . .,N and m(x,y) is an average 

or mean of positive numbers x and y.
In order to determine the functional form for the mean 

function m, it is necessary to impose some tests or axioms 

27 Fisher (1922; 53) used the terminology “weighted by a hybrid value” 
while Walsh (1932; 657) used the term “hybrid weights.”
28 Note that the ith share defined by (16) in this case is the hybrid share  
si ≡ pi

0qi
1/Σj=1

N pj
0qj

1, which uses the prices of period 0 and the quantities 
of period 1.
29 Note that we have chosen the mean function m(qi

0,qi
1) to be the same 

for each item i. We assume that m(a,b) has the following two properties: 
m(a,b) is a positive and continuous function, defined for all positive num-
bers a and b and m(a,a) = a for all a > 0.

on the pure price index defined by (17). For the first such test 
or property, we ask that PLo satisfy the time reversal test (13). 
Under this hypothesis, it can be shown that the mean func-
tion m must be a symmetric mean;30 that is, m must satisfy 
the following property m(a,b) = m(b,a) for all a > 0 and b > 0. 
This assumption still does not pin down the functional form 
for the pure price index defined by (17). For example, the 
function m(a,b) could be the arithmetic mean, (½)a + (½)b, 
in which case (17) reduces to the Marshall (1887) Edgeworth 
(1925) price index PME, which was the pure price index pre-
ferred by Knibbs (1924; 56):

PME(p0,p1,q0,q1) ≡ Σn=1
N pn

1 [(½)qn
0 + (½)qn

1]/
Σn=1

N pn
0[(½)qn

0 + (½)qn
1]. (18)

On the other hand, the function m(a,b) could be the geo-
metric mean, (ab)1/2, in which case (17) reduces to the Walsh 
(1901; 398) (1921a; 97) price index, PW

31:

 PW(p0,p1,q0,q1) ≡ Σn=1
N pn

1 [qn
0qn

1]1/2/Σn=1
N pn

0[qn
0qn

1]1/2. (19)

There are many other possibilities for the mean function 
m, including the mean of order r, [(½)ar + (½)br ]1/r for r ≠ 0. 
Obviously, in order to completely determine the functional 
form for the pure price index defined by (17), it is neces-
sary to impose at least one additional test or axiom on 
PLo(p0,p1,q*).

There is a potential problem with the use of the Edge-
worth Marshall price index (18) that has been noticed in the 
context of using the formula to make international com-
parisons of prices. If the price levels of a very large country 
are compared to the price levels of a small country using 
formula (18), then the quantity vector of the large country 
may totally overwhelm the influence of the quantity vec-
tor corresponding to the small country. In technical terms, 
the Edgeworth Marshall formula is not homogeneous of 
degree 0 in the components of both q0 and q1.32 To prevent 
this problem from occurring in the use of the pure price 
index defined by (17), it is asked that PLo(p0,p1,q*) satisfy the 
following invariance to proportional changes in current quan-
tities test:33

 PLo(p0,p1,m(q1
0,λq1

1),. . .,m(qN
0,λqN

1)) 
 = PLo(p0,p1,m(q1

0,q1
1),. . .,m(qN

0,qN
1)) for all λ > 0. (20)

30 See Section 7 of Diewert (2001) for a proof. For more on symmetric 
means, see Diewert (1993b; 361).
31 Walsh endorsed PW as being the best index number formula: “We have 
seen reason to believe formula 6 better than formula 7. Perhaps formula 9 
is the best of the rest, but between it and Nos. 6 and 8 it would be difficult 
to decide with assurance” (C.M. Walsh (1921a; 103)). His formula 6 is PW 
defined by (19) and his 9 is the Fisher ideal defined by (12). The Walsh 
quantity index, QW(p0,p1,q0,q1), is defined as PW(q0,q1,p0,p1); that is, the role 
of prices and quantities in definition (19) is interchanged. If the Walsh 
quantity index is used to deflate the value ratio, an implicit price index is 
obtained, which is Walsh’s formula 8.
32 Thus, using (4), the companion quantity index defined by (4) will not be 
homogeneous of degree 1 in the components of the vector q1 and homoge-
neous of degree –1 in the components of q0.
33 This is the terminology used by Diewert (1992; 216). Vogt (1980) was the 
first to propose this test. If this test holds, then the corresponding implicit 
quantity index defined by (4) will be linearly homogeneous in the compo-
nents of q1, which is a desirable property for a quantity index.
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The two tests, the time reversal test (13) and the linear homo-
geneity invariance test (20), enable one to determine the 
precise functional form for the pure price index PLo(p0,p1,q*) 
defined by (17): the pure price index PLo(p

0,p1,q*) must be the 
Walsh index PW defined by (19).34

In order to be of practical use by statistical agencies, an 
index number formula must be able to be expressed as a 
function of the base period expenditure shares, si

0, the cur-
rent period expenditure shares, si

1, and the N price ratios, 
pi

1/pi
0. The Walsh price index defined by (19) can be rewritten 

in this format:

PW(p0,p1,q0,q1) ≡ Σn=1
N pn

1(qn
0qn

1)1/2 / Σj=1
N pj

0(qj
0qj

1)1/2

 = Σn=1
N [pn

1/(pn
0pn

1)1/2] (sn
0sn

1)1/2 / Σj=1
N [pj

0/(pj
0pj

1)1/2] (sj
0sj

1)1/2

  = Σn=1
N (sn

0sn
1)1/2 [pn

1/pn
0]1/2 / Σj=1

N (sj
0sj

1)1/2 [pj
0/pj

1]1/2 . (21)

The approach taken to index number theory in this sec-
tion was to consider averages of various fixed basket type 
price indices. The first approach was to take an even-
handed average of the two primary fixed basket indices: the 
Laspeyres and Paasche price indices. These two primary 
indices are based on pricing out the baskets that pertain to 
the two periods (or locations) under consideration. Taking 
an average of them led to the Fisher ideal price index PF 
defined by (12). The second approach was to average the 
basket quantity weights and then price out this average 
basket at the prices pertaining to the two situations under 
consideration. This approach led to the Walsh price index 
PW defined by (19). Both of these indices can be written as a 
function of the base period expenditure shares, si

0, the cur-
rent period expenditure shares, si

1, and the N price ratios, 
pi

1/pi
0. Assuming that the statistical agency has informa-

tion on these three sets of variables, which index should be 
used? Experience with normal time series data at higher 
levels of aggregation has shown that these two indices will 
not differ substantially, and thus it is a matter of indiffer-
ence which of these indices is used in practice.35 Both of 
these indices are examples of superlative indices, which will 
be defined in Chapter 5. However, note that both of these 
indices treat the data pertaining to the two situations in a 
symmetric manner. P. Hill (1988) commented on superlative 
price indices and the importance of a symmetric treatment 
of the data as follows:

Thus economic theory suggests that, in general, a 
symmetric index that assigns equal weight to the two 
situations being compared is to be preferred to either 
the Laspeyres or Paasche indices on their own. The 
precise choice of superlative index—whether Fisher, 

34 See Section 7 in Diewert (2001).
35 Diewert (1978; 887–889) showed that these two indices will approximate 
each other to the second order around an equal price and quantity point. 
Thus, for normal time series data where prices and quantities do not 
change much going from the base period to the current period, the indices 
will approximate each other quite closely. However, if scanner data from 
retail outlets or from individual households are used at the first stage of 
aggregation, and the price and quantity data are very volatile, then sec-
ond-order approximations may not be very accurate and the Walsh and 
Fisher indices may differ substantially. As will be seen in Chapter 3, the 
Fisher index may be preferred over the Walsh index because of its better 
axiomatic properties.

Törnqvist or other superlative index—may be of 
only secondary importance as all the symmetric indi-
ces are likely to approximate each other, and the un-
derlying theoretic index fairly closely, at least when 
the index number spread between the Laspeyres and 
Paasche is not very great.

P. Hill (1993; 384)

6. The Lowe Index with Monthly 
Prices and Annual Base Year 
Quantities
It is now necessary to discuss a major practical problem 
with the theory of basket-type indices. Up to now, it has 
been assumed that the quantity vector q ≡ (q1,q2,. . .,qN) that 
appeared in the definition of the Lowe index, PLo(p0,p1,q), 
defined by (15), is either the base period quantity vector q0 or 
the current period quantity vector q1 or an average of these 
two quantity vectors. In fact, in terms of actual statistical 
agency practice, the quantity vector q is frequently taken 
to be an annual quantity vector that refers to a base year, 
b say, that is prior to the base period for the prices, period 
0. Typically, a statistical agency will produce a consumer 
price index at a monthly or quarterly frequency, but for the 
sake of definiteness, a monthly frequency will be assumed in 
what follows. Thus, a typical price index will have the form 
PLo(p0,pt,qb), where p0 is the price vector pertaining to the 
base period month for prices, month 0, pt is the price vector 
pertaining to the current period month for prices, month t, 
and qb is a reference basket quantity vector that refers to the 
base year b, which is equal to or prior to month 0.36 Note that 
this Lowe index PLo(p0,pt,qb) is not a true Laspeyres index 
(because the annual quantity vector qb is not equal to the 
monthly quantity vector q0 in general).37

The question is: “Why do statistical agencies not pick the 
reference quantity vector q in the Lowe formula to be the 
monthly quantity vector q0 that pertains to transactions 
in month 0 (so that the index would reduce to an ordinary 
Laspeyres price index)?” There are two main reasons why 
this is not done:

• Most economies are subject to seasonal fluctuations, and 
so picking the quantity vector of month 0 as the reference 
quantity vector for all months of the year would not be 
representative of transactions made throughout the year.

• Monthly household quantity or expenditure weights are 
usually collected by the statistical agency using a house-
hold expenditure survey with a relatively small sample. 
In practice, it is prohibitively expensive for NSOs to 
draw samples large enough to support the derivation of 
monthly quantity or expenditure weights. Due to these 

36 Month 0 is called the price reference period and year b is called the 
weight reference period.
37 Triplett (1981; 12) defined the Lowe index, calling it a Laspeyres index, 
and calling the index that has the weight reference period equal to the 
price reference period, a pure Laspeyres index. However, Balk (1980; 69) 
asserted that although the Lowe index is of the fixed-base type, it is not a 
Laspeyres price index. Triplett also noted the hybrid share representation 
for the Lowe index defined by (15) and (16). Triplett noted that the ratio of 
two Lowe indices using the same quantity weights was also a Lowe index. 
Baldwin (1990; 255) called the Lowe index an annual basket index.
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budgetary constraints, it is standard practice to aver-
age these monthly expenditure or quantity weights over 
an entire year (or in some cases, over several years) in an 
attempt to reduce these sampling errors.

• Monthly household quantity or expenditure weights for 
month 0 are generally not available in month 1.

The index number problems that are caused by seasonal 
monthly weights will be studied in more detail in Chapter 
9. For now, it can be argued that the use of annual weights 
in a monthly index number formula is simply a method for 
dealing with poor estimates of monthly quantities or for 
dealing with the seasonality problem.38 However, it should 
be noted that the use of annual weights in a monthly CPI is 
not consistent with the economic approach to index number 
theory.39

One problem with using annual weights corresponding to 
a perhaps distant year in the context of a monthly CPI must 
be noted at this point: If there are systematic (but divergent) 
trends in commodity prices and households increase their 
purchases of commodities that decline (relatively) in price 
and decrease their purchases of commodities that increase 
(relatively) in price, then the use of distant quantity weights 
will tend to lead to an upward bias in this Lowe index com-
pared to one that used more current weights. This obser-
vation suggests that statistical agencies should strive to get 
up-to-date weights on an ongoing basis.

It is useful to explain how the annual quantity vector 
qb could be obtained from monthly expenditures on each 
commodity during the chosen base year b. Let the month 
m expenditure of the reference population in the base year 
b for commodity i be vi

b,m, and let the corresponding price 
and quantity be pi

b,m and qi
b,m, respectively. Of course, value, 

price, and quantity for each commodity are related by the 
following equations:

 vi
b,m = pi

b,mqi
b,m; i = 1,. . .,N; m = 1,. . .,12. (22)

For each commodity i, an estimate for the annual total 
quantity, qi

b, can be obtained by price deflating monthly val-
ues and summing over months in the base year b as follows:

  qi
b ≡ Σm=1

12 vi
b,m/pi

b,m = Σm=1
12 qi

b,m; i = 1,. . .,N, (23)

where (22) was used to derive the second equation in (23). 
In practice, these equations will be evaluated using aggre-
gate expenditures over closely related commodities, and the 
price pi

b,m will be the month m price index for this elemen-
tary commodity group i in year b relative to the first month 
of year b.

For some purposes, it is also useful to have annual 
prices by commodity to match up with the annual quanti-
ties defined by (23). Following national income accounting 

38 In fact, the use of the Lowe index PLo(p0,pt,qb) in the context of seasonal 
commodities corresponds to Bean and Stine’s (1924; 31) Type A index 
number formula. Bean and Stine made three additional suggestions for 
price indices in the context of seasonal commodities. Their contributions 
will be evaluated in Chapter 9.
39 Thus, if one takes the economic approach to index number theory, then 
the use of annual weights will lead to a certain amount of substitution 
bias; see Chapter 7 for details.

conventions, a reasonable40 price pi
b to match up with the 

annual quantity qi
b is the value of total consumption of com-

modity i in year b divided by qi
b. Thus, we have

 pi
b ≡ Σm=1

12 vi
b,m/Σm=1

12 qi
b,m i = 1,. . .,N

 = Σm=1
12 vi

b,m/Σm=1
12 [vi

b,m/pi
b,m] using (22)

 = Σm=1
12 [si

b,m(pi
b,m)–1]–1, (24)

where the share of annual expenditure on commodity i in 
month m of the base year b is

 si
b,m ≡ vi

b,m/Σk=1
12 vi

b,k; i = 1,. . .,N; m = 1,. . .,12. (25)

Thus, the annual base year price for commodity i, pi
b, turns 

out to be a monthly expenditure-weighted harmonic mean 
of the monthly prices for commodity i in the base year, pi

b,1, 
pi

b,2,. . ., pi
b,12.

Using the annual commodity prices for the base year 
defined by (24), a vector of these prices can be defined as pb ≡ 
[p1

b,. . .,pN
b]. Using this definition, the Lowe index PLo(p0,pt,qb) 

can be expressed as a ratio of two Laspeyres indices, where 
the price vector pb plays the role of base period prices in each 
of the two Laspeyres indices:

PLo(p0,pt,qb) ≡ Σi=1
N pi

tqi
b/Σi=1

N pi
0qi

b

 = [Σi=1
N pi

tqi
b/Σi=1

N pi
bqi

b]/[Σi=1
N pi

0qi
b/Σi=1

N pi
bqi

b]

 = Σi=1
N si

b (pi
t/pi

b)/Σi=1
N si

b (pi
0/pi

b)

 = PL(pb,pt,qb)/PL(pb,p0,qb), (26)

where the base year expenditure shares are defined as si
b ≡ 

pi
bqi

b/Σn=1
N pn

bqn
b and the Laspeyres formula PL was defined 

by (5). Thus, the preceding equation shows that the Lowe 
monthly price index comparing the prices of month 0 to those 
of month t using the quantities of base year b as weights, 
PLo(p0,pt,qb), is equal to the Laspeyres index that compares 
the prices of month t to those of year b, PL(pb,pt,qb), divided 
by the Laspeyres index that compares the prices of month 0 
to those of year b, PL(pb,p0,qb). Note that the Laspeyres index 
in the numerator can be calculated if the base year commod-
ity expenditure shares, si

b, are known along with the price 
ratios that compare the prices of commodity i in month t, 
pi

t, with the corresponding annual average prices in the base 
year b, pi

b. The Laspeyres index in the denominator can be 
calculated if the base year commodity expenditure shares, 
si

b, are known along with the price ratios that compare the 
prices of commodity i in month 0, pi

0, with the correspond-
ing annual average prices in the base year b, pi

b.
There is another convenient formula for evaluating the 

Lowe index, PLo(p0,pt,qb), and that is to use the hybrid weights 

40 Hence these annual commodity prices are essentially unit value prices. 
Under conditions of high inflation, the annual prices defined by (24) may 
no longer be “reasonable” or representative of prices during the entire 
base year because the expenditures in the final months of the high infla-
tion year will be somewhat artificially blown up by general inflation. 
Under these conditions, the annual prices and annual commodity expen-
diture shares should be interpreted with caution. For more on dealing 
with situations where there is high inflation within a year, see Hill (1996).
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formula (15). In the present context (assuming that all prices 
in the base period are positive), the formula becomes

 PLo(p0,pt,qb) ≡ Σi=1
N pi

tqi
b/Σn=1

N pn
0qn

b 

= Σi=1
N (pi

t/pi
0)pi

0qi
b /Σn=1

N pn
0qn

b = Σi=1
N (pi

t/pi
0)si

0b, (27)

where the hybrid weights si
0b using the prices of month 0 and 

the quantities of year b are defined by

 si
0b ≡ pi

0qi
b/Σn=1

N pn
0qn

b = (pi
0/pi

b)pi
bqi

b/

Σn=1
N (pn

0/pn
b)pn

bqn
b; i =1,. . .,N. (28)

The second equation in (28) shows how the base year expen-
ditures, pi

bqi
b, can be multiplied by the commodity price 

indices, pi
0/pi

b, in order to calculate the hybrid shares.
There is one additional formula for the Lowe index, 

PLo(p0,pt,qb), that will be exhibited. Note that the Laspeyres 
decomposition of the Lowe index defined by the third line in 
(26) involves the very long-term price relatives, pi

t/pi
b, which 

compare the prices in month t, pi
t, with the possibly distant 

base year prices, pi
b, and that the hybrid share decomposi-

tion of the Lowe index defined by the last equality in (27) 
involves the long-term monthly price relatives, pi

t/pi
0, which 

compare the prices in month t, pi
t, with the base month 

prices, pi
0. Both of these formulae are not satisfactory in 

practice because of the problem of sample attrition: Each 
month, a substantial fraction of commodities disappears 
from the marketplace, and thus it is useful to have a for-
mula for updating the previous month’s price index using 
just month-over-month price relatives. In other words, long-
term price relatives disappear at a rate that is too large in 
practice to base an index number formula on their use. The 
Lowe index for month t + 1, PLo(p0,pt + 1,qb), can be written in 
terms of the Lowe index for the prior month t, PLo(p0,pt,qb), 
and an updating factor as follows:

 PLo(p0,pt + 1,qb) ≡ Σi=1
N pi

t + 1qi
b/Σn=1

N pn
0qn

b

 = [Σi=1
N pi

tqi
b/Σn=1

N pn
0qn

b][Σi=1
N pi

t + 1qi
b/Σn=1

N pn
tqn

b]

 = PLo(p0,pt,qb) [Σi=1
N pi

t + 1qi
b/Σn=1

N pn
tqn

b]

 = PLo(p0,pt,qb)[Σi=1
N (pi

t + 1/pi
t)pi

tqi
b/Σn=1

N pn
tqn

b] if all pi
t > 0

 = PLo(p0,pt,qb)Σi=1
N (pi

t + 1/pi
t)si

tb, (29)

where the hybrid weights si
tb are defined by

 si
tb ≡ pi

tqi
b/Σn=1

N pn
tqn

b; i = 1,. . .,N. (30)

Thus, the required updating factor, going from month t to 
month t + 1, is the chain link index Σi=1

N si
tb (pi

t + 1/pi
t), which 

uses the hybrid share weights si
tb corresponding to month t 

and base year b.41

The Lowe index PLo(p0,pt,qb) can be regarded as an 
approximation to the ordinary Laspeyres index, PL(p0,pt,q0), 
that compares the prices of the base month 0, p0, to those of 
month t, pt, using the quantity vector of month 0, q0, as weights. 

41 If  one or more of pi
tb are equal to 0, then define the link factor by Σi=1

N pi
t 

+ 1qi
b/Σn=1

N pn
tqn

b.

It turns out that there is a relatively simple formula that relates 
these two indices.42 In order to explain this formula, it is first 
necessary to make a few definitions. Define the nth price rela-
tive between month 0 and month t as

 rn ≡ pn
t/pn

0; n = 1,. . .,N. (31)

The ordinary Laspeyres price index, going from month 0 to 
t, can be defined in terms of these price relatives as follows:

 PL(p0,pt,q0) ≡ Σn=1
N pn

tqn
0/Σi=1

N pi
0qi

0 

= Σn=1
N (pn

t/pn
0)pn

0qn
0/Σi=1

N pi
0qi

0 = Σn=1
N sn

0rn ≡ r*, (32)

using definitions (7) and (31) in order to derive the penulti-
mate equality.

Define the nth quantity relative to tn as the ratio of the 
quantity of commodity n used in the base year b, qn

b, to the 
quantity used in month 0, qn

0, as follows:

  tn ≡ qn
b/qn

0; n = 1,. . .,N. (33)

The Laspeyres quantity index, QL(q0,qb,p0), that compares 
quantities in year b, qb, to the corresponding quantities in 
month 0, q0, using the prices of month 0, p0, as weights can 
be defined as a weighted average t* of the quantity ratios tn as 
follows:

QL(q0,qb,p0) ≡ Σn=1
N pn

0qn
b/Σi=1

N pi
0qi

0

 = Σn=1
N pn

0qn
0(qn

b/qn
0)/Σi=1

N pi
0qi

0

 = Σn=1
N sn

0tn using (7) and (33)

 ≡ t*. (34)

The relationship between the Lowe index PLo(p0,pt,qb) that 
uses the quantities of year b as weights to compare the 
prices of month t to month 0 and the corresponding ordi-
nary Laspeyres index PL(p0,pt,q0) that uses the quantities of 
month 0 as weights is the following one:43

PLo(p0,pt,qb) ≡ Σn=1
N pn

tqn
b/Σn=1

N pn
0qn

b

  = PL(p0,pt,q0) + Σn=1
N (rn – r*)(tn – t*)sn

0/QL(q0,qb,p0). (35)

Thus, the Lowe price index using the quantities of year b as 
weights, PLo(p0,pt,qb), is equal to the usual Laspeyres index 
using the quantities of month 0 as weights, PL(p0,pt,q0), plus a 
covariance term Σn=1

N (rn – r*)(tn –t*)sn
0 between the price rela-

tives rn ≡ pn
t/pn

0 and the quantity relatives tn ≡ qn
b/qn

0, divided 
by the Laspeyres quantity index QL(q0,qb,p0) between month 
0 and base year b.

Formula (35) shows that the Lowe price index will coin-
cide with the Laspeyres price index if the covariance or cor-
relation between the month 0 to t price relatives rn ≡ pn

t/pn
0 

and the month 0 to year b quantity relatives tn ≡ qn
b/qn

0 is 
zero. Note that this covariance will be zero under three dif-
ferent sets of conditions:

42 In what follows, it is assumed that all prices and quantities in month 0 
are positive.
43 See Annex 2 for the derivation of this formula.
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• If the month t prices are proportional to the month 0 
prices so that all rn = r*

• If the base year b quantities are proportional to the month 
0 quantities so that all tn = t*

• If the distribution of the relative prices rn is independent 
of the distribution of the relative quantities tn

The first two conditions are unlikely to hold empirically, 
but the third is possible, at least approximately, if consum-
ers do not systematically change their purchasing habits in 
response to changes in relative prices.

If this covariance in (35) is negative, then the Lowe index 
will be less than the Laspeyres, and finally, if the covari-
ance is positive, then the Lowe index will be greater than 
the Laspeyres index. Although the sign and magnitude of 
the covariance term, Σn=1

N (rn - r*)(tn – t*), is ultimately an 
empirical matter, it is possible to make some reasonable 
conjectures about its likely sign. If the base year b precedes 
the price reference month 0 and there are long-term trends 
in prices, then it is likely that this covariance is positive, and 
hence this implies that the Lowe index will exceed the cor-
responding Laspeyres price index;44 that is,

 PLo(p0,pt,qb) > PL(p0,pt,q0). (36)

To see why this covariance is likely to be positive, sup-
pose that there is a long-term upward trend in the price of 
commodity n so that rn – r* ≡ (pn

t/pn
0) – r* is positive. With 

normal consumer substitution responses,45 qn
t/qn

0 less an 
average quantity change of this type is likely to be negative, 
or, upon taking reciprocals, qn

0/qn
t less an average quantity 

change of this (reciprocal) type is likely to be positive. But 
if the long-term upward trend in prices has persisted back 
to the base year b, then tn – t* ≡ (qn

b/qn
0) – t* is also likely 

to be positive. Hence, the covariance will be positive under 
these circumstances. Moreover, the more distant the base 
year b is from the base month 0, the bigger the residuals tn 
– t* will likely be and the bigger will be the positive covari-
ance. Similarly, the more distant the current period month 
t is from the base period month 0, the bigger the residuals 
rn – r* will likely be and the bigger will be the positive cova-
riance. Thus, under the assumptions that there are long-term 
trends in prices and normal consumer substitution responses, 
the Lowe index will normally be greater than the correspond-
ing Laspeyres index.46

44 It is also necessary to assume that households have normal substitu-
tion effects in response to these long-term trends in prices; that is, if a 
commodity increases (relatively) in price, its consumption will decline 
(relatively) and if a commodity decreases relatively in price, its consump-
tion will increase relatively.
45 Walsh (1901; 281–282) was well aware of consumer substitution effects 
as can be seen in the following comment, which noted the basic problem 
with a fixed basket index that uses the quantity weights of a single period: 
“The argument made by the arithmetic averagist supposes that we buy 
the same quantities of every class at both periods in spite of the variation 
in their prices, which we rarely, if ever, do. As a rough proposition, we—a 
community—generally spend more on articles that have risen in price 
and get less of them, and spend less on articles that have fallen in price 
and get more of them.”
46 If expression (26) is substituted into the left-hand side of (36), the result-
ing inequality becomes PL(pb,pt,qb) > PL(pb,p0,qb)PL(p0,pt,q0). Thus the 
Laspeyres index from b to t is bigger than the Laspeyres index from b to 0 
multiplied by the Laspeyres index from 0 to t. This is not surprising since 
the Laspeyres index from b to t continues using period b weights until 

The Paasche index between months 0 and t is defined as 
follows:

  PP(p0,pt,qt) ≡ Σn=1
N pn

tqn
t/Σi=1

N pi
0qi

t . (37)

As was discussed in Section 4, a reasonable target index to 
measure the price change going from month 0 to t is some 
sort of symmetric average of the Paasche index PP(p0,pt,qt) 
defined by (37) and the corresponding Laspeyres index, 
PL(p0,pt,q0) defined by (32). Using the results in Annex 1, the 
relationship between the Paasche and Laspeyres indices can 
be written as follows:

PP(p0,pt,qt) ≡ Σn=1
N pn

tqn
t/Σn=1

N pn
0qn

t = PL(p0,pt,q0) + 

Σn=1
N (rn – r*)(un – u*)sn

0/QL(q0,qt,p0), (38)

where the price relatives rn ≡ pn
t/pn

0 are defined by (31) and 
their share-weighted average r* by (32) and the un, u

* and QL 
are defined as follows:

 un ≡ qn
t/qn

0; n = 1,,,.N, (39)
  u* ≡ Σn=1

N sn
0un ≡ QL(q0,qt,p0), (40)

and the month 0 expenditure shares si
0 are defined by (7). 

Thus, u* is equal to the Laspeyres quantity index between 
months 0 and t. This means that the Paasche price index 
that uses the quantities of month t as weights, PP(p0,pt,qt), 
is equal to the usual Laspeyres index using the quantities of 
month 0 as weights, PL(p0,pt,q0), plus a weighted covariance 
term Σn=1

N (rn – r*)(un – u*)sn
0 between the price relatives rn ≡ 

pn
t/pn

0 and the corresponding quantity relatives un ≡ qn
t/qn

0, 
divided by the Laspeyres quantity index QL(q0,qt,p0) between 
month 0 and month t.

Although the sign and magnitude of the covariance term, 
Σn=1

N (rn – r*)(un – u*)sn
0, is again an empirical matter, it is pos-

sible to make a reasonable conjecture about its likely sign. 
If there are long-term trends in prices and consumers respond 
normally to price changes in their purchases, then it is likely 
that that this covariance is negative and hence the Paasche 
index will be less than the corresponding Laspeyres price 
index; that is,

 PP(p0,pt,qt) < PL(p0,pt,q0). (41)

To see why this covariance is likely to be negative, sup-
pose that there is a long-term upward trend in the price of 
commodity n47 so that rn – r* ≡ (pn

t/pn
0) – r* is positive. With 

normal consumer substitution responses, qn
t/qn

0 less an 
average quantity change of this type is likely to be negative. 
Hence, un – u* ≡ (qn

t/qn
0) – u* is likely to be negative. Thus, 

the covariance will be negative under these circumstances. 

period t. On the right side of the inequality, period b weights are only used 
until period 0 when period 0 weights are introduced, which will reflect any 
substitution households that may have made from b to 0. This point was 
noted by Carsten Boldsen.
47 The reader can carry through the argument if there is a long-term rela-
tive decline in the price of the ith commodity. The argument required 
to obtain a negative covariance requires that there be some differences 
in the long-term trends in prices; that is, if all prices grow (or fall) at the 
same rate, we have price proportionality and the covariance will be zero.



21

BASIC INDEX NUMBER THEORY

Moreover, the more distant is the base month 0 from the 
current month t, the bigger in magnitude the residuals un 
– u* will likely be and the bigger in magnitude will be the 
negative covariance.48 Similarly, the more distant is the 
current period month t from the base period month 0, the 
bigger the residuals rn – r* will likely be and the bigger in 
magnitude will be the covariance. Thus, under the assump-
tions that there are long-term trends in prices and normal 
consumer substitution responses, the Laspeyres index will 
be greater than the corresponding Paasche index, with the 
divergence likely growing as month t becomes more distant 
from month 0.

Putting the arguments in the previous paragraphs 
together, it can be seen that under the assumptions that there 
are long-term trends in prices and normal consumer substi-
tution responses, the Lowe price index between months 0 
and t will exceed the corresponding Laspeyres price index, 
which in turn will exceed the corresponding Paasche price 
index; that is, under these hypotheses,

 PLo(p0,pt,qb) > PL(p0,pt,q0) > PP(p0,pt,qt). (42)

Thus, if the long-run target price index is an average of 
the Laspeyres and Paasche indices, it can be seen that the 
Laspeyres index will have an upward bias relative to this tar-
get index and the Paasche index will have a downward bias. 
In addition, if the base year b is prior to the price reference 
month, month 0, then the Lowe index will also have an upward 
bias relative to the Laspeyres index and hence also to the target 
index.

7. The Young Index
Recall the definitions for the base year quantities, qn

b, and 
the base year prices, pn

b, given by (23) and (24). The base 
year expenditure shares can be defined in the usual way as 
follows:

 sn
b ≡ pn

bqn
b/Σi=1

N pi
bqi

b; n = 1,. . .,N. (43)

Define the vector of base year expenditure shares in the usual 
way as sb ≡ [s1

b,. . .,sN
b]. These base year expenditure shares 

were used to provide an alternative formula for the base year 
b Lowe price index going from month 0 to t defined in (26) as 
PLo(p0,pt,qb) = [Σi=1

N si
b(pi

t/pi
b)]/[Σi=1

N si
b(pi

0/pi
b)]. Rather than 

using this index as their target index, some statistical agen-
cies use the following related index, which also uses base 
year expenditure shares as weights:49

 PY(p0,pt,sb) ≡ Σi=1
N si

b(pi
t/pi

0). (44)

This type of index was first defined by the English economist 
Arthur Young (1812).50 Note that there is a change in focus 
when the Young index is used compared to the other indices 
proposed earlier in this chapter. Up to this point, the indices 
proposed have been of the fixed basket type (or averages of 

48 However, QL = u* may also be growing in magnitude so the net effect on 
the divergence between PL and PP is ambiguous.
49 We require all prices in the base period to be positive in order for the 
Young index to be well defined.
50 The attribution of this formula to Young was given by Walsh (1901; 
536) (1932; 657).

such indices) where a commodity basket that is somehow 
representative of the two periods being compared is cho-
sen and then “purchased” at the prices of the two periods 
and the index is taken to be the ratio of these two costs. On 
the other hand, for the Young index, one instead chooses 
representative expenditure shares that pertain to the two 
periods under consideration and then uses these shares 
to calculate the overall index as a share-weighted average 
of the individual price ratios, pi

t/pi
0. Note that this share-

weighted average of price ratios view of index number the-
ory is a bit different from the view taken at the beginning 
of this chapter, which viewed the index number problem as 
the problem of decomposing a value ratio into the prod-
uct of two terms, one of which expresses the amount of 
price change between the two periods and the other which 
expresses the amount of quantity change.51 However, 
the two approaches are not necessarily inconsistent; the 
weighted average of price ratios approach to index number 
theory generates a price index, and the companion quan-
tity index can always be generated using the product test  
(see equation (4)).

Statistical agencies sometimes regard the Young index 
defined earlier as an approximation to the Laspeyres price 
index PL(p0,pt,q0). Hence, it is of interest to see how the two 
indices compare. Defining the long-term monthly price rela-
tives going from month 0 to t as ri ≡ pi

t/pi
0, and using defi-

nitions (32) and (44) leads to the following formula:

PY(p0,pt,sb) – PL(p0,pt,q0) = Σi=1
N si

b(pi
t/pi

0) – Σi=1
N si

0(pi
t/pi

0)
 = Σi=1

N [si
b – si

0]ri

 = Σi=1
N [si

b – si
0][ri – r*], (45)

where ri ≡ pi
t/pi

0 for i = 1,. . .,N and r* ≡ Σi=1
N si

0(pi
t/pi

0). The 
last equality follows from the line above since Σi=1

N [si
b – si

0]r* 
= [1 – 1]r* = 0. Thus, the Young index PY(p0,pt,sb) is equal to 
the Laspeyres index PL(p0,pt,q0) plus the covariance between 
the difference in the annual shares pertaining to year b and 
the month 0 shares, si

b – si
0, and the deviations of the relative 

prices from their mean, ri – r*.
It is no longer possible to guess at what the likely sign of 

the covariance term is. The question is no longer whether 
the quantity demanded goes down as the price of commod-
ity i goes up (the answer to this question is usually yes) 

51 Fisher’s 1922 book is famous for developing the value ratio decomposi-
tion approach to index number theory, but his introductory chapters took 
the share-weighted average point of view: “An index number of prices, then 
shows the average percentage change of prices from one point of time to 
another” (Irving Fisher (1922; 3)). Fisher went on to note the importance 
of economic weighting: “The preceding calculation treats all the com-
modities as equally important; consequently, the average was called ‘sim-
ple.’ If one commodity is more important than another, we may treat the 
more important as though it were two or three commodities, thus giving 
it two or three times as much ‘weight’ as the other commodity” (Irving 
Fisher (1922; 6)). Walsh (1901; 430–431) considered both approaches: “We 
can either (1) draw some average of the total money values of the classes 
during an epoch of years, and with weighting so determined employ the 
geometric average of the price variations [ratios]; or (2) draw some aver-
age of the mass quantities of the classes during the epoch, and apply to 
them Scrope’s method.” Scrope’s method is the same as using the Lowe 
index. Walsh (1901; 88–90) consistently stressed the importance of 
weighting price ratios by their economic importance (rather than using 
equally weighted averages of price relatives).
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but the new question is: does the share of expenditure go 
down as the price of commodity i goes up? The answer to 
this question depends on the elasticity of demand for the 
product.

However, let us provisionally assume both that there are 
long-run trends in commodity prices and that if the trend in 
prices for commodity i is above the mean, then the expendi-
ture share for the commodity trends down (and vice versa). 
Thus, we are assuming high elasticities or very strong substi-
tution effects. Assuming also that the base year b is prior to 
month 0, then under these conditions, suppose that there is 
a long-term upward trend in the price of commodity i so that 
ri – r* ≡ (pi

t/pi
0) – r* is positive. With the assumed very elas-

tic consumer substitution responses, si will tend to decrease 
relatively over time, and since si

b is assumed to be prior to si
0, 

si
0 is expected to be less than si

b or si
b – si

0 will likely be posi-
tive. Thus, the covariance is likely to be positive under these 
circumstances. Hence, with long-run trends in prices and very 
elastic responses of consumers to price changes, the Young 
index is likely to be greater than the corresponding Laspeyres 
index.

Assume that there are long-run trends in commod-
ity prices. If the trend in price for commodity i is above 
the mean, then suppose that the expenditure share for 
the commodity trends up (and vice versa). Thus, we 
are assuming low elasticities or very weak substitution 
effects. Assume also that the base year b is prior to month 
0, and suppose that there is a long-term upward trend in 
the price of commodity i so that ri - r* ≡ (pi

t/pi
0) – r* is 

positive. With the assumed very inelastic consumer sub-
stitution responses, si will tend to increase relatively over 
time, and since si

b is assumed to be prior to si
0, it will 

be the case that si
0 is greater than si

b or si
b - si

0 is nega-
tive. Thus, the covariance is likely to be negative under 
these circumstances. Hence, with long-run trends in prices 
and very inelastic responses of consumers to price changes, 
the Young index is likely to be less than the corresponding 
Laspeyres index.

The previous two paragraphs indicate that, a priori, it 
is not known what the likely difference between the Young 
index and the corresponding Laspeyres index will be. If 
elasticities of substitution are close to one, then the two sets 
of expenditure shares, si

b and si
0, will be close to each other 

and the difference between the two indices will be close 
to 0. However, if monthly expenditure shares have strong 
seasonal components (or if there are missing products for 
some months for whatever reason), then the annual shares 
si

b could differ substantially from the monthly shares si
0.

It is useful to have a formula for updating the previous 
month’s Young price index using just month-over-month price 
relatives. The Young index for month t + 1, PY(p0,pt + 1,sb), can 
be written in terms of the Young index for month t, PY(p0,pt,sb), 
and an updating factor as follows:

PY(p0,pt + 1,sb) ≡ Σi=1
N si

b(pi
t + 1/pi

0)
 = PY(p0,pt,sb)[Σi=1

N si
b(pi

t + 1/pi
0)/Σn=1

N sn
b(pn

t/pn
0)]

 = PY(p0,pt,sb)[Σi=1
N pi

bqi
b(pi

t/pi
0)(pi

t + 1/pi
t)/Σn=1

N pn
bqn

b(pn
t/pn

0)]

  = PY(p0,pt,sb)[Σi=1
N si

b0t(pi
t + 1/pi

t)], (46)

where the hybrid weights si
b0t are defined as follows:

si
b0t ≡ pi

bqi
b(pi

t/pi
0)/Σn=1

N pn
bqn

b(pn
t/pn

0) 

= si
b(pi

t/pi
0)/Σn=1

N sn
b(pn

t/pn
0); i = 1,. . .,N. (47)

Thus, the hybrid weights si
b0t can be obtained from the 

base year weights si
b by updating them; that is, by multiply-

ing them by the price relatives (or indices at higher levels 
of aggregation), pi

t/pi
0. Thus, the required updating factor, 

going from month t to month t + 1, is the chain link index, 
Σi=1

N si
b0t (pi

t + 1/pi
t), which uses the hybrid share weights si

b0t 
defined by (47). Note that we require the period t prices, pi

t, 
to be positive in order to ensure that the link factor is well 
defined.

Even if the Young index provides a close approximation 
to the corresponding Laspeyres index, it is difficult to rec-
ommend the use of the Young index as a final estimate of the 
change in prices going from period 0 to t, just as it was diffi-
cult to recommend the use of the Laspeyres index as the final 
estimate of inflation going from period 0 to t. Recall that the 
problem with the Laspeyres index was its lack of symmetry 
in the treatment of the two periods under consideration; that 
is, using the justification for the Laspeyres index as a good 
fixed basket index, there was an identical justification for 
the use of the Paasche index as an equally good fixed basket 
index to compare prices in periods 0 and t. The Young index 
suffers from a similar lack of symmetry with respect to the 
treatment of the base period. The problem can be explained 
as follows. The Young index, PY(p0,pt,sb), defined by (44) 
calculates the price change between months 0 and t, treat-
ing month 0 as the base. But there is no particular reason 
to necessarily treat month 0 as the base month other than 
convention. Hence, if we treat month t as the base and use 
the same formula to measure the price change from month 
t back to month 0, the index PY(pt,p0,sb) = Σi=1

N si
b(pi

0/pi
t) 

would be appropriate. This estimate of price change can 
then be made comparable to the original Young index by 
taking its reciprocal, leading to the following rebased Young 
index,52 PY

*(p0,pt,sb), defined as

 PY
*(p0,pt,sb) ≡ 1/Σi=1

N si
b(pi

0/pi
t) = [Σi=1

N si
b(pi

t/pi
0)–1]–1. (48)

Thus, the rebased Young index, PY
*(p0,pt,sb), that uses the 

current month as the base period is a share-weighted har-
monic mean of the price relatives going from month 0 to 
month t, whereas the original Young index, PY(p0,pt,sb), is a 
share-weighted arithmetic mean of the same price relatives.

Fisher argued that an index number formula should give 
the same answer no matter which period is chosen as the 
base:

Either one of the two times may be taken as the 
“base.” Will it make a difference which is chosen? 
Certainly, it ought not and our Test 1 demands that 
it shall not. More fully expressed, the test is that the 
formula for calculating an index number should be 
such that it will give the same ratio between one 

52 Using Fisher’s (1922; 118) terminology, PY
*(p0,pt,sb) ≡ 1/[PY(pt,p0,sb)] is 

the time antithesis of the original Young index, PY(p0,pt,sb).
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point of comparison and the other point, no matter 
which of the two is taken as the base.

Irving Fisher (1922; 64)

The problem with the Young index is that not only does it 
not coincide with its rebased counterpart, but also there is a 
definite inequality between the two indices, namely

 PY
*(p0,pt,sb) ≤ PY(p0,pt,sb) (49)

with a strict inequality provided that the period t price vec-
tor pt is not proportional to the period 0 price vector p0.53 
Thus, a statistical agency that uses the direct Young index 
PY(p0,pt,sb) will generally show a higher inflation rate than 
a statistical agency that uses the same raw data but uses the 
rebased Young index, PY

*(p0,pt,sb).
The inequality (49) does not tell us by how much the 

Young index will exceed its rebased time antithesis. How-
ever, in Annex 3, it is shown that to the accuracy of a certain 
second-order Taylor series approximation, the following 
relationship holds between the direct Young index and its 
time antithesis:

 PY(p0,pt,sb) = PY
*(p0,pt,sb) + PY(p0,pt,sb)var(e),  (50)

where var(e) is defined as

 var(e) ≡ Σn=1
N sn

b[en – e*]2. (51)

The deviations en are defined by 1 + en = rn/r
* for n = 1,. . .,N, 

where rn and their weighted mean r* are defined as follows:

 rn ≡ pn
t/pn

0; n = 1,. . .,N; (52)
 r* ≡ Σn=1

N sn
brn = PY(p0,pt,sb). (53)

The weighted mean of the en is defined as e*:

 e* ≡ Σn=1
N sn

ben, (54)

which turns out to 0. Hence the more dispersion there is in 
the price relatives pn

t/pn
0, to the accuracy of a second-order 

approximation, the more the direct Young index will exceed 

53 These inequalities follow from the fact that a harmonic mean of M posi-
tive numbers is always equal to or less than the corresponding arithmetic 
mean; see Walsh (1901;517) or Fisher (1922; 383–384). This inequality is 
a special case of Schlömilch’s (1858) Inequality; see Hardy, Littlewood, 
and Polyá (1934; 26). Walsh (1901; 330–332) explicitly noted the inequal-
ity (49) and also noted that the corresponding geometric average would 
fall between the harmonic and arithmetic averages. Walsh (1901; 432) 
computed some numerical examples of the Young index and found big 
differences between it and his “best” indices, even using weights that 
were representative for the periods being compared. Recall that the Lowe 
index becomes the Walsh index when geometric mean quantity weights 
are chosen and so the Lowe index can perform well when representative 
weights are used. This is not necessarily the case for the Young index, 
even using representative weights. Walsh (1901; 433) summed up his 
numerical experiments with the Young index as follows: “In fact, Young’s 
method, in every form, has been found to be bad.”

its counterpart that uses month t as the initial base period 
rather than month 0.

Given two a priori equally plausible index number formu-
lae that give different answers, such as the Young index and 
its time antithesis, Fisher (1922; 136) generally suggested 
taking the geometric average of the two indices,54 and a 
benefit of this averaging is that the resulting formula will 
satisfy the time reversal test. Thus, rather than using either 
the base period 0 Young index, PY(p0,pt,sb), or the current 
period t Young index, PY

*(p0,pt,sb), which is always below the 
base period 0 Young index, if there is any dispersion in rela-
tive prices, it seems preferable to use the following index, 
which is the geometric average of the two alternatively based 
Young indices:55

 PY
**(p0,pt,sb) ≡ [PY(p0,pt,sb)PY

*(p0,pt,sb)]1/2. (55)

If the base year shares si
b happen to coincide with both the 

month 0 and month t shares, si
0 and si

t, respectively, it can 
be seen that the time-rectified Young index PY

**(p0,pt,sb) 
defined by (55) will coincide with the Fisher ideal price index 
between months 0 and t, PF(p0,pt,q0,qt).56 Note also that the 
index PY

** defined by (55) can be produced on a timely basis 
by a statistical agency since it does not depend on quantity 
information for months 0 and t. However, this point illus-
trates the problem with using out-of-date base year shares 
(or annual quantities) as weights for monthly prices: The 
base year shares may not be representative for the actual 
expenditure shares (or quantities) for month 0 and the sub-
sequent months. Thus in general, the use of the Fisher or 
Walsh indices is recommended over the use of indices that 
rely on annual baskets of a prior year. However, this rec-
ommendation is tempered by the fact that the statistical 
agency may not be able to obtain information on current 
period quantities or expenditures in a timely fashion, and 
thus it may be necessary to use indices that do not depend 
on the availability of current information on expenditures 
or quantities.

54 “We now come to a third use of these tests, namely, to ‘rectify’ for-
mulae, i.e., to derive from any given formula which does not satisfy a 
test another formula which does satisfy it;  .  .  .  . This is easily done by 
‘crossing,’ that is, by averaging antitheses. If a given formula fails to sat-
isfy Test 1 [the time reversal test], its time antithesis will also fail to sat-
isfy it; but the two will fail, as it were, in opposite ways, so that a cross 
between them (obtained by geometrical averaging) will give the golden 
mean which does satisfy” (Irving Fisher (1922; 136)). Actually, the basic 
idea behind Fisher’s rectification procedure was suggested by Walsh, who 
was a discussant for Fisher (1921) when Fisher gave a preview of his 1922 
book: “We merely have to take any index number, find its antithesis in the 
way prescribed by Professor Fisher, and then draw the geometric mean 
between the two” (Correa Moylan Walsh (1921b; 542)).
55 This index is a base year-weighted counterpart to an equally weighted 
index proposed by Carruthers, Sellwood, and Ward (1980; 25) and Dalén 
(1992; 140) in the context of elementary index number formulae. See 
Chapter 6 for further discussion of this unweighted index.
56 However, if there are systematic trends in shares, then si

b will not coin-
cide with si

0 and si
t, and it is likely that the rectified Young index will differ 

from the Fisher index since the base year shares will not in general be 
representative for the shares for months 0 and t.
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8. Fixed-Base versus Chained 
Indices
In this section,57 the merits of using the chain system for 
constructing price indices in the time series context versus 
using the fixed-base system are discussed.

The chain system58 measures the change in prices going 
from one period to a subsequent period using a bilateral 
index number formula involving the prices and quantities 
pertaining to the two adjacent periods. These one-period 
rates of change (the links in the chain) are then cumulated 
to yield the relative levels of prices over the entire period 
under consideration. Thus, if the bilateral price index is P, 
the chain system generates the following pattern of price 
levels for the first three periods:59

 1, P(p0,p1,q0,q1), P(p0,p1,q0,q1)P(p1,p2,q1,q2). (56)

On the other hand, the fixed-base system of price levels using 
the same bilateral index number formula P simply computes 
the level of prices in period t relative to the base period 0 as 
P(p0,pt,q0,qt). Thus, the fixed-base pattern of price levels for 
periods 0,1, and 2 is60

 1, P(p0,p1,q0,q1), P(p0,p2,q0,q2). (57)

Note that in both the chain system and the fixed-base system 
of price levels defined by (56) and (57), the base period price 
level is set to 1. The usual practice in statistical agencies is 
to set the base period price level equal to 100. If this is done, 
then it is necessary to multiply each of the numbers in (56) 
and (57) by 100.

Because of the difficulties involved in obtaining current 
period information on quantities (or equivalently, on expen-
ditures), many statistical agencies loosely base their CPI 
on the use of the Laspeyres formula (5) and the fixed-base 
system. Therefore, it is of some interest to look at some of 
the possible problems associated with the use of fixed-base 
Laspeyres indices.

The main problem with the use of fixed-base Laspeyres 
indices is that the period 0 fixed basket of commodities 
that is being priced in period t can often be quite different 
from the period t basket. Thus, if there are systematic trends 
in at least some of the prices and quantities61 in the index 
basket, the fixed-base Laspeyres price index PL(p0,pt,q0,qt) 
can be quite different from the corresponding fixed-base 

57 This section is largely based on the work of P. Hill (1988) (1993; 
385–390).
58 The chain principle was introduced independently into the economics 
literature by Lehr (1885; 45–46) and Marshall (1887; 373). Both authors 
observed that the chain system would mitigate the difficulties due to the 
introduction of new commodities into the economy, a point also men-
tioned by P. Hill (1993; 388). Fisher (1911; 203) introduced the term “chain 
system.”
59 Let the value of transactions in period t be Vt ≡ Σn=1

N pn
tqn

t for t = 0,1,2. 
Then the period t quantity aggregates that correspond to the price lev-
els defined by (56) are equal to the following expressions: Q0 ≡ V0; Q1 ≡ 
V1/P(p0,p1,q0,q1), and Q2 ≡ V2/P(p0,p1,q0,q1)P(p1,p2,q1,q2).
60 The period t quantity aggregates that correspond to the price lev-
els defined by (57) are equal to the following expressions: Q0 ≡ V0; Q1 ≡ 
V1/P(p0,p1,q0,q1) and Q2 ≡ V2/P(p0,p2,q0,q2).
61 Examples of rapidly downward trending prices and upward trending 
quantities are computers, electronic equipment of all types, internet 
access, and (quality-adjusted) telecommunication charges.

Paasche price index, PP(p0,pt,q0,qt).62 This means that both  
indices are likely to be an inadequate representation of the 
movement in average prices over the time period under 
consideration.

The fixed-base Laspeyres quantity index cannot be used 
forever: Eventually, the base period quantities q0 are so far 
removed from the current period quantities qt that the base 
must be changed. Chaining is merely the limiting case where 
the base is changed for each period.63

A main advantage of the chain system is that under nor-
mal conditions, chaining will reduce the spread between the 
Paasche and Laspeyres indices.64 These two indices each 
provide an asymmetric perspective on the amount of price 
change that has occurred between the two periods under 
consideration, and it could be expected that a single-point 
estimate of the aggregate price change should lie between 
these two estimates. Thus, the use of either a chained Paas-
che or Laspeyres index will usually lead to a smaller differ-
ence between the two and hence to estimates that are closer 
to the “truth.”65

P. Hill (1993; 388), drawing on the earlier research of 
Szulc (1983) and P. Hill (1988; 136–137), noted that it is not 
appropriate to use the chain system when prices oscillate (or 
“bounce” to use Szulc’s (1983; 548) term). This phenomenon 
can occur in the context of regular seasonal fluctuations or 
in the context of price wars or highly discounted sale prices. 
However, in the context of roughly monotonically changing 
prices and quantities, P. Hill (1993; 389) recommended the 
use of chained symmetrically weighted indices. The Fisher 
and Walsh indices are examples of symmetrically weighted 
indices.

It is possible to be a bit more precise under what condi-
tions one should chain or not chain. Basically, one should 
chain if the prices and quantities pertaining to adjacent peri-
ods are more similar than the prices and quantities of more 
distant periods, since this strategy will lead to a narrowing 
of the spread between the Paasche and Laspeyres indices at 
each link.66 Of course, one needs a measure of how similar  

62 Note that PL(p0,pt,q0,qt) will equal PP(p0,pt,q0,qt) if either the two quan-
tity vectors q0 and qt are proportional or the two price vectors p0 and pt are 
proportional. Thus, in order to obtain a difference between the Paasche 
and Laspeyres indices, nonproportional movements in both prices and 
quantities are required.
63 Regular seasonal fluctuations can cause monthly or quarterly data 
to “bounce” using the term due to Szulc (1983) and chaining bouncing 
data can lead to a considerable amount of index “drift”; that is, if after 
12 months, prices and quantities return to their levels of a year earlier, 
then a chained monthly index will usually not return to unity. Hence, 
the use of chained indices for “noisy” monthly or quarterly data is not 
recommended. The chain drift problem will be discussed in more detail 
in Chapter 7.
64 See Diewert (1978; 895) and P.Hill (1988) (1993; 387–388). Another 
main advantage of using chained indices is that chaining will in general 
increase the number of matched prices in situations where there is a con-
siderable amount of product turnover.
65 However, if the underlying data are very volatile, then chaining may 
not reduce the spread between the Paasche and Laspeyres indices. In this 
case, the methods based on multilateral index number theory should be 
used; see Chapter 7.
66 Walsh, in discussing whether fixed-base or chained index numbers 
should be constructed, took for granted that the precision of all rea-
sonable bilateral index number formulae would improve, provided that 
the two periods or situations being compared were more similar and 
hence, for this reason, favored the use of chained indices: “The ques-
tion is really, in which of the two courses [fixed-base or chained index 
numbers] are we likely to gain greater exactness in the comparisons 
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the prices and quantities are pertaining to two periods. 
The similarity measures could be relative ones or absolute 
ones. In the case of absolute comparisons, two vectors of 
the same dimension are similar if they are identical and dis-
similar otherwise. In the case of relative comparisons, two 
vectors are similar if they are proportional and dissimilar if 
they are nonproportional.67 Once a similarity measure has 
been defined, the prices and quantities of each period can 
be compared to each other using this measure, and a “tree” 
or path that links all of the observations can be constructed 
where the most similar observations are compared with each 
other using a bilateral index number formula.68 R. Hill (1995) 
defined the price structures between the two countries to be 
more dissimilar the bigger the spread between PL and PP is—
that is, the bigger is max {PL/PP, PP/PL}. The problem with 
this measure of dissimilarity in the price structures of the 
two countries is that it could be the case that PL = PP (so that 
the Hill measure would register a maximal degree of similar-
ity), but p0 could be very different from pt. Thus, there is a 
need for a more systematic study of similarity (or dissimilar-
ity) measures in order to pick the “best” one that could be 
used as an input into R. Hill’s (1999a) (1999b) (2001) (2009) 
spanning tree algorithm for linking observations.

The method of linking observations explained in the pre-
vious paragraph based on the similarity of the price and 
quantity structures of any two observations may not be 
practical in a statistical agency context since the addition of 
a new period may lead to a reordering of the previous links. 
However, as will be seen in Chapter 7, it is possible to come 
up with a similarity linking method that does not involve 
changing index values for prior periods.

Some index number theorists have objected to the chain 
principle on the grounds that it has no counterpart in the 
spatial context:

actually made? Here the probability seems to incline in favor of the 
second course; for the conditions are likely to be less diverse between 
two contiguous periods than between two periods say fifty years apart” 
(Correa Moylan Walsh (1901; 206)). Walsh (1921a; 84–85) later reiterated 
his preference for chained index numbers. Fisher also made use of the 
idea that the chain system would usually make bilateral comparisons 
between price and quantity data that were more similar and hence the 
resulting comparisons would be more accurate: “The index numbers 
for 1909 and 1910 (each calculated in terms of 1867–1877) are compared 
with each other. But direct comparison between 1909 and 1910 would 
give a different and more valuable result. To use a common base is like 
comparing the relative heights of two men by measuring the height of 
each above the floor, instead of putting them back to back and directly 
measuring the difference of level between the tops of their heads” (Irving 
Fisher (1911; 204)). “It seems, therefore, advisable to compare each year 
with the next, or, in other words, to make each year the base year for the 
next. Such a procedure has been recommended by Marshall, Edgeworth 
and Flux. It largely meets the difficulty of non-uniform changes in the 
Q’s, for any inequalities for successive years are relatively small” (Irving 
Fisher (1911; 423–424)).
67 Diewert (2009) took an axiomatic approach to defining various indices 
of absolute and relative dissimilarity. Measures of relative price similar-
ity or dissimilarity will be discussed in Chapter 7.
68 Fisher (1922; 271–276) hinted at the possibility of using spatial linking; 
that is, linking countries that are similar in structure. However, the mod-
ern literature has grown due to the pioneering efforts of R. Hill (1995) 
(2009). R. Hill (1995) used the spread between the Paasche and Laspeyres 
price indices as an indicator of similarity and showed that this criterion 
gives the same results as a criterion that looks at the spread between the 
Paasche and Laspeyres quantity indices.

They [chain indices] only apply to intertemporal 
comparisons, and in contrast to direct indices they are 
not applicable to cases in which no natural order or 
sequence exists. Thus the idea of a chain index for ex-
ample has no counterpart in interregional or interna-
tional price comparisons, because countries cannot be 
sequenced in a “logical” or “natural” way (there is no 
k + 1 nor k–1country to be compared with country k).

Peter von der Lippe (2001; 12)69

This is of course correct, but the approach of Robert Hill 
does lead to a “natural” set of spatial links. Applying the 
same approach to the time series context will lead to a set 
of links between periods that may not be month to month, 
but it will in many cases justify year-over-year linking of the 
data pertaining to the same month. This problem will be 
addressed in Chapters 7 and 9.

It is of some interest to determine if there are index num-
ber formulae that give the same answer when either the fixed-
base or chain system is used. Comparing the sequence of  
chain indices defined by (56) to the corresponding fixed-base 
indices, it can be seen that we will obtain the same answer in 
all three periods if the index number formula P satisfies the fol-
lowing functional equation for all price and quantity vectors:

 P(p0,p2,q0,q2) = P(p0,p1,q0,q1)P(p1,p2,q1,q2). (58)

If an index number formula P satisfies (58), then P satisfies 
the circularity test.70

If it is assumed that the index number formula P satis-
fies certain properties or tests in addition to the circularity 
test,71 then Funke, Hacker, and Voeller (1979) showed that 
P must have the following functional form due originally to 
Konüs and Byushgens72 (1926; 163–166):73

 PKB(p0,p1,q0,q1) ≡ Πn=1
N (pn

1/pn
0)αn, (59)

69 It should be noted that von der Lippe (2001; 56–58) was a vigorous critic 
of all index number tests based on symmetry in the time series context, 
although he was willing to accept symmetry in the context of making 
international comparisons. “But there are good reasons not to insist on 
such criteria in the intertemporal case. When no symmetry exists between 
0 and t, there is no point in interchanging 0 and t” (Peter von der Lippe 
(2001; 58)).
70 The test was named after Fisher (1922; 413) and the concept was origi-
nally proposed by Westergaard (1890; 218–219).
71 The additional tests are as follows: (i) positivity and continuity of P(p0,p
1,q0,q1) for all strictly positive price and quantity vectors p0,p1,q0,q1; (ii) the 
identity test; (iii) the commensurability test; (iv) P(p0,p1,q0,q1) is positively 
homogeneous of degree one in the components of p1 and (v) P(p0,p1,q0,q1) 
is positively homogeneous of degree zero in the components of q1. These 
tests will be explained in Chapter 3.
72 Konüs and Byushgens showed that the index defined by (59) is exact for 
Cobb–Douglas (1928) preferences; see also Pollak (1983; 119–120). The 
concept of an exact index number formula will be explained in Chapter 5.
73 This result can be derived using results in Eichhorn (1978; 167–168) and 
Vogt and Barta (1997; 47). A simple proof can be found in Balk (1995). 
This result vindicates Irving Fisher’s (1922; 274) intuition who asserted 
that “the only formulae which conform perfectly to the circular test are 
index numbers which have constant weights. . . .” Fisher (1922; 275) went 
on to assert: “But, clearly, constant weighting is not theoretically correct. 
If we compare 1913 with 1914, we need one set of weights; if we compare 
1913 with 1915, we need, theoretically at least, another set of weights. . . . 
Similarly, turning from time to space, an index number for comparing 
the United States and England requires one set of weights, and an index 
number for comparing the United States and France requires, theoreti-
cally at least, another.”
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where the N constants αn satisfy the following conditions:

 Σn=1
N αn = 1 and αn > 0 for n = 1,. . .,N. (60)

Thus, under very weak regularity conditions, the only price 
index satisfying the circularity test (and the additional tests 
listed above in footnote 72) is a weighted geometric average 
of all the individual price ratios, the weights being constant 
through time.74

An interesting special case of the family of indices defined 
by (59) occurs when the weights αi are all equal. In this case, 
PKB reduces to the Jevons (1865) index:

 PJ(p0,p1) ≡ Πn=1
N (pn

1/pn
0)1/N. (61)

The problem with the indices defined by Konüs and Byush-
gens and Jevons is that the individual price ratios, pn

1/pn
0, 

have weights (either αn or 1/N) that are independent of the 
economic importance of commodity n in the two periods 
under consideration. Put another way, these price weights 
are independent of the quantities of commodity n consumed 
or the expenditures on commodity n during the two periods. 
Hence, these indices are not really suitable for use by statis-
tical agencies at higher levels of aggregation when expendi-
ture share or quantity information is available.

These results indicate that it is not useful to ask that the 
price index P satisfies the circularity test exactly. However, it 
is of some interest to find index number formulae that satisfy 
the circularity test to some degree of approximation, since the 
use of such an index number formula will lead to measures 
of aggregate price change that are more or less the same no 
matter whether we use the chain or fixed-base systems. Irving 
Fisher (1922; 284) found that deviations from circularity using 
his data set and the Fisher ideal price index PF defined by (12) 
were quite small. This relatively high degree of correspondence 
between fixed-base and chain indices has been found to hold 
for other symmetrically weighted formulae like the Walsh 
index PW defined by (19).75 Thus, in most time series applica-
tions of index number theory where the base year in fixed-base 
indices is changed every five years or so, it will not matter very 
much whether the statistical agency uses a fixed-base price 
index or a chain index, provided that a symmetrically weighted 
formula is used.76 This of course depends on the length of the 
time series considered and the degree of variation in the prices 
and quantities as we go from period to period. The more prices 
and quantities are subject to large fluctuations (rather than 
smooth trends), the less will be the correspondence.77

74 This result will be discussed in more detail in Chapter 3.
75 See, for example, Diewert (1978; 894). Walsh (1901; 424 and 429) found 
that his three preferred formulae all approximated each other very well 
as did the Fisher ideal for his artificial data set.
76 More specifically, most superlative indices (which are symmetri-
cally weighted) will usually satisfy the circularity test to a high degree 
of approximation in the time series context using aggregated data. See 
Chapter 5 for the definition of a superlative index. It is worth stressing 
that fixed-base Paasche and Laspeyres indices are very likely to diverge 
considerably over a five-year period if computers (or any other commod-
ity that has price and quantity trends that are quite different from the 
trends in the other commodities) are included in the value aggregate 
under consideration. See Chapters 7 and 11 for some empirical evidence 
on the divergence between the Laspeyres and Paasche indices.
77 Again, see Szulc (1983) and P.Hill (1988). This topic will be discussed in 
more detail in Chapters 7 and 11.

It is possible to give a theoretical explanation for the 
approximate satisfaction of the circularity test for sym-
metrically weighted index number formulae. Another sym-
metrically weighted formula is the Törnqvist index PT.78 The 
natural logarithm of this index is defined as follows:

 lnPT(p0,p1,q0,q1) ≡ Σn=1
N ½(sn

0 + sn
1)ln(pn

1/pn
0), (62)

where the period t expenditure shares sn
t are defined by (7). 

Alterman, Diewert, and Feenstra (1999; 61) showed that if 
the logarithmic price ratios ln(pn

t/pn
t–1) trended linearly with 

time t and the expenditure shares sn
t also trended linearly with 

time, then the Törnqvist index PT will satisfy the circularity 
test exactly.79 Since many economic time series on prices and 
quantities satisfy these assumptions approximately, then 
under these conditions, the Törnqvist index PT will satisfy 
the circularity test approximately. As will be seen in Chap-
ter 7, the Törnqvist index generally closely approximates the 
symmetrically weighted Fisher and Walsh indices, so that for 
many economic time series (with smooth trends), all three of 
these symmetrically weighted indices will satisfy the circular-
ity test to a high-enough degree of approximation that it will 
not matter whether we use the fixed-base or chain principle.80

Walsh (1901; 401) (1921a; 98) (1921b; 540) introduced the 
following useful variant of the circularity test:

1 = P(p0,p1,q0,q1)P(p1,p2,q1,q2). . .

 P(pT–1,pT,qT–1,qT)P(pT,p0,qT,q0). (63)

The motivation for this test is explained as follows. Use the 
bilateral index formula P(p0,p1,q0,q1) to calculate the change in 
prices going from period 0 to 1; use the same formula evalu-
ated at the data corresponding to periods 1 and 2, P(p1,p2,q1

,q2), to calculate the change in prices going from period 1 to 2, 
. . . ; use P(pT–1,pT,qT–1,qT) to calculate the change in prices going 
from period T–1 to T; introduce an artificial period T + 1 that 
has exactly the price and quantity of the initial period 0; and 
use P(pT,p0,qT,q0) to calculate the change in prices going from 
period T to 0. Finally, multiply all of these indices together, 
and since we end up where we started, then the product of 
all of these indices should ideally be one. Diewert (1993a; 40) 
called this test a multiperiod identity test.81 Note that if T = 2 
(so that the number of periods is 3 in total), then Walsh’s test 
reduces to Fisher’s (1921; 534) (1922; 64) time reversal test.82

78 This formula was implicitly introduced in Törnqvist (1936) and explic-
itly defined in Törnqvist and Törnqvist (1937).
79 This result will be proved in Chapter 7. This exactness result can be 
extended to cover the case when there are monthly proportional varia-
tions in prices and the expenditure shares have constant seasonal effects in 
addition to linear trends; see Alterman, Diewert, and Feenstra (1999; 65).
80 However, if the smooth trends assumption is violated to a considerable 
degree or if there are a substantial number of new and disappearing prod-
ucts, then this result will not hold as will be seen in Chapter 7. If prices and 
quantities are subject to big fluctuations, then it will be necessary to move 
to a multilateral index; see Chapter 7. Note that with new and disappear-
ing products, fixed-base indices can only be used if the base is changed 
frequently.
81 Walsh (1921a; 98) called his test the circular test but since Fisher also 
used this term to describe his transitivity test defined earlier by (58), it 
seems best to stick to Fisher’s terminology since it is well established in 
the literature.
82 Walsh (1921b; 540–541) noted that the time reversal test was a special 
case of his circularity test.
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Walsh (1901; 423–433) showed how his circularity test could 
be used in order to evaluate how “good” any bilateral index 
number formula was. What he did was invent artificial price 
and quantity data for five periods and he added a sixth period 
that had the data of the first period. He then evaluated the 
right-hand side of (63) for various formulae, P(p0,p1,q0,q1), and 
determined how far from unity the results were. His “best” 
formulae had products that were close to one.83

This same framework is often used to evaluate the efficacy 
of chained indices versus their direct counterparts. Thus, 
if the right-hand side of (63) turns out to be different from 
unity, the chained indices are said to suffer from “chain 
drift.” If a formula does suffer from chain drift, it is some-
times recommended that fixed-base indices be used in place 
of chained ones. However, this advice, if accepted, would 
always lead to the adoption of fixed-base indices, provided 
that the bilateral index formula satisfies the identity test, 
P(p0,p0,q0,q0) = 1. But at the first level of aggregation, there 
will be tremendous product turnover in most economies. 
Under these conditions, the adoption of a fixed-base index 
would soon lead to a lack of matching of the products, and 
the resulting fixed-base indices would lose their relevance. 
Thus, it is not recommended that Walsh’s circularity test be 
used to decide whether fixed-base or chained indices should 
be calculated. However, it is fair to use Walsh’s circular-
ity test as he originally used it—that is, as an approximate 
method for deciding how “good” a particular index number 
formula is. In order to decide whether to chain or use fixed-
base indices, one should decide on the basis of how similar the 
observations being compared are and choose the method that 
will best link up the most similar observations. The question 
of when to chain and when not to will be discussed in more 
detail in Chapter 7.

9. Two-Stage Aggregation versus 
Single-Stage Aggregation
Does a Laspeyres or Paasche or Fisher index that is con-
structed in two stages equal the corresponding index that is 
constructed in a single stage? This question is addressed in the 
present section. In practice, it is a big advantage to be consis-
tent in aggregation because consistency in aggregation allows 
the production of an index to be decentralized.

Suppose that the price and quantity data for period t, pt, 
and qt can be written in terms of M subvectors as follows:

 pt = [pt1,pt2,. . .,ptM]; qt = [qt1,qt2,. . .,qtM]; t = 0,1, (64)

where the dimensionality of the subvectors ptm and qtm is 
N(m) for m = 1,2,.  .  .,M, with the sum of the dimensions 
N(m) equal to N. These subvectors correspond to the price 
and quantity data for subcomponents of an overall CPI for 
period t. For the first stage of aggregation, construct subin-
dices for each of these components going from period 0 to 
1. For the base period, set the aggregate price level for each 
of these subcomponents, say Pm

0 for m = 1,2,.  .  .M, equal 
to 1 and set the corresponding base period subcomponent 
quantities, say Qm

0 for m = 1,2,.  .  .,M, equal to the base 

83 This is essentially a variant of the methodology that Fisher (1922; 284) 
used to check how well various formulae corresponded to his version of 
the circularity test.

period value of consumption for that subcomponent for m 
= 1,2,. . .,M:

 Pm
0 ≡ 1; Qm

0 ≡ Σi=1
N(m) pi

0mqi
0m; m = 1,. . .,M. (65)

Now use the Laspeyres formula in order to construct a period 
1 price for each subcomponent, say Pm

1 for m = 1,2,.  .  .,M, 
of the CPI. Since the dimensionality of the subcomponent 
vectors, ptm and qtm, differs from the dimensionality of the 
complete period t vectors of prices and quantities, pt and qt, 
it is necessary to use different symbols for these subcompo-
nent Laspeyres indices, say PL

m for m = 1,2,. . .M. Thus, the 
period 1 subcomponent prices are defined as follows:

 Pm
1 ≡ PL

m(p0m,p1m,q0m,q1m) 

 ≡ Σi=1
N(m) pi

1mqi
0m/Σi=1

N(m) pi
0mqi

0m; m = 1,. . .,M. (66)

Once the period 1 prices for the M subindices have been 
defined by (66), then the corresponding subcomponent 
period 1 quantities Qm

1 for m = 1,2,. . .,M can be defined by 
deflating the period 1 subcomponent values Σi=1

N(m) pi
1m qi

1m by 
the period 1 price levels, Pm

1:

 Qm
1 ≡ Σi=1

N(m) pi
1mqi

1m/Pm
1; m = 1,. . .,M. (67)

Now we define the period 0 and 1 subcomponent price level 
vectors P0 and P1 as follows:

 P0 ≡ [P1
0,P2

0,. . .,PM
0] ≡ 1M; P1 ≡ [P1

1,P2
1,. . .,PM

1], (68)

where 1M denotes a vector of ones of dimension M and the 
components of P1 are defined by (67). The period 0 and 1 sub-
component quantity vectors Q0 and Q1 are defined as follows:

 Q0 ≡ [Q1
0,Q2

0,. . .,QM
0]; Q1 ≡ [Q1

1,Q2
1,. . .,QM

1], (69)

where the components of Q0 are defined by definitions (65) 
and the components of Q1 are defined by definitions (67). 
The price and quantity vectors in (68) and (69) represent 
the results of the first-stage aggregation. Now use these 
vectors as inputs into the second-stage aggregation prob-
lem; that is, apply the Laspeyres price index formula using 
the information in (68) and (69) as inputs into the index 
number formula. Since the price and quantity vectors 
that are inputs into this second-stage aggregation prob-
lem have dimension M instead of the single-stage formula 
that utilized vectors of dimension N, a different symbol is 
required for the new Laspeyres index, which we choose to 
be PL

*. Thus, the Laspeyres price index computed in two 
stages is denoted as PL

*(P0,P1,Q0,Q1). This index is defined 
as follows:

PL
*(P0,P1,Q0,Q1) ≡ Σm=1

M Pm
1Qm

0/Σm=1
M Pm

0Qm
0

 = Σm=1
M Pm

1[Σi=1
N(m) pi

0mqi
0m]/

Σm=1
M [Σi=1

N(m) pi
0mqi

0m] using (65)

 = Σm=1
M [Σi=1

N(m) pi
1mqi

0m/

Σi=1
N(m) pi

0mqi
0m][Σi=1

N(m) pi
0mqi

0m]/

Σm=1
M Σi=1

N(m) pi
0mqi

0m using (66)
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 = Σm=1
M Σi=1

N(m) pi
1mqi

0m/

Σm=1
M Σi=1

N(m) pi
0mqi

0m

 ≡ PL(p0,p1,q0,q1), (70)

where PL(p0,p1,q0,q1) is the overall Laspeyres price index cal-
culated in a single stage. Thus, the two-stage Laspeyres index 
exactly equals the single-stage Laspeyres index:84

  PL
*(P0,P1,Q0,Q1) = PL(p0,p1,q0,q1). (71)

Recall that (26) established that the Lowe index, 
PLo(p0,pt,qb), was equal to the ratio of two Laspeyres indices, 
PL(pb,pt,qb)/PL(pb,p0,qb). Thus, the two-stage aggregation 
result (71) for the Laspeyres formula implies that the Lowe 
index is also consistent in aggregation.85

Does the same two-stage aggregation result hold for the 
Paasche index? The single-stage Paasche index is defined as

PP(p0,p1,q0,q1) ≡ Σm=1
M Σi=1

N(m) pi
1mqi

1m/

Σm=1
M Σi=1

N(m) pi
0mqi

1m. (72)

The Paasche subaggregate price and quantity levels for period 
0 are still defined by (65). However, the period 1 subcompo-
nent Paasche price levels are defined as follows:

Pm
1 ≡ PP

m(p0m,p1m,q0m,q1m) ≡ Σi=1
N(m) pi

1mqi
1m/

Σi=1
N(m) pi

0mqi
1m; m = 1,. . .,M. (73)

Using definitions (73) for the period 1 price levels Pm
1, the 

Paasche period 1 subaggregate quantity levels are defined by 
definitions (67). The Paasche price index computed in two 
stages is denoted as PP

*(P0,P1,Q0,Q1) and defined as follows:

PP
*(P0,P1,Q0,Q1) ≡ Σm=1

M Pm
1Qm

1/Σm=1
M Pm

0Qm
1

 = Σm=1
M Pm

1[Σi=1
N(m) pi

1mqi
1m/Pm

1]/ 
Σm=1

M Pm
0[Σi=1

N(m) pi
1mqi

1m/Pm
1] using (67)

 = Σm=1
M [Σi=1

N(m) pi
1mqi

1m]/ 
Σm=1

M [Σi=1
N(m) pi

1mqi
1m/Pm

1] using (65)

 = Σm=1
M [Σi=1

N(m) pi
1mqi

1m]/Σm=1
M [Σi=1

N(m) pi
1mqi

1m/ 
(Σi=1

N(m) pi
1mqi

1m/Σi=1
N(m) pi

0mqi
1m)] using (73)

 = Σm=1
M [Σi=1

N(m) pi
1mqi

1m]/Σm=1
M [Σi=1

N(m) pi
0mqi

1m]
 = PP(p0,p1,q0,q1) using (72). (74)

Thus, the two-stage Paasche index exactly equals the single-
stage Paasche index.86

84 Balk (1996; 362) (2008; 106–107) established this two-stage consistency 
in aggregation result for both the Laspeyres and Paasche indices. Black-
orby and Primont (1980; 88) established the result for the Laspeyres index.
85 This result was established in Eurostat (2018; 173).
86 For additional results on consistency on aggregation over three or more 
stages of aggregation, see Annex 5. For further materials on the problem 
of consistency in aggregation, see the references in Blackorby and Pri-
mont (1980), Diewert (1978) (1980), and Balk (1996).

Definitions (65)–(69) can be used to construct first-stage 
subaggregates for any index number formula except that 
in definition (66) replace Pm

1 ≡ PL
m(p0m,p1m,q0m,q1m) or Pm

1 
≡ PP

m(p0m,p1m,q0m,q1m) by Pm
1 º Pm(p0m,p1m,q0m,q1m), where 

Pm(p0m,p1m,q0m,q1m) can represent any bilateral index number 
formula.

Suppose that the Fisher or Törnqvist formula is used 
at each stage of the aggregation; that is, in equations (66), 
suppose that the Laspeyres formula PL

m(p0m,p1m,q0m,q1m) is 
replaced by the Fisher formula PF

m(p0m,p1m,q0m,q1m) (or by 
the Törnqvist formula PT

m(p0m,p1m,q0m,q1m)) and in equa-
tion (70), PL

*(P0,P1,Q0,Q1) is replaced by PF
*(P0,P1,Q0,Q1) (or 

by PT
*(P0,P1,Q0,Q1)) and PL(p0,p1,q0,q1) is replaced by PF(p0,

p1,q0,q1) (or by PT(p0,p1,q0,q1)). Then the two-stage aggrega-
tion equality does not hold for these index number formu-
lae. It can be shown that, in general,

PF
*(P0,P1,Q0,Q1) ≠ PF(p0,p1,q0,q1) 

and PT
*(P0,P1,Q0,Q1) ≠ PT(p0,p1,q0,q1). (75)

However, even though the Fisher and Törnqvist formu-
lae are not exactly consistent in aggregation, it can be 
shown that these formulae are approximately consistent 
in aggregation. More specifically, it can be shown that the 
two-stage Fisher formula PF

* and the single-stage Fisher 
formula PF in (75), both regarded as functions of the 4N 
variables in the vectors p0,p1,q0,q1, approximate each other 
to the second order around a point where the two price 
vectors are equal (so that p0 = p1) and where the two quan-
tity vectors are equal (so that q0 = q1) and a similar result 
holds for the two-stage and single-stage Törnqvist indices 
in (75).87 Thus, for normal time series data, single-stage 
and two-stage Fisher and Törnqvist indices will usually be 
numerically very close.88 

87 See Diewert (1978; 889). In fact, these derivative equalities are still true, 
provided that p1 = λp0 and q1 = μq0 for any numbers λ > 0 and μ > 0.
88 For an empirical comparison of the four indices, see Diewert (1978; 
894–895). For the Canadian consumer data considered there, the chained 
two-stage Fisher in 1971 was 2.3228 and the corresponding chained two-
stage Törnqvist was 2.3230, the same values as for the corresponding 
single-stage indices. Additional empirical results will be exhibited in sub-
sequent chapters.
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Annex 1 The Relationship  
between the Paasche and  
Laspeyres Indices
Recall the notation used in Section 2. Define the nth relative 
price or price relative rn and the nth quantity relative tn as 
follows:

  rn ≡ pn
1/pn

0; tn ≡ qn
1/qn

0; n = 1,. . .,N. (A1.1)

Using formula (8) for the Laspeyres price index PL and defi-
nitions (A1.1), we have

  PL = Σn=1
N rnsn

0 ≡ r*; (A1.2)

that is, we define the “average” price relative r* as the base 
period expenditure share-weighted average of the individual 
price relatives, ri.

The Laspeyres quantity index, QL(q0,q1,p0), that compares 
quantities in month 1, q1, to the corresponding quantities in 
month 0, q0, using the prices of month 0, p0, as weights can be 
defined as a weighted average of the quantity ratios tn as follows:

  QL(q0,q1,p0) = Σn=1
N sn

0tn ≡ t*. (A1.3)

Before we compare the Paasche and Laspeyres price indi-
ces, we need to undertake a preliminary computation using 
these definitions of rn and tn. Define the weighted covariance 
between the rn and tn as follows:

 Cov(r,t,s0) ≡ Σn=1
N (rn - r

*)(tn – t*)sn
0

 = Σn=1
N rntnsn

0 – Σn=1
N rnt

*sn
0 – Σn=1

N r*tnsn
0 + Σn=1

N r*t*sn
0

 = Σn=1
N rntnsn

0 – t*Σn=1
N rnsn

0 – r*Σn=1
N tnsn

0 + r*t*Σn=1
N sn

0

 = Σn=1
N rntnsn

0 – t*Σn=1
N rnsn

0 – r*Σn=1
N tnsn

0 + r*t* 

using Σn=1
N sn

0 = 1

 = Σn=1
N rntnsn

0 – t*r* – r*t* + r*t* using (A1.2) and (A1.3)
 = Σn=1

N rntnsn
0 – t*r*. (A1.4)

Rearranging (A1.4) leads to the following covariance 
identity:89

  Σn=1
N rntnsn

0 = Σn=1
N (rn – r*)(tn – t*)sn

0 + r*t*. (A1.5)

Using formula (6) for the Paasche price index PP, we have

 PP ≡ Σn=1
N pn

1qn
1/Σi=1

N pi
0qi

1

 = Σn=1
N rntnpn

0qn
0/Σi=1

N tipi
0qi

0 using definitions (A1.1)

 = Σn=1
N rntnsn

0/Σi=1
N tisi

0

 = Σn=1
N rntnsn

0/t* using definition (A1.3)

 = [{Σn=1
N (rn – r*)(tn – t*)sn

0} + r*t*]/t* using (A1.5)

 = [Σn=1
N (rn – r*)(tn – t*)sn

0/t*] + r*

 = [Σn=1
N (rn – r*)(tn – t*)sn

0/QL(q0,q1,p0)] 

 + PL(p0,p1,q0),  (A1.6)

where the last equality follows from definitions (A1.2) and 
(A1.3). Taking the difference between PP and PL and using 
(A1.6), we have

  PP – PL = Σn=1
N (rn – r*)(tn – t*)sn

0/QL(q0,q1,p0). (A1.7)

Thus, the difference between the Paasche and Laspeyres 
price indices is equal to the covariance between the price 
ratios, rn = pn

1/pn
0, and the corresponding quantity ratios, 

tn = qn
1/qn

0, divided by the (positive) Laspeyres quantity 
index, QL(q0,q1,p0). If this covariance is negative, which is 
the usual case in the consumer context, then PP will be less 
than PL.

89 The analysis in this annex was performed by Bortkiewicz (1923; 374–375).
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Annex 2 The Relationship between 
the Lowe and Laspeyres  
Indices
We shall use the same notation for the long-term monthly price 
relatives rn ≡ pn

t/pn
0 that was used in Annex 1. However, we shall 

change the definition of the tn in order to relate the base year 
annual quantities qn

b to the base month quantities qn
0:

 tn ≡ qn
b/qn

0; n = 1,. . .,N. (A2.1)

We also define a new Laspeyres quantity index QL(q0,qb,p0), 
which compares the base year quantity vector qb to the base 
month quantity vector q0, using the price weights of the base 
month p0, as follows:

 QL(q0,qb,p0) ≡ Σn=1
N pn

0qn
b/Σi=1

N pi
0qi

0

 = Σn=1
N pn

0qn
0(qn

b/qn
0)/Σi=1

N pi
0qi

0

 = Σn=1
N sn

0 (qn
b/qn

0) using definitions (7)

 = Σn=1
N sn

0tn using definitions (A2.1)
 ≡ t*. (A2.2)

Using definition (26) in the main text, the Lowe index com-
paring the prices in month t to those of month 0, using the 
quantity weights of the base year b, is equal to

 PLo(p0,pt,qb) ≡ Σn=1
N pn

tqn
b / Σn=1

N pn
0qn

b (A2.3)
 = Σn=1

N pn
t tnqn

0 / Σn=1
N pn

0 tnqn
0 using definitions (A2.1)

 = Σn=1
N rnpn

0 tnqn
0 / Σn=1

N pn
0 tnqn

0 using definitions (A1.1)

 = Σn=1
N rntn sn

0 / Σn=1
N tn sn

0 using definitions (7)

 = Σn=1
N rntn sn

0/t* using (A2.2)

 = [{Σn=1
N (rn – r*)(tn – t*)sn

0} + r*t*]/t* using the identity (A1.5)

 = [Σn=1
N (rn – r*)(tn – t*)sn

0/t*] + r*

 = [Σn=1
N (rn – r*)(tn – t*)sn

0/t*] + PL(p0,pt,q0) using definition (A1.2)
 = [Cov(r,t,s0)/QL(q0,qb,p0)] + PL(p0,pt,q0),

where the last equality follows from definitions (A1.4) 
and (A2.2). Subtracting the Laspeyres price index relat-
ing the prices of month t to those of month 0, PL(p0,pt,q0), 
from both sides of (A2.3) leads to the following relation-
ship of this monthly Laspeyres price index to its Lowe 
counterpart:

 PLo(p0,pt,qb) – PL(p0,pt,q0) (A2.4)
= Σn=1

N (rn – r*)(tn – t*)sn
0/QL(q0,qb,p0)

= Cov(r,t,s0)/QL(q0,qb,p0).

Annex 3 The Relationship between 
the Young Index and  
Its Time Antithesis
Recall that the direct Young index, PY(p0,pt,sb), was defined 
by (44) and its time antithesis, PY

*(p0,pt,sb), was defined by 
(48). Define the nth relative price between months 0 and t as

  rn ≡ pn
t/pn

0; n = 1,. . .,N, (A3.1)

and define the weighted average (using the base year weights 
si

b) of rn as

  r* ≡ Σn=1
N sn

brn, (A3.2)

which equals the direct Young index, PY(p0,pt,sb). Define the 
deviation en of rn from their weighted average r* using the 
following equations:

  rn = r*(1 + en); n = 1,. . .,N. (A3.3)

If equations (A3.3) are substituted into equation (A3.2), the 
following equation is obtained:

 r* = Σn=1
N sn

br*(1 + en)
 = r* + r*Σn=1

N sn
ben, (A3.4)

since Σn=1
N sn

b = 1. Thus,

  e* ≡ Σn=1
N sn

ben = 0. (A3.5)

Thus, the weighted mean e* of the deviations en equals 0.
As the direct Young index, PY(p0,pt,sb), and its time 

antithesis, PY
*(p0,pt,sb), can be written as functions of r*, the 

annual share weights sn
b and the deviations of the price rela-

tives en from their weighted mean are as follows:

 PY(p0,pt,sb) = r*; (A3.6)
PY

*(p0,pt,sb) = [Σn=1
N sn

b{r*(1 + en)}
–1]–1; 

= r*[Σn=1
N sn

b(1 + en)
–1]–1. (A3.7)

Now regard PY
*(p0,pt,sb) as a function of the vector of devia-

tions, e ≡ [e1,. . .,eN], say PY
*(e). The second-order Taylor series 

approximation to PY
*(e) around the point e = 0N is given by 

the following expression:90

PY
*(e) ≈ r* + r*Σn=1

N sn
ben 

 + r*Σn=1
N Σi=1

N sn
bsi

b enei – r*Σn=1
N sn

b[en]
2

 = r* + r*[0] + r*Σn=1
N [Σi=1

N sn
b en]si

bei 

– r*Σn=1
N sn

b[en – e*]2 using (A3.5)

 = r* + r*Σn=1
N [0]si

bei – r*Σn=1
N sn

b[en – e*]2 using (A3.5)

 = r* – r*var(e), (A3.8)

90 This type of second-order approximation was developed by Dalén 
(1992; 143) for the case r* =1 and by Diewert (1995; 29) for the case of a 
general r*.
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where the weighted sample variance of the vector e of price 
deviations is defined as

  var(e) ≡ Σn=1
N sn

b[en – e*]2. (A3.9)

Using PY(p0,pt,sb) = r*, rearranging (A3.8) gives us the fol-
lowing approximate relationship between the direct Young 
index PY(p0,pt,sb) and its time antithesis PY

*(p0,pt,sb), to the 
accuracy of a second-order Taylor series approximation 
about a price point where the month t price vector is pro-
portional to the month 0 price vector:

 PY(p0,pt,sb) ≈ PY
*(p0,pt,sb) + PY(p0,pt,sb)var(e). (A3.10)

Thus, to the accuracy of a second-order approximation, 
the direct Young index will exceed its time antithesis by a 
term equal to the direct Young index times the weighted 
variance of the deviations of the price relatives from their 
weighted mean. Thus, the bigger the dispersion in relative 
prices, the more the direct Young index will exceed its time 
antithesis.

Annex 4 The Relationship between 
the Lowe Index and  
the Young Index
This chapter has indicated that the Laspeyres, Paasche, 
and Fisher indices are preferred target indices because they 
weight prices by the most relevant quantity vectors for mak-
ing overall price comparisons between any two periods; 
that is, they use the quantity vectors that are equal or pro-
portional to actual consumption for the two periods in the 
comparison. However, often national statistical offices can-
not collect current period expenditure or quantity informa-
tion, and so their options are limited to a choice between 
the Lowe and the Young index.92 This choice is based on the 
fact that they have limited resources to conduct a household 
expenditure survey, and in some instances, there can be a 
five- to ten-year time lapse between the survey periods. The 
question to be addressed here is: “Which of these two 
indices is the preferred option under these circumstances?”

Recall that the Young index between periods 0 and t, 
PY(p0,pt,sb), was defined by (44), where p0 and pt are the price 
vectors for periods 0 and t and sb is the vector of expenditure 
share weights for a previous period (usually a year prior to 
month 0). For convenience, we repeat this definition here:

 PY(p0,pt,sb) ≡ Σn=1
N sn

b(pn
t/pn

0). (A4.1) 

The Young index between the base period b for the weights 
and the base period 0 for the monthly prices is defined as 
follows:

  PY(pb,p0,sb) ≡ Σn=1
N sn

b(pn
0/pn

b). (A4.2)

Using definition (26) in the main text, the Lowe index com-
paring the prices in month t to those of month 0, using the 
quantity weights qb of the base year b, is equal to

 PLo(p0,pt,qb) ≡ Σn=1
N pn

tqn
b /Σn=1

N pn
0qn

b

  = Σn=1
N (pn

t/pn
0)pn

0qn
b /Σn=1

N pn
0qn

b (A4.3)

 = Σn=1
N (pn

t/pn
0)pn

bqn
b(pn

0/pn
b)/Σn=1

N pn
bqn

b(pn
0/pn

b)

 = Σn=1
N sn

b(pn
t/pn

0)(pn
0/pn

b)/Σn=1
N sn

b(pn
0/pn

b)  
using sn

b º pn
bqn

b/pb·qb

 = Σn=1
N sn

b(pn
t/pn

0)(pn
0/pn

b)/PY(pb,p0,sb)  
using definition (A4.2)

 = Σn=1
N sn

brntn/PY(pb,p0,sb)  
defining rn ≡ pn

t/pn
0; tn ≡ pn

0/pn
b

 = [Σn=1
N sn

b(rn – r*)(tn – t*) + r*t*]/PY(pb,p0,sb)  
using the identity (A1.5)

 = [Cov(r,t,sb) + PY(p0,pt,sb)PY(pb,p0,sb)]/PY(pb,p0,sb)
 = [Cov(r,t,sb)/PY(pb,p0,sb)] + PY(p0,pt,sb),

since r* ≡ Σn=1
N sn

brn = Σn=1
N sn

b(pn
t/pn

0) = PY(p0,pt,sb) is the 
Young index going from period 0 to t and t* ≡ Σn=1

N sn
btn = 

Σn=1
N sn

b(pn
0/pn

b) = PY(pb,p0,sb) is the Young index going from 



32

CONSUMER PRICE INDEX MANUAL

period b to 0. The weighted covariance between the vectors 
of relative prices r and t is defined as

 Cov(r,t,sb) ≡ Σn=1
N sn

b(rn – r*)(tn – t*) (A4.4)
 = Σn=1

N sn
b[(pn

t/pn
0) – r*][(pn

0/pn
b) – t*]

 = Σn=1
N sn

b[(pn
t/pn

0) – PY(p0,pt,sb)][(pn
0/pn

b) – PY(pb,p0,sb)].

If there are diverging long-run trends in prices, we would 
expect Cov(r,t,sb) to be positive; that is, if product n has 
an increasing price (relative to other products) over the 
entire period running from period 0 to t, then (pn

t/pn
0) – r* 

and (pn
0/pn

b) – t* will both be positive; if product n has a 
decreasing price (relative to other products) over the entire 
period, then (pn

t/pn
0) – r* and (pn

0/pn
b) – t* will both be nega-

tive. Thus, the covariance will be positive in either case. 
Under these conditions, the Lowe index, PLo(p0,pt,qb), will 
exceed the corresponding Young index, PY(p0,pt,sb), using 
(A4.3). Since both the Lowe and Young index will both tend 
to be above our preferred target index (the Fisher index), 
the national statistical office would come closer to the tar-
get index by using the Young index over the corresponding 
Lowe index.

Annex 5 Three-Stage  
Aggregation
Suppose that we have price and quantity data for two 
periods that are classified by three distinct catego-
ries. For example, commodities may be classified by the 
type of product or service at the first level of aggrega-
tion, by the type of outlet or household at the second 
level of aggregation, and by their location or region at 
the third level of aggregation. We suppose that the first 
classification has N categories, the second has M catego-
ries, and the third has K categories. Denote the period 
t price, quantity, and value transacted for the category 
indexed by k, m, and n by pkmn

t, qkmn
t, and vkmn

t ≡ pkmn
tqkmn

t, 

respectively for t = 1, t, k = 1,.  .  .,K; m = 1,.  .  .,M and  
n = 1,. . .,N.91 Here we will show that the Laspeyres (1871) 
and Paasche (1874) indices are consistent in aggregation if 
they are constructed in a three-stage aggregation proce-
dure. As was seen in Section 9, this consistency in aggre-
gation property for the Laspeyres and Paasche indices is 
well known if there are two stages of aggregation, but it 
does not seem to be well known for three or more stages 
of aggregation. In this annex, we extend the results to 
show that the Lowe (1823) and Young (1812) indices are 
also consistent in aggregation over two or three stages of 
aggregation.

Conditional on k and m (choices of the last two catego-
ries), we can calculate the aggregate value of transactions 
over the third category for period t, vkm

t, as follows:

 vkm
t ≡ Σn=1

N vkmn
t > 0; t = 0,1; k = 1,. . .,K; m = 1,. . .,M. (A5.1)

The overall Laspeyres price index that compares the prices of 
period 0 to period 1 is defined as follows:

PL
1 ≡ Σk=1

K Σm=1
M Σn=1

N pkmn
1qkmn

0/Σk=1
K Σm=1

M Σn=1
N pkmn

0qkmn
0;

  = Σk=1
K Σm=1

M Σn=1
N pkmn

1qkmn
0/Σk=1

K Σm=1
M vkm

0, (A5.2)

where we have used definitions (A5.1) to derive the second 
line of (A5.2).

The same data will be used to aggregate in three stages: 
first aggregate over the n category; then in the second 
stage, aggregate over the m category; and in the third stage, 
aggregate over the k category. Thus, in the first stage of 
aggregation, a family of KM Laspeyres indices will be 
constructed where we condition on categories k and m and 
construct a conditional Laspeyres index for period t, PLkm

1, 
that aggregates over the last category. Thus, construct the 

91 It is not necessary to assume that all prices and quantities be positive. 
However, we do require that each vkm

t be positive for all k, m, and t; see 
definitions 1. At the first stage of aggregation, it is likely that many 
commodities will not be transacted in both periods under consider-
ation. In this case, prices and quantities for the missing products can 
be set equal to 0. However, if a commodity is transacted in one period 
but not the other, then there can be a problem. In general, bilateral 
price indices are not meaningful (or well defined) unless there are posi-
tive matching prices in the two periods being compared. Thus, suppose 
pkmn

1 > 0, qkmn
1 > 0 and qkmn

t = 0. In order to obtain a meaningful price 
index that compares prices in period t to prices in period 1, it will be 
necessary to either artificially set qkmn

1 equal to 0 or provide an artificial 
positive imputed price for pkmn

t.



33

BASIC INDEX NUMBER THEORY

following period t first stage of aggregation Laspeyres price 
indices:

 PLkm
t ≡ Σn=1

N pkmn
tqkmn

0/Σn=1
N pkmn

0qkmn
0; 

t = 0,1; k = 1,. . .,K; m = 1,. . .,M
 = Σn=1

N pkmn
tqkmn

0/vkm
0, (A5.3)

where the second line follows from definitions (A5.1). Using 
definitions (A5.3) when t = 0, we see that the following equa-
tions hold:

 PLkm
0 = 1; k = 1,. . .,K; m = 1,. . .,M. (A5.4) 

Define the period t quantity or volume index Qkm
t that pairs 

up with the period t price index PLkm
t defined by (A5.3) as the 

period t transaction value over n (conditional on choosing 
categories k and m), vkm

t, divided by PLkm
t:

 Qkm
t ≡ vkm

t/PLkm
t; t = 0,1; k = 1,. . .,K; m = 1,. . .,M

 = vkm
t/[Σn=1

N pkmn
tqkmn

0/vkm
0], (A5.5)

where the second line follows from (A5.3). Using definitions 
(A5.1) and (A5.5), we get

  Qkm
0 = vkm

0; k = 1,. . .,K; m = 1,. . .,M. (A5.6)

For our second stage of the three-stage aggregation proce-
dure, we will aggregate over the second category using the 
Laspeyres price and quantity indices, PLkm

t and Qkm
t, defined 

by (A5.3) and (A6.6), as our basic building blocks. Thus, define 
the conditional on k Laspeyres price index for period t, PLk

t, as 
follows:

PLk
t ≡ Σm=1

M PLkm
tQkm

0/Σm=1
M PLkm

0Qkm
0; 

t = 0,1; k = 1,. . .,K (A5.7) 

 = Σm=1
M [Σn=1

N pkmn
tqkmn

0/vkm
0]vkm

0/Σm=1
M vkm

0 

using (A5.3) and (A5.6)
 = [Σm=1

M Σn=1
N pkmn

tqkmn
0]/Σm=1

M vkm
0.92

Using (A5.1) and (A5.7) when t is set equal to 0, we find that 
the following equalities hold:

  PLk
0 = 1; k = 1,. . .,K. (A5.8)

The Laspeyres price index PLk
t defined by (A5.7) applies to 

the conditional on k expenditures Σm=1
M vkm

t = Σm=1
M [Σn=1

N 
vkmn

t]. Thus, we define the companion quantity or volume 
index that matches up with PLk

t defined by (7) as follows:

 Qk
t ≡ Σm=1

M vkm
t/PLk

t; t = 0,1; k = 1,. . .,K
  = Σm=1

M vkm
t/[Σm=1

M Σn=1
N pkmn

tqkmn
0/Σm=1

M vkm
0], (A5.9)

92 If K = 1, then it can be verified that (A5.7) establishes the consistency in 
aggregation of the Laspeyres price index over two stages of aggregation.

where the second line follows from definitions (A5.7). When 
t = 1, it can be seen that definitions (A5.1) and (A5.9) imply 
the following equations:

  Qk
0 = Σm=1

M vkm
0; k = 1,. . .,K. (A5.10)

Our third and final stage of aggregation is to use the prices 
and quantities defined by (A5.7)–(A5.10) for t = 0,1 to form 
a Laspeyres index that aggregates over the k classification. 
The final three stages of aggregation Laspeyres price index 
PL

1* are defined as follows:

 PL
1* ≡ Σk=1

K PLk
1Qk

0/Σk=1
K PLk

0Qk
0; (A5.11)

 = Σk=1
K [Σm=1

M Σn=1
N pkmn

1qkmn
0/Σi=1

M vki
0][Σj=1

M vkj
0]/

Σk=1
K[Σm=1

M vkm
0] using (A5.7) and (A5.10)

 = Σk=1
K Σm=1

M Σn=1
N pkmn

1qkmn
0/Σk=1

K Σm=1
M vkm

0

 = PL
1 using definition (A5.2). 

Thus, the Laspeyres price index constructed in three 
stages is equal to the corresponding single-stage Laspey-
res price index. The same method of proof can be used 
to show that the Laspeyres index constructed in four or 
more stages of aggregation is equal to the single-stage 
Laspeyres index.

The above proof can be modified to show that the sin-
gle-stage Paasche index is equal to its counterpart Paasche 
index constructed in two or three stages.

We now consider the consistency in aggregation proper-
ties of the Lowe (1823) index. The situation is a bit more com-
plex than the framework that was described above in that 
three periods are involved in a comparison of prices between 
the two periods. Thus, let qkmn

b be the quantity transacted 
in the quantity base period b for the commodity category 
indexed by k, m, and n. The Lowe index that compares the 
prices of period 1, pkmn

1, with the prices of period 0, pkmn
0, is 

PLo
1, defined as follows:

 PLo
1 ≡ Σk=1

K Σm=1
M Σn=1

N pkmn
1qkmn

b/Σk=1
K Σm=1

M Σn=1
N pkmn

0qkmn
b;

 = Σk=1
K Σm=1

M Σn=1
N pkmn

1qkmn
b/Σk=1

K Σm=1
M Σn=1

N vkmn
0b, (A5.12)

where the hybrid expenditure weights using the prices of 
period 0 and the quantities of period b for commodity cat-
egory indexed by k, m, and n are defined as follows:

 vkmn
0b ≡ pkmn

0qkmn
b; k = 1,. . .,K; 

m = 1,. . .,M; n = 1,. . .,N. (A5.13)

For each k and m, define the period 0 hybrid conditional on 
k and m total expenditure on commodities indexed by n as 
follows:93

 vkm
0b ≡ Σn=1

N vkmn
0b; k = 1,. . .,K; m = 1,. . .,M. (A5.14) 

93 We assume that vkm
0b > 0 for k = 1,. . .,K and m = 1,. . .,M.
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Substituting (A5.14) into definition (A5.12), we see that the 
Lowe index for period 1 relative to period 0 can be written 
as follows:

 PLo
1 = Σk=1

K Σm=1
M Σn=1

N pkmn
1qkmn

b/Σk=1
K Σm=1

M vkm
0b. (A5.15)

These data will be used to aggregate in three stages: first 
aggregate over the n category: then in the second stage, 
aggregate over the m category; and in the third stage, aggre-
gate over the k category. Thus, in the first stage of aggre-
gation, a family of KM Lowe indices will be constructed, 
where we condition on categories k and m and construct a 
conditional Lowe index for period t, PLokm

t, that aggregates 
over the n category. We now compare the prices of period 1 
to the prices of period 0 using the Lowe formula. Thus, con-
struct the following period 1 first stage of aggregation Lowe 
price indices:

 PLokm
1b ≡ Σn=1

N pkmn
1qkmn

b/Σn=1
N pkmn

0qkmn
b; 

k = 1,. . .,K; m = 1,. . .,M
 = Σn=1

N pkmn
1qkmn

b/vkm
0b, (A5.16)

where the second line follows from definitions (A5.13) and 
(A5.14). These conditional Lowe indices can act as period 1 
Lowe conditional price levels. The corresponding period 0 
Lowe conditional price levels are defined as follows:

PLokm
0b = Σn=1

N pkmn
0qkmn

b/Σn=1
N pkmn

0qkmn
b = 1; 

k = 1,. . .,K; m = 1,. . .,M. (A5.17) 

It is not obvious how to define the subaggregate quantity 
Qkm

0b that should match up with the Lowe subaggregate 
price index for period 0, PLokm

0b. In order to achieve con-
sistency in aggregation for the Lowe index, we will set the 
subaggregate hybrid value for period 0, vkm

0b equal to sub-
aggregate price PLokm

0b times subaggregate quantity Qkm
0b. 

Thus, we have the following definitions:

 Qkm
0b ≡ vkm

0b/PLokm
0b; k = 1,. . .,K; m = 1,. . .,M

 = vkm
0b, (A5.18)

where the second line follows from (A5.17).
For our second stage of the three-stage aggregation pro-

cedure, we aggregate over the second category using the 
Lowe price and quantity subindices, PLokm

0b, PLokm
1b, and 

Qkm
1b, defined by (A5.16)–(A5.18) as our basic building 

blocks. Thus, we define the conditional on k Lowe price index 
for period 1 relative to period 0, PLok

1b, as follows:

 PLok
1b ≡ Σm=1

M PLokm
1bQkm

0b/Σm=1
M PLokm

0bQkm
0b; k = 1,. . .,K

 = Σm=1
M [Σn=1

N pkmn
1qkmn

b/vkm
0b]vkm

0b/Σm=1
M vkm

0b 

using (A5.16) and (A5.18)
 = Σm=1

M Σn=1
N pkmn

1qkmn
b/Σm=1

M vkm
0b.94 (A5.19)

94 If K = 1, then it can be verified that (A5.19) establishes the consistency 
in aggregation of the Lowe price index over two stages of aggregation.

We treat PLok
1b as period 1 conditional on k Lowe price lev-

els. The corresponding period 0 Lowe conditional on k price 
levels are defined as follows:

PLok
0b ≡ Σm=1

M PLokm
0bQkm

0b/Σm=1
M PLokm

0bQkm
0b 

= 1; k = 1,. . .,K. (A5.20)

Total hybrid expenditures on category k goods and services 
for period 0, vk

0b,95 are defined as follows:

 vk
0b ≡ Σm=1

M Σn=1
N vkmn

0b
 = Σm=1

M vkm
0b using definitions (A5.14). (A5.21)

Define the period 0 Lowe quantity subaggregate for category 
k, Qk

0b, as period 0 hybrid expenditures on the category, 
vk

0b, deflated by the subaggregate Lowe price index for cat-
egory k in period 0, PLok

0b:

 Qk
0b ≡ vk

0b/PLokm
0b; k = 1,. . .,K;

 = vk
0b using (A5.20)

 = Σm=1
M vkm

0b using (A5.21). (A5.22)

Our third and final stage of aggregation is to use the prices 
and quantities defined by (A5.19), (A5.20), and (A5.22) to 
form a Lowe index that aggregates over the k classification. 
This is referred to as the three stages of aggregation Lowe 
price index PLo

1* defined as follows:

 PLo
1* ≡ Σk=1

K PLok
1bQk

0b/Σk=1
K PLok

0bQk
0b;

 = Σk=1
K [Σm=1

M Σn=1
N pkmn

1qkmn
b/Σj=1

M vkj
0b][Σm=1

M vkm
0b]/

[Σk=1
K Σm=1

M vkm
0b] using (A5.19) and (A5.22)

 = Σk=1
K Σm=1

M Σn=1
N pkmn

1qkmn
b/

[Σk=1
K Σm=1

M vkm
0b] cancelling terms

 = Σk=1
K Σm=1

M Σn=1
N pkmn

1qkmn
b/

[Σk=1
K Σm=1

M Σn=1
N vkmn

0b] using (A5.14)
 = PLo

1 using (A5.12). (A5.23)

Thus, the Lowe price index constructed in three stages is 
equal to the corresponding single-stage Lowe price index. 
The same method of proof can be used to show that the 
Lowe index constructed in four or more stages of aggrega-
tion is equal to the single-stage Lowe index.

We turn to the Young index and its consistency in aggre-
gation properties. Let pkmn

b, qkmn
b, and vkmn

b ≡ pknm
bqkmn

b be the 
price, quantity, and transaction value for commodity class 
indexed by k, m, and n for the base period b for k = 1,. . .,K, 
m = 1,. . .,M, and n = 1,. . .,N. As usual, pkmn

t is the price of 
the commodity that is indexed by categories k, m, and n in 
period t for t = 0,1. The base period expenditure share for 
commodity k, m, and n, skmn

b, is defined as follows:

skmn
b ≡ vkmn

b/Σr=1
K Σs=1

M Σt=1
N vrst

b; k = 1,. . .,K; 

95 This is the cost of purchasing the base period basket of commodities that 
are in category k using the prices of period 0 and the quantities of the base 
period b.
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m = 1,. . .,M; n = 1,. . .,N. (A5.24)

The period 1 Young index PY
1 that compares the prices of 

period 1 with the prices of period 0 is the following share-
weighted average of the price ratios pkmn

1/pkmn
1:96

  PY
1 ≡ Σk=1

K Σm=1
M Σn=1

N skmn
b[pkmn

1/pkmn
0]. (A5.25)

We will compare this single-stage Young index with a cor-
responding Young index that aggregates the price ratios in 
three stages. For the first stage of aggregation, we need to 
define the following conditional shares that condition on k 
and m and aggregate over n, skm

b:

 skm
b ≡ Σn=1

N skmn
b; k = 1,. . .,K; m = 1,. . .,M. (A5.26) 

The first-stage conditional Young indices, PYmn
1, that com-

pare the prices of the commodities in the class of commodi-
ties indexed by k and m for period 1 relative to period 0 are 
defined as follows:

 PYkm
1 ≡ Σn=1

N skmn
b[pkmn

1/pkmn
0]/skm

b; 

k = 1,. . .,K; m = 1,. . .,M. (A5.27)

These conditional Young indices can act as period 1 Young 
conditional price levels. The corresponding period 0 Young 
conditional price levels are defined as follows:

 PYkm
1 ≡ Σn=1

N skmn
b[pkmn

0/pkmn
0]/skm

b = 1; 

k = 1,. . .,K; m = 1,. . .,M. (A5.28)

The second stage of aggregation uses the prices defined by 
(A5.27) and (A5.28) and the shares defined by (A5.26). Thus, 
define the second-stage conditional Young indices, PYk

t, that 
condition on expenditures in the k category and compare 
the aggregate prices defined by (A5.27) for period 1 to their 
counterparts in period 0:97

PYk
1 ≡ Σm=1

M skm
b[PYkm

1/PYkm
0]/Σm=1

M skm
b; k = 1,. . .,K

 = Σm=1
M skm

b{Σn=1
N skmn

b[pkmn
1/pkmn

0]/skm
b}/Σm=1

M skm
b  

using (A5.27) and (A5.28)

 = Σm=1
M Σn=1

N skmn
b(pkmn

1/pkmn
0)/Σm=1

M skm
b canceling terms

 = Σm=1
M Σn=1

N skmn
b(pkmn

1/pkmn
0)/Σm=1

M Σn=1
N skmn

b  
 using (A5.26). (A5.29)

This conditional on k Young indices can act as period 1 Young 
conditional on k price levels. The corresponding period 0 
Young conditional on k price levels are defined as follows:

96 In order for this index to be well defined, we require all period 1 prices 
to be positive. If a product is present in just one of the two periods under 
consideration, then it is necessary to exclude that product from the index 
or, alternatively, to generate an imputed price for the product for the 
period where it is missing.
97 If k = 1, (A5.29) shows that the two-stage Young index is equal to its 
single-stage counterpart.

 PYk
0 ≡ Σm=1

M skm
b[PYkm

0/PYkm
0]/Σm=1

M skm
b = 1; 

k = 1,. . .,K. (A5.30)

Finally, in order to implement the third stage of aggrega-
tion, we define aggregate shares that condition on expendi-
ture category k, sk

b:

sk
b ≡ Σm=1

M skm
b; k = 1,. . .,K = Σm=1

M Σn=1
N skmn

b (A5.31) 

where the second line follows from definitions (A5.26). Note 
that these shares sum to one:

  Σk=1
K sk

b = Σk=1
K Σm=1

M Σn=1
N skmn

b = 1. (A5.32)

The final stage of aggregation is to aggregate over the k classi-
fication. The three-stage Young index that compares the prices 
of period 1 to period 0 is PY

1*, which is defined as follows:

 PY
1* ≡ Σk=1

K sk
b[PYk

1/PYk
0]

 = Σk=1
K sk

bPYk
1 using (A5.30)

 = Σk=1
K sk

b [Σm=1
M Σn=1

N skmn
b(pkmn

1/pkmn
0)/Σm=1

M skm
b] using (A5.29)

 = Σk=1
K sk

b [Σm=1
M Σn=1

N skmn
b(pkmn

1/pkmn
0)/sk

b] using (A5.31)

 = Σk=1
K Σm=1

M Σn=1
N skmn

b(pkmn
1/pkmn

0) canceling terms

  = PY
1 using (A5.25). (A5.33)

Thus, the Young price index constructed in three stages is 
equal to the corresponding single-stage Young price index. 
The same method of proof can be used to show that the 
Young index constructed in four or more stages of aggrega-
tion is equal to the single-stage Young index.
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THE AXIOMATIC OR TEST APPROACH  
TO INDEX NUMBER THEORY* 3
1. Introduction
As was seen in Chapter 2, it was useful to be able to evalu-
ate various index number formulae that have been proposed 
in terms of their properties. If a formula turns out to have 
rather undesirable properties, then doubt is cast on its suit-
ability as an index that could be used by a statistical agency 
as a target index. Looking at the mathematical properties 
of index number formulae leads to the test or axiomatic 
approach to index number theory. In this approach, desir-
able properties for an index number formula are proposed, 
and then it is attempted to determine whether any formula is 
consistent with these properties or tests. An ideal outcome is 
the situation where the proposed tests are both desirable and 
completely determine the functional form for the formula.

The axiomatic approach to index number theory is not 
completely straightforward since choices have to be made in 
two dimensions:

• The index number framework must be determined.
• Once the framework has been decided upon, it must be 

decided what tests or properties should be imposed on the 
index number.

The second point is straightforward: different price statisti-
cians may have different ideas about what tests are impor-
tant, and alternative sets of axioms can lead to alternative 
“best” index number functional forms. This point must be 
kept in mind while reading this chapter, since there is no 
universal agreement on the “best” set of “reasonable” axi-
oms. Hence, the axiomatic approach can lead to more than 
one “best” index number formula.

The first point about choices listed here requires further dis-
cussion. In the previous chapter, for the most part, the focus 
was on bilateral index number theory; that is, it was assumed 
that prices and quantities for the same N commodities were 
given for two periods and the object of the index number for-
mula was to compare the overall level of prices in one period 
with that in the other period. In this framework, both sets of 
price and quantity vectors were regarded as variables that 
could be independently varied so that, for example, variations 
in the prices of one period did not affect the prices of the other 
period or the quantities in either period. The emphasis was on 
comparing the overall cost of a fixed basket of quantities in the 
two periods or taking averages of such fixed basket indices. 
This is an example of an index number framework.

However, other index number frameworks are possible. 
For example, instead of decomposing a value ratio into a 
term that represents price change between the two peri-
ods times another term that represents quantity change, 
one could attempt to decompose a value aggregate for one 
period into a single number that represents the price level in 
the period times another number that represents the quan-
tity level in the period. In this approach, the price level is 
supposed to be a function of the N commodity prices per-
taining to that aggregate in the period under consideration, 
and the quantity level is supposed to be a function of the 
N commodity quantities pertaining to the aggregate in the 
period. The resulting price level function was called an abso-
lute index number by Frisch (1930; 397), a price level by Eich-
horn (1978; 141), and a unilateral price index by Anderson, 
Jones, and Nesmith (1997; 75). This approach to index num-
ber theory (in the context of the axiomatic approach) will be 
considered in Section 2.1

The remaining approaches in this chapter are largely 
bilateral approaches; that is, the prices and quantities in an 
aggregate are compared for two periods. In Sections 3 and 
4, the value ratio decomposition approach is taken. In Sec-
tions 3–6, the bilateral price and quantity indices, P(p0,p1, 
q0,q1) and Q(p0,p1,q0,q1), are regarded as functions of the 
price vectors pertaining to the two periods, p0 and p1, and 
the two quantity vectors, q0 and q1. The axioms or tests that 
are placed on the price index function P(p0,p1,q0,q1) not only 
reflect “reasonable” price index properties but some tests 
have their origin as “reasonable” tests on the companion 
quantity index Q(p0,p1,q0,q1). The approach taken in Sec-
tions 3 and 4 simultaneously determines the “best” price 
and quantity indices. Section 5 looks at the test performance 
of various bilateral index number formulae.

The implications of the circularity test are examined in 
Section 6. It turns out that only a few index number for-
mulae satisfy this test. Recall that in Chapter 2, the Lowe 
index was introduced. This index does not fit precisely into 
the bilateral framework since the quantity weights used in 
this index do not necessarily correspond to the quantities 
that pertain to either of the periods, which are characterized 
by the price vectors p0 and p1. In Section 6, the axiomatic 
properties of the class of indices of the form P(p0,p1,q) will 
be discussed.

1 In Chapters 7 and 8, the levels approach will be considered again but 
from the viewpoint of the economic approach to index number theory 
rather than the test approach. Using the economic approach, quantities 
cannot be varied independently of prices.

* The author thanks Valery Dongmo-Jiongo, Denam Drew, David 
Fenwick, Jan de Haan, Ronald Johnson, Claude Lamboray, Jens 
Mehrhoff, Chihiro Shimizu, and Clément Yélou for their helpful 
comments.
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  Vt ≡ Σi=1
N vi

t = Σi=1
N pi

tqi
t; t = 0,1,. . .,T. (1)

Using this notation, the following levels version of the index 
number problem is defined as follows: For t = 0,1,. . .,T, find 
scalar numbers Pt and Qt such that

 Vt = PtQt; t = 0,1,. . .,T. (2)

The number Pt is interpreted as an aggregate period t 
price level, while the number Qt is interpreted as an aggre-
gate period t quantity level. The aggregate price level Pt is 
allowed to be a function of the period t price vector, pt, while 
the aggregate period t quantity level Qt is allowed to be a 
function of the period t quantity vector qt; hence,

  Pt = c(pt); Qt = f(qt); t = 0,1,. . .,T. (3)

The functions c and f are to be determined somehow. Note 
that (3) requires that the functional forms for the price aggre-
gation function c and for the quantity aggregation function 
f be independent of time. This is a reasonable requirement, 
since there is no reason to change the method of aggregation 
as time changes.

Substituting (3) and (2) into (1) and dropping the superscripts 
t means that c and f must satisfy the following functional equa-
tion for all strictly positive price and quantity vectors:

  c(p)f(q) = Σi=1
N piqi for all pi > 0 and all qi > 0. (4)

It is natural to assume that the functions c(p) and f(q) be 
positive if all prices and quantities are positive:

c(p1,. . .,pN) > 0; f(q1,. . .,qN) > 0 
 if all pi > 0 and all qi > 0. (5)

Let 1N denote an n dimensional vector of ones. Then (5) 
implies that when p = 1N, c(1N) is a positive number, a > 0, 
and when q = 1N, then f(1N) is also a positive number, b > 0; 
that is, (5) implies that c and f satisfy

  c(1N) = a > 0; f(1N) = b > 0. (6)

Let p = 1N, and substitute the first equation in (6) into (4) in 
order to obtain the following equation:

  f(q) = Σi=1
N qi/a for all qi > 0. (7)

Now let q = 1N, and substitute the second equation in (6) into 
(4) in order to obtain the following equation:

  c(p) = Σi=1
N pi/b for all pi > 0. (8)

Finally, substitute (7) and (8) into the left-hand side of (4), 
and the following equation is obtained:

 [Σi=1
N qi/a][Σi=1

N pi/b] = Σi=1
N piqi 

 for all pi > 0 and all qi > 0. (9)

If N is greater than one, it is obvious that equation (9) can-
not be satisfied for all strictly positive p and q vectors. Thus, 

One of Walsh’s (1921a) approaches to index number the-
ory2 was an attempt to determine the “best” weighted aver-
age of the price relatives, rn, where rn ≡ pn

1/pn
0 for n = 1,. . .,N. 

This is equivalent to using an axiomatic approach to try and 
determine the “best” index of the form P*(r,v0,v1), where r ≡ 
[r1,.  .  .,rN] and vt is a vector of expenditures on the N com-
modities during period t for t = 0,1. This approach will be 
considered in Sections 7 and 8.3

In Section 9, the index number framework explained 
in Sections 7 and 8 is used to develop a methodological 
approach to the problem of decomposing overall price 
change into additive components that are functions of the 
percentage changes in individual commodity prices.

An annex provides proofs of some complex results.

2. The Test Approach to Index 
Number Theory Using Price Levels
Denote the price and quantity of commodity i in period t by 
pi

t and qi
t, respectively for i = 1,2,. . .,N and t = 0,1,. . .,T. The 

variable qi
t is interpreted as the total amount of commodity 

i transacted within period t. In order to conserve the value 
of transactions, it is necessary that pi

t be defined as a unit 
value; that is, pi

t must be equal to the value of transactions in 
commodity i for period t divided by the total quantity trans-
acted, qi

t. In principle, the period of time should be chosen 
so that variations in commodity prices within a period are 
very small compared to their variations between periods.4 
For t = 0,1,. . .,T and i = 1,. . .,N, define the value of transac-
tions in commodity i as vi

t ≡ pi
tqi

t and define the total value of 
transactions in period t as

2 Walsh (1901) also considered basket-type approaches to index number 
theory, as was seen in Chapter 2.
3 In Section 7, rather than starting with indices of the form P(r,v0,v1), indi-
ces of the form P(p0,p1,v0,v1) are considered. However, if the invariance 
to changes in the units of measurement test is imposed on this index, it 
is equivalent to studying indices of the form P(r,v0,v1). vartia (1976) also 
used a variation of this approach to index number theory.
4 This treatment of prices as unit values over time follows Walsh (1901; 96) 
(1921a; 88) and Fisher (1922; 318). Fisher and Hicks both had the idea that 
the length of the period should be short enough so that variations in price 
for a single commodity within the period could be ignored as the following 
quotations indicate: “Throughout this book ‘the price’ of any commodity 
or ‘the quantity’ of it for any one year was assumed given. But what is such 
a price or quantity? Sometimes it is a single quotation for January 1 or July 
1, but usually it is an average of several quotations scattered throughout 
the year. The question arises: On what principle should this average be 
constructed? The practical answer is any kind of average since, ordinar-
ily, the variation during a year, so far, at least, as prices are concerned, is 
too little to make any perceptible difference in the result, whatever kind 
of average is used. Otherwise, there would be ground for subdividing the 
year into quarters or months until we reach a small enough period to be 
considered practically a point. The quantities sold will, of course, vary 
widely. What is needed is their sum for the year (which, of course, is the 
same thing as the simple arithmetic average of the per annum rates for the 
separate months or other subdivisions). In short, the simple arithmetic 
average, both of prices and of quantities, may be used. Or, if it is worth-
while to put any finer point on it, we may take the weighted arithmetic 
average for the prices, the weights being the quantities sold” (Irving Fisher 
(1922; 318)). “I shall define a week as that period of time during which vari-
ations in prices can be neglected. For theoretical purposes this means that 
prices will be supposed to change, not continuously, but at short intervals. 
The calendar length of the week is of course quite arbitrary; by taking it 
to be very short, our theoretical scheme can be fitted as closely as we like 
to that ceaseless oscillation which is a characteristic of prices in certain 
markets” (John Hicks (1946; 122)).
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the price index P(p0,p1,q0,q1), there is a companion quan-
tity index Q(p0,p1,q0,q1) such that the product of these two  
indices equals the value ratio between the two periods.12 
Thus, throughout this chapter, it is assumed that P and Q 
satisfy the following product test:

  V1/V0 = P(p0,p1,q0,q1)Q(p0,p1,q0,q1). (11)

The period t values, Vt, for t = 0,1 are defined by (1). Equa-
tion (11) means that as soon as the functional form for the 
price index P is determined, (11) can be used to determine 
the functional form for the quantity index Q. However, a 
further advantage of assuming that the product test holds 
is that if a reasonable test is imposed on the quantity index 
Q, then (11) can be used to translate this test on the quantity 
index into a corresponding test on the price index P.13

If N = 1, so that there is only one price and quantity to 
be aggregated, then a natural candidate for P is p1

1/p1
0, the 

single price ratio, and a natural candidate for Q is q1
1/q1

0, the 
single quantity ratio. If the number of commodities or items 
to be aggregated is greater than 1, then what index number 
theorists have done over the years is propose properties or 
tests that the price index P should satisfy. These properties 
are generally multidimensional analogues to the one good 
price index formula, p1

1/p1
0. Here, some 20 tests are listed 

that turn out to characterize the Fisher ideal price index. 
If it is desired to set q0 = q1, the common quantity vector is 
denoted by q; if it is desired to set p0 = p1, the common price 
vector is denoted by p.

The first two tests are not very controversial, and so they 
will not be discussed in detail.

T1: Positivity14: P(p0,p1,q0,q1) > 0.
T2: Continuity15: P(p0,p1,q0,q1) is a continuous function of 

its arguments.

The next two tests are somewhat more controversial.

T3: Identity or Constant Prices Test16: P(p,p,q0,q1) = 1.

That is, if the price of every good is identical during the two 
periods, then the price index should equal unity, no matter 
what the quantity vectors are. The controversial part of this 
test is that the two quantity vectors are allowed to be differ-
ent in the above test.

T4: Fixed Basket or Constant Quantities Test17: P(p0,p1,q,q) = 
p1·q/ p0·q.

12 See Section 2 of Chapter 2 for more on this approach, which was ini-
tially due to Fisher (1911; 403) (1922).
13 This observation was first made by Fisher (1911; 400–406). Vogt (1980) 
and Diewert (1992) also pursued this idea.
14 Eichhorn and Voeller (1976, 23) suggested this test.
15 Fisher (1922; 207–215) informally suggested the essence of this test.
16 Laspeyres (1871; 308), Walsh (1901; 308), and Eichhorn and Voeller 
(1976; 24) have all suggested this test. Laspeyres came up with this test 
or property to discredit the ratio of unit values index of Drobisch (1871), 
which does not satisfy this test. This test is also a special case of Fisher’s 
(1911; 409–410) price proportionality test. This test could be called the 
strong identity test. The corresponding weak identity test is P(p,p,q,q) = 1;  
that is, if both prices and quantities are equal for the two periods under 
consideration, then the price index should equal unity. This version of the 
identity test is not controversial.
17 The origins of this test go back at least 200 years to the Massachu-
setts legislature, which used a constant basket of goods to index the 
pay of Massachusetts soldiers fighting in the American Revolution;  

if the number of commodities N exceeds one, then there do 
not exist any functions c and f that satisfy (4) and (5).5

Thus, this levels test approach to index number theory 
comes to an abrupt halt; it is fruitless to look for price and 
quantity level functions, Pt = c(pt) and Qt = f(qt), that sat-
isfy (2) or (4) and also satisfy the very reasonable positiv-
ity requirements (5).6 Thus, in the following sections of this 
chapter, the levels approach to price measurement will be 
replaced by the bilateral comparisons approach that was 
used in Chapter 2.

3. Tests for Bilateral Price Indices
In this section and the following section, the strategy will 
be to assume that the bilateral price index formula, P(p0,p1

,q0,q1), satisfies a sufficient number of “reasonable” tests or 
properties so that the functional form for P is determined.7 
The word “bilateral”8 refers to the assumption that the 
function P depends only on the data pertaining to the two 
situations or periods being compared; that is, P is regarded 
as a function of the two sets of price and quantity vectors, 
p0,p1,q0,q1, that are to be aggregated into a single number 
that summarizes the overall change in the N price ratios, 
p1

1/p1
0,. . ., pN

1/pN
0.

The bilateral price index function, P(p0,p1,q0,q1), is 
assumed to be well defined if all prices and quantities are 
positive for the two periods under consideration. If a com-
modity is missing in both periods, then it can simply be 
ignored. However, if it is missing in one period but not in 
the other period, this can create problems; that is, P(p0,p1, 
q0,q1) may not be well defined if one or more prices or quan-
tities are equal to 0.9 In this case, where some prices and 
quantities may be equal to 0, we assume that the following 
conditions hold:10

 p0 > 0N; p1 > 0N; q0 > 0N; q1 > 0N; p0·q0 > 0; 
 p1·q1 > 0; p0·q1 > 0; p1·q0 > 0. (10)

In the remainder of this chapter, we assume that p0,p1,q0,q1 
satisfy either the strict positivity conditions, p0 >> 0N; p1 >> 
0N; q0 >> 0N; q1 >> 0N, or the weaker conditions (10).11

In this section, the value ratio decomposition approach 
to index number theory will be taken; that is, along with 

5 Eichhorn (1978; 144) established this result.
6 It is important to keep in mind that this result follows under the assump-
tion that prices and quantities can vary independently from each other. When 
taking the economic approach to index number theory in Chapters 5 and 8, 
prices can vary independently, but quantities will depend on prices, so quan-
tities cannot vary independently from prices. Thus, when taking the economic 
approach, it is quite possible to find functions c(p) and f(q) such that c(p)f(q) 
= Σn=1

N pnqn.7 Much of the material in this section is drawn from Sections 2 and 3 of 
Diewert (1992). For subsequent surveys of the axiomatic approach, see 
Balk (1995) (2008).
8 Multilateral index number theory refers to the case where there are more 
than two situations whose prices and quantities need to be aggregated.
9 The problems caused by missing prices and quantities will be addressed 
in Chapters 7 and 8.
10 Notation: p >> 0N means each component of p is positive, p ≥ 0N means 
each component of p is nonnegative, p > 0N means p ≥ 0N and p ∑ 0N and 
p·q ≡ Σn=1

N pnqn, where p ≡ [p1,. . .,pN] and q ≡ [q1,. . .,qN].
11 Test T14 requires the additional assumption of strict positivity of the 
base period prices; that is, T14 requires that p0 >> 0N.
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T7: Invariance to Proportional Changes in Current 
Quantities:

P(p0,p1,q0,λq1) = P(p0,p1,q0,q1) for all λ > 0.

That is, if current period quantities are all multiplied by 
the number λ, then the price index remains unchanged. Put 
another way, the price index function P(p0,p1,q0,q1) is (posi-
tively) homogeneous of degree 0 in the components of the 
period 1 quantity vector q1. Vogt (1980, 70) was the first to 
propose this test,22 and his derivation of the test is of some 
interest. Suppose the quantity index Q satisfies the quantity 
analogue to the price test T5; that is, suppose Q satisfies  
Q(p0,p1,q0,λq1) = λQ(p0,p1,q0,q1) for λ > 0. Then, using the 
product test (11), it can be seen that P must satisfy T7.

T8: Invariance to Proportional Changes in Base 
Quantities23:

 P(p0,p1,λq0,q1) = P(p0,p1,q0,q1) for all λ > 0.

That is, if base period quantities are all multiplied by the 
number λ, then the price index remains unchanged. Put 
another way, the price index function P(p0,p1,q0,q1) is (posi-
tively) homogeneous of degree 0 in the components of the 
period 0 quantity vector q0. If the quantity index Q satis-
fies the following counterpart to T8: Q(p0,p1,λq0,q1) = 
λ–1Q(p0,p1,q0,q1) for all λ > 0, then using (11) the correspond-
ing price index P must satisfy T8. This argument provides 
some additional justification for assuming the validity of T8 
for the price index function P.

T7 and T8 together impose the property that the price 
index P does not depend on the absolute magnitudes of the 
quantity vectors q0 and q1.

The next five tests are invariance or symmetry tests. Fisher 
(1922; 62–63, 458–460) and Walsh (1901; 105) (1921b; 542) 
seem to have been the first researchers to appreciate the sig-
nificance of these kinds of tests. Fisher (1922, 62–63) spoke 
of fairness, but it is clear that he had symmetry properties in 
mind. It is perhaps unfortunate that he did not realize that 
there were more symmetry and invariance properties than 
the ones he proposed; if he had realized this, it is likely that 
he would have been able to provide an axiomatic character-
ization for his ideal price index, as will be done in Section 4. 
The first invariance test is that the price index should remain 
unchanged if the ordering of the commodities is changed:

T9: Commodity Reversal Test (or invariance to changes in 
the ordering of commodities):

 P(p0*,p1*,q0*,q1*) = P(p0,p1,q0,q1),

where pt* denotes a permutation of the components of the 
vector pt, and qt* denotes the same permutation of the com-
ponents of qt for t = 0,1. This test was developed by Irving 
Fisher (1922; 63),24 and it is one of his three famous reversal 
tests. The other two are the time reversal test and the factor 
reversal test, which will be considered subsequently.

22 Fisher (1911; 405) proposed the related test PL(p0,p1,q0,λq0) = PL(p0,p1, 
q0,q0) ≡ p1·q0/p0·q0.
23 This test was proposed by Diewert (1992; 216).
24 “This [test] is so simple as never to have been formulated. It is merely 
taken for granted and observed instinctively. Any rule for averaging the 
commodities must be so general as to apply interchangeably to all of the 
terms averaged” (Irving Fisher (1922; 63)).

That is, if quantities are constant during the two periods so 
that q0 = q1 ≡ q, then the price index should equal the expen-
diture on the constant basket in period 1, ∑i=1

N pi
1qi ≡ p1·q, 

divided by the expenditure on the basket in period 0, ∑i=1
N 

pi
0qi ≡ p0·q.
If the price index P satisfies test T4 and P and Q jointly 

satisfy the product test, (11), then it is easy to show18 that Q 
must satisfy the identity test Q(p0,p1,q,q) = 1 for all strictly 
positive vectors p0,p1,q. This constant quantities test for Q is 
also somewhat controversial since p0 and p1 are allowed to 
be different.19

The following four tests restrict the behavior of the price 
index P as the scale of any one of the four vectors p0,p1,q0,q1 
changes.

T5: Proportionality in Current Prices20: P(p0,λp1,q0,q1) = 
λP(p0,p1,q0,q1) for λ > 0.

That is, if all period 1 prices are multiplied by the positive 
number l, then the new price index is λ times the old price 
index. Put another way, the price index function P(p0,p1,q0, 
q1) is (positively) homogeneous of degree 1 in the compo-
nents of the period 1 price vector p1. Most index number the-
orists regard this property as a very fundamental one that 
the index number formula should satisfy.

Walsh (1901) and Fisher (1911; 418) (1922; 420) proposed 
the related proportionality test P(p,λp,q0,q1) = λ. This last 
test is a combination of T3 and T5; in fact, Walsh (1901, 385) 
noted that this last test implies the identity test T3.

In the next test, instead of multiplying all period 1 prices 
by the same number, all period 0 prices are multiplied by the 
number λ.

T6: Inverse Proportionality in Base Period Prices21:  
P(λp0,p1,q0,q1) = λ–1P(p0,p1,q0,q1) if λ > 0.

That is, if all period 0 prices are multiplied by the positive 
number l, then the new price index is 1/λ times the old price 
index. Put another way, the price index function P(p0,p1,q0, 
q1) is (positively) homogeneous of degree minus 1 in the com-
ponents of the period 0 price vector p0.

The following two homogeneity tests can also be regarded 
as invariance tests.

see Willard Fisher (1913). Other researchers who have suggested the 
test over the years include Lowe (1823, Annex, 95), Scrope (1833, 
406), Jevons (1865), Sidgwick (1883, 67–68), Edgeworth (1925, 215) 
originally published in 1887, Marshall (1887, 363), Pierson (1895, 332), 
Walsh (1901, 540) (1921b; 543–544), and Bowley (1901, 227). Vogt and 
Barta (1997; 49) correctly observed that this test is a special case of 
Fisher’s (1911; 411) proportionality test for quantity indices that Fisher 
(1911; 405) translated into a test for the price index using the product 
test (11).
18 See Vogt (1980; 70).
19 A weaker version of Tests 3 and 4 is the following test: T3*: P(p,p,q,q) = 1 
for all p > 0N and q > 0N. Obviously, if prices and quantities are identical in 
the two periods under consideration, it is very reasonable that the bilat-
eral price index (and the companion quantity index) equals unity. How-
ever, if prices are identical across periods but the two quantity vectors are 
different, then it is not clear that a bilateral index number formula that 
uses quantity or value weights should equal 1. An example of a weighted 
bilateral index number formula that satisfies T3* but not T3 is the unit 
value price index defined by PUV(p0,p1,q0,q1) ≡ [p1·q1/1N·q1]/ [p0·q0/1N·q0]. The 
properties of unit value price indices will be studied in Chapter 7.
20 This test was proposed by Walsh (1901, 385), Eichhorn and Voeller 
(1976, 24), and Vogt (1980, 68).
21 Eichhorn and Voeller (1976; 28) suggested this test.
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The next test is the analogue to T12 applied to quantity 
indices:

T13: Price Reversal Test (price weights symmetry test)26:

 [p1·q1/p0·q0]/P(p0,p1,q0,q1) = [p0·q1/p1·q0]/P(p1,p0,q0,q1).

Thus, if we use (11) to define the quantity index Q in terms 
of the price index P, then it can be seen that T13 is equiva-
lent to the following property for the associated quantity 
index Q:

 Q(p0,p1,q0,q1) = Q(p1,p0,q0,q1). (12) 

That is, if the price vectors for the two periods are inter-
changed, then the quantity index remains invariant. Thus, 
if prices for the same good in the two periods are used to 
weight quantities in the construction of the quantity index, 
then property T13 implies that these prices enter the quan-
tity index in a symmetric manner.

The next three tests are mean value tests.

T14: Mean Value Test for Prices27:

minn {pn
1/pn

0; n = 1,. . .,N} ≤ P(p0,p1,q0,q1) ≤ maxn 
 {pn

1/pn
0; n = 1,. . .,N}. (13)

That is, the price index lies between the minimum price 
ratio and the maximum price ratio. Since the price index is 
supposed to be interpreted as some sort of an average of the 
N price ratios, pn

1/pn
0, it seems essential that the price index 

P satisfy this test.
The next test is the analogue to T14 applied to quantity 

indices:

T15: Mean Value Test for Quantities28:

 min n {qn
1/qn

0; n = 1,. . .,N} ≤ [V1/V0]/
 P(p0,p1,q0,q1) ≤ max n {qn

1/qn
0; n = 1,. . .,N}, (14)

where Vt ≡ pt·qt is the period t value for the aggregate defined 
by (1). Using the product test (11) to define the quantity 
index Q in terms of the price index P, it can be seen that 
T15 is equivalent to the following property for the associ-
ated quantity index Q:

 min n {qn
1/qn

0; n = 1,. . .,N} ≤ Q(p0,p1,q0,q1) 
 ≤ max n {qn

1/qn
0; n = 1,. . .,N}. (15)

That is, the implicit quantity index Q defined by P lies 
between the minimum and maximum rates of growth qn

1/qn
0 

of the individual quantities.
In Section 4 of Chapter 2, it was argued that it was very 

reasonable to take an average of the Laspeyres and Paasche 

26 This test was proposed by Diewert (1992; 218).
27 In the present context, this test seems to have been first proposed by 
Eichhorn and Voeller (1976; 10). Samuelson (1947) and Pollak (1971) 
showed that this test was satisfied by the Konüs true cost of living index, 
which will be considered in Chapter 5. Note that this test requires that p0 
>> 0N so that all of the price ratios pn

1/pn
0 are well defined.

28 This test was proposed by Diewert (1992; 219). Note that this test 
requires that q0 >> 0N so that the quantity ratios qn

1/qn
0 are well defined.

The next test asks that the index be invariant to changes 
in the units of measurement.

T10: Invariance to Changes in the Units of Measurement 
(commensurability test):

P(α1p1
0,.  .  .,αNpN

0; α1p1
1,.  .  .,αNpN

1; α1
–1q1

0,.  .  .,αN
–1qN

0;  
α1

–1q1
1,. . .,αN

–1qN
1) =

P(p1
0,.  .  .,pN

0; p1
1,.  .  .,pN

1; q1
0,.  .  .,qN

0; q1
1,.  .  .,qN

1) for all  
α1 > 0, . . ., αN > 0.

That is, the price index does not change if the units of mea-
surement for each commodity are changed. The concept of 
this test was due to Jevons (1863; 23) and the Dutch econo-
mist Pierson (1896; 131), who criticized several index num-
ber formula for not satisfying this fundamental test. Fisher 
(1911; 411) first called this test the change of units test, and 
later, Fisher (1922; 420) called it the commensurability test.

The next test asks that the formula be invariant to the 
period chosen as the base period.

T11: Time Reversal Test: P(p0,p1,q0,q1) = 1/P(p1,p0,q1,q0).

That is, if the data for periods 0 and 1 are interchanged, then 
the resulting price index should equal the reciprocal of the 
original price index. Obviously, in the one good case when 
the price index is simply the single price ratio, this test will 
be satisfied (as are all of the other tests listed in this section). 
When the number of goods is greater than 1, many commonly 
used price indices fail this test; for example, the Laspeyres 
(1871) price index, PL, defined by PL(p0,p1,q0,q1) ≡ p1·q0/p0·q0, 
and the Paasche (1874) price index, PP, defined by PP(p0,p1,q0, 
q1) ≡ p1·q1/p0·q1, both fail this fundamental test. The concept 
of the test was due to Pierson (1896; 128), who was so upset 
with the fact that many of the commonly used index number 
formulae did not satisfy this test; he proposed that the entire 
concept of an index number should be abandoned. More for-
mal statements of the test were made by Walsh (1901; 368) 
(1921b; 541) and Fisher (1911; 534) (1922; 64).

The next two tests are more controversial, since they are 
not necessarily consistent with the economic approach to 
index number theory.25 However, these tests are quite consis-
tent with the weighted stochastic approach to index number 
theory, which is discussed later in this chapter.

T12: Quantity Reversal Test (quantity weights symmetry 
test): P(p0,p1,q0,q1) = P(p0,p1,q1,q0).

That is, if the quantity vectors for the two periods are inter-
changed, then the price index remains invariant. This prop-
erty means that if quantities are used to weight the prices 
in the index number formula, then the period 0 quantities 
q0 and the period 1 quantities q1 must enter the formula in a 
symmetric or even-handed manner. Funke and Voeller (1978; 
3) introduced this test; they called it the weight property.

25 The economic approach to index number theory assumes that given 
prices (and income), households choose quantity vectors that maximize 
their welfare or utility. Thus, when prices change, in general household 
consumption vectors will change. Thus, tests 12 and 13 are not consistent 
with the economic approach to bilateral index number theory.
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price indices as a single “best” measure of overall price 
change. This point of view can be turned into a test:

T16: Paasche and Laspeyres Bounding Test29: The price 
index P lies between the Laspeyres and Paasche indi-
ces, PL ≡ p1·q0/p0·q0 and PP ≡ p1·q1/p0·q1.

A test could be proposed where the implicit quantity index Q 
that corresponds to P via (11) is to lie between the Laspeyres 
and Paasche quantity indices, QP and QL, defined as follows:

 QL(p0,p1,q0,q1) ≡ p0·q1/p0·q0; QP(p0,p1,q0,q1) ≡ p1·q1/p1·q0. (16)

However, the resulting test turns out to be equivalent to test 
T16.

The final four tests are monotonicity tests; that is, how 
should the price index P(p0,p1,q0,q1) change as any compo-
nent of the two price vectors p0 and p1 increases or as any 
component of the two quantity vectors q0 and q1 increases.

T17: Monotonicity in Current Prices: P(p0,p1,q0,q1) < P(p0, 
p1*,q0,q1) if p1 < p1*.

That is, if some period 1 price increases, then the price index 
must increase so that P(p0,p1,q0,q1) is increasing in the com-
ponents of p1. This property was proposed by Eichhorn and 
Voeller (1976; 23), and it is a very reasonable property for a 
price index to satisfy.

T18: Monotonicity in Base Prices: P(p0,p1,q0,q1) > P(p0*,p1

,q0,q1) if p0 < p0*.

That is, if any period 0 price increases, then the price index 
must decrease so that P(p0,p1,q0,q1) is decreasing in the com-
ponents of p0. This very reasonable property was also pro-
posed by Eichhorn and Voeller (1976; 23).

T19: Monotonicity in Current Quantities: if q1 < q1*, then

 [p1·q1/p0·q0]/P(p0,p1,q0,q1) < [p1·q1*/p0·q0]/P(p0,p1,q0,q1*). (17)

T20: Monotonicity in Base Quantities: if q0 < q0*, then

 [p1·q1/p0·q0]/P(p0,p1,q0,q1) > [p1·q1/p0·q0*]/P(p0,p1,q0*,q1). (18)

Let Q be the implicit quantity index that corresponds to P 
using (11). Then it is found that T19 translates into the fol-
lowing inequality involving Q:

  Q(p0,p1,q0,q1) < Q(p0,p1,q0,q1*) if q1 < q1*. (19)

That is, if any period 1 quantity increases, then the implicit 
quantity index Q that corresponds to the price index P must 
increase. Similarly, we find that T20 translates into

  Q(p0,p1,q0,q1) > Q(p0,p1,q0*,q1) if q0 < q0*. (20)

That is, if any period 0 quantity increases, then the implicit 
quantity index Q must decrease. Tests T19 and T20 were 
developed by Vogt (1980, 70).

29 Both Bowley (1901; 227) and Fisher (1922; 403) endorsed this property 
for a price index.

This concludes the listing of tests. In the next section, we 
ask whether any index number formula P(p0,p1,q0,q1) exists 
that can satisfy all 20 tests.

4. The Fisher Ideal Index and the 
Test Approach
It can be shown that the only index number formula P(p0,
p1,q0,q1) that satisfies tests T1–T20 is the Fisher ideal price 
index PF defined as the geometric mean of the Laspeyres and 
Paasche indices:30

 PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1)PP(p0,p1,q0,q1)]1/2, (21)

where PL(p0,p1,q0,q1) ≡ p1·q0/p0·q0 and PP(p0,p1,q0,q1) ≡ 
p1·q1/p0·q1.

To prove this assertion, it is relatively straightforward to 
show that the Fisher index satisfies all 20 tests. The more 
difficult part of the proof is to show that it is the only index 
number formula that satisfies these tests. This part of the 
proof follows from the fact that if P satisfies the positivity 
test T1 and the three reversal tests, T11–T13, then P must 
equal PF. To see this, rearrange the terms in the statement of 
test T13 into the following equation:

 [p1·q1/p0·q0]/[p0·q1/p1·q0] = P(p0,p1,q0,q1)/P(p1,p0,q0,q1) (22)
 = P(p0,p1,q0,q1)/P(p1,p0,q1,q0) using T12,  

the quantity reversal test
 = P(p0,p1,q0,q1)P(p0,p1,q0,q1) using T11,  

the time reversal test.

Now take positive square roots on both sides of (22), and 
it can be seen that the left-hand side of the equation is the 
Fisher index PF(p0,p1,q0,q1) defined by (21) and the right-
hand side is P(p0,p1,q0,q1). Thus, if P satisfies T1, T11, T12, 
and T13, it must equal the Fisher ideal index PF.

The quantity index that corresponds to the Fisher price 
index using the product test (11) is QF, the Fisher quantity 
index, defined as follows:

 QF(p0,p1,q0,q1) ≡ [V1/V0]/PF(p0,p1,q0,q1) 
 = [QL(p0,p1,q0,q1)QP(p0,p1,q0,q1)]1/2, (23)

where the Laspeyres and Paasche quantity indices, QL and 
QP, are defined by (16). Thus, the Fisher quantity index that 
corresponds via the product test (11) to the Fisher price 
index is also equal to the geometric mean of the Laspeyres 
and Paasche quantity indices.

It turns out that PF satisfies yet another test, T21, which 
was Irving Fisher’s (1921; 534) (1922; 72–81) third reversal 
test (the other two being T9 and T11):

T21: Factor Reversal Test (functional form symmetry test):

  P(p0,p1,q0,q1)P(q0,q1,p0,p1) = V1/V0. (24)

30 See Diewert (1992; 221).
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A justification for this test is the following one: If P(p0,p1, 
q0,q1) is a good functional form for the price index, then if 
the roles of prices and quantities are reversed, P(q0,q1,p0, 
p1) ought to be a good functional form for a quantity index 
(which seems to be a correct argument), and thus the prod-
uct of the price index P(p0,p1,q0,q1) and the quantity index 
Q(p0,p1,q0,q1) = P(q0,q1,p0,p1) ought to equal the value ratio, 
V1/V0 . The second part of this argument does not seem to 
be valid, and thus many researchers over the years have 
objected to the factor reversal test. However, if one is will-
ing to embrace T21 as a basic test, Funke and Voeller (1978; 
180) showed that the only index number function P(p0,p1,q0, 
q1) that satisfies T1 (positivity), T11 (time reversal test), T12 
(quantity reversal test), and T21 (factor reversal test) is the 
Fisher ideal index PF defined by (21). Thus, the price reversal 
test T13 can be replaced by the factor reversal test in order 
to obtain a minimal set of four tests that lead to the Fisher 
price index.31

5. The Test Performance of 
Other Indices
The Fisher price index PF satisfies all 20 of the tests listed 
in Section 3. Which tests do other commonly used price 
indices satisfy? The Laspeyres, Paasche, and Fisher price 
indices, PL, PP, and PF, have been defined earlier. Two other 
indices that played a prominent role in Chapter 2 were the 
Walsh and Törnqvist indices defined as follows:

 PW(p0,p1,q0,q1) ≡ Σn=1
N [qn

0qn
1]1/2pn

1/Σn=1
N [qn

0qn
1]1/2pn

0,  (25)
  PT(p0,p1,q0,q1) ≡ ∏n=1

N [pn
1/pn

0], (26)

where sn
t ≡ pn

tqn
t/pt·qt for n = 1,. . .,N and t = 0,1. Note that 

in order that PT(p0,p1,q0,q1) be well defined, it is required 
that p0 >> 0N; that is, each base period price pn

0 must be 
positive.

Straightforward computations show that the Paasche and 
Laspeyres price indices, PL and PP, fail only the three rever-
sal tests, T11, T12, and T13. Since the quantity and price 
reversal tests, T12 and T13, are somewhat controversial and 
hence can be discounted, the test performance of PL and PP 
seem at first sight to be quite good. However, the failure of 
the time reversal test, T11, is a severe limitation associated 
with the use of these indices.

The Walsh price index, PW, fails four tests: T13, the price 
reversal test; T16, the Paasche and Laspeyres bounding test; 
T19, the monotonicity in current quantities test; and T20, 
the monotonicity in base quantities test.

Finally, the Törnqvist price index PT fails nine tests: T4 
(the fixed basket test), the quantity and price reversal tests 
T12 and T13, T15 (the mean value test for quantities), T16 
(the Paasche and Laspeyres bounding test), and the four 
monotonicity tests T17 to T20. Thus, the Törnqvist index 
is subject to a rather high failure rate from the viewpoint of 
this axiomatic approach to index number theory.32

31 Other characterizations of the Fisher price index can be found in Funke 
and Voeller (1978) and Balk (1985) (1995).
32 However, it will be shown later in Chapter 5 that the Törnqvist index 
approximates the Fisher index quite closely using “normal” time series 
data that are subject to relatively smooth trends. Hence, under these cir-

The tentative conclusion that can be drawn from these 
results is that from the viewpoint of this particular bilat-
eral test approach to index numbers, the Fisher ideal price 
index PF appears to be “best” since it satisfies all 20 tests.33 
The Paasche and Laspeyres indices are next best if we 
treat each test as being equally important. However, both  
of these indices fail the very important time reversal test. 
The remaining two indices, the Walsh and Törnqvist price 
indices, both satisfy the time reversal test, but the Walsh 
index emerges as being “better” since it passes 16 of the 20 
tests, whereas the Törnqvist only satisfies 11 tests. How-
ever, in Section 7, we will change the axiomatic framework, 
and in this new framework, the Törnqvist price index will 
emerge as “best” in this alternative framework. Before this 
new framework is considered, one important additional test 
in the present axiomatic framework will be discussed in the 
following section.

6. The Circularity Test
If the identity test T3 is true, then the time reversal test T11 
can be rewritten as follows:

  1 = P(p0,p0,q0,q0) = P(p0,p1,q0,q1)P(p1,p0,q1,q0). (27)

Thus, if one starts out with the prices p0 in period 0 and go 
to the prices p1 in period 1 but then returns to the prices of 
period 0 in period 2, and if the tests T3 and T11 are satis-
fied, then the product of the price movement from period  
0 to 1, P(p0,p1,q0,q1), and the price movement from period 1 
to 2, P(p1,p0,q1,q0), turns out to equal 1, indicating that the 
chained price index in period 2 has returned to its period 
0 level of 1. An obvious generalization of (27) would be to 
replace the assumption that the period 2 price and quantity 
vectors in this formula are the same as the period 0 price and 
quantity vectors, p0 and q0, and allow for arbitrary period 2 
price and quantity vectors, p2 and q2. With this replacement, 
(27) becomes

  P(p0,p2,q0,q2) = P(p0,p1,q0,q1)P(p1,p2,q1,q2). (28)

If an index number formula P satisfies (28), then we say that 
P satisfies the circularity test.34

What is the meaning of (28)? The index number on the 
left-hand side of (28) compares prices in period 2 directly 
with prices in period 0, and P(p0,p2,q0,q2) is called the fixed-
base price index for period 2. The chained price index for 
period 2, P(p0,p1,q0,q1)P(p1,p2,q1,q2), on the right-hand side 
of (28) compares prices in period 2 with those in period 0 
by first comparing prices in period 1 with those in period 0 
(this is the chain link index P(p0,p1,q0,q1)) and multiplies that 
index by the chain link index that compares prices in period  

cumstances, the Törnqvist index can be regarded as passing the 20 tests 
to a reasonably high degree of approximation.
33 This assertion needs to be qualified: There are many other tests that we 
have not discussed, and price statisticians could differ on the importance 
of satisfying various sets of tests. Some references that discuss other tests 
are Auer (2002), Eichhorn and Voeller (1976), Balk (1995) (2008), and 
Vogt and Barta (1997). In Section 7, it is shown that the Törnqvist index is 
“best” for a different set of axioms.
34 The test was named after Fisher (1922; 413), and the concept was origi-
nally proposed by Westergaard (1890; 218–219).
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2 to those of period 1, P(p1,p2,q1,q2). If the index number 
formula P satisfies the circularity test (28), then it does not 
matter whether we use the chained index (the right-hand 
side of (28)) to compare prices in period 2 with those of the 
base period 0 or if we use the fixed-base index (the left-hand 
side of (28)): We get the same answer either way. Obviously, 
it would be desirable if one could find an index number for-
mula that satisfied the circularity test and had satisfactory 
axiomatic properties with respect to the other tests that have 
been considered.

Unfortunately, it turns out that index number formulae 
that satisfy the circularity test have other properties that 
make it unsatisfactory. Consider the following result:

Proposition 1
Suppose that the index number formula P satisfies the fol-
lowing tests: T1 (positivity), T2 (continuity), T3 (identity), 
T5 (proportionality in current prices), T10 (commensurabil-
ity), and T17 (monotonicity in current prices) in addition to 
the circularity test above. Then, P must have the following 
functional form due originally to Konüs and Byushgens35 
(1926; 163–166):36

  PKB(p0,p1,q0,q1) ≡ ∏n=1
N [pn

1/pn
0]αn, (29)

where the N constants αn satisfy the conditions Σn=1
N αn = 1 

and αn > 0 for n = 1,. . .,N.
A proof of this result is in the annex. This result says that 

under fairly weak regularity conditions, the only price index 
satisfying the circularity test is a weighted geometric aver-
age of all the individual price ratios, the weights being con-
stant through time. The αn weights could be chosen to be 
the average expenditure shares on the N commodities over 
the time period when the index number formula is being 
used. If expenditure shares are close to being constant over 
the sample period, the resulting weighted geometric mean 
index defined by (29) will be a perfectly good index. How-
ever, if there are strong (divergent) trends in expenditure 
shares and strong (divergent) trends in the prices of the N 
commodities, then the index will not have representative 
weights over the entire sample period and thus will not 
be able to adequately represent price movements over the 
entire sample period.37

35 Konüs and Byushgens (1926) showed that the index defined by (29) is 
exact for Cobb–Douglas (1928) preferences; see also Pollak (1971). The 
concept of an exact index number formula will be explained in Chapter 5 
when the economic approach to index number theory is studied.
36 See also Eichhorn (1978; 167–168) and Vogt and Barta (1997; 47). Proofs 
of related results can be found in Funke, Hacker, and Voeller (1979) and 
Balk (1995). This result vindicates Irving Fisher’s (1922; 274) intuition, 
who asserted that “the only formulae which conform perfectly to the cir-
cular test are index numbers which have constant weights.  .  .  .” Fisher 
(1922; 275) went on to assert: “But, clearly, constant weighting is not 
theoretically correct. If we compare 1913 with 1914, we need one set of 
weights; if we compare 1913 with 1915, we need, theoretically at least, 
another set of weights. . . . Similarly, turning from time to space, an index 
number for comparing the United States and England requires one set 
of weights, and an index number for comparing the United States and 
France requires, theoretically at least, another.”
37 This lack of representative weights problem will be particularly acute 
if there are disappearing and newly appearing commodities. However, 
note that Proposition 1 does not deal adequately with this problem since 
it is assumed that all prices and quantities are positive for the two periods 

An interesting special case of the family of indices defined 
by (29) occurs when the weights αn are all equal. In this case, 
PKB reduces to the Jevons (1865) index:

  PJ(p0,p1,q0,q1) ≡ ∏n=1
N [pn

1/pn
0]1/N . (30)

The problem with the indices defined by Konüs and Byush-
gens and Jevons is that the individual price ratios, pn

1/pn
0, 

have weights (either αn or 1/N) that are independent of the 
economic importance of commodity n in the two periods 
under consideration. Put another way, these price weights for 
commodity n are independent of the quantities of commod-
ity n consumed or the expenditures on commodity n during 
the two periods. Hence, these indices are not really suitable 
for use by statistical agencies at higher levels of aggregation 
when expenditure share information is available.38

Proposition 1 is a result that applies to bilateral index 
number functions of the form P(p0,p1,q0,q1), where it is 
assumed that all prices and quantities can vary indepen-
dently. The Lowe index defined in Chapter 2 does not fit into 
this framework; however, the Lowe index is widely used by 
national statistical offices NSOs. Recall that the Lowe index 
is defined as follows:

 PLo(p0,p1,q) ≡ Σn=1
N pn

1qn/Σn=1
N pn

0qn = p1·q/p0·q, (31)

where p0 ≡ [p1
0,. . .,pN

0] and p1 ≡ [p1
1,. . .,pN

1] are the price vec-
tors for periods 0 and 1 and q ≡ [q1,.  .  .,qN] is a representa-
tive quantity vector. It can be seen that the Lowe index does 
not fit into the axiomatic framework that was developed for 
index number formulae of the form P(p0,p1,q0,q1).

It is possible to adapt many of the tests listed in Section 
3 to a new index number framework that looks at the axi-
omatic properties of indices of the form P(p0,p1,q). Thus, 
the Section 3 tests T1–T20 that can be adapted to this new 
framework have the following counterpart tests:

T1: Positivity: P(p0,p1,q) > 0.39

T2: Continuity: P(p0,p1,q) is a continuous function of its 
arguments.

T3: Identity or Constant Prices Test: P(p,p,q) = 1.
T5: Proportionality in Current Prices: P(p0,λp1,q) = 
λP(p0,p1,q) for λ > 0.

T6: Inverse Proportionality in Base Period Prices: 
P(lp0,p1,q) = λ–1P(p0,p1,q) if λ > 0.

T7: Invariance to Proportional Changes in Quantities:

P(p0,p1,λq) = P(p0,p1,q) for all λ > 0.

T9: Commodity Reversal Test (or invariance to changes in 
the ordering of commodities):

P(p0*,p1*,q*) = P(p0,p1,q),

under consideration. The problems associated with missing prices and 
quantities will be addressed in Chapters 5, 7, and 8.
38 However, as mentioned earlier, if the expenditure shares are not chang-
ing much from period to period (or better yet, are constant), then by 
choosing αn to be these constant expenditure shares, the Konüs and 
Byushgens price index will reduce to the Törnqvist price index PT, defined 
by (26), which has good statistical properties.
39 Unless otherwise specified, the domain of definition for P(p0,p1,q) is p0 
> 0N, p1 > 0N, q > 0N, p0·q > 0, and p1·q > 0.
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where pt* denotes a permutation of the components of the 
vector pt for t = 0,1 and q* denotes the same permutation of 
the components of q.

T10: Invariance to Changes in the Units of Measurement 
(commensurability test):

P(α1p1
0,. . .,αNpN

0; α1p1
1,. . .,αNpN

1; 

α1
–1q1,. . .,αN

–1qN) = P(p0,p1,q).

T11: Time Reversal Test: P(p0,p1,q) = 1/P(p1,p0,q).
T14: Mean Value Test for Prices:

min n {pn
1/pn

0; n = 1,. . .,N} ≤ P(p0,p1,q) ≤ max n 
{ pn

1/pn
0; n = 1,. . .,N}.

T17: Monotonicity in Current Prices: P(p0,p1,q) < P(p0,p1*,q) if 
0N < p1 < p1* and q >> 0N.

T18: Monotonicity in Base Prices: P(p0,p1,q) > P(p0*,p1,q) if 
0N < p0 < p0* and q >> 0N.

Thus, 12 of the 20 tests listed in Section 3 have counterparts 
that can be applied to indices of the form P(p0,p1,q). The 
counterpart to the circularity test in the present framework 
is the following test:

T22: Circularity: P(p0,p2,q) = P(p0,p1,q)P(p1,p2,q).

A question of interest is: Are the above tests sufficient to 
determine the functional form for P(p1,p2,q)? Using the posi-
tivity test T1, rewrite the circularity test T22 in the following 
form:

 P(p1,p2,q) = P(p0,p2,q)/P(p0,p1,q). (32) 

Now hold p0 constant at some fixed value, say p* >> 0N, and 
define the function f(p,q) as follows:

  f(p,q) ≡ P(p*,p,q) > 0 for all p>>0N and q >> 0N, (33)

where the positivity of f(p,q) follows from T1. Substituting 
definition (33) back into (32) gives us the following represen-
tation for P(p1,p2,q):

  P(p1,p2,q) = f(p2,q)/f(p1,q). (34)

Thus, in this axiomatic framework, the price index P(p1,p2,q) 
is equal to the price level for period 2, f(p2,q), divided by the 
price level for period 1,f(p1,q). The function f(p,q) determines 
the functional form for the price index. various properties 
on f can be imposed so that the above tests are satisfied by 
the price index function, P(p1,p2,q). Imposing continuity on 
f(p,q) will ensure that test T2 is satisfied. The identity test T3 
will automatically be satisfied by a P(p1,p2,q) defined as f(p2,
q)/f(p1,q). Imposing the linear homogeneity property f(λp,q) 
= λf(p,q) for all λ > 0 will ensure that P(p1,p2,q) will satisfy 
tests T5 and T6. Imposing the linear homogeneity property 
f(p,λq) = λf(p,q) for all λ > 0 will ensure that P(p1,p2,q) will 
satisfy test T7. Imposing the commodity reversal and com-
mensurability tests on f(p,q) will ensure that P(p1,p2,q) will 
satisfy tests T9 and T10. The time reversal test T11 will auto-
matically be satisfied by a P(p1,p2,q), defined as f(p2,q)/f(p1,q). 
Simple conditions on f(p,q) that will ensure that P(p1,p2,q) 

will satisfy the mean value test T14 are difficult to determine. 
If f(p,q) is monotonically increasing in the components of p, 
then P(p1,p2,q) will satisfy the monotonicity tests T17 and 
T18. In general, it appears that the tests listed here are not 
sufficient to determine the functional form for f(p,q), and 
hence the listed tests (including the circularity test) do not 
determine a unique functional form for P(p1,p2,q).

Recall the test T4 from Section 3, the Fixed Basket or 
Constant Quantities Test, which was the following test:

  P(p0,p1,q,q) = p1·q/p0·q. (35)

This test is relevant in the present context. where we have 
only a single reference quantity vector q. Test T4 from Sec-
tion 3 suggests that if the quantities purchased in periods 
0 and 1 were identical, then the price index should equal 
p1·q/p0·q, where q is the common quantity vector; that is, q 
= q0 = q1. Thus, if q0 = q1, then the representative quantity 
vector q is obviously this common quantity vector, so in this 
case, P(p0,p1,q) should equal p1·q/p0·q.40 This suggests that 
even if q0 is not equal to q1, the functional form for P(p0,p1,q) 
should be set equal to p1·q/p0·q, since this functional form 
will register the correct result for a price index when the 
quantity vectors for periods 0 and 1 are identical (or pro-
portional). Thus, the application of test T4 to the present 
context pins down the functional form for P(p0,p1,q):

  P(p0,p1,q) ≡ p1·q/p0·q ≡ PLo(p0,p1,q). (36)

Thus, the new axiomatic framework leads to the Lowe 
index, PLo(p0,p1,q), as being “best” in this framework. It is 
straightforward to show that the Lowe index satisfies tests 
T1, T2, T3, T5, T6, T7, T9, T10, T11, T14, T17, T18, and T22; 
that is, it satisfies all of the modified tests that were listed in 
this section.

The Lowe index works well if the quantities demanded 
grow in a proportional manner (or approximately propor-
tional manner) over time. But if prices and quantities have 
divergent trends over time, the Lowe index will be subject to 
substitution bias; that is, it will tend to register higher rates 
of inflation than the economic indices to be considered in 
Chapter 5, which deals more adequately with substitution 
bias.

As was seen earlier, it is possible to find index number 
formulae (see (29) and (36)) that satisfy the circularity test, 
but the resulting indices are not entirely satisfactory.

In the following section, another axiomatic framework 
for bilateral index number formulae will be discussed.

7. An Alternative Axiomatic 
Approach to Bilateral Index  
Number Theory
One of Walsh’s approaches to index number theory was an 
attempt to determine the “best” weighted average of the 
price relatives, rn ≡ pn

1/pn
0.41 This is equivalent to using an 

40 Thus, f(p,q) = p·q.
41 Fisher also took this point of view when describing his approach to 
index number theory: “An index number of the prices of a number of 
commodities is an average of their price relatives. This definition has, 
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axiomatic approach to try to determine the “best” index of 
the form P(r,v0,v1), where v0 and v1 are the vectors of expen-
ditures on the N commodities during periods 0 and  1.42 
However, initially, rather than starting with indices of the 
form P(r,v0,v1), indices of the form P(p0,p1,v0,v1) will be con-
sidered, since this framework is more comparable to the first 
bilateral axiomatic framework taken in Sections 3 and 4. As 
will be seen later, if the invariance to changes in the units 
of measurement test is imposed on an index of the form  
P(p0,p1,v0,v1), then P(p0,p1,v0,v1) can be written in the form 
P*(r,v0,v1).

Recall that the product test (11) was used in order to 
define the quantity index, Q(p0,p1,q0,q1) ≡ V1/V0P(p0,p1,q0,q1), 
that corresponded to the bilateral price index P(p0,p1,q0,q1). 
A similar product test holds in the present framework; that 
is, given that the functional form for the price index P(p0,p1, 
v0,v1) has been determined, the corresponding implicit quan-
tity index can be defined in terms of P as follows:

  Q(p0,p1,v0,v1) ≡ [∑n=1
N vn

1]/[(∑n=1
N vn

0) P(p0,p1,v0,v1)]. (37)

In Sections 3 and 4, the price and quantity indices P(p0,p1,
q0,q1) and Q(p0,p1,q0,q1) were determined jointly; that is, not 
only were axioms imposed on P(p0,p1,q0,q1), but they were 
also imposed on Q(p0,p1,q0,q1), and the product test (11) was 
used to translate these tests on Q into tests on P. In what 
follows, only tests on P(p0,p1,v0,v1) will be used in order to 
determine the “best” price index of this form. Thus, there is 
a parallel theory for quantity indices of the form Q(q0,q1,v0

,v1), where it is attempted to find the “best” value-weighted 
average of the quantity relatives, qn

1/qn
0.43

For the most part, the tests that will be imposed on the 
price index P(p0,p1,v0,v1) in this section are counterparts to 
the tests that were imposed on the price index P(p0,p1,q0,q1) 
in Section 3. It will be assumed that every component of 
each price and value vector is positive; that is, pt > > 0N and 
vt > > 0N for t = 0,1. If it is desired to set v0 = v1, the common 
expenditure vector is denoted by v; if it is desired to set p0 = 
p1, the common price vector is denoted by p.

for concreteness, been expressed in terms of prices. But in like manner, 
an index number can be calculated for wages, for quantities of goods 
imported or exported, and, in fact, for any subject matter involving 
divergent changes of a group of magnitudes. Again, this definition has 
been expressed in terms of time. But an index number can be applied 
with equal propriety to comparisons between two places or, in fact, 
to comparisons between the magnitudes of a group of elements under 
any one set of circumstances and their magnitudes under another set 
of circumstances” (Irving Fisher (1922; 3)). However, in setting up his 
axiomatic approach, Fisher imposed axioms on the price and quantity 
indices written as functions of the two price vectors, p0 and p1, and the 
two quantity vectors, q0 and q1; that is, he did not write his price index 
in the form P(r,v0,v1) and impose axioms on indices of this type. Of 
course, in the end, his ideal price index turned out to be the geometric 
mean of the Laspeyres and Paasche price indices, and, as was seen in 
Chapter 2, each of these indices can be written as expenditure share-
weighted averages of the N price relatives, rn ≡ pn

1/pn
0.

42 Chapter 3 in vartia (1976) considered a variant of this axiomatic 
approach.
43 It turns out that the price index that corresponds to this “best” quantity 
index, defined as P*(q0,q1,v0,v1) ≡ ∑n=1

N vn
1/[∑n=1

N vn
0 Q(q0,q1,v0,v1)], will not 

equal the “best” price index, P(p0,p1,v0,v1). Thus, the axiomatic approach 
to be developed in this section generates separate “best” price and quan-
tity indices whose product does not equal the value ratio in general. This 
is a disadvantage of this third axiomatic approach to bilateral indices 
compared to the first approach studied in Sections 3 and 4.

The first two tests are straightforward counterparts to the 
corresponding tests in Section 3.

T1: Positivity: P(p0,p1,v0,v1) > 0.
T2: Continuity: P(p0,p1,v0,v1) is a continuous function of 

its arguments.

T3: Identity or Constant Prices Test: P(p,p,v0,v1) = 1.

That is, if the price of every good is identical during the two 
periods, then the price index should equal unity, no matter 
what the value vectors are. Note that the two value vectors 
are allowed to be different in the above test.

The following four tests restrict the behavior of the price 
index P as the scale of any one of the four vectors p0,p1,v0,v1 
changes.

T4: Proportionality in Current Prices: P(p0,λp1,v0,v1) = λP(
p0,p1,v0,v1) for λ > 0.

That is, if all period 1 prices are multiplied by the positive 
number l, then the new price index is λ times the old price 
index. Put another way, the price index function P(p0,p1,v0,v1) 
is (positively) homogeneous of degree 1 in the components 
of the period 1 price vector p1. This test is the counterpart to 
test T5 in Section 3.

In the next test, instead of multiplying all period 1 prices 
by the same number, all period 0 prices are multiplied by the 
number λ.

T5: Inverse Proportionality in Base Period Prices: P(λp0,p1

,v0,v1) = λ–1P(p0,p1,v0,v1) for λ > 0.

That is, if all period 0 prices are multiplied by the positive 
number l, then the new price index is 1/λ times the old price 
index. Put another way, the price index function P(p0,p1,v
0,v1) is (positively) homogeneous of degree minus 1 in the 
components of the period 0 price vector p0. This test is the 
counterpart to test T6 in Section 3.

The following two homogeneity tests can also be regarded 
as invariance tests.

T6: Invariance to Proportional Changes in Current Period 
Values:

P(p0,p1,v0,λv1) = P(p0,p1,v0,v1) for all λ > 0.

That is, if current period values are all multiplied by the 
number l, then the price index remains unchanged. Put 
another way, the price index function P(p0,p1,v0,v1) is (posi-
tively) homogeneous of degree 0 in the components of the 
period 1 value vector v1.

T7: Invariance to Proportional Changes in Base Period 
Values:

P(p0,p1,λv0,v1) = P(p0,p1,v0,v1) for all λ > 0.

That is, if base period values are all multiplied by the num-
ber l, then the price index remains unchanged. Hence, the 
price index function P(p0,p1,v0,v1) is (positively) homoge-
neous of degree 0 in the components of the period 0 value 
vector v0.

T6 and T7 together impose the property that the price 
index P does not depend on the absolute magnitudes of the 
value vectors v0 and v1. Using test T6 with λ = 1/∑i=1

N vi
1 and 
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using test T7 with λ = 1/ ∑i=1
N vi

0, it can be seen that P has the 
following property:

  P(p0,p1,v0,v1) = P(p0,p1,s0,s1), (38)

where s0 and s1 are the vectors of expenditure shares for peri-
ods 0 and 1; that is, the ith component of st is si

t ≡ vi
t/∑k=1

N vk
t 

for t = 0,1 and i = 1,. . .,N. Thus, the tests T6 and T7 imply 
that the price index function P is a function of the two price 
vectors p0 and p1 and the two vectors of expenditure shares, 
s0 and s1.

Walsh suggested the spirit of tests T6 and T7, as the fol-
lowing quotation indicates:

What we are seeking is to average the variations in 
the exchange value of one given total sum of money 
in relation to the several classes of goods, to which 
several variations [that is, the price relatives] must be 
assigned weights proportional to the relative sizes of 
the classes. Hence the relative sizes of the classes at 
both the periods must be considered. 

Correa Moylan Walsh (1901; 104)

Walsh also realized that weighting the ith price relative ri 
by the arithmetic mean of the value weights in the two peri-
ods under consideration, (1/2)[vi

0 + vi
1] would give too much 

weight to the expenditures of the period that had the highest 
level of prices:

At first sight it might be thought sufficient to add up 
the weights of every class at the two periods and to 
divide by two. This would give the (arithmetic) mean 
size of every class over the two periods together. 
But such an operation is manifestly wrong. In the 
first place, the sizes of the classes at each period are 
reckoned in the money of the period, and if  it hap-
pens that the  exchange value of money has fallen, or 
prices in general have risen, greater influence upon 
the result would be given to the weighting of the sec-
ond period; or if  prices in general have fallen, greater 
influence would be given to the weighting of the first 
period. Or in a comparison between two countries, 
greater influence would be given to the weighting of 
the country with the higher level of prices. But it is 
plain that the one period, or the one country, is as im-
portant, in our comparison between them, as the other, 
and the weighting in the averaging of their weights 
should really be even. 

Correa Moylan Walsh (1901; 104–105)

As a solution to the above weighting problem, Walsh (1901; 
202) (1921a; 97) proposed the following geometric Walsh 
price index:

 PGW(p0,p1,v0,v1) ≡ ∏n=1
N [pn

1/pn
0]wn, (39)

where the nth weight in the above formula was defined as

 wn ≡ (vn
0vn

1)1/2/∑i=1
N (vi

0vi
1)1/2 = (sn

0sn
1)1/2/∑i=1

N 

 (si
0si

1)1/2; n = 1,. . .,N. (40)

The second equation in (40) shows that Walsh’s geometric 
price index PGW(p0,p1,v0,v1) can also be written as a function 
of the expenditure share vectors, s0 and s1; that is, PGW(p0,p1

,v0,v1) is homogeneous of degree 0 in the components of the 
value vectors v0 and v1 and so PGW(p0,p1,v0,v1) = PGW(p0,p1,s0, 
s1). Thus, Walsh came very close to deriving the Törnqvist 
index defined earlier by (26).44

The next five tests are invariance or symmetry tests, and 
four of them are direct counterparts to similar tests in Sec-
tion 3. The first invariance test is that the price index should 
remain unchanged if the ordering of the commodities is 
changed.

T8: Commodity Reversal Test (or invariance to changes in 
the ordering of commodities):

P(p0*, p1*,v0*,v1*) = P(p0,p1,v0,v1),

where pt* denotes a permutation of the components of the 
vector pt, and vt* denotes the same permutation of the com-
ponents of vt for t = 0,1.

The next test asks that the index be invariant to changes 
in the units of measurement.

T9: Invariance to Changes in the Units of Measurement 
(commensurability test):

P(α1p1
0,. . .,αNpN

0; α1p1
1,. . .,αNpN

1; v1
0,. . .,vN

0; v1
1,. . .,vN

1)
= P(p1

0,. . .,pN
0; p1

1,. . .,pN
1; v1

0,. . .,vN
0; v1

1,. . .,vN
1) 

for all α1 > 0, . . ., αN > 0.

That is, the price index does not change if the units of 
measurement for each commodity are changed. Note that 
the expenditure on commodity i during period t, vi

t, does 
not change if the unit by which commodity i is measured 
changes.

The last test has a very important implication. Let α1 
=1/p1

0, .  .  . , αN =1/pN
0 and substitute these values for the ai 

into the definition of the test. The following equation is 
obtained:

  P(p0,p1,v0,v1) = P(1N,r,v0,v1) ≡ P*(r,v0,v1), (41)

where 1N is a vector of ones of dimension N and r is a vec-
tor of the price relatives; that is, the ith component of r is ri 
≡ pi

1/pi
0. Thus, if the commensurability test T9 is satisfied, 

then the price index P(p0,p1,v0,v1), which is a function of 
4N variables, can be written as a function of 3N variables, 
P*(r,v0,v1), where r is the vector of price relatives and P*(r,v0,v1) 
is defined as P(1N, r,v0,v1).

The next test asks that the formula be invariant to the 
period chosen as the base period.

T10: Time Reversal Test: P(p0,p1,v0,v1) = 1/P(p1,p0,v1,v0).

That is, if the data for periods 0 and 1 are interchanged, then 
the resulting price index should equal the reciprocal of the 
original price index. Obviously, in the one good case when 

44 It is evident that Walsh’s geometric price index will closely approxi-
mate the Törnqvist index using normal time series data. More formally, 
regarding both indices as functions of p0,p1,v0,v1, it can be shown that PG

W(p0,p1,v0,v1) approximates PT(p0,p1,v0,v1) to the second order around an 
equal price (that is, p0 = p1) and expenditure (that is, v0 = v1) point.
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the price index is simply the single price ratio, this test will 
be satisfied (as are all of the other tests listed in this section).

The next test is a variant of the circularity test, which was 
introduced in Section 6.

T11: Transitivity in Prices for Fixed Value Weights: 
P(p0,p1,vr,vs)P(p1,p2,vr,vs) = P(p0,p2,vr,vs).

In this test, the expenditure weighting vectors, vr and vs, are 
held constant while making all price comparisons. However, 
given that these weights are held constant, the test asks that 
the product of the index going from period 0 to 1, P(p0,p1,v
r,vs), times the index going from period 1 to 2, P(p1,p2,vr,vs), 
should equal the direct index that compares the prices of 
period 2 with those of period 0, P(p0,p2,vr,vs). Obviously, this 
test is a many commodity counterpart to a property that 
holds for a single price relative.

The final test in this section captures the idea that the 
value weights should enter the index number formula in a 
symmetric manner.

T12: Quantity Weights Symmetry Test: P(p0,p1,v0,v1) =  
P(p0,p1,v1,v0).

That is, if the expenditure vectors for the two periods are 
interchanged, then the price index remains invariant. This 
property means that if values are used to weight the prices 
in the index number formula, then the period 0 values v0 and 
the period 1 values v1 must enter the formula in a symmetric 
or even-handed manner.

The next test is a mean value test.

T13: Mean Value Test: mini (pi
1/pi

0 : i =1,. . .,N) ≤ P(p0,p1,v
0,v1) ≤ maxi (pi

1/pi
0 : i = 1,. . .,N).

That is, the price index lies between the minimum price 
ratio and the maximum price ratio. Since the price index is 
to be interpreted as an average of the N price ratios, pi

1/pi
0, it 

seems essential that the price index P satisfies this test.
The next two tests in this section are monotonicity 

tests; that is, how should the price index P(p0,p1,v0,v1) 
change as any component of the two price vectors p0 and 
p1 increases.

T14: Monotonicity in Current Prices: P(p0,p1,v0,v1) < P(p0, 
p2,v0,v1) if p1 < p2.

That is, if some period 1 price increases, then the price index 
must increase (holding the value vectors fixed) so that P(p0,p1,v
0,v1) is increasing in the components of p1 for fixed p0, v0 and v1.

T15: Monotonicity in Base Prices: P(p0,p1,v0,v1) > P(p2, 
p1,v0,v1) if p0 < p2.

That is, if any period 0 price increases, then the price index 
must decrease so that P(p0,p1,v0,v1) is decreasing in the com-
ponents of p0 for fixed p1, v0 and v1.

These tests are not sufficient to determine the functional 
form of the price index; for example, it can be shown that 
both Walsh’s geometric price index PGW(p0,p1,v0,v1) defined 
by (39) and the Törnqvist index PT(p0,p1,v0,v1) defined by 
(26)45 satisfy all of the above axioms. Thus, at least one more 

45 The share weights sn
t in definition (26) can be rewritten as vn

t/vt·1N for n 
= 1,. . .,N and t = 0,1. Thus, PT(p0,p1,q0,q1) can be rewritten in the form P
T(p0,p1,v0,v1).

test will be required in order to determine the functional 
form for the price index P(p0,p1,v0,v1).

The tests proposed thus far do not specify exactly how the 
expenditure share vectors s0 and s1 are to be used in order to 
weight, for example, the first price relative, p1

1/p1
0. The next 

test says that only the expenditure shares s1
0 and s1

1 pertain-
ing to the first commodity are to be used in order to weight 
the prices that correspond to commodity 1, p1

1 and p1
0.

T16: Own Share Price Weighting:

P(p1
0,1,. . .,1;p1

1,1,. . .,1;v0;v1) = f(p1
0,p1

1,v1
0/∑n=1

N 

 vn
0, v1

1/∑n=1
N vn

1). (42)

Note that v1
t/∑k=1

N vk
t equals s1

t, the expenditure share for 
commodity 1 in period t. This test says that if all of the 
prices are set equal to 1 except the prices for commodity 1 
in the two periods, but the expenditures in the two periods 
are arbitrarily given, then the index depends only on the two 
prices for commodity 1 and the two expenditure shares for 
commodity 1. The axiom says that a function of 2 + 2N vari-
ables is actually only a function of four variables.46

If test T16 is combined with test T8, the commodity rever-
sal test, then it can be seen that P has the following property:

 P(1,. . .,1,pi
0,1,. . .,1;1,. . .,1,pi

1,1,. . .,1;v0;v1) 

 = f(pi
0,pi

1,vi
0/∑n=1

N vn
0, vi

1/∑n=1
N vn

1); i = 1,. . .,N. (43)

Equation (43) says that if all of the prices are set equal to 1 
except the prices for commodity i in the two periods, but the 
expenditures in the two periods are arbitrarily given, then 
the index depends only on the two prices for commodity i 
and the two expenditure shares for commodity i.

The final test that also involves the weighting of prices is 
the following one:

T17: Irrelevance of Price Change with Tiny Value Weights:

 P(p1
0,1,. . .,1; p1

1,1,. . .,1; 0,v2
0,. . .,vN

0; 0,v2
1,. . .,vN

1) = 1. (44)

The test T17 says that if all of the prices are set equal to 1 
except the prices for commodity 1 in the two periods, and 
the expenditures on commodity 1 are 0 in the two periods 
but the expenditures on the other commodities are arbi-
trarily given, then the index is equal to 1.47 Thus, roughly 
speaking, if the value weights for commodity 1 are tiny, then 
it does not matter what the price of commodity 1 is during 
the two periods.

Of course, if test T17 is combined with test T8, the com-
modity reversal test, then it can be seen that P has the fol-
lowing property: for i = 1,. . .,N:

P(1,. . .,1,pi
0,1,. . .,1; 1,. . .,1,pi

1,1,. . .,1; v1
0,. . .,

 vi–1
0,0,vi + 1

0,. . .,vN
0; v1

1,. . .,vi–1
1,0,vi + 1

1,. . .,vN
1) = 1. (45)

46 In the economics literature, axioms of this type are known as separabil-
ity axioms.
47 Strictly speaking, since all prices and values are required to be positive, 
the left-hand side of (44) should be replaced by the limit as the commodity 
1 values, v1

0 and v1
1, approach 0.
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Equation (45) says that if all of the prices are set equal to 1 
except the prices for commodity i in the two periods, and the 
expenditures on commodity i are 0 during the two periods 
but the other expenditures in the two periods are arbitrarily 
given, then the index is equal to 1.

This completes the listing of tests for the weighted aver-
age of price relatives approach to bilateral index number 
theory. It turns out that these tests are sufficient to imply a 
specific functional form for the price index, as will be seen 
in the next section.

8. The Törnqvist Price Index  
and the Alternative Approach  
to Bilateral Indices
It turns out that the Törnqvist price index is the only index 
that satisfies the axioms in the previous section. In Section 6, 
the framework/tests were adapted to the context of a Lowe 
index. Similarly, it would be possible to adapt the tests in 
Section 7 to a new index number framework that looks at 
the axiomatic properties of indices of the form P(p0,p1,v). 
The index that would come out of such a framework is the 
geometric Young Index.

Proposition 2
If the number of commodities N exceeds two and the bilat-
eral price index function P(p0,p1,v0,v1) satisfies the 17 axioms 
listed in Section 7, then P must be the Törnqvist price index 
PT(p0,p1,v0,v1) defined by (26).48

Thus, the 17 properties or tests listed in Section 7 provide 
an axiomatic characterization of the Törnqvist price index, 
just as the 20 tests listed in Section 3 provided an axiomatic 
characterization for the Fisher ideal price index. For a proof 
of Proposition 2, see the annex.

Obviously, there is a parallel axiomatic theory for quan-
tity indices of the form Q(q0,q1,v0,v1) that depend on the two 
quantity vectors for periods 0 and 1, q0 and q1, as well as on 
the corresponding two expenditure vectors, v0 and v1. Thus, 
if Q(q0,q1,v0,v1) satisfies the quantity counterparts to tests T1 
to T17, then Q must be equal to the Törnqvist quantity index 
QT(q0,q1,v0,v1), whose logarithm is defined as follows:

  lnQT(q0,q1,v0,v1) ≡ ∑n=1
N (1/2)(sn

0 + sn
1)ln(qn

1/qn
0), (46)

where as usual the period t expenditure share on commodity 
i, si

t, is defined as vi
t/∑k=1

N vk
t for i = 1,. . .,N and t = 0,1.

Unfortunately, the implicit Törnqvist–Theil price index, 
PIT(q0,q1,v0,v1) that corresponds to the Törnqvist quan-
tity index QT defined by (46) using the product test is not 
equal to the direct Törnqvist–Theil price index PT(p0,p1,v0,v1)  
defined earlier by (26). The product test equation that 
defines PIT in the present context is given by the following 
definition:

48 The Törnqvist price index satisfies all 17 tests, but the proof in the 
annex did not use all of these tests to establish the result in the opposite 
direction: Tests 5, 13, 15, and one of 10 or 12 were not required in order to 
show that an index satisfying the remaining tests must be the Törnqvist 
price index. For alternative characterizations of the Törnqvist–Theil 
price index, see Balk and Diewert (2001) and Hillinger (2002).

 PIT(q0,q1,v0,v1) ≡ ∑n=1
N vn

1/[∑n=1
N vn

0QT(q0,q1,v0,v1)] 

= v1·1N/[v0·1NQT(q0,q1,v0,v1)]. (47)

The fact that the direct Törnqvist price index PT is not in 
general equal to the implicit Törnqvist–Theil price index PIT 
defined by (47) can be slightly disadvantageous compared to 
the axiomatic approach outlined in Sections 3 and 4, which 
led to the Fisher ideal price and quantity indices as being 
“best”. Using the Fisher approach meant that it was not nec-
essary to decide whether one wanted a “best” price index or 
a “best” quantity index: The theory outlined in Sections 3 
and 4 determined both indices simultaneously. However, in 
the Törnqvist approach outlined in this section, it is neces-
sary to choose whether one wants a “best” price index or a 
“best” quantity index.49

Other tests are of course possible. A counterpart to test 
T16 in Section 3, the Paasche and Laspeyres bounding test, 
is the following geometric Paasche and Laspeyres bounding 
test:

 PGL(p0,p1,v0,v1) ≤ P(p0,p1,v0,v1) ≤ PGP(p0,p1,v0,v1) or

 PGP(p0,p1,v0,v1) ≤ P(p0,p1,v0,v1) ≤ PGL(p0,p1,v0,v1), (48)

where the logarithms of the geometric Laspeyres and geo-
metric Paasche price indices, PGL and PGP, are defined as 
follows:

 ln PGL(p0,p1,v0,v1) ≡ ∑n=1
N sn

0ln(pn
1/pn

0),  (49) 

  ln PGP(p0,p1,v0,v1) ≡ ∑n=1
N sn

1ln(pn
1/pn

0). (50)

It can be shown that the Törnqvist price index PT(p0,p1,v0,v1) 
defined by (26) satisfies the geometric Laspeyres and Paas-
che bounding test, but the geometric Walsh price index PGW 
(p0,p1,v0,v1) defined by (39) does not satisfy it.

The geometric Paasche and Laspeyres bounding test was 
not included as a primary test in Section 7 because, a priori, 
it was not known what form of averaging of the price rela-
tives (for example, geometric or arithmetic or harmonic) 
would turn out to be appropriate in this test framework. 
The test (48) is an appropriate one if it has been decided that 
geometric averaging of the price relatives is the appropri-
ate framework, since the geometric Paasche and Laspeyres 
indices correspond to “extreme” forms of value weighting 
in the context of geometric averaging, and it is natural to 
require that the “best” price index lie between these extreme 
indices.

Walsh (1901; 408) pointed out a problem with his geomet-
ric price index PGW defined by (39), which also applies to the 
Törnqvist price index PT(p0,p1,v0,v1): These geometric-type 
indices do not give the “right” answer when the quantity 
vectors are constant (or proportional) over the two periods. 
In this case, Walsh thought that the “right” answer must be 

49 Hillinger (2002) suggested taking the geometric mean of the direct and 
implicit Törnqvist price indices in order to resolve this conflict. Unfor-
tunately, the resulting index is not “best” for either set of axioms that 
were suggested in this section. For more on Hillinger’s approach to index 
number theory, see Hillinger (2002).
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the Lowe (1823) index, which is the ratio of the costs of pur-
chasing the constant basket during the two periods.50 Put 
another way, the geometric indices PGW and PT do not satisfy 
the fixed basket test, T4, in Section 3.

There is one additional test that should be mentioned. 
Fisher (1911; 401) introduced this test in his first book that 
dealt with the test approach to index number theory. He 
called it the test of determinateness as to prices and described 
it as follows:

A price index should not be rendered zero, infinity, 
or indeterminate by an individual price becoming 
zero. Thus, if  any commodity should in 1910 be a 
glut on the market, becoming a ‘free good’, that fact 
ought not to render the index number for 1910 zero. 

Irving Fisher (1911; 401)

In the present context, this test could be interpreted as the 
following one: If any single price pi

0 or pi
1 tends to 0, then the 

price index P(p0,p,v0,v1) should not tend to 0 or plus infinity. 
However, with this interpretation of the test, which regards 
the values vi

t as remaining constant as the pi
0 or pi

1 tends 
to 0, none of the commonly used index number formulae 
would satisfy this test. Hence, this test should be interpreted 
as a test that applies to price indices P(p0,p1,q0,q1) of the type 
that were studied in Sections 3 and 4, which is how Fisher 
intended the test to apply. Thus, Fisher’s price determinate-
ness test should be interpreted as follows: If any single price 
pi

0 or pi
1 tends to 0, then the price index P(p0,p,q0,q1) should 

not tend to 0 or plus infinity. With this interpretation of the 
test, it can be verified that Laspeyres, Paasche, and Fisher 
indices satisfy this test but the Törnqvist price index will not 
satisfy this test. Thus, when using the Törnqvist price index, 
care must be taken to bound the prices away from 0 in order to 
avoid a meaningless index number value.

Walsh was aware that geometric average-type indices like 
the Törnqvist–Theil price index PT or Walsh’s geometric 
price index PGW defined by (39) become somewhat unstable51 
as individual price relatives become very large or small:

Hence in practice the geometric average is not likely 
to depart much from the truth. Still, we have seen 
that when the classes [i. e., expenditures] are very 
unequal and the price variations are very great, this 
average may deflect considerably. 

Correa Moylan Walsh (1901; 373)

In the cases of moderate inequality in the sizes of the 
classes and of excessive variation in one of the prices, 
there seems to be a tendency on the part of the geomet-
ric method to deviate by itself, becoming untrustworthy, 
while the other two methods keep fairly close together. 

Correa Moylan Walsh (1901; 404)

Weighing all of the arguments and tests presented in this 
chapter, there is a preference for the use of the Fisher ideal 
price index as a suitable target index for a statistical agency 
that wishes to use the axiomatic approach, but of course, 

50 Of course, the Fisher ideal index does have this property and gives the 
“right” answer when q1 is equal or proportional to q0.
51 That is, the index may approach 0 or plus infinity.

opinions can differ on which set of axioms is the most appro-
priate to use in practice.

9.  Defining Contributions to  
Overall Percentage Change  
for a Bilateral Index
Business analysts often want statistical agencies to provide 
decompositions of overall price change into explanatory 
components that reflect individual commodity price change. 
Chapter 9 of the CPI Manual discussed contributions to 
change. This decomposition problem can be defined more 
precisely as follows. A bilateral price index of the form P(p0, 
p1,q0,q1) can be interpreted as the ratio of a period 1 price 
level, P1, to a period 0 price level, P0. Thus, the percentage 
change in the overall price level is

  P(p0,p1,q0,q1) – 1 = [P1/P0] – 1 = [P1 – P0]/P0. (51)

The percentage change in commodity price n is (pn
1/pn

0) – 1 for 
n = 1,. . .,N.52 The desired decomposition has the following 
form:

  P(p0,p1,q0,q1) – 1 = Σn=1
N wn[(pn

1/pn
0) – 1], (52)

where wn are the weighting factors to be determined. The 
overall contribution factor for commodity n is defined as

  Cn ≡ wn[(pn
1/pn

0) – 1]; n = 1,. . .,N. (53)

The problem is: How exactly are the weighting factors wn to 
be determined? At the outset, it should be recognized that 
there need not be a unique determination for these weight-
ing factors since the weighting factors are allowed to be 
functions of the 4N variables, p0,p1,q0,q1. The price index  
P(p0,p1,q0,q1) will typically be a rather complicated function 
of the variables, p0,p1,q0,q1, and thus there can be many ways 
of decomposing P(p0,p1,q0,q1) – 1 into the form given by the 
right-hand side of (52).53

The approach taken in this section is to use a simple first-
order Taylor series approximation to the index number for-
mula to give us an approximate decomposition of the form 
(52). However, the suggested approximation requires an 
extra assumption—namely, that the given index number for-
mula, P(p0,p1,q0,q1), can be rewritten in the form P*(r,s0,s1), 
where r ≡ [r1,. . .,rN] = [p1

1/p1
0,. . .,pN

1/pN
0] and st is the usual vec-

tor of expenditure shares on the N commodities for period 
t for t = 0,1. Thus, it is assumed that P(p0,p1,q0,q1) can be 
expressed in the price ratio and expenditure share frame-
work for bilateral indices that was explained in Section 7.54 
Definitions (54)–(58) show how the Laspeyres, Paasche, 
Fisher, Törnqvist, and Walsh indices can be expressed in the 
form P*(r,s0,s1):

52 In this section, it is assumed that all period 0 prices are positive so that 
the ratios pn

1/pn
0 are well defined.

53 For example, see the alternative decompositions of the form (52) for 
the Fisher ideal index PF(p0,p1,q0,q1) that were obtained by Van IJzeren 
(1987), Ehemann, Katz and Moulton (2002), Diewert (2002), and Reins-
dorf, Diewert and Ehemann (2002).
54 See equation (41).
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 PL
*( r,s0,s1) ≡ Σn=1

N sn
0rn;  (54)

 PP
*(r,s0,s1) ≡ [Σn=1

N sn
1(rn)

–1]–1;  (55)

 PF
*(r,s0,s1) ≡ [PL

*(r,s0,s1)PP
*(r,s0,s1)]1/2;  (56)

 PT
*(r,s0,s1) ≡ ∏n=1

N rn
( / )( )1 2 0 1s sn n+ ; (57)

 PW
*(r,s0,s1) ≡ Σn=1

N (sn
0sn

1)1/2 (rn)
1/2/Σn=1

N 

 (sn
0sn

1)1/2 (rn)
–1/2. (58)

Using the new notation, the desired decomposition of over-
all percentage price change for P(p0,p1,q0,q1) given by (52) 
can be rewritten as follows:

  P*(r,s0,s1) – 1 = Σn=1
N wn(rn – 1). (59)

Assume that P(p0,p1,q0,q1) satisfies the identity test, 
P(p,p,q0,q1) = 1, for all p >> 0N, q0 >> 0N and q1 >> 0N. Then 
the companion P*( r,s0,s1) will satisfy

  P*(1N,s0,s1) = 1 for all s0 >> 0N and s1 >> 0N, (60)

where 1N is a vector of ones of dimension N.55 Assuming that 
P*(r,s0,s1) is differentiable with respect to the components of 
r at r = 1N, the first-order Taylor series approximation to P*(r, 
s0,s1) around the point r = 1N is

P*(r,s0,s1) ≈ P*(1N,s0,s1) + Σn=1
N [∂P*(1N,s0,s1)/∂rn][rn – 1]

 = 1 + Σn=1
N [∂P*(1N,s0,s1)/∂rn][rn – 1], (61)

where the second line was derived from (60). Rearranging 
(61) leads to the following approximate equality:

  P*(r,s0,s1) – 1 ≈ Σn=1
N [∂P*(1N,s0,s1)/∂rn][rn – 1]. (62)

Thus, (62) has the same structure as (59) except that (62) is 
only an approximate equality. The wn weighting factors from 
(62) are the partial derivatives of P*( r,s0,s1) with respect to 
the components of r, evaluated at r = 1N. The interpretation 
of these weighting factors is fairly straightforward.

Denote the nth weighting factor for the Laspeyres, Paas-
che, Fisher, Törnqvist, and Walsh indices as wLn, wPn, wFn, 
wTn, and wWn respectively. Straightforward calculations of 
the respective partial derivatives show that these weight-
ing factors are equal to the following expressions for n = 
1,. . .,N:

  wLn = sn
0;  (63)

  wPn = sn
1;  (64)

 wFn = ½(sn
0 + sn

1);  (65)

  wTn = ½(sn
0 + sn

1);  (66)

  wWn = (sn
0sn

1)1/2/Σi=1
N (si

0si
1)1/2.56 (67)

55 Note that PL
*, PP

*, PF
*, PT

*, and PW
* all satisfy the identity test (60).

56 If we approximate the geometric mean (sn
0sn

1)1/2 by the corresponding 
arithmetic mean, (½)(sn

0 + sn
1), then it can be seen that (½)(sn

0 + sn
1)/Σi=1

N 
(½)(si

0 + si
1) = (½)(sn

0 + sn
1) so that wWn ≈ (½)(sn

0 + sn
1) = wFn = wTn. Thus, 

the contribution factors for the Fisher, Törnqvist, and Walsh indices will 
all be approximately equal (and intuitively sensible).

These weighting factors can be substituted into the 
approximate equations PX

*( r,s0,s1) – 1 ≈ Σn=1
N wXn(rn – 1), 

where X  = L, P, F, T, or W. The resulting equation will 
be exact for the Laspeyres index, but, in general, it will 
not be exact for the remaining indices. For the remaining 
indices, the difference between PX

*( r,s0,s1) – 1 and Σn=1
N 

wXn(rn – 1) can be labeled as a statistical discrepancy, or the 
discrepancy could be distributed across the N contribu-
tion factors.

The aforementioned methodology for defining contribu-
tion factors is only one of many possible approaches. How-
ever, it does generate results that analysts will probably find 
suitable for their purposes.

We conclude this section by discussing the problems 
associated with deriving a decomposition of the rate of 
change of the Lowe index into explanatory factors involv-
ing rates of change for individual commodity prices.57 This 
topic is of some interest since the European Union makes 
a great deal of use of the Lowe formula when comput-
ing its HICP.58 However, their Lowe index uses a combi-
nation of fixed-base and chained indices, as will be seen 
subsequently.

We consider the case where a statistical agency uses a 
fixed-base Lowe index for 13 consecutive months in a year 
that starts in December; that is, for the first 13 months of the 
index, December of, say, 2018, is used as the base month. For 
these months, the following fixed-base Lowe index is used at 
higher levels of aggregation:59

 PLo(p0,pt,qb0) ≡ pt·qb0/p0·qb0; t = 0,1,. . .,12
 = Σn=1

N (pn
t/pn

0)pn
0qn

b0/p0·qb0

 = Σn=1
N sn

0b0rn, (68)

where p0 is the monthly price vector for December 2018, 
p1,. . .,p12 are the relevant month price vectors for January–
December of 2019, qb0 is a base year quantity vector for a 
prior year, and the price ratios rn

t and hybrid shares sn
0b0 are 

defined as follows:

rn
t ≡ pn

t/pn
0; sn

0b0 ≡ pn
0qn

b0/p0·qb0 = (pn
0/pn

b0)

sn
b0/Σi=1

N (pi
0/pi

b0)si
b0; n = 1,. . .,N, (69)

where sn
b0 ≡ pn

b0qn
b0/p0·qb0 is the base year expenditure share 

for commodity n and pn
b0 and qn

b0 are the base year price 
and quantity for commodity n for n = 1,. . .,N. The second 
equation for the hybrid share sn

0b0 shows that it can be 
written using only the price ratios pn

0/pn
b0 and the annual 

expenditure shares sn
b0 for base year 0.60

57 Our analysis is based on the work of Balk (2017), de Haan and Akem 
(2017), and Eurostat (2018; 180–183).
58 See Chapter 8 of Eurostat (2018) for details. This chapter was written by 
Bert Balk and Jens Mehrhoff. Other countries such as Australia and the 
United Kingdom use a similar annually chained Lowe index methodol-
ogy. It should be noted that some member states of the European Union 
do not use an annually chained Lowe index at higher levels of aggregation; 
they use an annually chained Young index when constructing their HICP.
59 All prices are assumed to be positive.
60 It is also possible to show that the Lowe index PLo(p0,pt,qb0) ≡ pt·qb0/p0·qb0 
defined in terms of the annual basket vector qb0 can also be written as a 
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Since the shares sn
0b0 sum to 1, it can be seen that the 

Lowe index has the following exact decomposition into com-
modity price change contribution factors:

 PLo(p0,pt,qb0) – 1 = Σn=1
N sn

0b0 (rn
t –1); t = 1,. . .,12. (70)

However, typically analysts do not want to measure contribu-
tions to general inflation from December of the previous year to 
a particular month t in the subsequent year; they will be inter-
ested in month-to-month inflation in the subsequent year. It is 
not a problem to measure month-to-month inflation during the 
year subsequent to the base month. Since the Lowe index satis-
fies the circularity test for months t = 0, 1,. . .,12, the Lowe index 
going from month t to month t + 1 is the following index:

 PLo(pt,pt + 1,qb0) ≡ pt + 1·qb0/pt·qb0; t = 0,1,. . .,11
 = Σn=1

N (pn
t + 1/pn

t)pn
tqn

b0/pt·qb0

 = Σn=1
N sn

tb0rn
t*, (71)

where the short-term price ratios rn
* and short-term hybrid 

shares sn
tb0 are defined as follows:

 rn
t* ≡ pn

t + 1/pn
t; sn

tb0 ≡ pn
tqn

b0/pt·qb0; n = 1,. . .,N; 

t =1,. . .,11. (72) 

Since the shares sn
tb0 sum to 1, it can be seen that the short-

term Lowe index has the following exact decomposition into 
monthly commodity price change contribution factors:

 PLo(pt,pt + 1,qb0) – 1 = Σn=1
N sn

tb0 (rn
t* –1); t = 1,. . .,11. (73) 

Thus, the problem of defining monthly contribution factors 
for the Lowe index for a single year is solved using this frame-
work. However, now suppose that the statistical agency does 
not use the base year quantity weights qb0 beyond one year; 
the annual weights are changed each year. The above alge-
bra describes how the index is constructed for the months of 
say December 2018 through to December 2019. In December 
2019, a new annual quantity vector is introduced, say qb1. The 
Lowe index for December 2018 is P12 ≡ PLo(p0,p12,qb0). The 
Lowe index using December 2018 as the reference price base 
for the next 12 months uses the new annual quantity vector 
qb1. This new Lowe index is multiplied by the index level for 
December 2019 to give the overall index level Pt relative to 
December 2018 defined as follows:61

 Pt ≡ PLo(p0,p12,qb0)PLo(p12,pt,qb1) t = 13,. . .,24
 = [p12·qb0/p0·qb0][pt·qb1/p12·qb1]

 = [pt·qb1/p0·qb0]/[p12·qb1/p12·qb0]. (74)

function of relative prices and the base year share vector; that is, we have P
Lo(p0,pt,qb0) = Σn=1

N (pn
1/pn

b0)sn
b0/Σi=1

N (pi
1/pi

b0)si
b0. It turns out that all of the 

formulae exhibited in this section can replace the use of qb0 by using an 
equivalent formula which uses the vector of base year expenditure shares. 
We will use the quantity vector qb0 in place of the base year share vector 
sb0 in order to simplify the formulae.
61 Note that the months have been numbered in a consecutive manner. Thus 
month 0 is December 2018, month 1 is January 2019,. . .,month 12 is Decem-
ber 2019, month 13 is January 2020,. . .., and month 24 is December 2020.

The first term in the last equality in (74) shows that the 
prices of month t (which is a month in 2020) are compared 
to the prices in month 0 (December of 2018) by the index  
pt·qb1/p0·qb0. However, the annual baskets, qb0 and qb1, are not 
held constant in this comparison, so this index is divided by 
a quantity index that compares the annual quantity vector 
qb1 to the prior annual quantity vector qb0, using the price 
weights p12, which are the monthly price weights for Decem-
ber 2019.62

Since the right-hand side of (74) is a rather complicated 
function of p0, p1, p12, qb0 and qb1, it is difficult to develop 
a straightforward contribution to percentage change 
decomposition for this index. Many analysts will be inter-
ested in year-over-year contributions to overall percentage 
change. In this case, the price level in month 12 + t, P12 + t, 
is compared to the price level in month t of the base year, 
which is Pt, for t = 1,. . .,12. Using (68) and (74), this ratio 
is equal to63

 P12 + t/Pt = PLo(p0,p12,qb0)PLo(p12,p12 + t,qb1)/PLo(p0,pt,qb0); 
t = 1,. . .,12

 = [p12·qb0/p0·qb0][p12 + t·qb1/p12·qb1]/[pt·qb0/p0·qb0]

 = [p12 + t·qb1/pt·qb0][p12·qb0/p12·qb1]. (75)

Again, it is not straightforward to rewrite (75) as a func-
tion of the year-over-year price ratios, pn

12 + t/pn
t, for t = 

1,. . .,12 and expenditure shares. However, it is possible to 
rewrite (75) in the following two alternative forms for t = 
1,. . .,12:

 P12 + t/Pt = κb0[p
12 + t·qb0/pt·qb0]

 = κb0[Σn=1
N sn

b0 (pn
12 + t/pn

t)]; (76)

 P12 + t/Pt = κb1[p
12 + t·qb1/pt·qb1]

 = κb1[Σn=1
N sn

b1 (pn
12 + t/pn

t)], (77)

where κb0 and κb1 are defined by (78) and the hybrid shares 
sn

b0 and sn
b1 are defined by (79):

 κb0 ≡ [p12·qb0/p12·qb1][p12 + t·qb1/p12 + t·qb0]; 
κb1 ≡ [p12·qb0/p12·qb1][pt·qb1/pt·qb0];  (78)

 sn
b0 ≡ pn

tqn
b0/pt·qb0; sn

b1 

≡ pn
tqn

b1/pt·qb1; n = 1,. . .,N. (79)

Note that indices of the form p·qb1/p·qb0 ≡ QLo(q
b0,qb1,p), 

where p is a vector of reference prices, are Lowe-type quan-
tity indices that indicate the effects of the change in annual 

62 Note that the index defined by (74) does not satisfy the identity test; 
that is, it is not necessarily the case that PLo(p0,p12,qb0)PLo(pt,p12,qb1) = 1 if 
pt = p0; see Balk (2017; 9). Of course, if qb1 = qb0, then the identity test will 
be satisfied.
63 This analysis follows that of Balk (2017; 8). Balk rearranged the terms in 
the last equality of (75) to give the following decomposition: P12 + t/Pt = [p12 

+ t·qb1/p12·qb1][p12·qb0/pt·qb0]. Thus, Balk noted that the year over year annu-
ally chained Lowe index is a product of two Lowe indices where the first 
index uses quantity weights qb1 and the second uses the quantity weights 
qb0.
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quantities going from qb0 to qb1, holding prices fixed at p. It 
can be seen that using the definition of the Lowe quantity 
index, κb0 and κb1 can be written as follows:

κb0 ≡ [p12·qb0/p12·qb1][p12 + t·qb1/p12 + t·qb0] 
= QLo(q

b0,qb1,p12 + t)/QLo(q
b0,qb1,p12); (80)

κb1 ≡ [p12·qb0/p12·qb1][pt·qb1/pt·qb0] 

= QLo(q
b0,qb1,pt)/QLo(q

b0,qb1,p12). (81)

Looking at (80) and (81), it can be seen that κb0 and κb1 rep-
resent the effects of changes in the annual quantity weights, 
and it is likely that κb0 and κb1 will be close to one.

Using (76), we have the following exact decomposition of 
the year-over-year percentage change in the overall annually 
chained Lowe index:64

[P12 + t/Pt] – 1 = κb0[Σn=1
N sn

b0(pn
12 + t/pn

t)] – 1 t = 1,. . .,12
 = κb0[Σn=1

N sn
b0(pn

12 + t/pn
t)] – κb0 + κb0 – 1

 = Σn=1
N κb0sn

b0[(pn
12 + t/pn

t) – 1] + [κb0 – 1]. (82)

Thus, the year-over-year percentage change in the annu-
ally chained Lowe index for month t is no longer a share-
weighted average of the commodity price annual rates of 
change, (pn

12 + t/pn
t) – 1; it is expressed as a weighted sum 

of the price changes (pn
12 + t/pn

t) – 1 (with weight κb0sn
b0 for 

commodity n) plus a term that reflects the changes in the 
annual quantity weights, which is [κb0 – 1]. Of course, if 
κb0 is equal to 1, then the quantity weights change term 
vanishes and (82) becomes the usual share-weighted 
decomposition.

Using (77) instead of (76) leads to the following alterna-
tive exact decomposition of the year-over-year percentage 
change in the overall annually chained Lowe index:

[P12 + t/Pt] – 1 = κb1[Σn=1
N sn

b1 (pn
12 + t/pn

t)] – 1 t = 1,. . .,12
 = κb1[Σn=1

N sn
b1(pn

12 + t/pn
t)] – κb1 + κb1 – 1

 = Σn=1
N κb1sn

b1[(pn
12 + t/pn

t) – 1] + [κb1 – 1]. (83) 

If κb1 equals 1, then (83) collapses down to a traditional 
share-weighted decomposition.

Since the decompositions defined by (82) and (83) are 
equally plausible, it is best to combine them into the follow-
ing exact decomposition for t = 1,. . .,12:

[P12 + t/Pt] – 1 = Σn=1
N (½)(κb0sn

b0 + κb1sn
b1)[(pn

12 + t/pn
t) – 1] 

 + [(½)(κb0 + κb1) – 1]. (84)

The approach taken by Eurostat and the OECD to provide a 
decomposition of [P12 + t/Pt] – 1 was developed by Ribe (1999), 
and it can be explained as follows (see also paragraphs 9.107–
9.110 of the CPI Manual). Using equation (75), we have

64 This type of decomposition where there is a separate term for the effects 
of weight changes follows the methodological approach explained by de 
Haan and Akem (2017). Their approach to year-over-year contributions 
analysis was implemented by the Australian Bureau of Statistics (2017; 7).

 P12 + t/Pt – 1 = [p12 + t·qb1/pt·qb0][p12·qb0/p12·qb1] – 1
 t = 1,. . .,12

 = [p12·qb0/pt·qb0][p12 + t·qb1/p12·qb1] – 1

 = [p12·qb0/pt·qb0]{[p12 + t·qb1/p12·qb1] – 1} 

 + [p12·qb0/pt·qb0] – 1

 = PLo(pt,p12,qb0){Σn=1
N sn

b1*

[(pn
12 + t/pn

12) – 1]} + {Σn=1
N sn

b0

[(pn
12/pn

t) – 1]}, (85)

where the hybrid shares sn
b0 were defined earlier in defi-

nitions (79) and the new hybrid shares sn
b1* are defined as 

follows:

  sn
b1* ≡ pn

12qn
b1/p12·qb1; n = 1,. . .,N. (86)

The first term on the right-hand side of the last equation 
in (85) is regarded as a “this year” term that looks at the 
contribution of price change from month 12 to month 12 + 
t, while the second term, Σn=1

N sn
b0[(pn

12/pn
t) – 1], is regarded 

as a “last year” contribution term that looks at the price 
change from month t in the first year to month 12 in the 
first year.

Balk commented on the decomposition defined by (85) as 
follows:

However, by looking at the structure of the right-
hand side [of (85)] it becomes clear that this decom-
position is not completely satisfactory. Though the 
second factor between brackets can be interpreted 
as previous year’s contribution, and the first factor 
between brackets likewise as current year’s contribu-
tion (and both factors can be decomposed commod-
ity-wise), this first factor is multiplied by previous 
year's price change. Thus there seems to be a whiff 
of double-counting here. 

Bert M. Balk (2017; 9)

Thus, Balk noted that the Lowe index PLo(pt,p12,qb0) pre-
cedes the first price decomposition term, Σn=1

N sn
b1*[(pn

12 + 

t/pn
12) – 1], and this Lowe index involves the overall amount 

of inflation going from month t in the first year to Decem-
ber of the first year, and this amount of overall inflation 
estimate augments the commodity-specific contributions 
going from December of the first year to month t of the 
second year. The decomposition defined by (84) seems to 
be conceptually cleaner with year-over-year contributions 
to overall year-over-year inflation listed in single terms 
(rather than as a sum of two terms) plus a final term that 
measures the overall contribution made by the changing 
annual baskets.65

It is possible to obtain an alternative decomposition to (85) 
that is equally plausible.66 Again using equation (75), we have

65 De Haan and Akem’s (2017) decomposition is similar in structure to 
(84) except that their decomposition of overall inflation is not an exact 
one.
66 The analysis that follows was performed by Jens Mehrhoff.
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 [P12 + t/Pt] – 1 = [p12 + t·qb1/pt×qb0][p12·qb0/p12·qb1] – 1 t = 1,. . .,12
 = [p12 + t·qb1/p12·qb1][p12·qb0/pt·qb0] – 1

 = [p12 + t·qb1/p12·qb1]{[p12·qb0/pt·qb0] – 1} 

 + [p12 + t·qb1/p12·qb1] – 1

 = PLo(p12,p12 + t,qb1){Σn=1
N sn

b0[(pn
12/pn

t) – 1]} 

 + {Σn=1
N sn

b1*[(pn
12 + t/pn

12) – 1]}, (87)

where the hybrid shares sn
b0 are defined by (79) and the 

hybrid shares sn
b1* are defined by (86).

When two equally plausible estimates for the same thing 
are available and a single estimate is required, it is best to 
take an evenly weighted average of the two estimates to form 
a final estimate. Thus, taking the arithmetic mean of the 

two estimates defined by (85) and (87) leads to the following 
Mehrhoff decomposition of year-over-year price change into 
explanatory components:

 [P12 + t/Pt] – 1 = Σn=1
N (½)sn

b0[1 + PLo(p12,p12 + t,qb1)][(pn
12/pn

t) – 1]
t = 1,. . .,12

 + Σn=1
N (½)sn

b1*[1 + PLo(pt,p12,qb0)]

[(pn
12 + t/pn

12) – 1]. (88)

Of course, there are many other decompositions that have 
been suggested in the literature.67 As was indicated earlier, 
there is no unambiguous “best” solution to this decomposi-
tion problem.

67 See Walshots (2016), Balk (2017), de Haan and Akem (2017), OECD 
(2018), and Chapter 8 in Eurostat (2018).
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Annex: Proof of Propositions
Proof of Proposition 1
Using the positivity test T1, rewrite the circularity test (28) 
in the following form:

  P(p1,p2,q1,q2) = P(p0,p2,q0,q2)/P(p0,p1,q0,q1). (A1)

Now hold p0 and q0 constant at some fixed values, say 
p* >> 0N and q* >> 0N, and define the function f(p,q) as 
follows:

 f(p,q) ≡ P(p*,p,q*,q) > 0 for all p>>0N and q >> 0N, (A2)

where the positivity of f(p,q) follows from T1. Substituting 
definition (A2) back into (A1) gives us the following repre-
sentation for P(p1,p2,q1,q2):

  P(p1,p2,q1,q2) = f(p2,q2)/f(p1,q1). (A3)

Now let p1 = p2 = p in (A3), and apply the identity test T3 to 
the resulting equation. We obtain:

 1 = P(p,p,q1,q2) = f(p,q2)/f(p,q1); 
p >> 0N; q1 >> 0N; q2 >> 0N. (A4)

Equation (A4) implies that f(p,q1) = f(p,q2) for all p >> 0N; q1 
>> 0N; q2 >> 0N, which in turn implies that f(p,q) does not 
depend on q; that is, we have

  f(p,q) = f(p,q*) for all p >> 0N; q >> 0N. (A5)

Define the function c(p) for all p >> 0N as

c(p) ≡ f(p,q*)
 = P(p*,p,q*,q*). (A6)

Substitute (A5) and (A6) back into (A3), and we obtain the fol-
lowing representation for the index number formula, P(p1,p2, 
q1,q2):

  P(p1,p2,q1,q2) = c(p2)/c(p1). (A7)

Now apply the commensurability test, T10, to the P that is 
defined by (A7), where we set αn = (pn

0)–1 for n = 1,.  .  .,N. 
Using the representation for P given by (61), we find that c 
must satisfy the following functional equation:

 c(p1)/c(p0) = c(p1
1/p1

0,p2
1/p2

0,. . .,pN
1/pN

0)/c(1N); 
p0 >> 0N; p1 >> 0N. (A8)

Define h(p) as follows:

  h(p) ≡ c(p)/c(1N) > 0, p >> 0N, (A9)

where the positivity of h follows from the positivity of c. 
Using definition (A9), we have

 h(p1
1/p1

0,p2
1/p2

0,. . .,pN
1/pN

0) = c(p1
1/p1

0,p2
1/

 p2
0,. . .,pN

1/pN
0)/c(1N) p0 >> 0N; p1 >> 0N (A10)

 = c(p1)/c(p0) using (A8)
 = [c(p1)/c(1N)]/[c(p0)/c(1N)] using T1
 = h(p1)/h(p0) using (A9) twice.

Thus, h must satisfy the following functional equation:

 h(p0)h(p1
1/p1

0,p2
1/p2

0,. . ., p1
1/p1

0) = h(p1); 
p0 >> 0N; p1 >> 0N. (A11)

Define the vector x as the vector p0 and the vector y as p1
1/p1

0,
p2

1/p2
0,. . .,pN

1/pN
0. Hence, the product of the nth components 

of x and y is equal to the nth component of the vector p1, and 
it can be seen that the functional equation (A11) is equiva-
lent to the following functional equation:

 h(x1y1,x2y2,. . .,xNyN) = h(x1,x2,. . .,xN)
h(y1,y2,. . .,yN); x >> 0N; y >> 0N. (A12)

Equation (A12) becomes the following equation if we allow 
x1 and y1 to vary freely but fix all xi and yi at 1 for i = 2,3,. . .,N:

h(x1y1,1,. . .,1) = h(x1,1,. . .,1)
h(y1,1,. . .,1); x1 > 0; y1 > 0. (A13)

But (A13) is an example of Cauchy’s (1821) fourth functional 
equation. Using the T1 (positivity) and T2 (continuity) prop-
erties of P, which carry over to h, we see that the solution to 
(A13) is

  h(x1,1,. . .,1) = x1
c(1), (A14)

where c(1) is an arbitrary constant. In a similar fashion, 
(A12) becomes the following equation if we allow x2 and y2 
to vary freely but fix all other xi and yi at 1:

 h(1,x2y2,1,. . .,1) = h(1,x2,1,. . .,1)
h(1,y2,1,. . .,1); x2 > 0; y2 > 0. (A15)

The solution to (A15) is

  h(1,x2,1,. . .,1) = x2
c(2), (A16)

where c(2) is an arbitrary constant. In a similar fashion, we 
find that

h(1,1,x3,1,. . .,1) = x3
c(3); . . .; h(1,1,. . .,1,xN) = xN

c(N), (A17)



58

CONSUMER PRICE INDEX MANUAL

where c(i) are the arbitrary constants. Using (66) repeatedly, 
we can show

 h(x1,x2,. . .,xN) = h(x1,1,. . .,1)h(1,x2,. . .,xN)
= h(x1,1,. . .,1)h(1,x2,1,. . .,1)h(1,1,x3,. . .,xN)

= h(x1,1,. . .,1)h(1,x2,1,. . .,1)h(1,1,x3,1,. . .,1)h(1
,1,1,x4,. . .,xN)

= h(x1,1,. . .,1)h(1,x2,1,. . .,1)h(1,1,x3,1,. . .,1). . .
h(1,1,1,. . .,1,xN)

= ∏i=1
N xi

c(i) using (A14), (A16), and (17). (A18)

Thus, we have determined the functional form for the func-
tion h. Now use (A9) to determine the function c(p) in terms 
of h(p):

 c(p) = c(1N)h(p)
 = c(1N) ∏i=1

N pi
c(i). (A19)

Using (A7), we can express P in terms of c as follows:

 P(p0,p1,q0,q1) = c(p1)/c(p0)
 = c(1N) ∏i=1

N (pi
1)c(i)/c(1N) ∏i=1

N (pi
0)c(i)  

using (A19)
= ∏i=1

N (pi
1/pi

0)c(i). (A20)

Now apply test T5, proportionality in current prices, to the 
P defined by (A20). It is easy to see that this test implies that 
the constants c(i) must sum to 1.

Finally, apply test T17, monotonicity in current prices, 
to conclude that the constants c(i) must be positive. Hence, 
we can set the c(i) equal to the αi and we have proved the 
proposition.

It should be noted that Konüs and Byushgens (1926) and 
Frisch (1930) provided alternative proofs for this result, 
assuming differentiability of the price index function. They 
used solutions to partial differential equations in place of 
Cauchy’s fourth fundamental functional equation.

Proof of Proposition 2
Define ri ≡ pi

1/pi
0 for i = 1,.  .  .,N. Using T1, T9, and (41),  

P(p0,p1,v0,v1) = P*(r, v0,v1). Using T6, T7, and (41):

  P(p0,p1,v0,v1) = P*( r,s0,s1), (A21)

where st is the period t expenditure share vector for t = 0,1.
Let x ≡ (x1,.  .  .,xN) and y ≡ (y1,.  .  .,yN) be strictly positive 

vectors. The transitivity test T11 and (A21) imply that the 
function P* has the following property:

 P*(x,s0,s1)P*(y,s0,s1) = P*(x1y1,. . .,xNyN,s0,s1). (A22) 

Using T1, P*(r,s0,s1) > 0, and using T14, P*(r, s0,s1) is strictly 
increasing in the components of r. The identity test T3 
implies that

  P*(1N,s0,s1) = 1, (A23)

where 1N is a vector of ones of dimension N. Using a result 
due to Eichhorn (1978; 66), it can be seen that these proper-
ties of P* are sufficient to imply that there exist positive func-
tions αi(s

0,s1) for i = 1,. . .,N such that P* has the following 
representation:

  lnP*( r,s0,s1) = ∑i=1
N αi(s 0,s1)lnri. (A24)

The continuity test T2 implies that the positive functions 
αi(s

0,s1) are continuous. For λ > 0, the linear homogeneity 
test T4 implies that

ln P*(λr,s0,s1) = lnλ + lnP*( r,s0,s1) (A25) 
= ∑i=1

N αi(s 0,s1)lnλri using (A24)

= ∑i=1
N αi(s 0,s1)lnλ + ∑i=1

N αi(s 0,s1)lnri

 = ∑i=1
N αi(s 0,s1)lnλ + lnP*( r,s0,s1) using (A24) 

again.

Equating the right-hand sides of the first and last lines in 
(A25) shows that the functions αi(s

0,s1) must satisfy the fol-
lowing restriction

  ∑i=1
N αi(s 0,s1) = 1 (A26)

for all strictly positive vectors s0 and s1.
Using the weighting test T16 and the commodity reversal 

test T8, equation (43) holds. Equation (43) combined with 
the commensurability test T9 implies that P* satisfies the 
following equations

 P*(1,. . .,1,ri,1,. . .,1;s0;s1) = f(1,si
0,si

1), i = 1,. . .,N, (A27)

for all ri > 0, where f is the function defined in test T16.
Substitute equation (A27) into equation (A24) in order to 

obtain the following system of equations:

ln P*(1,. . .,1,ri,1,. . .,1;s0;s1) = lnf(1,si
0,si

1)  
= αi(s 0,s1)lnri; i = 1,. . .,N. (A28) 

But equation i in (A28) implies that the positive continuous 
function of 2N variables αi(s

0,s1) is constant with respect 
to all of its arguments except si

0 and si
1, and this property 

holds for each i. Thus, each αi(s
0,s1) can be replaced by the 

positive continuous function of two variables βi(si
0,si

1) for i = 
1,. . .,N.68 Now replace the αi(s

0,s1) in equation (A24) by the 
βi(si

0,si
1) for i = 1,. . .,N, and the following representation for 

P* is obtained:

  ln P*( r,s0,s1) = ∑i=1
N βi(si 

0,si
1)lnri. (A29)

Equation (A26) imply that the functions βi(si
0,si

1) also satisfy 
the following restrictions:

68 More explicitly, β1(s1
0,s1

1) ≡ α1(s1
0,1,.  .  .,1;s1

1,1,.  .  .,1) and so on. That is, 
in defining β1(s1

0,s1
1), the function α1(s1

0,1,.  .  .,1;s1
1,1,.  .  .,1) is used where 

all components of the vectors s0 and s1 except the first are set equal to an 
arbitrary positive number like 1.
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∑n=1
N sn

0 = 1; ∑n=1
N sn

1 = 1  implies ∑i=1
N βi(si 

0,si
1) = 1. (A30)

Assume that the weighting test T17 holds and substitute equa-
tions (43) into (A29) in order to obtain the following equations:

 βi(0,0) ln [pi
1/pi

0] = 0; i = 1,. . .,N. (A31) 

Since pi
1 and pi

0 can be arbitrary positive numbers, it can be 
seen that (A31) implies

  βi(0,0) = 0; i = 1,. . .,N. (A32)

Assume that the number of commodities N is equal to or 
greater than 3. Using (A10) and (A12), Theorem 2 in Aczél 
(1987; 8) can be applied, and the following functional form 
for each of the βi(si

0,si
1) is obtained:

  βi(si 
0,si

1) = csi 
0 + (1 – γ)si

1, i = 1,. . .,N, (A33)

where γ is a positive number satisfying 0 < γ < 1.
Finally, the time reversal test T10 or the quantity weights 

symmetry test T12 can be used to show that γ must equal ½. 
Substituting this value for γ back into (A33) and then substi-
tuting those equations back into (A29), the functional form 
for P* and hence P is determined as

lnP(p0,p1,v0,v1) = lnP*( r,s0,s1) = ∑n=1
N (1/2)[sn

0 + sn
1] 

ln (pn
1/pn

0). (A34)
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NUMBER THEORY* 4
Introduction

“In drawing our averages the independent fluctuations 
will more or less destroy each other; the one required 
variation of gold will remain undiminished.”

W. Stanley Jevons (1884, 26).

The stochastic approach to the determination of the price 
index can be traced back to the work of Jevons and Edge-
worth over a hundred years ago.1 In “Early Unweighted 
Stochastic Approaches to Bilateral Index Number Theory” 
section, the work of these early pioneers will be explained. 
Basically, their approach was to take an average of the price 
ratios pertaining to the two periods as their index number. 
However, Keynes (1930) was critical of this approach to 
index number theory because it did not take into account 
the economic importance of each commodity in the index. 
Thus in “The Weighted Stochastic Approach of Theil” sec-
tion, the weighted stochastic approach of Theil (1967) will 
be explained. This approach does take into account the eco-
nomic importance of each commodity.

In “The Time Product Dummy Approach to Bilateral 
Index Number Theory” section, an introduction to the time 
product dummy stochastic approach to index number theory 
will be presented. Using this approach, the focus is on pro-
viding representative price levels for two periods.2 Weighted 
versions of this approach are described in “The Weighted 
Time Product Dummy Approach to Bilateral Index Num-
ber Theory” section.

A weakness of the material presented in this chapter 
is that it is assumed that all prices are positive. In Chap-
ters 7 and 8, this assumption will be relaxed. The reason 
for postponing a discussion of index number theory when 
there are missing prices is that it is useful to develop the eco-
nomic approach to index number theory before discussing 
the problem of missing prices. The missing price problem 
and the treatment of new and disappearing products will be 
studied in some detail in Chapters 7 and 8. The economic 
approach to index number theory will be discussed in Chap-
ters 5 and 8.

* The author thanks Carsten Boldsen, Jan de Haan, Ronald Johnson, 
Thomas McDowell, Jens Mehrhoff, and Chihiro Shimizu for their help-
ful comments.
1 For references to the literature, see Diewert (1993, 37–38) (2010).
2 The extension of the price levels approach to many periods will be dis-
cussed in Chapter 7.

Early Unweighted Stochastic 
Approaches to Bilateral Index 
Number Theory
The basic idea behind the early stochastic approaches to 
index number theory is that each price relative, pn

1/pn
0 for n = 

1,2, . . .,N, can be regarded as an estimate of a common infla-
tion rate a between periods 0 and 1; that is, it is assumed that

 pn
1/pn

0 = α + εn,  n = 1,2, . . .,N (1)

where α is the common inflation rate and the εn are random 
variables with mean 0 and variance σ2. The least squares 
estimator for α is the Carli (1764) price index PC, defined as

 PC(p0,p1) ≡ ∑n=1
N (1/N) pn

1/pn
0. (2)

Unfortunately, PC does not satisfy the time reversal test,3 
that is, PC(p1,p0) ≠ 1/ PC(p0,p1).

Now suppose that the stochastic specification of the error 
terms is changed; that is, assume that the logarithm of each 
price relative, ln(pn

1/pn
0), is an unbiased estimate of the loga-

rithm of the inflation rate between periods 0 and 1, β say. 
Thus, we have

 ln(pn
1/pn

0) = β + εn, n = 1,2, . . .,N (3)

where β ≡ lnα and εn are independently distributed random 
variables with mean 0 and variance σ2. The least squares 
or maximum likelihood estimator for β is the logarithm of 
the geometric mean of the price relatives. Hence, the cor-
responding estimate for the common inflation rate α4 is the 
Jevons (1865) price index PJ, which is defined as

3 In fact, Fisher (1922, 66) noted that PC(p0,p1)pC(p1,p0) ≥ 1 unless the 
period 1 price vector p1 is proportional to the period 0 price vector p0; 
that is, Fisher showed that the Carli index has a definite upward bias. He 
urged statistical agencies not to use this formula. The upward bias of the 
Carli index will be illustrated in Chapter 6.
4 Greenlees (1999) pointed out that although (1/N)∑n=1

N ln(pn
1/pn

0) is an 
unbiased estimator for β, the corresponding exponential of this esti-
mator, PJ defined by (4), will generally not be an unbiased estimator 
for α under our stochastic assumptions. To see this, let xn = ln(pn

1/pn
0). 

Taking expectations, we have Exn = β = ln(α). Thus, each xn is an unbi-
ased estimator of overall log price change. If we wish to measure overall 
price change α instead of log price change β, then use yn ≡ exp[xn] as an 
estimator for α. Define the positive convex function f of one variable x 
by f(x) ≡ ex. By Jensen’s (1906) inequality, we have Ef(x) ≥ f(Ex). Let-
ting x equal the random variable xn, this inequality becomes E(pn

1/pn
0) = 

Ef(xn) ≥ f(Exn) = f(β) = eβ = elnα = α. Thus, for each n, we have E(pn
1/pn

0) 
≥ α, and it can be seen that the Jevons price index defined by (4) will 
generally have an upward bias from a statistical point of view. However, 



62

CONSUMER PRICE INDEX MANUAL

other and from quantities. In current macroeconomic termi-
nology, we can interpret Keynes as saying that a macroeco-
nomic shock will be distributed across all prices and quantities 
in the economy through the normal interaction between supply 
and demand; that is, through the workings of the general equi-
librium system. Thus, Keynes seemed to be leaning toward 
the economic approach to index number theory (even before 
it was developed to any great extent), where quantity move-
ments are functionally related to price movements. A second 
point that Keynes made in this quotation is that there is no 
such thing as the inflation rate; there are only price changes 
that pertain to well-specified sets of commodities or transac-
tions; that is, the domain of definition of the price index must 
be carefully specified. A final point that Keynes made is that 
price movements must be weighted by their economic impor-
tance; that is, by quantities or expenditures.5

In addition to these theoretical criticisms, Keynes also 
made the following strong empirical attack on Edgeworth’s 
unweighted stochastic approach:

The Jevons—Edgeworth “objective mean variation 
of general prices”, or “indefinite” standard, has 
generally been identified, by those who were not as 
alive as Edgeworth himself  was to the subtleties of 
the case, with the purchasing power of money—if 
only for the excellent reason that it was difficult to 
visualise it as anything else. And since any respect-
able index number, however weighted, which covered 
a fairly large number of commodities could, in ac-
cordance with the argument, be regarded as a fair 
approximation to the indefinite standard, it seemed 
natural to regard any such index as a fair approxima-
tion to the purchasing power of money also.

Finally, the conclusion that all the standards “come 
to much the same thing in the end” has been rein-
forced “inductively” by the fact that rival index num-
bers (all of them, however, of the wholesale type) have 
shown a considerable measure of agreement with one 
another in spite of their different compositions.

. . . On the contrary, the tables given above (pp. 53,55) 
supply strong presumptive evidence that over long 
periods as well as over short periods the movements 
of the wholesale and of the consumption standards 
respectively are capable of being widely divergent.

John Maynard Keynes (1930, 80–81)

In this quotation, Keynes noted that the proponents of the 
unweighted stochastic approach to price change measure-
ment were comforted by the fact that all of the then exist-
ing (unweighted) indices of wholesale prices showed broadly 
similar movements. However, Keynes showed empirically 
that these wholesale price indices moved quite differently 
than his CPIs.6

5 An empirical example in the annex to Chapter 6 will illustrate the 
importance of weighting. This example also illustrates that there can be 
substantial differences between the Jevons and Carli indices.
6 Using the OECD national accounts data for the last five decades, some 
broad trends in the rates of increase in prices for the various components 
of GDP can be observed: Rates of increase for the prices of internation-
ally traded goods have been the lowest, followed by the prices of repro-
ducible capital goods, followed by consumer prices, followed by wage 
rates. From other sources, land prices have shown the highest rate of 

 PJ(p0,p1) ≡ ∏n=1
N (pn

1/pn
0)1/N. (4)

The Jevons price index PJ does satisfy the time reversal test 
and hence is much more satisfactory than the Carli index PC. 
However, both the Jevons and Carli price indices suffer from 
a fatal flaw: each price relative pn

1/pn
0 is regarded as being 

equally important and is given an equal weight in the index 
number formulae (2) and (4). Keynes was particularly critical 
of this unweighted stochastic approach to index number the-
ory. He directed the following criticism toward this approach, 
which was vigorously advocated by Edgeworth (1923):

Nevertheless I venture to maintain that such ideas, 
which I have endeavoured to expound above as fairly 
and as plausibly as I can, are root-and-branch erro-
neous. The “errors of observation”, the “faulty shots 
aimed at a single bull’s eye” conception of the index 
number of prices, Edgeworth’s “objective mean vari-
ation of general prices”, is the result of confusion of 
thought. There is no bull’s eye. There is no moving but 
unique centre, to be called the general price level or 
the objective mean variation of general prices, round 
which are scattered the moving price levels of indi-
vidual things. There are all the various, quite definite, 
conceptions of price levels of composite commodities 
appropriate for various purposes and inquiries which 
have been scheduled above, and many others too. 
There is nothing else. Jevons was pursuing a mirage.

What is the flaw in the argument? In the first 
place it assumed that the fluctuations of individ-
ual prices round the “mean” are “random” in the 
sense required by the theory of the combination of 
independent observations. In this theory the diver-
gence of one “observation” from the true position 
is assumed to have no influence on the divergences 
of other “observations”. But in the case of prices, 
a movement in the price of one commodity neces-
sarily influences the movement in the prices of other 
commodities, whilst the magnitudes of these com-
pensatory movements depend on the magnitude of 
the change in expenditure on the first commodity as 
compared with the importance of the expenditure on 
the commodities secondarily affected. Thus, instead 
of “independence”, there is between the “errors” 
in the successive “observations” what some writers 
on probability have called “connexity”, or, as Lexis 
expressed it, there is “sub-normal dispersion”.

We cannot, therefore, proceed further until we have 
enunciated the appropriate law of connexity. But the 
law of connexity cannot be enunciated without refer-
ence to the relative importance of the commodities 
affected—which brings us back to the problem that 
we have been trying to avoid, of weighting the items 
of a composite commodity.

John Maynard Keynes (1930, 76–77)

One of the points Keynes makes in this quotation is that prices 
in the economy are not independently distributed from each 

if we make the measurement of average log price change our estima-
tion target, then the Jevons index is no longer biased for this alternative 
target index.
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In the following section, Theil’s solution to the weighting 
problem will be described.

The Weighted Stochastic Approach 
of Theil

It might seem at first sight as if simply every price quota-
tion were a single item, and since every commodity (any 
kind of commodity) has one price-quotation attached 
to it, it would seem as if price-variations of every kind 
of commodity were the single item in question. This is 
the way the question struck the first inquirers into price-
variations, wherefore they used simple averaging with 
even weighting. But a price-quotation is the quotation 
of the price of a generic name for many articles; and one 
such generic name covers a few articles, and another 
covers many. .  .  . A single price-quotation, therefore, 
may be the quotation of the price of a hundred, a thou-
sand, or a million dollar’s worths, of the articles that 
make up the commodity named. Its weight in the aver-
aging, therefore, ought to be according to these money-
unit’s worth.

Correa Moylan Walsh (1921, 82–83)

Theil (1967, 136–37) proposed a solution to the lack of 
weighting in the Jevons index defined by (4). He argued as 
follows. Suppose we draw price relatives at random in such 
a way that each dollar of expenditure in the base period has 
an equal chance of being selected. Then the probability that 
we will draw the nth price relative is equal to sn

0 ≡ pn
0qn

0/ 
p0·q0, the period 0 expenditure share for commodity n. The 
resulting overall mean (period 0 weighted) logarithmic price 
change is ∑n=1

N sn
0ln(pn

1/pn
0). Now repeat the aforementioned 

mental experiment and draw price relatives at random in 
such a way that each dollar of expenditure in period 1 has an 
equal probability of being selected. This leads to the overall 
mean (period 1 weighted) logarithmic price change of ∑n=1

N 
sn

1ln(pn
1/pn

0). Each of these measures of overall logarithmic 
price change is equally valid, so it is best to take a symmet-
ric average of the two measures in order to obtain a final 
single measure of overall logarithmic price change.9 Theil10 
argued that a nice symmetric index number formula can be 
obtained if we make the probability of selection for the nth 
price relative equal to the arithmetic average of the period 
0 and 1 expenditure shares for commodity n. Using these 
probabilities of selection, Theil’s final measure of overall 
logarithmic price change was

9 “The [asymmetric] price index (1.6) has certain merits. It is, for example, 
independent of the units in which we measure the quantities of the vari-
ous commodities (tons, gallons, etc.). It has the disadvantage, however, of 
being one sided in the sense that it is based on the distribution of expendi-
ture in the ath region. We could equally well apply our random selection 
procedure to the bth region, in which case, wia is replaced by wib in (1.5) 
and (1.6). We must conclude that (1.6) is an asymmetric index number, 
which is a disadvantage because the question asked is symmetric: If the 
price level of the bth region exceeds that of the ath by a factor 1.2, say, we 
should expect that the price level of the latter region exceed that of the 
former by a factor 1/1.2” (Henri Theil (1967, 137)).
10 “The price index number defined in (1.8) and (1.9) uses the n individual 
logarithmic price differences as the basic ingredients. They are combined 
linearly by means of a two-stage random selection procedure: First, we 
give each region the same chance ½ of being selected, and second, we give 
each dollar spent in the selected region the same chance (1/ma or 1/mb) of 
being drawn” (Henri Theil (1967, 138)).

In order to overcome the Keynesian criticisms of the 
unweighted stochastic approach to index numbers, it is nec-
essary to

• have a definite domain of definition for the index number 
and

• weight the price relatives by their economic importance.

On the second dot point, it should be noted that the issue 
of weighting price ratios came up early in the history of 
index number theory. Young (1812) advocated some form 
of rough weighting of the price relatives according to their 
relative value over the period being considered, but the pre-
cise form of the required value weighting was not indicat-
ed.7 However, it was Walsh (1901, 83–121) (1921, 81–90) who 
stressed the importance of weighting the individual price 
ratios, where the weights are functions of the associated 
values for the commodities in each period, and each period 
is to be treated symmetrically in the resulting formula:

What we are seeking is to average the variations in 
the exchange value of one given total sum of money 
in relation to the several classes of goods, to which 
several variations [price ratios] must be assigned 
weights proportional to the relative sizes of the 
classes. Hence the relative sizes of the classes at both 
the periods must be considered.

Correa Moylan Walsh (1901, 104)

Commodities are to be weighted according to 
their importance, or their full values. But the prob-
lem of axiometry always involves at least two peri-
ods. There is a first period and there is a second 
period which is compared with it. Price variations8 
have taken place between the two, and these are to 
be averaged to get the amount of their variation as a 
whole. But the weights of the commodities at the sec-
ond period are apt to be different from their weights 
at the first period. Which weights, then, are the right 
ones—those of the first period or those of the sec-
ond? Or should there be a combination of the two 
sets? There is no reason for preferring either the first 
or the second. Then the combination of both would 
seem to be the proper answer. And this combination 
itself  involves an averaging of the weights of the two 
periods.

Correa Moylan Walsh (1921, 90)

price increase over this period. Of course, if a country adjusts the price 
of computer-related equipment for quality improvements, then the aggre-
gate price of capital machinery and equipment tends to move downward 
in recent years. Another source of long-run differential rates of price 
increase is due to the fact that service prices tend to increase more rapidly 
than product prices. Thus, there are long-term systematic differences in 
price movements over different domains of definition.
7 Walsh (1901, 84) refers to Young’s contributions as follows: “Still, 
although few of the practical investigators have actually employed any-
thing but even weighting, they have almost always recognized the theo-
retical need of allowing for the relative importance of the different classes 
ever since this need was first pointed out, near the commencement of the 
century just ended, by Arthur Young. . . . Arthur Young advised simply 
that the classes should be weighted according to their importance.”
8 A price variation is a price ratio or price relative in Walsh’s terminology.
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symmetric mean function m(a,b) that appears in (10) must be 
the arithmetic mean.

The stochastic approach of Theil has another nice sym-
metry property. Instead of considering the distribution of 
the price ratios rn = ln(pn

1/pn
0), we could also consider the 

distribution of the reciprocals of these price ratios, say:

 tn ≡ ln(pn
0/pn

1);  n = 1, . . .,N 
= ln(pn

1/pn
0)–1 

= – ln(pn
1/pn

0) 
= – rn, (11)

where the last equality follows from definitions (6). We can 
still associate the symmetric probability, ρn ≡ (1/2)[sn

0 + sn
1], 

with the nth reciprocal logarithmic price ratio tn for n = 
1,  .  .  .,N. Now define the discrete random variable, say T, 
as the random variable that can take on the values tn with 
probabilities ρn ≡ (1/2)(sn

0 + sn
1) for n = 1, . . .,N. It can be seen 

that the expected value of the discrete random variable T is

E[T] ≡ ∑n=1
N ρntn

= – ∑n=1
N ρnrn using (11)

= – E[R] using (7)
= – lnPT(p0,p1,q0,q1). (12)

Thus, it can be seen that the distribution of the random 
variable T is equal to minus the distribution of the random 
variable R. Hence, it does not matter whether we consider 
the distribution of the original logarithmic price ratios, 
rn ≡ ln(pn

1/pn
0), or the distribution of their reciprocals, tn ≡ 

ln(pn
0/pn

1): we obtain essentially the same stochastic theory.
It is possible to consider weighted stochastic approaches 

to index number theory where we look at the distribution of 
price ratios, pn

1/pn
0, rather than the distribution of the loga-

rithmic price ratios, ln(pn
1/pn

0). Thus, again following in the 
footsteps of Theil, suppose we draw price relatives at ran-
dom in such a way that each dollar of expenditure in the base 
period has an equal chance of being selected. Then, the prob-
ability that we will draw the nth price relative is equal to sn

0 
≡ pn

0qn
0/p0·q0, the period 0 expenditure share for commodity 

n. Now the overall mean (period 0 weighted) price change is

 PL(p0,p1,q0,q1) = ∑n=1
N sn

0(pn
1/pn

0), (13)

which turns out to be the Laspeyres price index PL defined 
in Chapter 2.

Now repeat this mental experiment and draw price relatives 
at random in such a way that each dollar of expenditure in 
period 1 has an equal probability of being selected. This leads 
to the overall mean (period 1 weighted) price change equal to

 PPal(p0,p1,q0,q1) = ∑n=1
N sn

1(pn
1/pn

0). (14)

The right-hand side of (14) is known as the Palgrave (1886) 
index number formula, PPal.

12

12 It is formula number 9 in Fisher’s (1922, 466) listing of index number 
formulae.

 lnPT(p0,p1,q0,q1) ≡ ∑n=1
N (½)(sn

0 + sn
1)ln(pn

1/pn
0). (5)

It is possible to give the following statistical interpretation 
of the right-hand side of (5). Define the nth logarithmic price 
ratio rn by

 rn ≡ ln(pn
1/pn

0).  n = 1, . . .,N. (6)

Now define the discrete random variable, say R, as the ran-
dom variable that can take on the values rn with probabilities 
ρn ≡ (1/2)(sn

0 + sn
1) for n = 1, . . .,N. Note that since each set of 

expenditure shares, sn
0 and sn

1, sum to one, the probabilities 
ρn will also sum to one. It can be seen that the expected value 
of the discrete random variable R is

E[R] ≡ ∑n=1
N ρnrn = ∑n=1

N (½)(sn
0 + sn

1)
ln(pn

1/pn
0) = lnPT(p0,p1,q0,q1) (7)

using (5) and (6). Thus, the logarithm of the index PT can be 
interpreted as the expected value of the distribution of the log-
arithmic price ratios in the domain of definition under con-
sideration, where the N discrete price ratios in this domain 
of definition are weighted according to Theil’s probability 
weights, ρn ≡ (½)(sn

0 + sn
1) for n = 1, . . .,N.

Taking antilogs of both sides of (7), we obtain the 
 Törnqvist (1936) (1937) Theil price index, PT. This index 
number formula has a number of good properties.11 In par-
ticular, PT satisfies the time reversal test:

 P(p1,p0,q1,q0) = 1/P(p0,p1,q0,q1). (8)

The price index PT also satisfies the following linear homoge-
neity test in current period prices:

 P(p0,λp1,q0,q1) = λP(p0,p1,q0,q1), (9)

for all positive numbers λ and strictly positive vectors 
p0,p1,q0,q1. Thus, if all period one prices increase by the same 
positive number λ and if the price index P satisfies the test 
(9), then the price index increases by this same scalar factor 
λ.

The time reversal test and the linearly homogeneous test 
can be used to justify Theil’s (arithmetic) method of form-
ing an average of the two sets of expenditure shares in order 
to obtain his probability weights, ρn ≡ (½)[sn

0 + sn
1] for n = 

1,  .  .  .,N. Consider the following symmetric mean class of 
Theil-type logarithmic index number formulae:

 lnPml(p0,p1,q0,q1) ≡ ∑n=1
N m(sn

0,sn
1)ln(pn

1/pn
0), (10)

where m(sn
0,sn

1) is a homogeneous symmetric mean of the 
period 0 and 1 expenditure shares, sn

0 and sn
1, respectively. 

In order for Pml to satisfy the time reversal test, it is neces-
sary that the mean function m be symmetric. In order for 
the weights in (10) to sum to one so that the linear homoge-
neity test is satisfied and the weights can be interpreted as 
probability weights, it can be shown that the homogeneous 

11 See Section 5 of Chapter 3 for a listing of the test properties of the 
Törnqvist–Theil index.
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adjustment factor,15 and etn is a positive stochastic error term 
with a mean that is assumed to be 1. Define the logarithms of 
pn

t and etn as ytn = lnpn
t and etn = lnetn for t = 0,1; n = 1, . . .,N; 

define the logarithm of Ut as pt = lnUt for t = 0,1; and define 
the logarithm of an as Bn = lnan for n = 1, . . .,N. Then taking 
logarithms of both sides of (18) leads to the following linear 
regression model:

 ytn = pt + Bn + etn.  t = 0,1; n = 1, . . .,N. (19)

It can be seen that the parameters in the linear regression 
model defined by (19), pt and Bn, are not uniquely determined. 
If  any number y is added to each pt and the same number y 
is subtracted from each Bn, the right-hand side of each equa-
tion in (19) will not change. Thus, in order to obtain unique 
estimates for pt and Bn on the right-hand side of equations 
(19), we need to impose a normalization on these parameters. 
Impose the following normalization:

 p0 = 0. (20)

This normalization corresponds to setting the period 0 price 
level, U0 = exp[p0], equal to 1. Thus, U1/U0 = U1 and thus the 
estimated U1

* = exp[p1
*] can be interpreted as a bilateral index 

number, where p1
* and B1

*,  .  .  .,BN
* solve the following least 

squares minimization problem:

min , ,p B B1 1... NEn=1
N (y0n - 0 - Bn)

2 + En=1
N (y1n - p1 - Bn)

2. (21)

The first-order necessary (and sufficient) conditions for solv-
ing (21) are equation (22) and the N equations (23) are listed 
here:

 Np1 + En=1
N Bn = En=1

N y1n, (22)
 p1 + 2Bn = y0n + y1n  n = 1, . . .,N. (23)

The solution to equations (22) and (23) is given by the fol-
lowing estimators:

 p1
* = (1/N)En=1

N [y1n - y0n],  (24)
 Bn

* = (1/2)y0n + (1/2)[y1n - p1
*].  n = 1, . . .,N. (25)

Exponentiating the estimators defined by (24) and (25) leads 
to the following estimators for the period 1 price level (and 
price index) U1

* = exp[p1
*] and the quality adjustment factors 

an
* = exp[Bn

*]:

 U1
* = Un=1

N (pn
1/pn

0)1/N = PJ(p0,p1), (26)
 an

* = (pn
0)1/2(pn

1/U1
*)1/2  n = 1, . . .,N (27)

15 In the context of commodities that are close substitutes, the interpre-
tation of the an as quality adjustment factors is intuitively plausible. In 
the context of commodities that are not close substitutes, the an can be 
interpreted as relative utility valuation factors; i.e., an represents the mar-
ginal utility value to purchasers of the product of an extra unit of qn. This 
interpretation relies on the economic approach to index number theory 
and is pursued in more depth in Chapter 8.

It can be verified that neither the Laspeyres nor Palgrave 
price indices satisfy the time reversal test (8). Again following 
in the footsteps of Theil, we might try to obtain a formula 
that satisfied the time reversal test by taking a symmetric aver-
age of the two sets of shares. Consider the following class of 
symmetric mean index number formulae:

 PSM(p0,p1,q0,q1) = En=1
N m(sn

0,sn
1)(pn

1/pn
0), (15)

where m(sn
0,sn

1) is a homogeneous symmetric mean of the 
period 0 and 1 expenditure shares, sn

0 and sn
1, respectively. 

However, in order to interpret the right-hand side of (15) as 
an expected value of the price ratios pn

1/pn
0, it is necessary 

that

 En=1
N m(sn

0,sn
1) = 1. (16)

However, in order to satisfy (16), m cannot be a symmet-
ric geometric or harmonic mean or any of the commonly 
used homogeneous symmetric mean. In fact, the only simple 
homogeneous symmetric mean that satisfies (16) is the arith-
metic mean.13 With this choice of m, (15) becomes the follow-
ing (unnamed) index number formula, PU:

 PU(p0,p1,q0,q1) = En=1
N (1/2)(sn

0 + sn
1)(pn

1/pn
0). (17)

Unfortunately, the unnamed index PU does not satisfy the 
time reversal test either.

These considerations explain why Theil's stochastic index 
number formula PT seems to be the preferred member of this 
class of index number formula.

In the following two sections, stochastic approaches to 
index number theory that focus on the estimation of price 
levels rather than bilateral price indices will be considered. 
In Section 4, the price level approach will be applied to the 
case of two time periods, while in Section 5 the price level 
approach will be applied to many periods.

The Time Product Dummy  
Approach to Bilateral Index  
Number Theory
In this section, a stochastic model that estimates the average 
price levels for two periods will be derived using an adapta-
tion of the country product dummy model.14 The adaptation 
is to move from the context of comparing prices across two 
countries to the time series context where the comparison of 
prices is made between two time periods.

Consider the following model of price behavior for the 
value aggregate under consideration:

 pn
t = Utanetn.  t = 0,1; n = 1, . . .,N. (18)

The parameter Ut can be interpreted as the TPD price level 
for period t, an can be interpreted as a commodity n quality 

13 For a proof of this assertion, see Diewert (2000).
14 See Summers (1973), who introduced the CPD model. Balk (1980) was 
the first to adapt the CPD method to the time series context.
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where PJ(p0,p1) is the Jevons price index defined earlier by 
(4). This is Summer's (1973) country product dummy mul-
tilateral method adapted to the time series context for the 
case of two time periods with no missing observations.

The model defined by (18) or (19) can be interpreted as 
a highly simplified hedonic regression model,16 where an are 
interpreted as the quality adjustment factors for each prod-
uct n. The only characteristic of each commodity is the com-
modity itself. As noted earlier, this model is also a special 
case of the country product dummy method for making 
international comparisons between the prices of different 
countries. A possible advantage of this regression method 
for constructing a price index is that a standard error for the 
period 1 log price level p1 (and hence for U1) can be obtained. 
This advantage of the stochastic approach to index number 
theory was stressed by Selvanathan and Rao (1994). How-
ever, suppose that the standard error (or variance) for the 
estimated U1

* were 0. Then all of the error terms etn in (18) 
must be equal to 1, and under these conditions, with U0 =1, 
equations (18) imply that p1 = U1

*p0 so that prices move in a 
proportional manner going from period 0 to period 1. Thus, 
a nonzero standard error simply means that prices did not 
move in a proportional manner going from period 0 to 1. 
This fact does not imply that a larger standard error for 
U1

* means that the overall inflation rate for the commodity 
group is more uncertain. For example, if the quantity vec-
tor q for periods 0 and 1 were constant, then most econo-
mists would agree that the appropriate measure of overall 
purchaser inflation is exactly measured by the Lowe index, 
p1·q/p0·q. Prices need not move in a proportional manner 
under these conditions so the standard error for U1

* could be 
large but yet a very precise exact measure of overall infla-
tion is available. Thus, it must be kept in mind that standard 
errors for price levels or price indices that are generated by a 
stochastic approach to index number theory are measures of 
parameter dispersion that are conditional on the underlying 
model of price formation. If the underlying model is faulty 
and the error variance is high, then the parameter standard 
errors that are generated by the model should be viewed 
with some degree of caution.

The Weighted Time Product Dummy 
Approach to Bilateral Index Number 
Theory
There is a problem with the unweighted least squares model 
defined by (21), namely, that the logarithm of each price 
quote is given exactly the same weight in the model no mat-
ter what the expenditure on that item was in each period. 
This is obviously unsatisfactory since a price that has very 
little economic importance (that is, a low expenditure share 
in each period) is given the same weight in the regression 
model compared to a very important item. As was men-
tioned earlier, Walsh was the first serious index number 
economist to stress the importance of weighting. Keynes 
was quick to follow up on the importance of weighting17 

16 For an introduction to hedonic regression models, see Griliches (1971). 
Hedonic regression models will be studied in great detail in Chapter 8.
17 "It is also clear that the so-called unweighted index numbers, usually 
employed by practical statisticians, are the worst of all and are liable to 

and Fisher emphatically endorsed weighting.18 Griliches 
also endorsed weighting in the hedonic regression context.19 
Thus, it is useful to consider how to introduce weights into 
the TPD model that reflect the economic importance of the 
various commodities into the model.

In order to take economic importance into account, 
replace (21) by the following weighted least squares minimi-
zation problem:20

min , ,p B B1 1... N En=1
N qn

0[lnpn
0 - Bn]

2 + En=1
N qn

1

[lnpn
1 - p1 - Bn]

2, (28)

where we have set p0 = 0. The squared error for product n in 
period t is repeated qn

t times to reflect the sales of product n 
in period t. Thus, the new problem (28) takes into account 
the popularity of each product.21

The first-order necessary conditions for the minimization 
problem defined by (28) are the following N + 1 equations:

 (qn
0 + qn

1)Bn = qn
0lnpn

0 + qn
1(lnpn

1 - p1), n = 1, . . .,N (29)
 (En=1

N qn
1)p1 = En=1

N qn
1(lnpn

1 - Bn). (30)

The solution to (29) and (30) is given as follows:22

p1
* = En=1

N qn
0qn

1(qn
0 + qn

1)-1 ln(pn
1/pn

0)/Ei=1
N

qi
0qi

1(qi
0 + qi

1)-1, (31)

 Bn
* = qn

0(qn
0 + qn

1)-1 ln(pn
0) + qn

1(qn
0 + qn

1)-1 

ln(pn
1/U1

*) , n = 1, . . .,N (32)

large errors which could have been easily avoided" J. M. Keynes (1909, 
79). This paper won the Cambridge University Adam Smith Prize for that 
year. Keynes (1930, 76-77) again stressed the importance of weighting in 
his later 1930 paper which drew heavily on his 1909 paper.
18 "It has already been observed that the purpose of any index num-
ber is to strike a fair average of the price movements or movements of 
other groups of magnitudes. At first a simple average seemed fair, just 
because it treated all terms alike. And, in the absence of any knowl-
edge of the relative importance of the various commodities included in 
the average, the simple average is fair. But it was early recognized that 
there are enormous differences in importance. Everyone knows that 
pork is more important than coffee and wheat than quinine. Thus the 
quest for fairness led to the introduction of weighting" Irving Fisher 
(1922, 43).
19 "But even here, we should use a weighted regression approach, since 
we are interested in an estimate of a weighted average of the pure price 
change, rather than just an unweighted average over all possible models, 
no matter how peculiar or rare" (Zvi Griliches (1971, 8)).
20 Balk (1980, 70) was the first to both apply the country product dummy 
model to the time series context and he was the first to introduce some 
form of weighting to the basic model. However, the specific forms of 
weighting used in this section were introduced by Diewert (2005) for the 
models defined by (28), (35) and (42). Rao (1995) (2005) introduced the 
form of weighting for the model defined by (38).
21 One can think of repeating the term [lnpn

0 - Bn]
2 for each unit of product 

n sold in period 0. The result is the term qn
0[lnpn

0 - Bn]
2. A similar justifica-

tion based on repeating the price according to its sales can also be made. 
This repetition methodology makes the stochastic specification of the 
error terms somewhat complicated but the least squares minimization 
problem is simple enough.
22 This solution was derived by Diewert (2005).
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where U1
* = exp[p1

*]. Note that the weight for the term 
ln(pn

1/pn
0) in (31) can be written as follows:

qn
* = En=1

N qn
0qn

1(qn
0 + qn

1)-1 /Ei=1
N 

qi
0qi

1(qi
0 + qi

1)-1 ,  n = 1, . . .,N

= h(qn
0,qn

1)/Ei=1
N h(qi

0,qi
1), (33)

where h(a,b) = 2ab/(a + b) = [1/2 a-1 + 1/2 b-1]-1 is the harmonic 
mean of a and b.23

Note that the qn
* sum to 1, and thus p1

* is a weighted 
average of the logarithmic price ratios ln(pn

1/pn
0). Using U1

* 
= exp[p1

*] and U0
* = exp[p0

*] = exp[0] =1, the bilateral price 
index that is generated by the solution to (28) is

 U1
*/U0

* = exp[p1
*] = exp[En=1

N qn
* ln(pn

1/pn
0)]. (34)

Thus, U1
*/U0

* is a weighted geometric mean of the price 
ratios pn

1/pn
0 with weights qn

* defined by (33). Although 
this seems to be a reasonable bilateral index number for-
mula, it must be rejected for practical use on the grounds 
that the index is not invariant to changes in the units of 
measurement.

Since values are invariant to changes in the units of mea-
surement, the lack of invariance problem could be solved 
if we replace the quantity weights in (28) with expenditure 
or sales weights.24 This leads to the following weighted least 
squares minimization problem where the weights vn

t are 
defined as pn

tqn
t for t = 0,1 and n = 1, . . .,N:

min , ,p B B1 1... N En=1
N vn

0[lnpn
0 - Bn]

2 + En=1
N vn

1

[lnpn
1 - p1 - Bn]

2. (35)

It can be seen that problem (35) has exactly the same math-
ematical form as problem (28) except that vn

t has replaced qn
t 

and so the solutions (31) and (32) will be valid in the present 
context if vn

t replaces qn
t in these formulae. Thus, the solu-

tion to (35) is

p1
* = En=1

N vn
0vn

1(vn
0 + vn

1)-1 ln(pn
1/pn

0)/Ei=1
N 

vi
0vi

1(vi
0 + vi

1)-1, (36)

Bn
* = vn

0(vn
0 + vn

1)-1 ln(pn
0) + vn

1(vn
0 + vn

1)-1 

ln(pn
1/U1

*),  n = 1, . . .,N (37)

where U1
* = exp[p1

*].
The resulting price index, U1

*/U0
* = U1

* = exp[p1
*], is indeed 

invariant to changes in the units of measurement. However, 

23 h(a,b) is well defined by 2ab/(a + b) if a and b are nonnegative and at 
least one of these numbers is positive. In order to write h(a,b) as [1/2 a-1 + 
1/2 b-1]-1, we require that a > 0 and b > 0.
24 "But on what principle shall we weight the terms? Arthur Young's guess 
and other guesses at weighting represent, consciously or unconsciously, 
the idea that relative money values of the various commodities should 
determine their weights. A value is, of course, the product of a price per 
unit, multiplied by the number of units taken. Such values afford the only 
common measure for comparing the streams of commodities produced, 
exchanged, or consumed, and afford almost the only basis of weighting 
which has ever been seriously proposed" (Irving Fisher (1922, 45)).

if we regard U1
* as a function of the price and quantity vec-

tors for the two periods, say P(p0,p1,q0,q1), then another 
problem emerges for the price index defined by the solu-
tion to (35): P(p0,p1,q0,q1) is not homogeneous of degree 0 
in the components of q0 or in the components of q1. These 
properties are important because it is desirable that the 
companion implicit quantity index defined as Q(p0,p1,q0,q1) 
= [p1·q1/p0·q0]/P(p0,p1,q0,q1) be homogeneous of degree 1 in 
the components of q1 and homogeneous of degree minus 
1 in the components of q0.25 We also want P(p0,p1,q0,q1) to 
be homogeneous of degree 1 in the components of p1 and 
homogeneous of degree minus 1 in the components of p0, 
and these properties are also not satisfied. Thus, we con-
clude that the solution to the weighted least squares prob-
lem defined by (35) does not generate a satisfactory price 
index formula.

The aforementioned deficiencies can be remedied if the 
expenditure amounts vn

t in (35) are replaced by expenditure 
shares, sn

t, where vt = En=1
N vn

t for t = 0,1 and sn
t = vn

t/vt for t = 
0,1 and n = 1, . . .,N. This replacement leads to the following 
weighted least squares minimization problem:26

min , ,p B B1 1... NEn=1
N sn

0[lnpn
0 - Bn]

2 + En=1
N sn

1

[lnpn
1 - p1 – Bn]

2. (38)

Again, it can be seen that problem (38) has exactly the 
same mathematical form as problem (28) except that sn

t has 
replaced qn

t, and so the solutions (31) and (32) will be valid in 
the present context if sn

t replaces qn
t in these formulae. Thus, 

the solution to (38) is

p1
* = En=1

N sn
0sn

1(sn
0 + sn

1)-1 ln(pn
1/pn

0)/Ei=1
N si

0si
1(si

0 + si
1)-1, (39)

 Bn
* = sn

0(sn
0 + sn

1)-1 ln(pn
0) + sn

1(sn
0 + sn

1)-1 

ln(pn
1/U1

*),  n = 1, . . .,N (40)

where U1
* = exp[p1

*]. Define the normalized harmonic 
mean share weights as sn

* = h(sn
0,sn

1)/Ei=1
N h(si

0,si
1) for n = 

1,  .  .  .,N. Then, the weighted TPD bilateral price index, 
PWTPD(p0,p1,q0,q1) = U1

*/U0
* = U1

*, has the following logarithm:

 ln PWTPD(p0,p1,q0,q1) = En=1
N sn

* ln(pn
1/pn

0). (41)

25 Thus, we want Q to have the following properties: Q(p0,p1,q0,yq1) = yQ(p0, 
p1,q0,q1) and Q(p0,p1,yq0,q1) = y-1Q(p0,p1,q0,q1) for all y > 0; see Chapter 3 
for a list of desirable properties or tests for bilateral price indices of the 
form P(p0,p1,q0,q1).
26 Note that the minimization problem defined by (38) is equivalent to the 
problem of minimizing En=1

N e0n2 + En=1
N e1n

2 with respect to p1, B1, . . . , BN 
where the error terms etn are defined by the equations (sn

0)1/2lnpn
0 = (sn

0)1/2Bn 
+ e1n for n = 1,  .  .  .,N and (sn

1)1/2lnpn
1 = (sn

1)1/2p1 + (sn
1)1/2Bn + e2n for n = 

1, . . .,N. Thus the solution to (38) can be found by running a linear regres-
sion using the previous two sets of estimating equations. The numerical 
equivalence of the least squares estimates obtained by repeating multiple 
observations or by using the square root of the weight transformation was 
noticed long ago as the following quotation indicates: "It is evident that 
an observation of weight w enters into the equations exactly as if it were 
w separate observations each of weight unity. The best practical method 
of accounting for the weight is, however, to prepare the equations of con-
dition by multiplying each equation throughout by the square root of its 
weight" (E. T. Whittaker and G. Robinson (1940, 224)).
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Thus, PWTPD(p0,p1,q0,q1) is equal to a share-weighted geomet-
ric mean of the price ratios, pn

1/pn
0.27 This index is satisfactory 

from the viewpoint of the test approach to index number the-
ory. Of the first 16 tests listed in Chapter 3, it can be shown 
that PWTPD(p0,p1,q0,q1) satisfies all of these tests (assuming 
strictly positive prices and quantities) except for Test 4 (the 
basket test, P(p0,p1,q,q) = p1·q/p0·q), Test 12 (the quantity 
reversal test), Test 13 (the price reversal test), Test 15 (the 
mean value test for quantities), and Test 16 (the Paasche and 
Laspeyres bounding test). It is likely that PWTPD(p0,p1,q0,q1) 
passes the monotonicity in prices tests, T17 and T18, and 
it is not likely that PWTPD(p0,p1,q0,q1) passes the monoto-
nicity in quantity tests, T19 and T20.28 Moreover, Diewert 
(2005, 564) showed that PWTPD(p1,p2,q1,q2) approximated the  
Fisher, Walsh, and Tornqvist-Theil indices to the second 
order around an equal price and quantity point where p0 = 
p1 and q0 = q1. Thus, if changes in prices and quantities going 
from one period to the next are not too large and there are 
no missing products, PWTPD should be close to these indices 
that have emerged as being "best" in several contexts.29

Recall the unweighted least squares minimization prob-
lem defined by (21) that was introduced at the beginning 
of Section 4. The solution to this unweighted bilateral 
TPD regression model generated the Jevons index as its 
solution. But appropriate weighting of the squared errors 
has changed the solution index dramatically: The index 
defined by (41) weights products by their economic impor-
tance and has good test properties, whereas the Jevons 
index can generate very problematic results because of its 
lack of weighting according to economic importance. Note 
that both models have the same underlying structure; that 
is, they assume that ptn is approximately equal to Utan for  
t = 0,1 and n = 1, . . .,N. Thus, weighting by economic impor-
tance has converted a least squares minimization problem that 
generates a rather poor price index into a problem that gener-
ates a rather good index.

There is one more weighting scheme that generates an 
even better index in the bilateral context where we are run-
ning a TPD hedonic regression using the price and quantity 
data for only two periods. Consider the following weighted 
least squares minimization problem:

min , ,p B B1 1... N En=1
N (1/2)(sn

0 + sn
1)[lnpn

0 - Bn]
2 + En=1

N (1/2)
(sn

0 + sn
1)[lnpn

1 - p1 - Bn]
2. (42)

27 See Diewert (2005) for this formula. Note that Rao (1995) (2005) con-
sidered the extension of the model defined by (38) to T periods and so he 
pioneered this class of models.
28 See Diewert (2006) who initiated an investigation of the test properties 
of hedonic regressions.
29 However, with large changes in price and quantities going from period 
0 to 1, PWTPD will tend to lie below these alternative indices. Consider a 
case with only two commodities. Let the price vectors be p0 = [1,1] and p1 
= [1,0.5] and let the share vectors be s0 = [0.5,0.5] and s1 = [0.1,0.9]. Thus 
the two products are highly substitutable and when the price of product 
2 goes on sale at half price, its market share jumps from 0.5 to 0.9. The 
Tornqvist Theil index for this example is 0.6156 which is considerably 
above the weighted TPD index value which is 0.5767. This example is 
based on an example due to Diewert and Fox (2017). Missing prices can 
also cause substantial differences between these indices.

As usual, it can be seen that problem (42) has exactly the 
same mathematical form as problem (28) except that (1/2)
(sn

0 + sn
1) has replaced qn

0 and qn
1 and so the solutions (31) 

and (32) will be valid in the present context if (1/2)(s1n + s2n) 
replaces qn

t in these formulae. Thus, the solutions to (42) 
simplify to the following solutions:

 p1
* = En=1

N (1/2)(sn
0 + sn

1)ln(pn
1/pn

0), (43)
 Bn

* = (1/2)ln(pn
0) + (1/2)ln(pn

1/U1
*),  n = 1, . . .,N (44)

where U1
* = exp[p1

*] and U0 = exp[p0] = exp[0] = 1 since we 
have set p0 = 0. Thus, the bilateral index number formula 
that emerges from the solution to (42) is U1

*/U0 = exp[En=1
N 

(1/2)(sn
0 + sn

1)ln(pn
1/pn

0)] = PT(p0,p1,q0,q1), which is the Torn-
qvist (1936), Theil (1967, 137-38) bilateral index number 
formula. Thus, the use of the weights in (42) has gener-
ated an even better bilateral index number formula than 
the formula that resulted from the use of the weights in 
(38).30 This result reinforces the case for using appropri-
ately weighted versions of the basic TPD hedonic regres-
sion model.31 However, if the implied residuals in the 
minimization problem (42) are small (or, equivalently, if 
the fit in the linear regression model that can be associ-
ated with (42) is high, so that predicted values for log prices 
are close to actual log prices), then weighting will not mat-
ter very much and the unweighted version of (42), which 
was (21) in the previous section, will give results that are 
similar to (42). This comment applies to all of the weighted 
hedonic regression models that are considered in this sec-
tion.32 But in most practical applications of index number 
theory, prices will not move in a proportional manner over 
time. Under these conditions, weighting according to the 
economic importance of the individual commodities will 
lead to more representative estimates of overall price 
change; that is, the measures of price change generated by 
the models defined by the minimization problems (38) and 
(42) are to be preferred over the unweighted minimization 
problem defined by (21) in the previous section.

In Chapter 7, generalizations of the bilateral weighted 
TPD model defined by the weighted least squares minimi-
zation problem (38) will be generalized from 2 periods to T 
periods. The problems arising from missing prices will also 
be addressed in this chapter.

At this point, it is perhaps useful to contrast stochas-
tic approaches to index number theory to the approaches 
explained in Chapter 2 (basket approaches) and in Chapter 
3 (axiomatic or test approaches). These earlier approaches 
led to a small number of preferred indices such as the  

30 Diewert (1992, 223) and Balk (2008) listed the commonly used tests that 
PT(p0,p1,q0,q1) satisfies; see also Chapter 3.
31 Note that the bilateral regression model defined by the minimization 
problem (38) is readily generalized to the case of T periods whereas the 
bilateral regression model defined by the minimization problem (42) can-
not be generalized to the case of T periods. These facts were noted by de 
Haan and Krsinich (2014).
32 If the residuals are small for (42), then prices will vary almost propor-
tionally over time and all reasonable index number formulae will register 
price levels that are close to the estimated U1

*; that is, we will have p1 ~ U1
*p0 

and hence all reasonable bilateral index number formulae will generate 
an estimate that is close to U1

*.
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Fisher and Walsh indices. The stochastic approach or the 
descriptive statistics approach to index number theory 
attempts to find a single summary measure of a distribu-
tion of price changes. The practical problem associated 
with this method is that there are many ways of summariz-
ing relative price distributions as was seen at the end of Sec-
tion 3. We chose Theil’s summary measure of price change 
because it satisfied some key tests; that is, we had to draw 
on the test approach to index number theory in order to 
pin down our final specific estimator of price change. Simi-
larly, in this section, we again drew on the test approach to 
index number theory to determine “best” measures of price 
change. This is the problem with the stochastic approach 
to index number theory: By itself, it does not narrow down 
the range of possible estimators of price change. Neverthe-
less, in subsequent chapters, we will utilize the stochastic 
approach to index number theory in order to address the 
problems associated with measuring quality change. How-
ever, as was done in this chapter, we will draw on the other 
approaches to index number theory to help us to narrow 
down the range of possible stochastic specifications that 
could be used to measure quality change.

Additional material on stochastic approaches to index 
number theory and references to the literature can be found in 
Selvanathan and Rao (1994), de Haan (2004), Diewert (2004) 
(2010), Rao (2004), Clements, Izan, and Selvanathan (2006), 
de Haan and Krsinich (2014), and Rao and Hajargasht (2016).
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NUMBER THEORY* 5
1. Introduction
Economics is the study of choice under constraints. Thus, 
the economic approach to index number theory applied 
to households generally involves the assumption of cost- 
minimizing or utility-maximizing behavior on the part of 
consumers subject to one or more constraints. It is unlikely 
that actual consumer behavior is completely described by 
the optimization models that will be considered in this 
chapter, but it seems that the economic approach to index 
number theory allows us to address some difficult measure-
ment problems that other approaches to index number the-
ory cannot address.

Some of the material in this chapter relies on advanced 
microeconomic theory. Some attempt is made to explain the 
various theories, but if the explanations are not adequate, 
references to the underlying literature are given.

In Section 2, the Konüs Cost of Living Index (COLI) 
for a single household is explained. This section is a fun-
damental one. It allows us to conceptualize the role of 
substitution as a response to changes in relative prices. 
In this section, the underlying utility or preference func-
tion is a general one. In Section 3, the theory described 
in Section 2 is specialized for the case of homothetic pref-
erences. Preferences are homothetic if they can be repre-
sented by a linearly homogeneous utility function. It turns 
out that the assumption of homothetic preferences enables 
the price statistician to deal with product substitution in 
a very straightforward way. In Section 4, two results from 
microeconomic theory are discussed: Wold’s Identity and 
Shephard’s Lemma. These two results will be used in Sec-
tions 5–7, where certain formulae or functional forms for 
price and quantity indices are introduced and their con-
nection to the economic approach to index number theory 
is established. Section 5 introduces the concept of a flexible 
functional form for a utility  function. A flexible functional 
form can approximate an arbitrary twice continuously dif-
ferentiable, linearly homogeneous functional form to the 
second order around any given point. Thus, it is useful 
to have index number formulae that are exactly consis-
tent with preferences that can be represented by a flexible 

functional form since these functions can accommodate a 
wide variety of substitution responses on the part of con-
sumers to changes in prices. Sections 5, 6, and 7 show that 
there are flexible functional forms for consumer utility 
functions that are exactly consistent with three well-known 
index number formulae: the Fisher, Walsh, and Törnqvist 
Theil indices. An index number formula that is exactly 
consistent with a flexible functional form is called a super-
lative index. In Section 8, it is shown that the superlative 
indices studied in Sections 5–7 all approximate each other 
to the second order around an equal price and quantity 
point, so in general, it will not matter too much which one 
of these three formulae is chosen in practice. The first eight 
sections of this chapter are the most important ones. The 
remaining sections deal with specific measurement topics 
that extend the basic theory in various directions.

In Sections 9 and 10, index number formulae, which are 
exact for two functional forms for the consumer’s utility 
function that are not flexible, are given. These two func-
tional forms are the Cobb–Douglas and Constant Elasticity 
of Substitution (CES) functions. Since they are widely used 
by economists and statisticians, it is useful to study these 
two functional forms and their corresponding exact index 
number formulae.

In Section 11, the Allen quantity index is introduced. In 
the previous sections, quantity indices that were exact for 
homothetic preferences were defined. The Allen quantity 
index is well defined even if preferences are not homothetic. 
It turns out that various Allen indices match up with vari-
ous Konüs cost of living indices. The Törnqvist Theil price 
and quantity indices turn out to be very useful in this con-
text. They are also very useful in the following two sections, 
which show how changes in tastes can be accommodated 
(Section 12) and how price indices that are conditional on 
environmental factors can be defined (Section 13).

In Section 14, the concept of a Hicksian reservation price 
is introduced. A reservation price is an imputed price that 
is just high enough to induce consumers not to purchase a 
product. It turns out that this concept is useful in the con-
text of dealing with the problems that arise when new prod-
ucts are introduced and old, obsolete products disappear.

In Section 15, it is noted that consumers face not only a 
budget constraint but also a time constraint. The consumer’s 
allocation of time interacts with his or her budget constraint, 
and this interaction leads to difficult measurement problems 
when constructing CPIs. An introduction to some of these 
problems is provided in this section.

Sections 16 and 17 generalize the single-household 
Konüs price index and Allen quantity index concepts to 

* Much of the material in Sections 2–8 of this chapter is drawn from 
Chapter 17 of The Consumer Price Index Manual: Theory and Practice 
and from Diewert (2009). The author thanks Paul Armknecht, Bert 
Balk, Peter Hill, Alice Nakamura, Mick Silver, and Kim Zieschang for 
their helpful comments on the material in this chapter that was taken 
from the previous Manual. The author thanks Charles Andrew Barclay, 
Kevin Fox, Ismail Hossain, Ronald Johnson, Daniel Melser, Chihiro 
Shimizu, Paul Schreyer, Rui Xiao, and Clément Yélou for their helpful 
comments on the current draft.
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be represented by a nonnegative vector q ≡ [q1, . . .,qN]. The 
consumer’s preferences over alternative possible consump-
tion vectors q are assumed to be representable by a continu-
ous, increasing4 and concave5 utility function f.6 Thus, if f(q1) 
> f(q0), then the consumer prefers the consumption vector q1 
to q0. It is further assumed that the consumer minimizes the 
cost of achieving the observed period t utility level ut ≡ f(qt) for 
periods t = 0,1. Thus, the economic approach to index num-
ber theory assumes that the observed period t consumption 
vector qt >> 0N solves the following period t cost minimiza-
tion problem:7

C(ut,pt) ≡ minq {pt·q : f(q) ≥ ut; q≥ 0N} = pt·qt; t = 0,1. (1)

The consumer’s cost minimization problem for period 0 is to 
choose a consumption vector q ≡ [q1, . . .,qN], which will mini-
mize the cost p0·q ≡ Σn=1

N pn
0qn of achieving at least the given 

utility level u0, given that the consumer’s preferences can be 
represented by the function f(q). The period 0 observed con-
sumption vector for the consumer is q0 ≡ [q1

0, . . .,qN
0], where 

it is assumed that each qn
0 is positive. An assumption that is 

imbedded in this definition for the period 0 cost minimiza-
tion problem is that the period 0 reference utility level is u0 
defined as f(q0). The final assumption that is imbedded in 
the period 0 cost minimization problem defined by (1) previ-
ously is that the consumer’s observed period 0 quantity vec-
tor is a solution to the period 0 cost minimization problem. 
A similar interpretation applies to the period 1 cost mini-
mization problem. We also assume that the period t price 
vector for the N commodities under consideration that the 
consumer faces in each period is strictly positive; that is, we 
assume that pt >> 0N for t = 0,1. Thus, there is a fair amount 
of complexity hidden behind the cost minimization prob-
lems (and their solutions) defined by (1).

Note that the solution to the cost or expenditure minimi-
zation problem (1) for a general utility level u and general 
vector of commodity prices p defines the consumer’s cost 
function C(u,p). This cost function will be used in order to 
define the consumer’s cost of living price index. It can be 
shown that C(u,p) has the following mathematical prop-
erties under our regularity conditions on f(q): (i) C(u,p) is 
nonnegative for all u ≥ 0 and p >> 0N; (ii) for each p >> 0N, 
C(u,p) is an increasing continuous function of u; and (iii) 
for each u ≥ 0, C(u,p) is a continuous, concave, and linearly 

4 f(q) is increasing in q if q2 >> q1 ≥ 0N implies f(q2) > f(q1).
5 f is concave over the set of nonnegative q if f(λq1 + (1-l)q2) ≥ λf(q1) + 
(1 – λ)f(q2) for all 0 ≤ λ ≤ 1 and all q1 ≥ 0N and q2 ≥ 0N. Note that q ≥ 0N 
means that each component of the N-dimensional vector q is nonnega-
tive, q >> 0N means that each component of q is positive, and q > 0N 
means that q ≥ 0N but q ≠ 0N; that is, q is nonnegative, but at least one 
component is positive.
6 For convenience, we assume that f(0N) = 0 and f(q) tends to plus infinity 
as all components of q tend to plus infinity.
7 Notation: pt ≡ [p1

t, . . .,pN
t], qt ≡ [q1

t, . . .,qN
t] and pt·qt ≡ Σn=1

N pn
tqn

t for t = 
0,1. Note that we are assuming that all prices and quantities are positive. 
Thus, C( f(qt),pt) > 0 for t = 0,1.

many households. Fisher indices play a large role in these 
sections.

There are demands on statistical agencies to produce 
price and volume indices that take into account changes in 
the distribution of income among households. Section 18 
provides the reader with an introduction to this topic.

Finally, Section 19 discusses the matching problem. If we 
attempt to construct a cost of living index for a single house-
hold, then due to the fact that many household purchases 
are made infrequently, it proves to be difficult to match the 
prices and quantities of purchased products over consecutive 
periods. For example, a seasonal product may be purchased 
only during certain seasons. Or a big discounted price may 
induce a household to stock up on a product this month and 
not purchase the product again for several months. This 
leads to a lack of matching of products problem that makes 
the construction of price indices difficult. Section 19 offers 
some possible solutions to this problem.

The Annex provides proofs of various theoretical results 
that are stated in the main text.

2. The Konüs Cost of Living Index 
for a Single Consumer
In this section, we outline the theory of the cost of living 
index for a single consumer (or household)1 that was first 
developed by the Russian economist Konüs (1924). This 
theory relies on the assumption of optimizing behavior on 
the part of households. Given an observed vector of com-
modity or input prices pt that the household faces in a given 
time period t, it is assumed that the corresponding observed 
quantity vector qt is a solution to a cost (or expenditure) min-
imization problem that involves the consumer’s preference 
or utility function f(q). Thus, in contrast to the axiomatic 
approach to index number theory, the economic approach 
does not assume that the two quantity vectors q0 and q1 dis-
cussed in previous chapters are independent of the two price 
vectors p0 and p1 that the household faces in periods 0 and 
1. In the economic approach, the period t quantity vector qt 
is determined by the consumer’s preference function f and 
the period t vector of prices pt that the consumer faces in 
period t.2

We assume that the consumer (or household) has well-
defined preferences over different combinations of the N con-
sumer commodities or items.3 Each combination of items can 

1 A household may consist of more than one individual. Our exposition 
ignores the complications that can arise in multi-person households; that 
is, we assume that the household has consistent preferences of the type 
explained subsequently.
2 In principle, the price pn

t is a period t unit value price for product n for 
the household under consideration. The corresponding qn

t is equal to 
the total purchases of product n by the household in period t. Thus, 
the product pn

tqn
t is the total expenditure of the household on product 

n during period t.
3 In this section, these preferences are assumed to be invariant over time. 
Changing preferences and the complications that arise when the number 
of available products changes over time will be postponed to Sections 12 
and 14 and subsequent chapters.
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≥ p1·q1/p0·q1 since q1 is feasible for the minimization  
problem and thus

minq{p0·q : f(q) ≥ f(q1)} ≤ p0·q1 and hence  
1/C[ f(q1),p0] ≥ 1/p0·q1

= PP(p0,p1,q0,q1),

where PP is the Paasche price index defined in earlier chap-
ters. Thus, the (unobservable) Paasche–Konüs true cost of 
living index is bounded from below by the observable Paasche 
price index.12

Figure 5.1 illustrates the bounds given by (3) and (4) for 
the case of two commodities.

The solution to the period 0 cost minimization problem is 
the vector q0 and the straight line through C represents the 
consumer’s period 0 budget constraint, the set of quantity 
points q1,q2 such that p1

0q1 + p2
0q2 = p1

0q1
0 + p2

0q2
0. The curved 

line through q0 is the consumer’s period 0 indifference curve, 
the set of points q1,q2 such that f(q1,q2) = f(q1

0,q2
0); that is, it 

is the set of consumption vectors that give the same utility 
as the observed period 0 consumption vector q0. The solu-
tion to the period 1 cost minimization problem is the vector 
q1, and the straight line through D represents the consum-
er’s period 1 budget constraint, the set of quantity points 
q1,q2 such that p1

1q1 + p2
1q2 = p1

1q1
1 + p2

1q2
1. The curved line 

through q1 is the consumer’s period 1 indifference curve, the 
set of points q1,q2 such that f(q1,q2) = f(q1

1,q2
1); that is, it is 

the set of consumption vectors that give the same utility as 
the observed period 1 consumption vector q1. The point q0* 
solves the hypothetical cost minimization problem of mini-
mizing the cost of achieving the base period utility level u0 ≡ 
f(q0) when facing the period 1 price vector p1 = (p1

1,p2
1). Thus, 

we have C[u0,p1] = p1
1q1

0* + p2
1q2

0* and the dashed line through 
A is the corresponding isocost line p1

1q1 + p2
1q2 = C[u0,p1].

Note that the hypothetical cost line through A is par-
allel to the actual period 1 cost line through D. From (3), 
the Laspeyres–Konüs true index is C[u0,p1]/[p1

0q1
0 + p2

0q2
0], 

while the ordinary Laspeyres index is [p1
1q1

0 + p2
1q2

0]/[p1
0q1

0 
 + p2

0q2
0]. Since the denominators for these two indices are 

the same, the difference between the indices is due to the dif-
ferences in their numerators. In Figure 5.1, this difference 
in the numerators is expressed by the fact that the cost line 
through A lies below the parallel cost line through B.

If the consumer’s indifference curve through the observed 
period 0 consumption vector q0 were L shaped with vertex at 
q0, then the consumer would not change his or her consump-
tion pattern in response to a change in the relative prices of 
the two commodities while keeping a fixed standard of liv-
ing. In this case, the hypothetical vector q0* would coincide 
with q0, the dashed line through A would coincide with the 
dashed line through B and the true Laspeyres–Konüs index 
would coincide with the ordinary Laspeyres index. However, 
L-shaped indifference curves are not generally consistent 
with consumer behavior; that is, when the price of a com-
modity decreases, consumers generally demand more of it. 

12 This inequality was obtained by Konüs (1924) (1939, 19).

homogeneous function of p8 that increases9 if all compo-
nents of p increase.10

The Konüs (1924) family of true cost of living indices per-
taining to the two periods, PK(p0,p1,q), where the consumer 
faces the strictly positive price vectors p0 ≡ (p1

0, . . .,pN
0) and 

p1 ≡ (p1
1, . . .,pN

1) in periods 0 and 1, respectively, is defined 
as the ratio of the minimum costs of achieving the same utility 
level u ≡ f(q), where q ≡ (q1, . . .,qN) > > 0N is a positive refer-
ence quantity vector:

 PK(p0,p1,q) ≡ C[ f(q),p1]/C[ f(q),p0]. (2)

Definition (2) defines a family of price indices because 
there is one such index for each reference quantity vector 
q chosen.

It is natural to choose two specific reference quantity vec-
tors q in definition (2): the observed base period quantity 
vector q0 and the current period quantity vector q1. The first 
of these two choices leads to the following Laspeyres–Konüs 
true cost of living index:

 PK(p0,p1,q0) ≡ C[ f(q0),p1]/C[ f(q0),p0] (3)
= C[ f(q0),p1]/p0·q0 using (1) for t = 0

= minq {p1·q : f(q) ≥ f(q0); q ≥ 0N}/p0·q0 
using the definition of C[ f(q0),p1]

≤ p1·q0/p0·q0 since q0 is feasible for the minimization 
problem

= PL(p0,p1,q0,q1)

where PL is the Laspeyres price index defined in earlier chap-
ters. Thus, the (unobservable) Laspeyres–Konüs true cost of 
living index is bounded from above by the observable Laspey-
res price index.11

The second of the two natural choices for a reference 
quantity vector q in definition (2) leads to the following Paas-
che–Konüs true cost of living index:

 PK(p0,p1,q1) ≡ C[ f(q1),p1]/C[ f(q1),p0] (4)
= p1·q1/C[ f(q1),p0] using (1) for t = 1

= p1·q1/minq{p0·q : f(q) ≥ f(q1); q ≥ 0N}  
using the definition of C[ f(q1),p0]

8 This property is the following one: Let u ≥ 0, p >> 0N, and λ ≥ 0; then 
C(u,λp) = λC(u,p).
9 This property is the following one: Let u > 0 and 0N << p1 << p2; then 
C(u,p1) < C(u,p2).
10 For additional materials on the properties of cost functions and refer-
ences to the literature, see Diewert (1993a). The restriction that f(q) be a 
concave function is not the usual assumption in the economics literature, 
but drawing on the work of Afriat (1967) and Diewert (1973), it can be 
shown that this assumption is not restrictive in practice.
11 This inequality was first obtained by Konüs (1924) (1939, 17). See also 
Pollak (1983).
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Paasche–Konüs true cost of living PK(p0,p1,q1) using the 
current period level of utility as the living standard. In a 
remarkable result, Konüs (1924, 20) showed that there 
exists an intermediate consumption vector q* that is on the 
straight line joining the base period consumption vector 
q0 and the current period consumption vector q1 such that 
the corresponding (unobservable) true cost of living index 
PK(p0,p1,q*) is between the observable Laspeyres and Paas-
che indices, PL and PP.13 The Konüs result is the following 
Proposition:

Proposition 1: There exists a number λ* between 0 and 1 
such that

PL ≤ PK(p0,p1, λ*q0 + (1 – λ*)q1) ≤ PP  
 or PP ≤ PK(p0,p1, λ*q0 + (1 – λ*)q1) ≤ PL. (5)

The first set of inequalities holds when PL ≤ PP, and the sec-
ond holds when PP ≤ PL. For a proof of this result, see the 
Annex.

The aforementioned inequalities are of some practi-
cal importance. If the observable (in principle) Paasche 
and Laspeyres indices are not too far apart, then taking a 
symmetric average of these indices should provide a good 
approximation to a true cost of living index where the refer-
ence standard of living is somewhere between the base and 
current period living standards. To determine the precise  
symmetric average of the Paasche and Laspeyres indi-
ces, we can appeal to the results in Chapter 2 and take the 
geometric mean, which is the Fisher price index. Thus, the 
Fisher ideal price index receives a fairly strong justification 
as a good approximation to an unobservable theoretical 
cost of living index.

13 See Diewert (1983, 191).

Thus, in the general case, there will be a gap between the 
points A and B. The magnitude of this gap represents the 
amount of substitution bias between the true index and the 
corresponding Laspeyres index; that is, the Laspeyres index 
will generally be greater than the corresponding true cost of 
living index, PK(p0,p1,q0).

Figure 5.1 can also be used to illustrate the inequality (4). 
First note that the dashed lines through E and F are parallel 
to the period 0 isocost line through C. The point q1* solves 
the hypothetical cost minimization problem of minimizing 
the cost of achieving the current period utility level u1 ≡ f(q1) 
when facing the period 0 price vector p0 = (p1

0,p2
0). Thus, we 

have C[u1,p0] = p1
0q1

1* + p2
0q2

1* and the dashed line through E 
is the corresponding isocost line p1

1q1 + p2
1q2 = C[u0,p1]. From 

(4), the Paasche–Konüs true index is [p1
1q1

1 + p2
1q2

1]/C[u1,p0], 
while the ordinary Paasche index is [p1

1q1
1 + p2

1q2
1]/[p1

0q1
1 + 

p2
0q2

1]. Since the numerators for these two indices are the 
same, the difference between the indices is due to the dif-
ferences in their denominators. In Figure 5.1, this difference 
in the denominators is expressed by the fact that the cost 
line through E lies below the parallel cost line through F. 
The magnitude of this difference represents the amount of 
substitution bias between the true index and the correspond-
ing Paasche index; that is, the Paasche index will generally 
be less than the corresponding true cost of living index, 
PK(p0,p1,q1). Note that this inequality goes in the oppo-
site direction to the previous inequality between the two 
Laspeyres indices. The reason for this change in direction 
is due to the fact that one set of differences between the two 
indices takes place in the numerators of the two indices (the 
Laspeyres inequalities), while the other set takes place in the 
denominators of the two indices (the Paasche inequalities).

The bound (3) on the Laspeyres–Konüs true cost of 
living PK(p0,p1,q0) using the base period level of utility as 
the living standard is one sided as is the bound (4) on the 

Figure 5.1 The Laspeyres and Paasche Bounds to the True Cost of Living q2

q2

q1 = (q11,q21)

q0* q1*
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length of the accounting period for individual households 
should be a longer period, such as a month or a quarter.

3. The Cost of Living Index When 
Preferences Are Homothetic
Up to now, the consumer’s preference function f did not 
have to satisfy any particular homogeneity assumption. 
In this section, we assume that f is (positively) linearly 
homogeneous;15 that is, we assume that the consumer’s util-
ity function has the following property:

 f(λq) = λf(q) for all λ > 0 and all q ≥ 0N
. (6)

Given the continuity of f, it can be seen that property (6) 
implies that f(0N) = 0. Furthermore, f also satisfies f(q) > 0 
if q >> 0N

.
In the economics literature, assumption (6) is known as 

the assumption of homothetic preferences.16 This assump-
tion is not strictly justified from the viewpoint of actual 
economic behavior, but, as will be seen later, it leads to 
economic price indices that do not depend on the con-
sumer’s standard of living; that is, the resulting aggregate 
prices do not depend on quantities.17 Under this assump-
tion, the consumer’s expenditure or cost function, C(u,p) 
defined by (1), decomposes into the product of two terms. 
For positive commodity prices p >> 0N and a positive util-
ity level u, we have the following decomposition of the cost 
function:

 C(u,p) ≡ minq{p·q : f(q) ≥ u; q ³ 0N} (7)
 =  minq{p·q : (1/u)f(q) ≥ 1; q ≥ 0N} dividing both  

 sides of the constraint by u > 0

 =  minq{p·q : f(q/u) ≥ 1; q ≥ 0N} using the linear  
 homogeneity of f

 =  u minq{p·q/u : f(q/u) ≥ 1; q ³ 0N} using the  
 assumption that u is positive

 = u minz{p·z : f(z) ≥ 1; z ≥ 0N} defining z ≡ q/u

 = uC(1,p) using definition (1) with u = 1
 = uc(p),

15 This assumption is fairly restrictive in the consumer context. It implies 
that each indifference curve or surface is a radial projection of the unit 
utility indifference curve or surface. It also implies that all income elas-
ticities of demand are unity, which is contradicted by empirical evidence. 
However, at lower levels of aggregation, the homotheticity assumption 
for the relevant subutility function is probably an acceptable approxima-
tion to reality.
16 More precisely, Shephard (1953) defined a homothetic function to be a 
monotonic transformation of a linearly homogeneous function. However, 
if a consumer’s utility function is homothetic, we can always rescale it to 
be linearly homogeneous without changing consumer behavior. Hence, 
we simply identify the homothetic preferences assumption with the linear 
homogeneity assumption.
17 This particular branch of the economic approach to index number 
theory was developed by Shephard (1953) (1970) and Samuelson and 
Swamy (1974). Shephard, in particular, realized the importance of the 
homotheticity assumption in conjunction with separability assumptions 
in justifying the existence of subindices of the overall cost of living index.

The bounds (3)–(5) are the best bounds that we can obtain 
on the true cost of living indices without making further 
assumptions. In subsequent sections, we will make further 
assumptions on the class of utility functions that describe 
the consumer’s tastes for the N commodities under consid-
eration. By making specific functional form assumptions 
about the utility function f(q) or about the corresponding 
cost function C(u,p), it will be possible to determine the 
functional form for the consumer’s true cost of living index.

Before proceeding further, it may be useful to discuss some 
problems with the economic approach to index number the-
ory. A major objection to this approach is the assumption 
of cost-minimizing (or equivalently of utility-maximizing) 
behavior on the part of households. Do households even 
have consistent preferences over alternative combinations of 
goods and services, let alone minimize the cost of achieving 
a given level of utility or welfare? Even if households do not 
have perfectly consistent preferences, experience has shown 
that when the price of a product is significantly decreased, 
households will buy more of it, and conversely, if the price 
of a product rises significantly, households will tend to pur-
chase less of it. The economic approach to index number 
theory simply formalizes this behavior, and at the same 
time, it is able to generate measures of possible changes in 
consumer welfare along with measures of changes in the cost 
of living. These measures are imperfect, but they are valued 
by economists and policy makers. Thus, it is useful to take 
an economic approach to index number theory. Moreover, 
government statisticians are obliged to produce economic 
statistics. It seems sensible for official statisticians to be at 
least aware of economic approaches to index number theory 
while producing economic statistics. Finally, as will be seen 
in later sections, the economic approach to index number 
theory provides useful insights into difficult measurement 
problems that other approaches to index number theory are 
unable to address.

Some of the limitations of the present framework will 
be relaxed in subsequent sections; that is, the assumption 
that all prices and quantities are positive will be relaxed, 
the assumption of constant preferences will also be relaxed, 
and the problems associated with the appearance of new 
products and the disappearance of existing products will be 
addressed. However, one problem that will not be addressed 
is the stock piling problem; that is, when storable products 
go on sale, households may purchase large amounts of the 
products so that the period of consumption of these prod-
ucts does not coincide with the period of purchase. These 
left-over stocks will affect demand for the products in subse-
quent periods, and the model of economic behavior used in 
this section does not take this possibility into account.14 The 
problem of storable goods not being consumed in the period 
of purchase suggests that the Konüs true cost of living index 
should not be implemented if the length of the period is  
very short. Thus, daily economic price indices for individual 
households may be more or less meaningless from the view-
point of the economic approach to index numbers. The 

14 The treatment of purchases of durable goods will be addressed in Chap-
ter 10. A durable good (for example, an automobile or a house) is able to 
provide a stream of services over its useful lifetime; a storable good (for 
example, a can of beans) can only be used once but its consumption can be 
postponed from its period of purchase to a later period of consumption.
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where c(p) ≡ C(1,p) is the unit cost function that corresponds 
to f.18 It can be shown that the unit cost function c(p) satisfies 
the same regularity conditions that f satisfies; that is, c(p) is 
positive, concave, and (positively) linearly homogeneous for 
positive price vectors.19 Substituting (7) into (1) and using ut 
= f(qt) leads to the following equation:

 pt·qt = c(pt)f(qt) for t = 0,1. (8)

Thus, under the linear homogeneity assumption on the util-
ity function f, observed period t expenditure on the N com-
modities (the left-hand side of (8)) is equal to the period t unit 
cost c(pt) of achieving one unit of utility times the period t 
utility level, f(qt) (the right-hand side of (8)). Obviously, we 
can identify the period t unit cost, c(pt), as the period t price 
level Pt and the period t level of utility, f(qt), as the period 
t quantity level Qt. Note that Pt does not depend on qt and 
Qt does not depend on pt. This is the main advantage of 
assuming homothetic preferences when we use the economic 
approach to index number theory: We can decompose 
period t aggregate value, pt·qt, into the product of an aggre-
gate period t price level, Pt ≡ c(pt), which just depends on 
the vector of period t commodity prices pt, times an aggre-
gate period t quantity level, Qt ≡ f(qt), which just depends on 
the period t quantity vector qt.

The linear homogeneity assumption on the consumer’s 
preference function f leads to a simplification for the family 
of Konüs true cost of living indices, PK(p0,p1,q), defined by 
(2). Using definition (2) for an arbitrary reference quantity 
vector q, we have20

 PK(p0,p1,q) ≡ C[ f(q),p1]/C[ f(q),p0] (9)
= c(p1)f(q)/c(p0)f(q) using (8) twice

= c(p1)/c(p0).

Thus, under the homothetic preferences assumption, the 
entire family of Konüs true cost of living indices collapses to 
a single index, c(p1)/c(p0), the ratio of the minimum costs of 
achieving unit utility level when the consumer faces period 1 
and 0 prices, respectively. Put another way, under the homo-
thetic preferences assumption, PK(p0,p1,q) does not depend on 
the reference quantity vector q.

Substitute (9) into the inequalities (3) and (4), which, of 
course, are still valid under the homothetic preferences 

18 Economists will recognize the producer theory counterpart to the result 
C(u,p) = uc(p): If a producer’s production function f is subject to constant 
returns to scale, then the corresponding total cost function C(u,p) (where  
u > 0 is output and p is a vector of input prices) is equal to the product of 
the output level u times the unit cost c(p).
19 Obviously, the utility function f determines the consumer’s cost func-
tion C(u,p) as the solution to the cost minimization problem defined by 
(1). Then the unit cost function c(p) is defined as C(1,p). Thus, f deter-
mines c. But we can also use c to determine f under appropriate regularity 
conditions. In the economics literature, this is known as duality theory. 
For additional material on duality theory and the properties of f and 
c, see Samuelson (1953), Shephard (1953), McFadden (1966) (1978), and 
Diewert (1974a, 110–13) (1993a, 107–23).
20 Konüs and Byushgens (1926, 168) were the first to establish this result. 
Pollak (1971) (1983) independently established this result later.

assumption. The resulting two inequalities simplify into the 
following two inequalities:

p1·q1/p0·q1 ≡ PP( p0,p1,q0,q1) ≤ c( p1)/c( p0)  
 = PK( p0,p1,q) ≤ PL( p0,p1,q0,q1) ≡ p1·q0/p0·q0. (10)

Thus, under the homothetic preferences assumption, every 
Konüs true cost of living index PK(p0,p1,q) is bounded from 
above by the ordinary Laspeyres price index and bounded 
from below by the ordinary Paasche price index. Moreover, 
if we can observe the quantity vectors for periods 0 and 1 
that are generated by a cost-minimizing consumer that has 
homothetic preferences, then we can calculate the Laspey-
res and Paasche indices for this consumer, and it must be 
the case that not only will the consumer’s true cost of living 
index be bounded by these two indices but also the Paasche 
index is equal to or less than the corresponding Laspeyres 
index.21

If we use the Konüs true cost of living index defined by 
the right-hand side of (9) as our price index concept, then the 
corresponding implicit quantity index defined by deflating 
the value ratio by this price index is the following index:22

 Q(p0,p1,q0,q1,q) ≡ p1·q1/{p0·q0PK(p0,p1,q)} (11)
= c(p1)f(q1)/{c(p0)f(q0)PK(p0,p1,q)} using (8) twice

= c(p1)f(q1)/{c(p0)f(q0)[c(p1)/c(p0)]} using (9)
= f(q1)/f(q0).

Thus, under the homothetic preferences assumption, the 
implicit quantity index that corresponds to the true cost 
of living price index c(p1)/c(p0) is the utility ratio f(q1)/f(q0). 
Since the utility function is assumed to be homogeneous of 
degree one, this is a natural definition for a quantity index.

The bounds (3), (4), and (10) are the best nonparametric 
bounds that we can obtain on the Konüs true cost of living 
index PK(p0,p1,q). In subsequent sections, we will assume spe-
cific functional forms for f(q) or c(p) and find price indices 
that are consistent with the chosen functional forms. Before 
this is done, we will require two additional results from micro-
economic theory: Wold’s Identity and Shephard’s Lemma.

4. Wold’s Identity and Shephard’s 
Lemma
Instead of using the assumption that a household minimizes 
the cost of achieving a given utility level, one can use the 
assumption that the household maximizes utility subject to 
a budget constraint. Thus, let pt >> 0N and qt >> 0N be the 
household’s observed period t price and quantity vectors for 
t = 0,1. Define the household’s period t observed expenditure 
et as

 et ≡ pt·qt; t = 0,1. (12)

21 This result was established by Konüs and Byushgens (1926, 168).
22 The Product Test from Chapter 2 is used to define the implicit quantity 
index that corresponds to the price index defined by (9).
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The household’s period t utility maximization problem is 
defined as the following constrained maximization problem:

 max q {f(q) : pt·q ≤ et; q ≥ 0N} ≡ g(et,pt); t = 0,1. (13)

Instead of assuming that the household’s observed con-
sumption vector qt is a solution to the period t cost mini-
mization problem defined earlier by (1), an equivalent 
assumption (under Section 2 regularity conditions on f  ) is 
that the observed qt solves the period t utility maximization 
problem defined by (13). The period t optimized objective 
function in (13) is defined as the consumer’s indirect utility 
function, g(et,pt).23 This function is the maximum utility that 
the consumer can achieve given that they face the period t 
price vector pt and has “income” et to spend on the N com-
modities under consideration.

If we assume that the observed period t consumption vec-
tor qt is a solution to (13) for t = 0,1 and, in addition, f(q) has 
partial derivatives at q0 and q1, then it is possible to establish 
the following connection of these partial derivatives to the 
observed period 0 and 1 price vectors, p0 and p1.

Proposition 2 (Wold’s [1944, 69–71] [1953, 145] Identity): 
Suppose that (i) p0 >> 0N, p1 >> 0N; (ii) the consumer’s util-
ity function f(q) is increasing, continuous, and concave 
for all q ≥ 0N; (iii) f(q) has first-order partial derivatives at 
the points q0 and q1; and (iv) qt >> 0N is a solution to the 
household’s period t utility maximization problem (13) for  
t = 0,1. Then the following equations hold:

pi
t/pt·qt = [∂f(qt)/∂qi]/Σk=1

N qk
t∂f(qt)/∂qk;  

 t = 0,1; i = 1, . . .,N, (14)

where ∂f(qt)/∂qi denotes the partial derivative of the utility 
function f with respect to the ith quantity qi evaluated at the 
period t quantity vector qt.

A proof of Proposition 2 may be found in the Annex.
It is useful to express equations (14) using some alterna-

tive notation. Denote the N dimensional vector of first-order 
partial derivatives of f(qt) as ∇f(qt) ≡ [∂f(qt)/∂q1, . . .,∂f(qt)/∂qN] 
for t = 0,1. Using this notation, equations (14) can be rewrit-
ten more succinctly as follows:

 pt/pt·qt = ∇f(qt)/qt·∇f(qt); t = 0,1. (15)

If in addition to the assumptions made for Proposition 2, the 
utility function f(q) is linearly homogeneous, then it turns 
out that the terms qt·∇f(qt) = Σn=1

N qn
t∂f(qt)/∂qn are equal to 

f(qt) for t = 0,1; that is, if f(λq) = λf(q) for all λ > 0, then we 
have the following identities:24

23 When the consumer’s utility function f(q) is linearly homogeneous, con-
cave, and increasing in q, then the corresponding indirect utility function 
defined by (13) is equal to ut ≡ g(et,pt) = et/c(pt) since et = utc(pt). Thus, if we 
set et = 1 in (13), we obtain the following explicit formula for calculating 
the unit cost function from a knowledge of f: c(pt) = 1/max q {f(q) : pt·q ≤ 1 ;  
q ≥ 0N}. Alternatively, we can define c(pt) in the usual way as c(pt) ≡  
minq {pt·q ; f(q) ≥ 1; q ≥ 0N}.
24 Proof: Partially differentiate both sides of f(lq) = λf(q) with respect to 
λ and evaluate the resulting partial derivatives at λ = 1 and q = qt. This is 
Euler’s theorem on linearly homogeneous functions.

 f(qt) = qt·∇f(qt); t = 0,1. (16)

Substituting (16) into (15) leads to the following very useful 
equations:

 pt/pt·qt = ∇f(qt)/f(qt); t = 0,1. (17)

We turn now to the implications of differentiability of the 
consumer’s cost function, C(u,p), with respect to compo-
nents of the commodity price vector p. If C( f(qt),pt) has first-
order partial derivatives ∂C(ut,pt)/∂pn for n = 1, . . .,N and t = 
0,1 where ut = f(qt), then we have the following Proposition:

Proposition 3 (Shephard’s [1953, 11] Lemma): Suppose (i) 
the utility function f(q) is increasing, continuous, and con-
cave in q; (ii) pt >> 0N for t = 0,1; (iii) qt ≡ [q1

t, . . .,qN
t] > 0N is a 

solution to the cost minimization problem defined by (1) for 
t = 0,1; and (iv) for ut ≡ f(qt), the first-order partial derivatives 
of C(ut,pt) with respect to the components of p existing for 
t  = 0,1, then

 qn
t = ∂C(ut,pt)/∂pn; n = 1, . . .,N; t = 0,1. (18)

Moreover, qt is the unique solution to the cost minimization 
problem defined by (1) for t = 0,1.

A proof of Proposition 3 can be found in the Annex.
Let the vector of first-order partial derivatives of C(ut,pt) 

with respect to the components of the price vector p be 
denoted as ∇pC(ut,pt) ≡ [∂C(ut,pt)/∂p1, . . .,∂C(ut,pt)/∂pN] for t = 
0,1. Using this notation, equations (18) can be written more 
succinctly as follows:

 qt = ∇pC(ut,pt); t = 0,1. (19)

The result obtained here has the following implication: 
postulate a differentiable functional form for the cost func-
tion C(u,p) that satisfies the appropriate regularity condi-
tions on the cost function listed after definitions (1). Then 
differentiating C(u,p) with respect to the components of the 
product price vector p generates the consumer’s system of 
Hicksian cost-minimizing input demand functions,25 x(u,p) 
≡ ∇pC(u,p).

If we make the homothetic preferences assumption and 
assume that the utility function is linearly homogeneous, 
then using (7), we have C(ut,pt) = utc(pt) = pt·qt, where  
ut ≡ f(qt) for t = 0,1. Shephard’s Lemma (19) becomes qt = 
∇pC(ut,pt) = ut∇c(pt) for t = 0,1. Using these equations, we 
find that

 qt/pt·qt = ∇c(pt)/c(pt); t = 0,1. (20)

These equations will be very useful in subsequent sec-
tions of this chapter. Note the nice symmetry between the 
Shephard’s Lemma equations (20) and the Wold’s Identity 
equations (17). In the following sections, specific functional 
forms for a linearly homogeneous utility function f(q) or for 
a unit cost function c(p) will be made and index number for-
mulae that are exactly correct for these specific functional 

25 Hicks (1946, 311–31) introduced this type of demand function into the 
economics literature.
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forms will be derived. Thus, in the next two sections, we 
assume that the consumer’s preference function is linearly 
homogeneous.

5. Superlative Indices: The Fisher 
Ideal Index
Suppose the consumer has the following utility function:26

 f(q1, . . .,qN) ≡ [Σi=1
NΣk=1

N aikqiqk]
1/2, (21)

where the N2 parameters aik satisfy the symmetry conditions 
aik = aki for all indices i and k. Thus, there are only N(N + 1)/2  
independent parameters in this functional form. Note that 
f(q) defined by (21) is linearly homogeneous.

Differentiating f(q) defined by (21) with respect to qi yields 
the following equations:

∂f(q)/∂qi = (1/2)[Σj=1
NΣk=1

N ajkqjqk]
-1/2 2Σk=1

N aikqk;  
 i = 1, . . .,N (22)

= Σk=1
N aikqk/f(q),

where it is necessary to use the symmetry conditions, aik = 
aki for 1 ≤ i,k £ N, in order to derive the first set of equa-
tions in (22) and the second set of equations follows from 
definition (21). Now evaluate the second set of equations in 
(22) at the observed period t quantity vector qt ≡ (q1

t, . . .,qN
t) 

and divide both sides of the resulting equations by f(qt). We 
obtain the following equations:

[∂f(qt)/∂qi]/f(q
t) = Σk=1

N aikqk
t/[ f(qt)]2 t = 0,1;  

 i = 1, . . .,N. (23)

At this point, it is convenient to rewrite equations (23) using 
matrix notation. Thus, in what follows, we interpret the 
vectors pt and qt for t = 0,1 as column vectors. Denote the 
transpose of a column vector x by xT, which is the row vec-
tor [x1, . . .,xN]. Define A ≡ [aik] as the N by N matrix that has 
component aik in row i and column k of A. We assume that 
A is a symmetric matrix so that its transpose AT is equal to 
the original matrix A. Thus, using matrix notation, f(q) ≡ 
[qTAq]1/2, where A = AT.

Using this matrix notation, equations (22) can be written 
as the following vector equation:

 ∇f(q) = Aq/[qTAq]1/2 (24)
= Aq/f(q)

because f(q) ≡ [qTAq]1/2. Using matrix notation, equations (23) 
can be denoted as follows:

 ∇f(qt)/f(qt) = Aqt/[ f(qt)]2; t = 0,1. (25)

f(q) defined by (21) is obviously linearly homogeneous. But 
we also need it to be positive (if q > 0N), nondecreasing, 

26 This functional form was indirectly introduced into the economics 
literature by Konüs and Byushgens (1926, 171) and Diewert (1974b, 123) 
(1976, 116). Pollak (1971), Afriat (1972, 45), and others also considered 
this functional form but did not work out the region where the utility 
function was well-behaved.

and concave in q over at least a subset of the nonnegative 
orthant. Suppose the symmetric matrix A has one positive 
eigenvalue with a corresponding strictly positive eigenvec-
tor and the remaining N – 1 eigenvalues of A are either 0 or 
negative.27 Then f(q) defined by (21) will be positive, nonde-
creasing, and concave over the region of regularity S defined 
as follows:28

 S ≡ {q : q ≥ 0N; Aq ≥ 0N; qTAq > 0}. (26)

Now assume utility-maximizing behavior for the consumer 
in periods 0 and 1; that is, assume that qt >> 0N is a solu-
tion to the period t utility maximization problem defined 
by (13), where pt >> 0N and et ≡ pt·qt for t = 0,1 and the 
utility function f(q) is defined by (21), where matrix A satis-
fies the aforementioned regularity conditions. Assume that 
q0 and q1 are both in the regularity region defined by (26). 
Since the utility function f defined by (21) is linearly homo-
geneous and differentiable over S, equations (17) (Wold’s 
Identity) will hold for periods 0 and 1. Thus, using (17), we 
have

 pt/pt·qt = ∇f(qt)/f(qt); t = 0,1 (27)
= Aqt/[ f(qt)]2,

where the second set of equations follows from equations (25).
As usual, the Fisher (1922) ideal quantity index, QF, is 

defined as QF(p0,p1,q0,q1) ≡ [p0·q1p1·q1/p0·q0p1·q0]1/2.
Thus, the square of the Fisher quantity index is equal to

 QF(p0,p1,q0,q1)2 = p0·q1p1·q1/p0·q0p1·q0 (28)
= [p0/p0·q0]Tq1/[p1/p1·q1]Tq0

= {q0TATq1/f(q0)2}/{q1TATq0/f(q1)2} using (27)

= {1/f(q0)2}/{1/f(q1)2} since q0TATq1 = q1TATq0 using A = AT

= [ f(q1)/f(q0)]2.

Taking positive square roots of both sides of (28) shows that, 
according to this hypotheses, the Fisher quantity index is 
exactly equal to the utility ratio, which is the consumer’s true 
volume index; that is, we have

 QF(p0,p1,q0,q1) = f(q1)/f(q0). (29)

Finally, use the following Product Test to define the price 
index that corresponds to the Fisher volume index:

 PF(p0,p1,q0,q1) ≡ p1·q1/{p0·q0QF(p0,p1,q0,q1)} (30)
= [p1·q0p1·q1/p0·q0p0·q1]1/2 using definition (27).

27 These conditions were imposed on A by Diewert (1976, 116).
28 See Diewert and Hill (2010, 272–74) for a proof of this result. It turns 
out that f(q) ≡ (qTAq)1/2 is a concave function over the regularity region S 
≡ {q: Aq ≥ 0N; q ≥ 0N and qTAq > 0} if A has a positive eigenvalue with a 
corresponding strictly positive eigenvector and the other eigenvalues of 
A are negative or 0.
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Let c(p) be the unit cost function that corresponds to the 
utility function f(q) defined by (21).29 Then, for this c(p), 
equations (8) will hold; that is, we will have pt·qt = f(qt)c(pt) 
for t = 0,1. Substituting these equations into the first line of 
(30), we obtain the following equation:

PF(p0,p1,q0,q1) ≡ c(p1)f(q1)/{c(p0)f(q0)QF(p0,p1,q0,q1)} (31)
= c(p1)f(q1)/{c(p0)f(q0)[ f(q1)/f(q0)]} using (29)

= c(p1)/c(p0),

which is the Konüs true cost of living index defined by (9) 
when preferences are homothetic. Thus, under the assump-
tion that the consumer engages in cost-minimizing behavior 
during periods 0 and 1 and has preferences over the N com-
modities that correspond to the utility function defined by 
(21), the Fisher ideal price index PF is exactly equal to the true 
cost of living index, c(p1)/c(p0).

What is useful about the results obtained here is that it 
is not necessary to estimate econometrically the N(N + 1)/2 
parameters in the A matrix in order to find an estimator for 
the consumer’s true cost of living index and the corresponding 
true volume index.

There is another useful property of the utility function f(q) 
that is defined by (21): This function is a flexible functional 
form. Diewert (1974a, 113) defined a twice continuously dif-
ferentiable linearly homogeneous function of N variables, 
f(q), to be a flexible functional form if it could approximate an 
arbitrary twice continuously differentiable linearly homoge-
neous function of N variables, say f*(q), to the second order 
around an arbitrary positive vector q* >> 0N. Thus, if f*(q) 
is an arbitrary linearly homogeneous function that is twice 
continuously differentiable at the given arbitrary point q* >> 
0N, then the linearly homogeneous twice continuously dif-
ferentiable function f(q) is a flexible functional form if it has 
a sufficient number of free parameters so that the following 
1 + N + N2 equations can be satisfied:

 f(q*) = f*(q*); (32)
 ∇f(q*) = ∇f*(q*); (33)
 ∇2f(q*) = ∇2f*(q*), (34)

where ∇f(q*) ≡ [∂f(q*)/∂q1, . . ., ∂f(q*)/∂qN]T is the vector of first-
order partial derivatives of f(q) evaluated at the point q* and 
∇2f(q*) ≡ [∂2f(q*)/∂qi∂qk] is the N by N matrix of second-order 
partial derivatives of f(q) evaluated at the point q*, where 
the element in row i and column k is ∂2f(q*)/∂qi∂qk for i,k = 
1, . . .,N.

If f(q) is a flexible functional form, then it can approximate 
an arbitrary twice differentiable linearly homogeneous util-
ity function very closely in a neighborhood of any arbitrarily 
chosen point q*. Thus, if q0 and q1, the consumer’s observed 
quantity choices for periods 0 and 1, are fairly close to each 
other, then a flexible utility function f(q) can approximate 

29 It may not be easy to find an explicit formula for c(p) in terms of matrix 
A. If matrix A has an inverse, then it can be shown that the unit cost  
function that corresponds to the utility function f(q) defined by (21) is  
c(p) ≡ (pTA–1p)1/2 for price vectors p belonging to the region of prices 
defined by S* ≡ {p: A–1p ³ 0N ; p ≥ 0N and pTA-1p > 0N}.

the consumer’s true utility function f *(q) reasonably closely, 
and so index numbers based on the assumption that the 
consumer maximizes utility using the utility function f(q) 
instead of the true one f *(q) will be able to provide a good 
approximation to the consumer’s behavior.30

Proposition 4: The utility function defined as f(q) ≡ 
(qTAq)1/2 over the region S defined by (27) where A = AT is a 
flexible functional form.

For a proof, see the Annex.
Diewert (1976, 117) termed an index number formula QF(

p0,p1,q0,q1) that was exactly equal to the true quantity index 
f(q1)/f(q0) (where f is a flexible functional form) a superlative 
index number formula.31 Equation (29) plus the fact that the 
homogeneous quadratic function f(q) defined by (21) is a 
flexible functional form shows that the Fisher ideal quantity 
index QF defined (27) is a superlative index number formula. 
Since the corresponding implicit Fisher ideal price index PF 
satisfies (31) where c(p) is the unit cost function that is gener-
ated by the homogeneous quadratic utility function, we also 
call PF a superlative index number formula.

There is a special case of the homogeneous quadratic 
preferences that will play an important role in later chapters 
and that is the case of linear preferences. Thus, suppose that 
the consumer has the following linear utility function:

 f(q) = Sn=1
N anqn, (35)

where the parameters an are positive. If N = 2, the indiffer-
ence curves for a consumer with linear preferences are a 
family of parallel straight lines. The parameters an are qual-
ity adjustment parameters; that is, an is the marginal incre-
ment to the consumer’s welfare due to the consumption of an 
extra unit of the nth commodity. The absolute magnitudes 
of the an are not meaningful (since the units of measurement 
for utility are not observable), but the relative valuations 
an/ak are meaningful. If a consumer has linear preferences, 
then we say that the N products are perfect substitutes.

To see that the preferences defined by (35) are a special 
case of the preferences defined by f(q) = (qTAq)1/2, let matrix 
A be defined as the following rank 1 matrix:

 A ≡ aaT, (36)

where the row vector aT is defined as aT ≡ [a1, . . .,aN]. Thus, 
if f(q) is defined as (qTAq)1/2, then using the A defined by (36), 
we have f(q) = (qTAq)1/2 = (qTaaTq)1/2 = ([aTq]2)1/2 = aTq = Σn=1

N 
anqn. With linear preferences, the consumer’s utility maximi-
zation problem (13) becomes the following linear program-
ming problem:

max q {aTq : pt·q ≤ et; q ≥ 0N}= max n {etan/pn
t;  

 n = 1, . . .,N}. (37)

30 A first-order approximation to a consumer’s utility function will not 
be able to provide a first-order approximation to the consumer’s system 
of consumer demand functions. A first-order approximation will not be 
able to adequately describe a consumer’s reactions to changes in relative 
prices.
31 Fisher (1922, 247) used the term “superlative” to describe the Fisher 
ideal price index. Thus, Diewert adopted Fisher’s terminology but 
attempted to give some precision to Fisher’s definition of superlativeness. 
Fisher defined an index number formula to be superlative if it approxi-
mated the corresponding Fisher ideal results using his data set.
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Thus, if a consumer has linear preferences, then they 
will usually end up at a corner solution where one or 
more commodities are not consumed at all. However, if 
a  utility-maximizing consumer with linear preferences 
ends up choosing a positive amount of each commodity 
for period t, then it must be the case that an/pn

t = λt for n = 
1, . . .,N. Thus, if a utility-maximizing consumer with linear 
preferences consumes positive amounts of all N products in 
periods 0 and 1, then it must be the case that prices are vary-
ing in a proportional manner over periods 0 and 1; that is, 
the period t price vector pt must be equal to lta, where λt > 
0 for t = 0,1.32 It is not realistic to assume that prices vary 
in strict proportion over time, but if the variation in prices 
is approximately proportional, then it is not unrealistic to 
assume that a  utility-maximizing consumer’s preferences 
can be adequately approximated by a linear utility func-
tion. The assumption of linear preferences will play a large 
role in our treatment of quality change (Chapter 8). The 
important point to take away from this discussion of util-
ity-maximizing behavior where the consumer has a linear 
utility function is that the use of the Fisher quantity index 
to measure quantity change (and hence to measure welfare 
change) is perfectly consistent with the assumption of linear 
preferences.

It is possible to show that the Fisher ideal price index is 
a superlative index number formula by a different route. 
Instead of starting with the assumption that the consum-
er’s utility function is the homogeneous quadratic function 
defined by (21), we can start with the assumption that the 
consumer’s unit cost function is a homogeneous quadratic. 
Thus, suppose that the consumer has the following unit cost 
function:

 c(p1, . . .,pN) ≡ [Σi=1
NΣk=1

N bikpipk]
1/2, (38)

where the parameters bik satisfy the symmetry conditions bik 
= bki for all 1 ≤ i, k ≤ N. Thus, there are N(N + 1)/2 indepen-
dent parameters in the functional form for c(p) defined by 
(38).33 Let B ≡ [bik] be the N by N matrix that has bik in row i 
and column k of B. Then c(p1, . . .,pN) = c(p) can be defined 
as follows:

 c(p) = (pTBp)1/2; B = BT. (39)

Using this matrix notation, the vector of first-order partial 
derivatives of the unit cost function defined by (39) is equal 
to the following expression:

 ∇c(p) = Bp/[pTBp]1/2 (40)
= Bp/c(p)

32 In this case, the solution set to the period t utility maximization prob-
lem defined by (37) is the set {q : pt·q = et ; q ≥ 0N}. This analysis for the case 
of a linear utility function follows that of Pollak (1971) (1983).
33 This functional form for a unit cost function was essentially developed by 
Konüs and Byushgens (1926, 168), and they showed the relationship of this 
functional form to the Fisher ideal price index. See also Diewert (1976) and 
Diewert and Hill (2010).

where the second equation in (40) follows because c(p) ≡ 
[pTBp]1/2. Now evaluate (40) when p = pt for t = 0,1, where 
pt >> 0N is the positive period t price vector facing the con-
sumer. Divide the resulting equation t by c(pt) for t = 0,1 and 
we obtain the following equations:

 ∇c(pt)/c(pt) = Bpt/[c(pt)]2; t = 0,1. (41)

The c(p) defined by (39) is obviously linearly homogeneous. 
But we also need it to be positive (if p > 0N), nondecreasing, 
and concave in p over at least a subset of the nonnegative 
orthant. Suppose the symmetric matrix B has one positive 
eigenvalue with a corresponding strictly positive eigenvec-
tor and the remaining N – 1 eigenvalues of B are either 0 or 
negative.34 Then c(p) defined by (39) will be positive, non-
decreasing, and concave over the region of regularity S* 
defined as follows:35

 S* ≡ {p : p ≥ 0N; Bp ≥ 0N; pTBp > 0}. (42)

Now assume cost-minimizing behavior for the consumer 
in periods 0 and 1; that is, assume that qt >> 0N is a solu-
tion to the consumer’s period t cost minimization problem 
when the consumer faces the price vector pt >> 0N for t = 
0,1. Assume that the consumer has homothetic preferences 
and the consumer’s unit cost function is c(p) defined by (39). 
Finally assume that pt belongs to the regularity region for 
prices S* defined by (42) for t = 0,1. Shephard’s Lemma (20) 
applied to the c(p) defined by (39) gives us the following 
equations:

 qt/pt·qt = ∇c(pt)/c(pt) t = 0,1 (43)
= Bpt/[c(pt)]2 using (41).

Recall that the Fisher (1922) ideal price index was defined 
earlier by (30); that is, PF(p0,p1,q0,q1) was defined as 
[p1·q0p1·q1/p0·q0p0·q1]1/2. Thus, the square of the Fisher price 
index is equal to

 [PF(p0,p1,q0,q1)]2 = p1·q0p1·q1/p0·q0p0·q1 (44)
= p1T[q0/p0·q0]/p0T[q1/p1·q1]

= p1T{Bp0/[c(p0)]2}/p0T{Bp1/[c(p1)]2}

= {1/c(p0)2}/{1/c(p1)2} since p1TBp0 = p0TBp1 using B = BT

= [c(p1)/c(p0)]2.

Taking positive square roots of both sides of (44) shows that, 
under the aforementioned hypotheses, the Fisher price index 
is exactly equal to the unit cost ratio, which is the consumer’s 
true cost of living index in the case of homothetic preferences; 
that is, we have

 PF(p0,p1,q0,q1) = c(p1)/c(p0). (45)

34 These regularity conditions on B are counterparts to our earlier regu-
larity conditions that were imposed on A.
35 Again see Diewert and Hill (2010, 272–74) for a proof of this result.
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Finally, use the Product Test to define a quantity index QF
* 

that corresponds to the Fisher price index defined by (30):

 QF
*(p0,p1,q0,q1) ≡ p1·q1/{p0·q0PF(p0,p1,q0,q1)} (46)

= [p0·q1p1·q1/p0·q0p1·q0]1/2 using definition (30)
= QF(p0,p1,q0,q1),

where QF(p0,p1,q0,q1) was defined earlier by (27). Thus, the 
implicit quantity index that corresponds to the Fisher price 
index defined by (30) is the Fisher quantity index defined 
by (27), and the implicit price index that corresponds to 
the Fisher quantity index defined by (27) is the Fisher price 
index.

Since preferences are homothetic, equations (8) will hold; 
that is, we have pt·qt = c(pt)f(qt) for t = 0,1. From (46), we 
have

 QF(p0,p1,q0,q1) = p1·q1/{p0·q0PF(p0,p1,q0,q1)} (47)
= c(p1)f(q1)/{c(p0)f(q0)PF(p0,p1,q0,q1)} using (8)

= c(p1)f(q1)/{c(p0)f(q0)[c(p1)/c(p0)]} using (45)
= f(q1)/f(q0).

Again, the Fisher quantity index is equal to the utility ratio 
under our assumptions on consumer behavior.

The proof of Proposition 4 can be adapted to show that 
c(p) ≡ (pTBp)1/2 is a flexible functional form. Thus, we have 
again shown that the Fisher ideal price index is a superlative 
index; that is, it is exact for a flexible functional form for the 
unit cost function.

An important special case of this functional form is the 
case where matrix B is equal to a rank 1 matrix; that is, sup-
pose B is given by

 B = bbT, (48)

where bT ≡ [b1,  .  .  .,bN] and bn > 0 for n = 1,  .  .  .,N. Using 
Shephard’s Lemma (19) for the cost function C(ut,pt) ≡ 
utc(pt) = ut(pTbbTp)1/2 = utbTp for periods t = 0,1 leads to the 
following equations to describe the period t demand vec-
tors, qt:

 qt = ut∇c(pt) = utb; t = 0,1. (49)

Thus, qn
1/qn

0 = u1/u0 for n = 1, . . .,N and the demand for each 
commodity moves in a proportional manner over the two 
periods. Note also that changes in commodity prices do not 
change the demands. Thus, preferences are such that the 
consumer will not substitute cheaper products for more 
expensive products as prices change over time. For N = 2, 
the consumer’s family of indifference curves are L shaped. 
The preferences that are represented by the cost function 
uc(p) = ub·p = u Σn=1

N bnpn are called no substitution or Leon-
tief preferences in the economic literature.36 These prefer-
ences are completely opposite to linear preferences where 

36 See Diewert (1971).

products were perfect substitutes. What is interesting is that 
the Fisher ideal price and quantity indices are completely 
consistent with utility-maximizing behavior for both types 
of preferences.

We conclude this section by showing how a linearly 
homogeneous utility function f(q) can be derived from its 
dual unit cost function c(p). Suppose that the unit cost 
function c(p) is given and it is nonnegative, increasing, lin-
early homogeneous, concave, and continuous for q ≥ 0N. Let 
q* >> 0N. The utility level u ≡ f(q) that corresponds to c(p) 
must satisfy the inequality c(p)u ≤ p·q* for all p > 0N. Since 
c(p) and p·q* are linearly homogeneous in p, we can replace 
the set of p such that p > 0N by the set {p : p ≥ 0N; p·q* = 1}. 
Thus, the inequalities c(p)u ≤ p·q* for all p > 0N are equiva-
lent to the inequalities c(p)u ≤ 1 for all p ≥ 0N; p·q* = 1. 
Since c(p) will be positive for all such p vectors, this last set 
of inequalities can be replaced by u ≤ 1/c(p) for all p ≥ 0N; 
p·q* = 1. The biggest such u = f(q*) that will satisfy all of the 
inequalities is given by 1/c(p*), where p* solves the concave 
programming problem: max p {c(p) : p·q* = 1; p ≥ 0N}. Thus, 
we have the following representation for f(q*) in terms of 
c(p):37

 f(q*) = 1/max p {c(p) : p·q* = 1; p ≥ 0N}. (50)

We can use this formula in order to calculate the utility 
function that corresponds to the no-substitution unit cost 
function defined as c(p) ≡ b·p. The constrained maximiza-
tion problem that appears in (50) for this unit cost function 
is

max p {Σn=1
N bnpn : Σn=1

N qn
*pn = 1;  

 p ≥ 0N}= max n {bn/qn
* : n = 1, . . .,N}. (51)

Since all of the numbers bn and qn
* are assumed to be posi-

tive, 1/max n {bn/qn
* : n = 1, .  .  .,N} will equal minn {qn

*/bn :  
n = 1, . . .,N}. Using this equality and (51), (50) becomes the 
following explicit representation for the no substitution pref-
erence function:

 f(q*) = minn {qn
*/bn : n = 1, . . .,N}. (52)

Another special case of the homogeneous quadratic unit 
cost function defined by (39) is the case where matrix B has an 
inverse.38 Let c(p) = (pTBp)1/2, where B = BT and B has one 
positive eigenvalue with a strictly positive eigenvector and 
the remaining N – 1 eigenvalues of B are negative. In this 
case, B has full rank and so B–1 exists. We show in the annex 
how a modification of formula (50) can be used to calculate 
f(q*) for some q* >> 0N.

Proposition 5: Let c(p) = (pTBp)1/2, where B = BT and B has 
one positive eigenvalue with a strictly positive eigenvector 
and the remaining N – 1 eigenvalues of B are negative. Let 
q* >> 0N and suppose also that B–1q* >> 0N. Let f(q) be the 
utility function that is dual to c(p). Then f(q*) = (q*TB–1q*)1/2.

37 This formula may be found in the work of Diewert (1974a, 112).
38 This is the model of consumer behavior considered by Konüs and 
Byushgens (1926, 168).
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In the following sections, we will exhibit some additional 
exact index number formulae.

6. Quadratic Means of Order r and 
the Walsh Index
It turns out that there are many other superlative index num-
ber formulae; that is, there exist many quantity indices Q(p0, 
p1,q0,q1) that are exactly equal to f(q1)/f(q0) and many price 
indices P(p0,p1,q0,q1) that are exactly equal to c(p1)/c(p0) 
where the aggregator function f or the unit cost function c 
is a flexible functional form. We will define two families of 
superlative indices in this section.

Suppose the consumer has the following quadratic mean of 
order r utility function:39

 f r(q1, . . .,qN) ≡ [Σi=1
N Σk=1

N aikqi
r/2qk

r/2 ]1/r, (53)

where the parameters aik satisfy the symmetry conditions aik 
= aki for all i and k and the parameter r satisfies the restric-
tion r ≠ 0. It turns out that fr(q) is a flexible functional form.

Proposition 6: For each r ≠ 0, fr(q) defined by (53) is a flex-
ible functional form.

See the Annex for a proof. From the proof of Proposi-
tion 6, it can be seen that the quadratic mean of order r 
utility function defined by (53) can adequately represent the 
preferences for a utility-maximizing consumer for quantity 
vectors q in a neighborhood around any strictly positive q* 
since there will be a neighborhood around q*, where fr(q) 
will be concave and increasing. Hence, for this region, fr(q) 
can provide an adequate approximation to arbitrary differ-
entiable homothetic preferences. However, this neighbor-
hood may not be very large and this point should be kept 
in mind.40

Let r ≠ 0 and define the quadratic mean of order r quantity 
index Qr by

Qr(p0,p1,q0,q1) ≡ {Σi=1
N si

0(qi
1/qi

0)r/2}1/r 
 {Σi=1

N si
1(qi

1/qi
0)–r/2}–1/r, (54)

where si
t ≡ pi

tqi
t/Σk=1

N pk
tqk

t is the period t expenditure share 
for commodity i for i = 1, . . .,N and t = 0,1. It can be veri-
fied that when r = 2, Qr simplifies into QF, the Fisher ideal 
quantity index.

Proposition 7: Let r ≠ 0 and define fr(q) by (53) over an 
open convex set S of positive quantity vectors q. We assume 
that fr(q) defined by (53) is positive, increasing, and concave 
over S.41 Finally assume that qt solves the following period t 
local utility maximization problem where pt >> 0N and et > 
0 for t = 0,1:

 max q {f r(q) : pt·q ≤ et; q∈S}. (55)

39 This terminology was adopted by Diewert (1976, 129). When r = 1, 
fr(q) simplifies into the Generalized Linear Utility Function; see Diewert 
(1971).
40 This index number formula was derived by Diewert (1976, 130).
41 Using the techniques described in Blackorby and Diewert (1979), the 
utility function fr(q) that satisfies the appropriate regularity conditions 
over the set S can be extended to preferences that are defined over q ≥ 0N.

Then Qr(p0,p1,q0,q1) defined by (54) is exact for fr(q) defined 
by (53); that is, we have

 Qr(p0,p1,q0,q1) = fr(q1)/fr(q0). (56)

See the Annex for a proof of Proposition 7.
Thus, under the assumption that the consumer engages 

in utility-maximizing behavior during periods 0 and 1 and 
has local preferences over the N commodities that corre-
spond to the utility function defined by (53) for a region 
that includes q0 and q1, then the quadratic mean of order 
r quantity index Qr is exactly equal to the true quantity 
index, f r(q1)/f r(q0).42 Since Qr is exact for fr and fr is a flexible 
functional form, we see that the quadratic mean of order 
r quantity index Qr is a superlative index for each r ≠ 0. 
Thus, there are an infinite number of superlative quantity 
indices.43

For each quantity index Qr, we can use the product test in 
order to define the corresponding implicit quadratic mean of 
order r price index Pr*:

 Pr*(p0,p1,q0,q1) ≡ p1·q1/{p0·q0Qr(p0,p1,q0,q1)} (57)
= cr*(p1)/cr*(p0),

where cr* is the unit cost function that corresponds to the 
aggregator function fr defined by (53). For each r ≠ 0, the 
implicit quadratic mean of order r price index Pr* is also a 
superlative index.

When r = 2, as noted earlier, Qr defined by (54) simplifies 
to QF, the Fisher ideal quantity index, and Pr* defined by (57) 
simplifies to PF, the Fisher ideal price index. When r = 1, Qr 
defined by (54) simplifies to

Q1(p0,p1,q0,q1) ≡ {Σi=1
N si

0(qi
1/qi

0)1/2}/ 
 {Σi=1

N si
1(qi

1/qi
0)–1/2} (58)

={[Σi=1
N pi

0qi
0/Σi=1

N pi
0qi

0](qi
1/qi

0)1/2}/{[Σi=1
N pi

1qi
1/Σi=1

N pi
1qi

1]
(qi

1/qi
0)–1/2}

={Σi=1
N pi

0(qi
0qi

1)1/2/p0·q0}/{Σi=1
N pi

1(qi
0qi

1)1/2/p1·q1}
= [p1·q1/p0·q0]/PW(p0,p1,q0,q1),

where PW is the Walsh (1901) (1921) price index defined in 
Chapter 2. Thus, P1* is equal to PW, the Walsh price index, 
and hence it is also a superlative price index.44

Suppose the consumer has the following quadratic mean of 
order r unit cost function:45

42 See Diewert (1976, 130).
43 However, as r becomes large in magnitude, the region where fr(q) can 
approximate a well-behaved utility function will tend to shrink. In the lim-
iting cases where r tends to plus or minus infinity, Hill (2006) showed that 
fr(q) loses its flexibility property. Thus, it is recommended that Qr(p0,p1,q0, 
q1) only be used for r small in magnitude.
44 For r = 1, the utility function defined by (53) turns out to be the Gen-
eralized Linear function that was introduced to the economics literature 
by Diewert (1971).
45 This terminology was adopted by Diewert (1976, 130). This unit cost 
function was first defined by Denny (1974). We restrict p to belong to a set 
of prices S* that is defined in Proposition 8.
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 cr(p1, . . .,pN) ≡ [Σi=1
N Σk=1

N bikpi
r/2 pk

r/2 ]1/r, (59)

where the parameters bik satisfy the symmetry conditions bik 
= bki for all i and k and the parameter r satisfies the restric-
tion r ≠ 0. Note that when r = 2, cr equals the homogeneous 
quadratic unit cost function defined by (39).46

Proposition 8: For each r ≠ 0, cr(p) defined by (59) is a flex-
ible functional form.47

The proof of this proposition is analogous to the proof 
of Proposition 6: just replace q by p and replace fr(q) by 
cr(p).

Since cr(p) is unlikely to be a well-behaved unit cost func-
tion over the entire set of positive price vectors, we need a 
method for recovering preferences defined by a unit cost 
function defined over a smaller set of prices where cr(p) sat-
isfies the necessary conditions for unit cost function; that is, 
where it is increasing and concave.48 Thus, let S* be a set of 
prices that satisfies the following conditions:49

(60) S* is a set of N dimensional vectors that has the fol-
lowing properties: (i) if p∈S*, then p >> 0N; (ii) S* is an open 
set;50 (iii) S* is a convex set;51 (iv) S* is a cone;52 (v) if p belongs 
to S*, then ∇cr(p) >> 0N ; and (vi) cr(p) is a concave function 
over S*.

We need to find the utility function fr*(q) that is consistent 
with the unit cost function cr(p) defined by (59) over S*. We 
can find this corresponding utility function but it will not be 
defined over all nonnegative quantity vectors, q ≥ 0N. It will 
be defined over the set S defined as follows:

 S ≡ {q: q = λ∇cr(p); λ > 0; p∈S*}. (61)

It can be seen using property (v) in (60) that S will also be a 
cone and moreover, if q∈S, then q >> 0N.

If S* turns out to be the interior of the nonnegative 
orthant, then fr*(q*) that is generated by the unit cost func-
tion cr(p) for q* >> 0N can be defined as follows:

 fr*(q*) ≡ max u>0,p {u: cr(p)u ≤ p·q*; p > 0N} (62)
= max u>0,p {u: cr(p)u £ e; e = p·q*; p > 0N}, where e > 0 is an 

arbitrary positive number53

= max u>0,p {u: u ≤ e/cr(p); e = p·q*; p ³ 0N}54

46 When r = 1, cr(p) defined by (59) becomes the Generalized Leontief 
functional form for a cost function; see Diewert (1971).
47 See Diewert (1976, 130).
48 The cr(p) defined by (59) is automatically linearly homogeneous over 
the set of prices where it is positive, increasing, and concave since linear 
homogeneity is imposed on the functional form by its definition.
49 Using the techniques described in Blackorby and Diewert (1979), if 
cr(p) is linearly homogeneous, increasing, and concave over S*, then the 
domain of definition of cr(p) can be extended to all p ≥ 0N.
50 This means if p∈S*, then there exists a δ > 0 such that the open ball of 
radius δ, Bδ(p), also belongs to S*, where Bδ(p) ≡ {x: (x - p)·(x – p) < d2}.
51 This means if p1 and p2 belong to S* and 0 < λ < 1, then λp1 + (1 – λ)p2 
also belongs to S*.
52 If p belongs to S*, then lp also belongs to S* for all λ > 0.
53 The number e is a fixed positive number. In order to justify moving from 
the first equality in (62) to the second equality, we need to use the fact that 
cr(p) is linearly homogeneous.
54 Since e > 0, p ≥ 0N, q* >> 0N, and p·q* = e, we can replace the constraints 
p > 0N by p ≥ 0N.

= e/max p {cr(p); e = p·q*; p ³ 0N}.

However, in general, cr(p) will not be a well-behaved unit 
cost function for all p > 0N. Thus, in the following definition 
for fr*(q*), we restrict p to belong to the set S* that has the 
properties listed in (60), and we restrict q* to belong to S, 
where S is defined by (61). Thus, let q* belong to S and define 
fr*(q*) as follows:55

 fr*(q*) ≡ max u>0,p {u: cr(p)u ≤ p·q*; pÎS*} (63)
= max u>0,p {u: cr(p)u £ e; e = p·q*; p∈S*}, where e > 0 is an 

arbitrary positive number

= max u>0,p {u: u ≤ e/cr(p); e = p·q*; pÎS*}
= e/max p {cr(p); e = p·q*; pÎS*}.

The previous representation for fr*(q*) will be used in the 
proof of the following Proposition:

Proposition 9: Let cr(p) be defined by (59) for p∈S*, 
where S* is defined by (60). Let et > 0 and pt∈S*. Define 
qt as

 qt ≡ et∇cr(pt)/cr(pt). (64)

Then pt is a solution to max p {cr(p); e = p·qt; pÎS*}. Define 
fr*(q) by (63) (with e = et) for q∈S, where S is defined by (61). 
Then fr*(qt) is equal to the following expression:

 fr*(qt) = et/cr(pt). (65)

Finally, the qt defined by (64) is a solution to the consumer’s 
local utility maximization problem defined as follows:

 max q {fr*(q) : pt·q = et; q∈S}. (66)

For a proof of Proposition 9, see the Annex.
Note that using (64), we have

 pt·qt = pt·et∇cr(pt)/cr(pt) (67)
= etcr(pt)/cr(pt) since cr(pt) = pt·et∇cr(pt)

= et

= f r*(qt)cr(pt) using (65).

Using (64) and pt·qt = et, we also have the Shephard’s Lemma 
equality:56

 qt/pt·qt = ∇cr(pt)/cr(pt). (68)

55 Again, using the methods described in Blackorby and Diewert (1979), 
the domain of definition for f r*(q) can be extended to q ≥ 0N. However, for 
q > 0N but q∉S, the extended f r*(q) may not represent the true preferences 
of the consumer.
56 Recall (20).
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We will relate the preferences defined by cr(p) to the follow-
ing price index formula. Let r ≠ 0 and define the quadratic 
mean of order r price index Pr by

Pr(p0,p1,q0,q1) ≡ {Σi=1
N si

0(pi
1/pi

0)r/2}1/r 
 {Σi=1

N si
1(pi

1/pi
0)–r/2}–1/r, (69)

where si
t ≡ pi

tqi
t/pt·qt is the period t expenditure share for 

commodity i for i = 1, . . .,N and t = 0,1. It can be verified 
that when r = 2, Pr simplifies into PF, the Fisher ideal price 
index.

Proposition 10: Let r ≠ 0 and assume that cr(p) given by 
(59) is defined over a set S* that satisfies conditions (60). 
Define the set S by (61) and define the locally dual utility 
function fr*(q*) for q*∈S by (63) for any e > 0. Let et equal the 
consumer’s “income” in period t that is allocated to spend-
ing on the N commodities for t = 0,1. Let p0 and p1 belong to 
S* and q0 and q1 are defined by:

 qt ≡ et∇cr(pt)/cr(pt); t = 0,1. (70)

Then, qt solves the local utility maximization problem, max 
q {fr*(q); pt·q = et; q∈S}, for t = 0,1. Moreover, Pr defined by 
(69) is exact for the preferences defined by fr*(q) over the set 
S; that is, we have

 Pr(p0,p1,q0,q1) = cr(p1)/cr(p0). (71)

See the Annex for a proof.
Thus, under the assumption that the consumer engages 

in cost-minimizing behavior during periods 0 and 1 and has 
preferences over the N commodities that correspond to the 
unit cost function defined by (59), the quadratic mean of 
order r price index Pr is exactly equal to the true price index, 
cr(p1)/cr(p0).57 Since Pr is exact for cr and cr is a flexible func-
tional form, we see that the quadratic mean of order r price 
index Pr is a superlative index for each r ≠ 0. Thus, there are 
an infinite number of superlative price indices.

For each price index Pr, we can use the product test in 
order to define the corresponding implicit quadratic mean of 
order r quantity index Qr*:

 Qr*(p0,p1,q0,q1) ≡ p1·q1/{p1·q1Pr(p0,p1,q0,q1)} (72)
= fr*(q1)/fr*(q0),

where fr* is the utility function that corresponds to the unit 
cost function cr defined by (53). For each r ≠ 0, the implicit 
quadratic mean of order r quantity index Qr* is also a super-
lative index.

When r = 2, Pr defined by (69) simplifies to PF, the Fisher 
ideal price index and Qr* defined by (72) simplifies to QF, the 
Fisher ideal quantity index. When r = 1, Pr simplifies to

P1(p0,p1,q0,q1) ≡ {Σi=1
N si

0 (pi
1/pi

0)1/2}/ 
 {Σi=1

N si
1 (pi

1/pi
0)–1/2} (73)

={[Σi=1
N pi

0qi
0/ p0·q0](pi

1/pi
0)1/2}/{[ p1·q1/Σi=1

N pi
1qi

1] 
(pi

1/pi
0)–1/2}

57 See Diewert (1976, 133–34).

={Σi=1
N qi

0(pi
0pi

1)1/2/p0·q0}/{Σi=1
N qi

1(pi
0pi

1)1/2/p1·q1}
= [p1·q1/p0·q0]/QW(p0,p1,q0,q1),

where QW is the Walsh quantity index. Thus, Q1* is equal to 
QW, the Walsh quantity index, and hence it is also a superla-
tive quantity index.58

The results in this section can be summed up as follows:

• Superlative indices are nice in theory since they enable 
statisticians to compute price and volume indices that are 
consistent with the economic approach to index number 
theory where the underlying preference functions and 
their corresponding unit cost functions can approxi-
mate arbitrary differentiable preferences to the second 
order around an arbitrary point. These superlative indi-
ces do not require econometric estimation in order to be 
implemented.

• These indices are consistent with a wide range of substi-
tution responses on the part of consumers to changes in 
prices.

• However, superlative indices have the disadvantage that 
the quantity and price regions where the underlying pref-
erences are well behaved is generally not known to the 
statistician. If there are large fluctuations in prices and 
quantities across periods, then the various exact indices 
may no longer be exact!59

• It is of some comfort that the Fisher and Walsh indi-
ces that have been recommended as “best” from the 
approaches to index number theory that were described 
in previous chapters emerge as being “best” from the eco-
nomic approach as well.

We turn our attention to yet another superlative index num-
ber formula.

7. Superlative Indices: The 
Törnqvist-Theil Index
In this section, we will revert to the assumptions made on 
the consumer in Section 2. In particular, we do not assume 
that the consumer’s utility function f is necessarily linearly 
homogeneous as in Sections 3–6.

Before we derive our main result, we require a prelimi-
nary result. Suppose the function of N variables, f(z1, . . .,zN) 
≡ f(z), is quadratic; that is,

f(z1, . . .,zN) ≡ a0 + Σi=1
N ai zi + (1/2)  

 Σi=1
N Σk=1

N aikzizk; aik = aki for all i and k, (74)

where ai and aik are constants. Let fi(z) denote the first-order 
partial derivative of f evaluated at z with respect to the ith 
component of z and zi. Let fik(z) denote the second-order 

58 The Walsh quantity index is a useful one for national income accoun-
tants since it is a superlative index, but it is also an index that defines real 
output for periods 0 and 1 as Qt ≡ Σn=1

N (pn
0pn

1)1/2qn
t for t = 0,1. Thus, the 

price weights are constant over the two periods, and the quantity aggregate 
Qt for period t is linear in the period t quantities, qn

t. See Diewert (1996).
59 This warning is particularly relevant for the use of the quadratic mean 
of order r functional forms where r is large in magnitude. The regularity 
regions for these functions will tend to shrink as r approaches plus or 
minus infinity.
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partial derivative of f with respect to zi and zk. Then it is well 
known that the second-order Taylor series approximation to 
a quadratic function is exact; that is, if f is defined by (74), 
then for any two points, z0 and z1, we have

f(z1) – f(z0) = Σi=1
N fi(z

0)[zi
1 – zi

0] + (1/2)  
 Σi=1

N Σk=1
N fik(z

0)[zi
1 – zi

0][zk
1 – zk

0] (75)
= ∇f(z0)·[ z1 – z0] + (1/2)[ z1 – z0]T∇2f(z0)T[z1 – z0].

It is less well known that an average of two first-order Taylor 
series approximations to a quadratic function is also exact; 
that is, if f is defined by (74), then for any two points, z0 and 
z1, we have60

f(z1) – f(z0) = (1/2)Σi=1
N [ fi(z

0) + fi(z
1)][zi

1 – zi
0]  

 = (1/2)[∇f(z0) + ∇f(z1)]T[z1 – z0]. (76)

Diewert (1976, 118) and Lau (1979) showed that equation (76) 
characterized a quadratic function and called the equation 
the quadratic approximation lemma. We will refer to (76) as 
the quadratic identity.

We now suppose that the consumer’s cost function,61 
C(u,p), has the following translog functional form:62

lnC(u,p) ≡ a0 + Σi=1
N ailnpi + (1/2) Σi=1

N  
 Σk=1

N aiklnpilnpk (77)
 + b0lnu + Σi=1

N bilnpilnu + (1/2) b00[lnu]2,

where ln is the natural logarithm function and the param-
eters ai, aik, and bi satisfy the following restrictions:

 aik = aki; i,k = 1, . . .,N; (78)
 Σi=1

N ai = 1; (79)

 Σi=1
N bi = 0; (80)

 Σk=1
N aik = 0; i = 1, . . .,N. (81)

The parameter restrictions (78)–(81) ensure that C(u,p) 
defined by (77) is linearly homogeneous in p, a property 
that a cost function must have. It can be shown that the 
translog cost function defined by (77)–(81) can provide a 
second-order Taylor series approximation to an arbitrary 
cost function.63

We assume that the consumer has preferences that cor-
respond to the translog cost function and that the consumer 
engages in cost-minimizing behavior during periods 0 and 1. 

60 To prove that (75) and (76) are true, use definition (74) and substitute 
into the left-hand sides of (75) and (76). Then calculate the partial deriva-
tives of the quadratic function defined by (74) and substitute these deriva-
tives into the right-hand side of (75) and (76).
61 The consumer’s cost function was defined by (1).
62 Christensen, Jorgenson, and Lau (1971) (1975) introduced this function 
into the economics literature.
63 It can also be shown that if b0 = 1 and bi = 0 for i = 1, . . .,N and b00 = 0, 
then C(u,p) = uC(1,p) ≡ uc(p); that is, with these additional restrictions on 
the parameters of the general translog cost function, we have homothetic 
preferences. Note that we also assume that utility u is scaled so that u is 
always positive.

Let p0 and p1 be the period 0 and 1 observed price vectors,64 
and let q0 and q1 be the period 0 and 1 observed quantity 
vectors. Using the assumption of cost-minimizing behavior, 
we have

 C(u0,p0) = p0·q0 and C(u1,p1) = p1·q1, (82)

where C is the translog cost function defined earlier. We can 
also apply Shephard’s Lemma65 to C(ut,pt) defined by (77):

 qi
t = ∂C(ut,pt)/∂pi; i = 1, . . .,N; t = 0,1 (83)

= [C(ut,pt)/pi
t]∂lnC(ut,pt)/∂lnpi.

Now use (82) to replace C(ut,pt) in (83). After some cross 
multiplication, equations (83) become the following system 
of equations:

pi
tqi

t/Σk=1
N pk

tqk
t ≡ si

t = ∂lnC(ut,pt)/∂lnpi;  
 i = 1, . . .,N; t = 0,1 or (84)

si
t = ai + Σk=1

N aiklnpk
t + bilnut;  

 i = 1, . . .,N; t = 0,1, (85)

where si
t is the period t expenditure share on commodity i 

and (85) follows from (84) by differentiating (77) with respect 
to lnpi for t = 0,1 and i = 1, . . .,N.

Define the geometric average of the period 0 and 1 utility 
levels as u*; that is, define

 u* ≡ [u0u1]1/2 . (86)

Now observe that the right-hand side of the equation that 
defines the natural logarithm of the translog cost function, 
equation (77), is a quadratic function of the variables zi 
≡ lnpi if we hold utility constant at the level u*. Hence, we 
can apply the quadratic identity, (76), and get the following 
equation:

 lnC(u*,p1) – lnC(u*,p0) (87)
= (1/2)Σi=1

N [∂lnC(u*,p0)/∂lnpi + ∂lnC(u*,p1)/∂lnpi] 
[lnpi

1-lnpi
0]

= (1/2)Σi=1
N [ai + Σk=1

N aiklnpk
0 + bilnu* + ai + Σk=1

N  
aiklnpk

1 + bilnu*][lnpi
1 – lnpi

0] differentiating (77) at the points 
(u*,p0) and (u*,p1)

= (1/2)Σi=1
N [ai + Σk=1

N aiklnpk
0 + biln[u0u1]1/2 + ai + Σk=1

N aiklnpk
1 

+ biln[u0u1]1/2][lnpi
1 – lnpi

0] using definition (86) for u*

= (1/2)Σi=1
N [ai + Σk=1

N aiklnpk
0 + bi lnu0 + ai + åk=1

N aik lnpk
1 + 

bilnu1][lnpi
1 – lnpi

0] rearranging terms

64 We need to assume that (u0,p0) and (u1,p1) belong to the region of prices 
S* where the translog C(u,p) satisfies the regularity conditions that a cost 
function must satisfy. If we think of C(u,p) as an approximation to an 
arbitrary differentiable cost function, then because of the flexibility prop-
erty of the translog cost function, it is not a problem to assume that (u0, 
p0) belongs to S*, but if the vector (u1,p1) is not close to (u0, p0), then (u1,p1) 
may not belong to the regularity region so that equation (83) for t = 1 may 
not hold and hence equation (87) may not be valid.
65 See (18).



86

CONSUMER PRICE INDEX MANUAL

= (1/2)Σi=1
N [∂lnC(u0,p0)/∂lnpi + ∂lnC(u1,p1)/∂lnpi ][lnpi

1-lnpi
0] 

differentiating (77) at the points (u0,p0) and (u1,p1)
= (1/2)Σi=1

N [si
0 + si

1][lnpi
1 – lnpi

0] using equations (85).

The last equation in (87) can be recognized as the logarithm 
of the Törnqvist66 Theil (1967) index number formula PT 
defined in Chapter 4. Hence, exponentiating both sides of 
(87) yields the following equality between the true cost of 
living between periods 0 and 1, evaluated at the intermedi-
ate utility level u* and the observable Törnqvist Theil index 
PT:67

 C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1). (88)

Since the translog cost function which appears on the left-
hand side of (88) is a flexible functional form, the Törnqvist 
Theil price index PT is also a superlative index. Note that it 
is not necessary to assume homothetic preferences to derive 
this result.

It is somewhat mysterious how a ratio of unobservable 
cost functions of the form appearing on the left-hand side 
of equation (88) can be exactly estimated by an observ-
able index number formula, but the key to this mystery 
is the assumption of cost-minimizing behavior and the 
quadratic identity (76) along with the fact that derivatives 
of cost functions are equal to quantities, as specified by 
Shephard’s Lemma, (18). In fact, all of the exact index 
number results derived in this section and the previous 
section can be derived using transformations of the qua-
dratic identity along with Shephard’s Lemma (or Wold’s 
identity (15)).68 Fortunately, for most empirical applica-
tions, assuming that the consumer has (transformed) qua-
dratic preferences will be an adequate assumption, so the 
results presented in this section and the previous section 
are quite useful to index number practitioners who are 
willing to adopt the economic approach to index number 
theory. Essentially, the economic approach to index num-
ber theory provides a strong  justification for the use of the 
Fisher price index PF, the Törnqvist Theil price index PT, 
the implicit quadratic mean of order r price indices Pr* 
defined by (57) (when r = 1, this index is the Walsh price 
index PW), and the quadratic mean of order r price indices 
Pr defined by (69), provided that r is a number that is small 
in magnitude.

8. The Numerical Approximation 
Properties of Superlative Indices
In the previous section, we have exhibited two families of 
superlative price and quantity indices, Qr and Pr* defined by 
(54) and (57), and Pr and Qr* defined by (69) and (72) for each 
r ≠ 0. The Fisher index PF was a special case of Pr with r = 
2 and the Walsh index PW was a special case of Pr* with r = 
1. Another superlative index was the Törnqvist Theil index 

66 See Törnqvist and Törnqvist (1937).
67 This result was obtained by Diewert (1976, 122).
68 See Diewert (2002). However, when applying Wold’s Identity or Sheph-
ard’s Lemma to observed price and quantity data, we need the assump-
tion of optimizing behavior on the part of the consumer, and we need the 
observed data to be in the regions of regularity for the utility function or 
cost function that we are working with.

PT. A natural question to ask at this point is: how different 
will these indices be? It is possible to show that all of the 
price indices Pr approximate each other to the second order 
around any point where the price vectors p0 and p1 are equal 
and where the quantity vectors q0 and q1 are equal; that is, we 
have the following equalities if the first- and second-order 
partial derivatives are evaluated at p0 = p1 = p >> 0N and q0 = 
q1 = q >> 0N for any r ≠ 0:69

PF(p0,p1,q0,q1) = PT(p0,p1,q0,q1) = PW(p0,p1,q0,q1)  
 = Pr(p0,p1,q0,q1) = Pr*(p0,p1,q0,q1); (89)

∇PF(p0,p1,q0,q1) = ∇PT(p0,p1,q0,q1)  
= ∇PW(p0,p1,q0,q1) = ∇Pr(p0,p1,q0,q1)  

 = ∇Pr*(p0,p1,q0,q1); (90)
∇2PF(p0,p1,q0,q1) = ∇2PT(p0,p1,q0,q1)  

 = ∇2PW(p0,p1,q0,q1) = ∇2Pr(p0,p1,q0,q1)  
 = ∇2Pr*(p0,p1,q0,q1) . (91)

The vector of first-order partial derivatives of the function 
of 4N variables PF(p0,p1,q0,q1) is the vector of dimension 
4N denoted by ∇PF(p0,p1,q0,q1) and the matrix of second-
order partial derivatives of PF(p0,p1,q0,q1) is a 4N by 4N 
matrix denoted by ∇2PF(p0,p1,q0,q1), and so on. A similar 
set of equalities holds for the companion quantity indices 
that match up to PF, PT, PW, Pr, and Pr* using the product 
test, Q(p0,p1,q0,q1) ≡ p1·q1/p0·q0P(p0,p1,q0,q1). The implication 
of these equalities is that if prices and quantities do not 
change much over the two periods being compared, then 
all of the previous price indices will give much the same 
answer.

For empirical comparisons of some of the aforemen-
tioned indices, see Diewert (1978, 894–95) and Hill (2006). 
Hill (2006) showed that the second-order approximation 
property of the mean of order r indices breaks down as r 
approaches plus or minus infinity. However, in most empiri-
cal applications, we generally choose r equal to 2 (the Fisher 
case) or 1 (the Walsh case) or 0 (the Törnqvist Theil case). 
For these cases, the resulting indices generally approximate 
each other very closely.70

It turns out that the Laspeyres and Paasche price indi-
ces approximate each other (and superlative indices like the 
Fisher index) to the first order around an equal price and 
quantity point but not to the second order; that is, we have the 
following equalities if the first-order partial derivatives are 
evaluated at p0 = p1 = p >> 0N and q0 = q1 = q >> 0N:

PF(p0,p1,q0,q1) = PL(p0,p1,q0,q1)  
 = PP(p0,p1,q0,q1); (92)

∇PF(p0,p1,q0,q1) = ∇PL(p0,p1,q0,q1)  
 = ∇PP(p0,p1,q0,q1). (93)

69 The proof is a straightforward differentiation exercise; see Diewert 
(1978, 889). In fact, the equalities in (89)–(91) are still true provided that 
p1 = λ p0 and q1 = μq0 for any numbers λ > 0 and m > 0.
70 The approximations will be close if we are using annual time series data 
where price and quantity changes are generally smooth. However, if we 
are making international comparisons or using panel data or using sub-
annual time series data, then the approximations may not be close.
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Up to this point, we have considered four different 
approaches to index number theory:

•  Fixed basket approaches and averages of baskets;
•  Test approaches to index number theory;
•  Stochastic or descriptive statistics approaches to index 

number theory; and
•  Economic approaches.

The first approach led to the Fisher and Walsh indices as 
being “best,” the second approach led to the Fisher and 
Törnqvist Theil indices as being “best,” the third approach 
led to the Törnqvist Theil index as being “best,” and the 
economic approach led to the Fisher, Walsh, and Törnqvist 
Theil indices as being the “best” indices. Thus, PF, PW, and 
PT keep emerging as “best’ indices. The results in this sec-
tion tell us that if prices and quantities do not change that 
much going from the first period to the second period, then 
all three of these indices will give us more or less the same 
answer.

9. The Cobb–Douglas Price Index
Suppose that the consumer’s utility function for all q ≥ 0N is 
defined as follows:

 f(q) ≡ α0Πn=1
N, qn nα  (94)

where αn > 0 for n = 0,1,  .  .  .,N and in addition satisfy the 
following constraint:

 Σn=1
N αn = 1. (95)

This is the Cobb–Douglas functional form.71 It can be seen 
that f(q) defined by (94) is linearly homogeneous. It is also 
positive, concave, and increasing over the set of strictly posi-
tive quantity vectors.

Let the consumer’s preferences be represented by f(q) and 
suppose that the commodity price vector p >> 0N is given. 
The consumer’s unit cost minimization problem is defined as 
follows:

 minq {p·q : f(q) ≥ 1; q ≥ 0N}≡ c(p). (96)

Proposition 11: The solution to the unit cost minimiza-
tion problem defined by (96) when f(q) is the Cobb–Douglas 
utility function defined by (94) and (95) is the Cobb– 
 Douglas unit cost function defined as follows for p >> 0N:

 c(p) ≡ κΠn=1
N ( )pn nα ; κ ≡ [α0Πn=1

Nαα
n

n]–1. (97)

See the Annex for a proof.

71 This functional form was used as a production function for the case 
N = 2 by Cobb and Douglas (1928). It was also used by Knut Wicksell 
as a production function much earlier in 1916; see Olsson (1971). This 
functional form was first used as a utility function for the N commodity 
case in Section 8 of Konüs and Byushgens (1926). Our algebra in this sec-
tion was more or less worked out by Konüs and Byushgens. In particular, 
these authors realized that the assumption of Cobb–Douglas preferences 
implied that commodity expenditure shares must be constant over time. 
See also Pollak (1971) (1983) for his analysis of Cobb–Douglas prefer-
ences, which is followed in the present section.

It can be seen that the Cobb–Douglas unit cost function 
has more or less the same functional form as the Cobb–
Douglas utility function: P replaces q when we move from 
the utility function to the unit cost function.

Let pt >> 0N for t = 0,1. Suppose the consumer has Cobb–
Douglas preferences and faces the prices pt in period t for 
t = 0,1. The observed period t quantity vector is qt >> 0N. 
Assume that the consumer minimizes the cost of achieving 
the utility level ut ≡ f(qt) for each period. Then the compo-
nents of qt ≡[q1

t, . . .,qN
t] must satisfy the following equations 

obtained using (97) and Shephard’s Lemma:

 qn
t = [∂c(pt)/∂pn]f(q

t); n = 1, . . .,N; t = 0,1 (98)
= αnc(pt)[pn

t]–1f(qt).

By multiplying both sides of equation n in period t by pn
t, we 

obtain the following equations:

 pn
tqn

t = αnc(pt)f(qt); n = 1, . . .,N; t = 0,1. (99)

Summing equations (99) for each period t gives us the fol-
lowing equations, making use of Σn=1

N αn = 1:

 pt·qt = c(pt)f(qt); t = 0,1. (100)

Using equations (99) and (100), we see that the following 
equations hold:

sn
t ≡ pn

tqn
t/pt·qt = αnc(pt)f(qt)/c(pt)f(qt)  

 = αn; n = 1, . . .,N; t = 0,1. (101)

Equations (101) are important: They tell us that a utility-
maximizing consumer who has Cobb–Douglas preferences 
will have expenditure shares on each commodity that will 
remain constant across all time periods. This assumption is 
unlikely to be satisfied in practice. Nevertheless, equations 
(101) lead to an exact Konüs true cost of living index, as will 
be seen later.

Since Cobb–Douglas preferences are homothetic, 
the true cost of living index going from period 0 to 1 is 
c(p1)/c(p0), where c(p) is defined by (97). Thus, we have the 
following exact index number formula for a Cobb–Douglas 
consumer:

 c(p1)/c(p0) = κΠn=1
N ( )pn n1 α /κΠn=1

N (pn
0)αn (102)

= Πn=1
N (pn

1/pn
0)αn

= Πn=1
N (pn

1/pn
0)sn0 using (101) for t = 0

≡ PKB(p0,p1,q0,q1),

where PKB(p0,p1,q0,q1) is the Konus–Byushgens or Cobb–
Douglas price index. This formula is useful for price 
statisticians: The price index for a current period can be 
evaluated using only the prices pn

0 and expenditure shares 
sn

0 for a past period 0 and prices pn
1 for the current period 

1.
We turn now to a functional form for the utility function 

that is more flexible than the Cobb–Douglas utility function 
but is still not completely flexible.
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10. Constant Elasticity of 
Substitution (CES) Preferences
It is useful to introduce a family of functions that calculate 
an average of N positive numbers, x ≡ [x1,  .  .  .,xN]. Assume 
that the number r is not equal to 0 and the positive weights 
αn sum to 1 so that α ≡ [α1, . . .,αN] satisfies conditions (95). 
Define the weighted mean of order r of the N components of 
the x vector as follows:72

 Mr(x) ≡ [Σn=1
N αnxn

r]1/r. (103)

The functional form defined by (103) occurs frequently in 
the economics literature. If r = 1, then Mr(x) equals α·x, a 
linear function of x. As r tends to plus infinity, Mr(x) tends 
to max n {xn: n = 1, . . .,N}. As r tends to minus infinity, Mr(x) 
tends to minn {xn: n = 1, . . .,N}. As r tends to 0, Mr(x) tends to 
the Cobb–Douglas functional form, which is the weighted 
geometric mean, Πn=1

N (xn)αn. It is readily verified that Mr(λx) 
= λMr(x) for all λ > 0 and x >> 0N. If we multiply Mr(x) 
by a constant, then we obtain the CES (Constant Elasticity 
of Substitution) functional form popularized by Arrow et al. 
(1961) in the context of production theory (where x is an input 
vector and α0Mr(x) is the output produced by the input vector 
x). This functional form is also widely used as a utility func-
tion, and it is also used extensively when measures of income 
inequality are constructed.73 We note that the function Mr(x) 
is flexible if r ≠ 0 and N = 2. It is not flexible if N > 2.

For future reference, the first- and second-order partial 
derivatives of Mr(x) for x >> 0N are as follows:

∂Mr(x)/∂xi = (1/r)[Σn=1
N αnxn

r](1/r)–1αi r xi
r-1  

 = [Σn=1
N αnxn

r](1/r)–1αi xi
r–1; i = 1, . . .,N. (104)

Differentiating (104) again with respect to xi yields the fol-
lowing second-order partial derivatives for i = 1, . . .,N:

∂2Mr(x)/∂xi
2 = [(1/r) – 1][Σn=1

N αnxn
r](1/r)–2αi rxi

r–1αi xi
r–1  

  + [Σn=1
N αnxn

r](1/r)–1αi (r – 1)xi
r–2; i = 1, . . .,N (105)

= [r – 1][Σn=1
N αnxn

r](1/r)–2{[Σn=1
N αnxn

r]αi xi
r–2 – αi

2 xi
2r–2}.

Differentiating (104) with respect to xk for k ≠ i yields the 
following:

∂2Mr(x)/∂xi∂xk = [(1/r) – 1][Σn=1
N αnxn

r](1/r)–2αk rxk
r–1αi xi

r–1;  
 k ≠ i (106)

= (1 – r)[Σn=1
N αnxn

r](1/r)–2 αiαkxi
r–1xk

r–1.

It can be shown if r ≤ 1, then the matrix of second-order par-
tial derivatives of Mr(x), ∇2Mr(x), is a negative semidefinite 

72 Hardy, Littlewood, and Polyá (1934, 12–14) refer to this family of means 
or averages as elementary weighted mean values and study their proper-
ties in great detail. Mr(x) has the following properties, where x >> 0N: (i) 
Mr(λ1N) = λ for any λ > 0; (ii) ∇Mr(x) >> 0N so that Mr(x) is increasing in x; 
(iii) min {xn ; n =1, . . .,N} ≤ Mr(x) ≤ max {xn ; n =1, . . .,N}; and (iv) Mr(λx) 
= λMr(x). Thus, Mr(x) is a homogeneous mean. See Diewert (1993b) for 
materials on mean functions and their application to economics.
73 See Diewert (1993b).

matrix for all x >> 0N, and this property in turn implies that 
Mr(x) is a concave function over the set of positive x vec-
tors.74 Hence, Mr(q) is a suitable functional form for a utility 
function, and Mr(p) is a suitable functional form for a unit 
cost function if r ≤1. These functions satisfy the required 
regularity conditions over the entire positive orthant. For 
future reference, the derivatives defined by (104)–(106) can 
be used in order to establish the following equalities:

Mr(x)[∂2Mr(x)/∂xi∂xk]/[∂Mr(x)/∂xi][∂Mr(x)/∂xk]  
 = (1 – r); x >> 0N; 1 ≤ i ≠ k ≤ N. (107)

Suppose that the unit cost function has the following CES 
functional form for r ≤ 1:

 c(p) ≡ α0 [Σn=1
N αn (pn)

r]1/r if r ≠ 0; (108)
≡ α0 Πn=1

N pnαn if r = 0,

where α0 > 0 and α ≡ [α1, . . .,αN] satisfies conditions (95).
Under the assumption of cost -minimizing behav-

ior on the part of the consumer in period t, Shephard’s 
Lemma, (18), tells us that the observed period t con-
sumption of commodity i, qi

t will be equal to ut∂c(pt)/∂pi, 
where ∂c(pt)/∂p i is the first-order partial derivative of 
the unit cost function with respect to the ith commodity 
price evaluated at the period t prices and ut = f(qt) is the 
aggregate (unobservable) level of period t utility. Using 
the CES unit cost function defined by (108) and assum-
ing that r ≠ 0, the following equations are obtained that 
express the components of the consumer’s observed con-
sumption vector qt in terms of the period t prices pt facing 
the consumer and either the period t utility level for the 
consumer ut or the observed period t expenditure for the 
consumer, et ≡ pt·qt:

qi
t = utα0 [Σn=1

N αn (pn
t) r](1/r)-1αi (pi

t)r–1;  
 t = 0,1; i = 1, . . .,N (109)

= utc(pt) αi(pi
t)r–1/Σn=1

N αn(pn
t)r

= etαi(pi
t)r–1/Σn=1

N an(pn
t)r

where the last equation follows from the fact that the 
observed period t expenditure, et, is equal to pt·qt, which 
in turn is equal to utc(pt). The last set of equations in (109) 
could be used to estimate the unknown parameters r and α 
that appear in definition (108).75

Equations (109) can be rewritten as

si
t ≡ pi

tqi
t/pt·qt = pi

tqi
t/utc(pt) = αi(pi

t)r/Σn=1
N αn(pn

t) r;  
 t = 0,1; i = 1, . . .,N. (110)

74 The definition of Mr(x) can be extended to the set x ≥ 0N; see Hardy, 
Littlewood, and Polyá (1934).
75 Note that the parameter α0 cannot be identified using observable data. 
This makes sense since the scale of utility cannot be observed, and so 
some arbitrary decision will have to be made in order to determine the 
utility scale. Usually, we normalize period 0 utility u0 (which is equal to 
the period 0 volume level Q0) to equal period 0 observed expenditure e0 = 
p0·q0. This normalization determines the units of measurement for utility.
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Equations (110) give observed expenditure shares st as func-
tions of consumer prices pt and the unknown parameters r 
and α1, . . .,αN. These equations could also be used as esti-
mating equations for the unknown parameters in an econo-
metric model.76

Recall the definition of the consumer’s cost function (1), 
which we repeat here for convenience for some positive level 
of utility u, given that the consumer is facing the positive 
vector of consumer prices p >> 0N:

 C(u,p) ≡ minq {p·q : f(q) ≥ u; q³ 0N}. (111)

If the cost function C(u,p) is differentiable with respect 
to the components of the commodity price vector p, then 
Shephard’s Lemma (18) applies and the consumer’s system 
of commodity demand functions as functions of the chosen 
utility level u and the commodity price vector p, q(u,p), is 
equal to the vector of first-order partial derivatives of the 
cost or expenditure function with respect to the compo-
nents of p:

 q(u,p) = ∇pC(u,p), (112)

where q(u,p) ≡ [q1(u,p),  .  .  .,qN(u,p)]. The demand func-
tions qn(u,p) ≡ ∂C(u,p)/∂pn are known as Hicksian77 demand 
functions. We expect that the demand for commodity i 
will increase if the price of commodity k (not equal to i) 
increases if i and k are substitutes in consumption; that is, 
we expect ∂qi(u,p)/∂pk > 0 if i and k are substitutes. Note that 
qi(u,p) = ∂C(u,p)/∂pi so that ∂qi(u,p)/∂pk = ∂2C(u,p)/∂pi∂pk.  
A unit-free measure of the magnitude of the response of 
the demand for product i due to an increase in the price of 
product k is the elasticity function eik(u,p), which is defined 
as

eik(u,p) ≡ [∂qi(u,p)/∂pk][pk/qi(u,p)]  
 = pk[∂

2C(u,p)/∂pi∂pk]/∂C(u,p)/∂pi  
  = pk[∂

2C(u,p)/∂pi∂pk]/qi(u,p). (113)

Allen (1938, 504) and Uzawa (1962)78 suggested the following 
measure of the response of product i to a change in the price 
of product k:

sik(u,p) ≡ C(u,p)[∂2C(u,p)/∂pi∂pk]/[∂C(u,p)/∂pi] 
 [∂C(u,p)/∂pk]; i ≠ k. (114)

76 Note that the right-hand sides of equations (110) are homogeneous of 
degree 0 in the αn parameters. However, the normalization Σn=1

N αn = 1 
can be used to solve for say αN = 1 – Σn=1

N–1 αn, which will allow all of the 
parameters to be identified. Because Σn=1

N sn
t = 1 for t = 0,1, the N share 

equations for period t are not statistically independent, and hence one of 
these estimating equations should be dropped from the estimation pro-
cedure. Similar adjustments need to be made to the system of estimating 
equations defined by (109) since the equations pt·qt = et hold without error 
for t = 0,1.
77 See Hicks (1946, 311–31).
78 They suggested their measure in the context of production theory, but 
it carries over to Hicksian demand functions.

The Allen–Uzawa measure is also independent of the units 
of measurement, but their measure converted the response 
into a measure that applied to both i and k. The bigger are 
eik(u,p) and sik(u,p), the more substitutable are the prod-
ucts.79 Thus, sik(u,p) defined by (114) is called the elasticity 
of substitution between products i and k. Note that sik(u,p) 
= ski(u,p).

Define the cost function to be C(u,p) = uc(p), where c(p) 
is defined by (108). Using equations (104)–(106), which apply 
to the CES functional form, it can be verified that sik(u,p) 
defined by (114) simplify to the following equations:

 sik(u,p) = 1 – r ≡ s ≥ 0; i ≠ k, (115)

where we have defined s ≡ 1 – r. Thus, if the consumer has 
CES preferences, which are dual to the unit cost function 
defined by (108), then the elasticity of substitution between 
every pair of products is equal to the same number, 1 – r ≡ s, 
which is equal to or greater than 0, since in order for c(p) 
to be a concave function, we require r ≤ 1. Thus, the CES 
functional form rules out complementary commodities 
and is far from being able to model arbitrary preferences 
if N ≥ 3. However, the CES functional form is still a useful 
one, since it can model both Leontief and Cobb–Douglas 
preferences: Simply set r = 1 or r = 0 to get these two spe-
cial cases.80

We turn now to the problem of finding exact index num-
ber formulae for preferences that are defined by the CES 
unit cost function. Our first exact index number formula 
requires an estimate for the elasticity of substitution, s ≡ 
1 – r. For s ≠ 1, define the Lloyd (1975) Moulton (1996) price 
index PLM(p0,p1,q0,q1) for pt >> 0N and qt >> 0N, t = 0,1 as 
follows:

 PLM(p0,p1,q0,q1) ≡ [Σi=1
N si

0 (pi
1/pi

0) 1–s]1/(1–s);  
 s ≠ 1, (116)

where si
0 is the period 0 expenditure share of commodity i as 

usual. Substitute equations (110) for si
0 into the right-hand 

side of (116) and we obtain the following equation:

PLM(p0,p1,q0,q1) ≡ [Σi=1
N si

0 (pi
1/pi

0) r]1/r  
 letting r = 1 – s (117)

= [Σi=1
N {αi(pi

0)r/Σn=1
N αn(pn

0) r}(pi
1/pi

0) r]1/r using (110)

= [Σi=1
N αi(pi

1)r/Σn=1
N αn(pn

0) r]1/r

= [Σi=1
N αi (pi

1)r]1/r/[Σn=1
N αn(pn

0) r]1/r

= α0[Σi=1
N αi (pi

1)r]1/r/α0[Σn=1
N αn (pn

0) r]1/r

= c(p1)/c(p0) using definition (108) for p = p0 and p = p1.

Equation (117) shows that the Lloyd–Moulton index number 
formula PLM is exact for CES preferences. Lloyd (1975) and 
Moulton (1996) independently derived this result but it was 

79 Hicks (1946) showed that if N = 2, then e12(u,p) and s12(u,p) must be non-
negative. However, if N ≥ 3, then e12(u,p) and s12(u,p) could be negative. In 
this case, products 1 and 2 are called complements.
80 It can also model linear preferences by letting r tend to plus infinity.
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Moulton who appreciated the significance of the formula 
(117) for statistical agency purposes. Note that in order to 
evaluate (116) numerically, it is necessary to have informa-
tion on

• Base period expenditure shares si
0;

• The price relatives pi
1/pi

0 between the base period and the 
current period; and

• An estimate of the elasticity of substitution between the 
commodities in the aggregate, s.

The first two pieces of information are the standard infor-
mation sets that statistical agencies use to evaluate the 
Laspeyres price index PL (note that PLM reduces to PL if s = 
0 or r = 1). Hence, if the statistical agency is able to estimate 
the elasticity of substitution s based on past experience,81 
then the Lloyd–Moulton price index can be evaluated using 
essentially the same information set that is used in order to 
evaluate the traditional Laspeyres index. Moreover, the 
resulting consumer price index may be free of substitution 
bias to a reasonable degree of approximation.82 Of course, 
the practical problem with implementing this methodology 
is that estimates of the elasticity of substitution parameter s 
are bound to be somewhat uncertain and hence the resulting 
Lloyd–Moulton index may be subject to charges that it is not 
objective or reproducible. The statistical agency will have to 
balance the benefits of reducing substitution bias with these 
possible costs.

Our second index number formula that is exact for CES 
preferences does not require an estimate for the elasticity of 
substitution. Suppose that pt >> 0N and qt >> 0N for t = 0,1. 
The logarithm of the Sato (1976)–vartia (1976) price index  
PSV(p0,p1,q0,q1) is defined by the following equation:83

 lnPSV(p0,p1,q0,q1) ≡ Σn=1
N wnln(pn

1/pn
0), (118)

where the weights wn are calculated in two stages. The first 
stage set of weights is defined as wn

* ≡ (sn
1 – sn

0)/(lnsn
1 – lnsn

0) 
for n = 1, . . .,N provided that sn

1 ≠ sn
0. If sn

1 = sn
0, then define 

wn
* ≡ sn

1 = sn
0. The second stage weights are defined as wn ≡ wn

*/
Σi=1

N wi
* for n = 1, . . .,N. Note that in order for the logarithm of 

PSV(p0,p1,q0,q1) to be well defined, we require that sn
0 > 0, sn

1 > 
0, pn

0 > 0 and pn
1 > 0 for all n = 1, . . .,N; that is, all prices and 

quantities must be positive for all products in both periods.

81 For the first application of this methodology (in the context of the 
consumer price index), see Shapiro and Wilcox (1997, 121–23). They 
calculated superlative Törnqvist indices for the United States for the 
years 1986–1995 and then calculated the Lloyd Moulton CES index for 
the same period using various values of s. They then chose the value of 
s (which was 0.7) that caused the CES index to most closely approxi-
mate the Törnqvist index. Essentially, the same methodology was used 
by Alterman, Diewert, and Feenstra (1999) in their study of US import 
and export price indices. Alternative methods for estimating s will be 
considered later.
82 What is a “reasonable” degree of approximation depends on the con-
text. Assuming that consumers have CES preferences may not be a rea-
sonable assumption in the context of forming index numbers over an 
aggregate that contains heterogeneous products where elasticities of 
demand for the various products are very different. However, if the aggre-
gate consists of fairly similar products, then it may be adequate to assume 
a CES approximation to preferences over these relatively homogeneous 
products, which are presumably highly substitutable with each other.
83 Sato and vartia both defined PSV independently. Sato (1976, 225) 
showed that PSV was exact for CES preferences; that is, Sato provided a 
(somewhat sketchy) proof of a dual version of Proposition 12.

Proposition 12: The Sato vartia price index is exact for 
CES preferences; that is, if the consumer faces the positive 
prices p0 >> 0N and p1 >> 0N in periods 0 and 1, has CES pref-
erences dual to the unit cost function defined by (108) and 
maximizes utility in periods 0 and 1 with solution vectors q0 
>> 0N and q1>> 0N for periods 0 and 1, then we have

 PSV(p0,p1,q0,q1) = c(p1)/c(p0) (119)
= [Σn=1

N αn (pn
1)r]1/r/[Σn=1

N αn (pn
0)r]1/r if r ≠ 0

= Πn=1
N (pn

1)αn/Πn=1
N (pn

0)αn if r = 0.

For a proof of this proposition, see the Annex.
We noted earlier that equations (109) and (110) could be 

used to estimate the unknown parameters r = 1 – s and the 
an that characterize the CES unit cost function defined by 
(108). However, if our focus is on obtaining an estimate for 
r (or equivalently for the elasticity of substitution s ≡ 1 – r), 
then much simpler systems of estimating equations can be 
derived, as will be indicated later.

Recall the system of share equations defined by (110) that 
express cost-minimizing expenditure shares as functions of 
prices. Extend this system of equations to period T, take 
logarithms of both sides of the resulting equations and add 
error terms ηi

t.84 The following system of estimating equa-
tions is obtained:

lnsn
t = lnαn + rln(pn

t) – ln[Σi=1
N ai(pi

t) r] + ηn
t;  

 t = 0,1, . . .,T; n = 1, . . .,N. (120)

Now difference the logarithms of the sn
t with respect to time; 

that is, define Δsn
t as follows:

 Δsn
t ≡ ln(sn

t) – ln(sn
t–1); n = 1, . . .,N;  

 t = 1, . . .,T. (121)

Now pick product N as the numeraire product85 and the  
difference Δsn

t with respect to product N, giving rise to the 
following double differenced log variable, dsn

t:

 dsn
t ≡ Δsn

t – ΔsN
t; n = 1, . . .,N – 1;  

 t = 1, . . .,T (122)
= lnsn

t – lnsn
t–1 – [lnsN

t – lnsN
t–1].

Define the double differenced log price variables in a similar 
manner:

 dpn
t ≡ Δpn

t – ΔpN
t; n = 1, . . .,N – 1;  

 t = 1, . . .,T. (123)
= lnpn

t – lnpn
t–1 – [lnpN

t – lnpN
t–1].

84 A standard specification for the error terms ηn
t is that they have 0 

means, a constant variance-covariance matrix for the error terms belong-
ing to the same period t and zero covariances across time periods.
85 In practice, the numeraire commodity should be chosen to be a com-
modity that has a small predicted variance and a large expenditure share. 
However, it is not straightforward to find such a commodity. Later, an 
alternative method of estimation will be suggested that avoids the need 
to choose a numeraire commodity.
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Finally, define the double differenced error variables dηn
t as 

follows:

dηn
t ≡ ηn

t – ηn
t–1 – ηN

t + ηN
t–1 ≡ en

t; n = 1, . . .,N – 1;  
 t = 1, . . .,T. (124)

Using definitions (121)–(124) and equations (120), it can be 
verified that the double differenced log shares dsn

t satisfy the 
following system of (N – 1)T estimating equations under our 
assumptions:

 dsn
t = rdpn

t + en
t; n = 1, . . .,N – 1; t = 1, . . .,T; (125)

where the new residuals en
t have means 0 and a constant 

covariance matrix with 0 covariances for observations 
that are separated by two or more time periods. Thus, we 
have a system of linear estimating equations with only 
one unknown parameter across all equations, namely the 
parameter r. This is almost the simplest possible system of 
estimating equations that one could imagine. This double 
differencing method for estimating the elasticity of substitu-
tion when consumers have CES preferences was suggested 
by Feenstra (1994).86

Instead of starting with the share equations (110), one 
could start with the demand functions defined by equations 
(109). Extend this system of equations to period T, take loga-
rithms of both sides of the resulting equations and add error 
terms ηi

t. The following system of estimating equations is 
obtained:87

lnqn
t = lnet + lnαn + (r – 1)lnpn

t – ln[Σi=1
N αi(pi

t) r]  
  + ηn

t; t = 0,1, . . .,T; n = 1, . . .,N. (126)

Define Δqn
t as the time difference for the logarithms of quanti-

ties as follows:

 Δqn
t ≡ lnqn

t – lnqn
t–1; n = 1, . . .,N;  

 t = 1,, . . .,T. (127)

Again, pick product N as the numeraire product and the dif-
ference Δqn

t with respect to product N, giving rise to the fol-
lowing double differenced log variable, dqn

t:

dqn
t ≡ Δqn

t – ΔqN
t; n = 1, . . .,N – 1;  

 t = 1, . . .,T (128)
= lnqn

t – lnqn
t–1 – (lnqN

t – lnqN
t–1).

Define the double differenced price and error variables, 
dpn

t and dηn
t by (123) and (124). Using these definitions and 

(126)–(128), it is straightforward to show that the following 
equations will hold:

86 For an empirical application of the method, see Diewert and Feenstra 
(2019). The variance-covariance structure is not quite classical due to the 
correlation of residuals between adjacent time periods. Another problem 
with the method is that the estimates for r will generally depend on the 
choice of the numeraire commodity.
87 The error terms in (126) are different from the error terms in (120). For 
convenience, we did not introduce a new notation for the error terms in 
(126).

dqn
t = (r – 1)dpn

t + dηn
t; n = 1, . . .,N – 1;  

 t = 1, . . .,T (129)
= – sdpn

t + en
t

since the elasticity of substitution s is equal to 1 – r. Again, 
this is an extremely simple system of estimating equations.

The double differenced share equation specification 
given by (125) and the double difference quantity demanded 
specification given by (129) both depend on the choice of the 
numeraire commodity. This dependence could be a prob-
lem for statistical agencies in that the estimation procedure 
is not completely reproducible: Different statisticians could 
pick different commodities as the numeraire commodity 
and get different estimates for the elasticity of substitution. 
It is possible to modify the double difference method so that 
it is not dependent on the choice of a numeraire commodity.

For each time period t, define the geometric average of 
the sn

t and pn
t as s•

t and p•
t respectively for t = 0,1, . . .,T. For 

each time period t, define the arithmetic average of the ηn
t as 

η•
t for t = 0,1, . . .,T. Finally define the geometric average of 

αn as α•. Recall equations (120). For each time period t, take 
the arithmetic average of both sides of equations (120) for all 
N observations in period t. The following equations are the 
result of these operations:

lns•
t = lnα• + rlnp•

t – ln[Σi=1
N αi(pi

t) r] + η•
t;  

 t = 0,1, . . .,T. (130)

Now the difference lnsn
t defined by equations (120) with the 

lns•
t defined by (130); that is, essentially we are choosing the 

average (over commodities n) log shares in place of the log 
shares of a numeraire commodity. The following equations 
are obtained:

lnsn
t – lns•

t = lnαn – lnα• + rlnpn
t – rlnp•

t  
  + ηn

t – η•
t; t = 0,1, . . .,T; n = 1, . . .,N. (131)

Now taking the difference between the variables lnsn
t and 

lns•
t with respect to time, we obtain the following estimating 

equations:88

lnsn
t – lnsn

t–1 – lns•
t + lns•

t–1 = r[lnpn
t – lnpn

t–1  
 – lnp•

t + lnp•
t–1] + en

t; t = 1, . . .,T; n = 1, . . .,N, (132)

where en
t ≡ ηn

t – ηn
t–1 – η•

t + η•
t–1. Again, we have a system of 

estimating equations that is linear in the single parameter r.
Instead of starting with the share equations (110), one 

could start with the demand functions defined by equations 
(109). Extend this system of equations to period T, take loga-
rithms of both sides of the resulting equations, and add the 
error terms ηn

t. The system of estimating equations defined 
by (126) is obtained. Now define the geometric average of qn

t 
for period t as q•

t for t = 0,1, . . .,T. Apply the same definitions 

88 Note that for each t, we have the following equalities: 0 = Σn=1
N  

[lnsn
t – lns•

t] = Σn=1
N [lnαn – lnα•] = Sn=1

N [lnpn
t – lnp•

t] = Σn=1
N [ηn

t – η•
t]. Thus, 

for each t, the N equations for lnsn
t – lns•

t for n = 1,  .  .  .,N are linearly 
dependent, and hence any one of these N equations can be dropped. If 
the commodity N equations are dropped, then we use equations (132) as 
estimating equations only for t = 1, . . .,T and n = 1, . . .,N – 1. Under an 
appropriate stochastic specification, the estimate for r will not depend on 
which equation is dropped.
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and techniques that led to equations (130)–(132) and we 
obtain the following system of estimating equations:

lnqn
t – lnqn

t–1 – lnq•
t + lnq•

t–1 = (r –1)[lnpn
t – lnpn

t–1  
 – lnp•

t + lnp•
t–1] + en

t; t = 1, . . .,T; n = 1, . . .,N (133)
= – s[lnpn

t – lnpn
t–1 – lnp•

t + lnp•
t–1] + en

t,

where en
t ≡ ηn

t – ηn
t–1 – η•

t + η•
t–1. Equations (133) are a system 

of estimating equations that is linear in the single parameter 
s, which is the elasticity of substitution between all pairs of 
commodities.

It turns out that estimating the consumer’s utility function 
directly (rather than estimating the dual unit cost function) 
is advantageous when estimates of reservation prices89 for 
products that are not available are required. In the case of 
CES preferences, this advantage is not immediately appar-
ent since the CES reservation prices are automatically set 
equal to infinity. But it turns out that there may be advan-
tages in estimating the CES utility function directly because 
of econometric considerations as we shall see later. Thus, we 
will conclude this section by deriving the consumer demand 
functions that are consistent with the maximization of a 
CES utility function.

We now assume that the utility function f(q) is defined 
directly as the following CES utility function:

 f(q1, . . .,qN) ≡ [Σn=1
N βnqn

s]1/s, (134)

where the parameters βn are positive and sum to 1 and s is a 
parameter that satisfies s ≤ 1 (so that f(q) will be a concave 
function of q and s ≠ 0 (in which case f(q) is a Cobb– Douglas 
utility function). Thus, f(q) is a mean of order s.

Suppose s = 1 and let p >> 0N. In this case, the utility 
function is the linear function f(q) ≡ β·q = Σn=1

N βnqn. The 
cost minimization problem that defines the dual unit cost 
function for this case is the following linear programming 
problem:

minq {p·q: β·q ≥ 1; q ≥ 0N} = minn  
 {pn/βn: n = 1, . . .,N} ≡ c(p). (135)

The unit cost function c(p) defined by the solution to (135) is 
not differentiable but it is a well-defined continuous, increas-
ing, linearly homogeneous, and concave function of p. If the 
minimum over n is unique and attained for say product 1, 
then the solution q* to (135) is unique and is given by q1

* = 1/
β1 with qi

* = 0 for i = 2,3, . . .,N. If p happens to equal λβ for 
some λ > 0, then the solution set of q vectors that solve (135) 
is the set {q: β·q = 1/λ; q ≥ 0N}.

We turn our attention to the case where s satisfies s < 1 
and s ≠ 0. Suppose p ≡ (p1, . . .,pN) >> 0N. Ignoring the con-
straints q ≥ 0N for the moment, the first-order necessary (and 
sufficient) conditions that can be used to solve the unit cost 
minimization problem defined by (96) when f(q) is defined 
by (134) are the following conditions:

 pn = λ*βnqn
s–1; n = 1, . . .,N; (136)

89 Reservation prices will be discussed in Section 14 and in Chapter 8.

 1 = [Σn=1
N βnqn

s]1/s. (137)

Equations (136) are equivalent to the equations qn = [pn/
λ*βn]

1/(s–1) for n = 1,  .  .  .,N. Substitute these equations into 
equation (137) and obtain the following equations: 1 = Σn=1

N 
βnqn

s = Σn=1
N βn[pn/λ

*βn]
1/(s–1). This equation can be solved for 

λ* = [Sn=1
N βn

1/(1–s)pn
s/(s–1)](s–1)/s.90 The optimal qn

* are defined 
as qn

* = [pn/λ
*βn]

1/(s–1) for n = 1, . . .,N. All of the equations in 
(136) and (137) will be satisfied by this λ*, q* solution.

Evaluate (136) and (137) at the optimal solution. Multiply 
both sides of equation n in (136) by qn

* and sum the resulting 
N equations. This leads to the following equations:

 c(p) ≡ Σn=1
N pnqn

* (138)
= λ*Σn=1

N βn(qn
*)s

= λ* using (137)
= [Σn=1

N βn
1/(1–s)pn

s/(s–1)](s–1)/s.

It can be seen that the dual unit cost function c(p) that 
 corresponds to the CES utility function defined by (134) for 
s ≠ 0 and s ≠ 1 is proportional to a mean of order r in prices, 
where r = s/(s – 1). Thus, if f(q) is the CES utility function 
defined by (134), then the corresponding elasticity of sub-
stitution is

 s = 1 – r = 1 – [s/(s – 1)] = – 1/(s – 1) = 1/(1 – s). (139)

As s approaches 1 from below, s approaches plus infinity. 
For s = 0, s = 1 and we have Cobb–Douglas preferences. 
As s approaches minus infinity, s approaches 0 as a limiting 
case.91

In order to derive the system of inverse demand functions 
that correspond to the CES utility function f(q) defined by 
(134), we make use of Wold’s Identity, equations (17) which 
were pt/pt·qt = ∇f(qt)/f(qt). Upon defining the consumer’s 
period t “income” as et ≡ pt·qt, the CES system of inverse 
demand functions for period t is given by

 pt = et∇f(qt)/f(qt); t = 0,1, . . .,T. (140)

The system of inverse demand functions gives the period t 
price vector pt as the prices that are consistent with qt solv-
ing the consumer’s period t utility maximization problem 
given that the consumer has “income” et to spend on the N 
commodities in the aggregate.

If consumers maximize the CES utility function defined 
by (134) when they face the positive period t price vector pt 
and have et > 0 to spend on the N commodities, the utility-
maximizing qt will satisfy equations (140). If we evaluate 
equations (140) using the period t price and quantity data 
for periods t = 0,1, . . .,T and add error terms, we obtain the 
following system of equations:

pn
t = etβn(qn

t)s–1/Σi=1
N βi(qi

t)s; t = 0,1, . . .,T;  
 n = 1, . . .,N. (141)

90 Note that we require s ≠ 0 and s ≠1 in order for l* to be well defined.
91 The limiting case is the case of Leontief preferences.
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Equations (141) is the consumer’s system of inverse demand 
functions. Equations (141) are the counterparts to the con-
sumer’s system of (ordinary) demand functions defined 
earlier by equations (109). It can be seen that the expres-
sions βn(qn

t)s/Σi=1
N βi(qi

t)s are homogeneous of degree 0 in the 
parameters β1,  .  .  .,βN, so a normalization of these param-
eters is required for the identification of the βn parameters. 
The normalization Σn=1

N βn = 1 can be replaced by an equiva-
lent normalization such as βN = 1.92

Equations (141) are perfectly symmetric with equa-
tions (109), which gave us estimating equations for the 
system of ordinary consumer demand functions for a utility- 
maximizing consumer with CES preferences, except that 
the roles of prices and quantities have been interchanged. 
Equations (109) gave consumer demands qn

t as functions of 
et and pt, whereas equations (140) give us prices pn

t that are 
consistent with utility maximization for CES preferences 
that are consistent with total expenditure equal to et and the 
utility-maximizing quantity vector qt. If equations (109) fit 
the given price and quantity data perfectly, then equations 
(141) will also fit the given price and quantity data perfectly 
as well (and vice versa). However, with data that do not fit 
the CES model exactly, the two methods for fitting a CES 
utility function will usually not agree. We will discuss the 
problem of deciding which model is “best” later.

Equations (141) can be converted into a system of share 
equations where the period t expenditure shares sn

t are func-
tions of et and qt: multiply both sides of equation n for period 
t by qn

t/et to obtain the expenditure share sn
t on the left-hand 

side of the resulting equation. The following system of share 
equations is obtained:

sn
t = βn(qn

t)s/Σi=1
N βi(qi

t)s; t = 0,1, . . .,T;  
 n = 1, . . .,N. (142)

Equations (141) and (142) can be used as systems of estimat-
ing equations. Later, we will consider some alternative sys-
tems of estimating equations.

Take the logarithm of sn
t defined by (142) and add the 

error term ηn
t to the right-hand side of equation n in period 

t. We obtain the following system of estimating equations:

lnsn
t = lnβn + slnqn

t – ln[Σi=1
N βi(qi

t)s] + ηn
t;  

 t = 0,1, . . .,T; n = 1, . . .,N (143)

Equations (142) (which express the logarithm of shares as 
functions of quantities) are the counterparts to equations 
(120) (which expressed the logarithms of shares as functions 
of prices instead of quantities).

We can now repeat the differencing methods explained 
earlier when the task was to find estimates for the elasticity 
of substitution using the CES unit cost function as the start-
ing point. Thus, the counterparts to the estimating equa-
tions defined earlier by (125) and (129) are now the following 

92 The normalization on the βn determines the units of measurement for 
utility. Since Sn=1

N sn
t = 1 for t = 0,1, . . .,T, the error terms will satisfy the 

constraints Σn=1
N ηn

t = 0 t = 0,1, . . .,T, and thus the error terms pertain-
ing to each time period cannot be distributed independently and so the 
estimating equations for one commodity n should be dropped from equa-
tions (141).

double differenced systems of inverse demand estimating 
equations:93

 dsn
t = sdqn

t + en
t; t = 1, . . .,T; n = 1, . . .,N – 1; (144)

dpn
t = (s – 1)dqn

t + en
t; t = 1, . . .,T;  

 n = 1, . . .,N – 1 (145)
= – s–1dqn

t + en
t using (139).

As was the case with the systems of estimating equations 
defined by (125) and (129), the systems of estimating equa-
tions defined by (144) and (145) will depend on the choice 
of a numeraire commodity. To avoid this problem, we can 
adapt the analysis surrounding equations (130)–(132) to the 
present situation. Thus, for each time period t, define the 
geometric average of sn

t and qn
t as s•

t and q•
t, respectively for 

t = 0,1,  .  .  .,T. For each time period t, define the arithme-
tic average of ηn

t in equations (143) as η•
t for t = 0,1, . . .,T. 

Finally define the geometric average of βn as β• For each time 
period t, take the arithmetic average of both sides of equa-
tions (143) for all N observations in period t. The following 
equations are the result of these operations:

lns•
t = lnβ• + slnq•

t – ln[Σi=1
N βi(qi

t) s] + η•
t;  

 t = 0,1, . . .,T. (146)

Take the Difference between lnsn
t defined by equations 

(143) and lns•
t defined by (146). The following equations are 

obtained:

lnsn
t – lns•

t = lnβn – lnβ• + slnqn
t – slnq•

t + ηn
t – η•

t;  
 t = 0,1, . . .,T; n = 1, . . .,N. (147)

Now taking the difference between the variables lnsn
t and 

lns•
t with respect to time, we obtain the following estimating 

equations:94

lnsn
t – lnsn

t–1 – lns•
t + lns•

t–1 = s[lnqn
t – lnqn

t–1  
 – lnq•

t + lnq•
t–1] + en

t; t = 1, . . .,T; n = 1, . . .,N, (148)

where en
t ≡ ηn

t – ηn
t–1 – η•

t + η•
t–1. Equations (148) are a sys-

tem of estimating equations that is linear in the single 
parameter s.

Instead of starting with the share equations (142), one 
could start with the inverse demand functions defined by 
equations (141). Take logarithms of both sides of these equa-
tions and add error terms ηn

t. The following system of esti-
mating equations is obtained:

lnpn
t = lnβn + (s – 1)lnqn

t – ln[Σi=1
N βi(qi

t)s]  
  + ηn

t; t = 0,1, . . .,T; n = 1, . . .,N (149)

93 We require that s ≠ 0 and s ≠ 1.
94 Note that for each t, we have the following equalities: 0 = Σn=1

N [lnsn
t – 

lns•
t] = Σn=1

N [lnβn – lnβ•] = Sn=1
N [lnqn

t – lnq•
t] = Σn=1

N [ηn
t – η•

t]. Thus, for each 
t, the N equations for lnsn

t – lns•
t for n = 1, . . .,N are linearly dependent, 

and hence any one of these N equations can be dropped. If the commod-
ity N equations are dropped, then we use equations (148) as estimating 
equations only for t = 1, . . .,T and n = 1, . . .,N – 1. Under an appropriate 
stochastic specification, the estimate for s will not depend on which equa-
tion is dropped.
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Define the geometric average of pn
t for period t as p•

t for t = 
0,1, . . .,T. By applying the same definitions and techniques 
that led to equations (146)–(148), we obtain the following 
system of estimating equations:

lnpn
t – lnpn

t–1 – lnp•
t + lnp•

t–1 = (s –1)[lnqn
t  

 – lnqn
t–1 – lnq•

t + lnq•
t–1] + en

t; t = 1, . . .,T;  
 n = 1, . . .,N (150)

= – s–1[lnqn
t – lnqn

t–1 – lnq•
t + lnq•

t–1] + en
t using (139),

where en
t ≡ ηn

t – ηn
t–1 – η•

t + η•
t–1. Equations (150) are a system 

of estimating equations that is linear in the single parameter 
s–1, which is the reciprocal of the elasticity of substitution 
between all pairs of commodities.95

From the previous materials, it can be seen that there 
is a bewildering array of alternative methods for estimat-
ing CES preferences. We have considered in some detail 12 
methods. Equations (109) and (141) estimate the consumer’s 
CES demand system and inverse demand system. In equa-
tions (109), quantities qt are functions of total expenditure 
et and prices pt for each period t; in equations (141), prices 
pt are functions of et and qt. The parameters of the CES 
unit cost function c(p) defined by (108) are estimated using 
equations (109), while the parameters of the CES utility 
function f(q) defined by (134) are estimated using equations 
(141). Equations (109) and (141) are our preferred specifica-
tions. The problem with the econometric specifications that 
involve shares as dependent variables is that shares by their 
very nature combine price and quantity information and so 
errors in either prices or quantities will show up in shares. 
Thus, a model involving shares as dependent variables 
could fit the data very well but the approximation errors 
or deviations from the CES exact model for either prices or 
quantities could offset each other in the shares. The model 
fits for (109) and (141) could be much worse than the model 
fits for any model involving shares. Thus, the share models 
will tend to give us an incomplete view of how well the CES 
model describes the actual data. Put another way, the use 
of shares does not make use of all available information on 
prices and quantities, whereas the models based on using 
(109) and (141) as estimating equations do use all available 
information, and thus these models are the best at show-
ing us how well the CES model approximates reality. This 
observation means that the unit cost estimation models 
that use shares (110), (125), and (132) are less preferred than 
(109), and the utility function estimation models that use 
shares (142), (144), and (148) are less preferred than (141). 
Similarly, differencing the data throws out information on 
exactly how good the underlying CES model is at approxi-
mating the underlying price and quantity data. Thus, the 
unit cost function models using differences (125), (129), 
(132), and (133) are less preferred than (109), and the util-
ity function models using differences (144), (145), (148), and 
(150) are less preferred than (141). If we reject share models 

95 As usual, we need to drop the estimating equations for one of the N 
commodities since the error terms in (150) are not statistically indepen-
dent because the data for each period satisfies the linear constraint pt·qt 
= et for t = 0,1, . . .,T.

and differenced models, we are left with the models defined 
by (109) and (141).

How can a choice be made between (109) and (141)? The 
answer to this question depends on the purpose for estimat-
ing CES preferences. If we want to predict qt given et and pt, 
then the model defined by equations (109) is the best choice. 
If we want to predict pt given et and qt, then (141) is the best 
choice. If the goal is to get a good estimate for the elasticity 
of substitution to use in the Lloyd–Moulton formula, then 
run both (109) and (141) and choose the model with the best 
fit. As was mentioned earlier, if (109) fits the data perfectly, 
then so will (141) (as well as the other 10 models under con-
sideration). However, in reality, neither (109) nor (141) will fit 
the data perfectly. If the underlying preference function is 
approximately equal to a linear utility function (so that the 
products are highly substitutable), then the model defined 
by (141) will fit the data better than the model defined by 
(109). On the other hand, if preferences are close to being 
of the no substitution variable so that the unit cost func-
tion is almost linear, then the model defined by (109) will fit 
the data better than the model defined by (141). Choosing 
between (109) and (141) based on how well the two models fit 
the data seems to be a sensible strategy.96

11. The Allen Quantity Index
Make the same general assumptions on the utility function 
f(q) that we made at the beginning of Section 2 so that f(q) 
is a nonnegative, increasing, continuous, and concave func-
tion of q defined for q ≥ 0N.97 Let C( f(q),p) be the consumer’s 
cost function that is dual to the aggregator function f(q).98 
Let pt >> 0N be the vector of observed prices that the con-
sumer faces in period t for t = 0,1. Let qt >> 0N be the vec-
tor of observed consumer choices for periods t = 0,1. We 
assume cost-minimizing behavior on the part of the con-
sumer in periods 0 and 1 so that the following equations 
are satisfied:

C( f(qt),pt) ≡ minq {pt·q : f(q) ≥ f(qt);  
 q≥ 0N} = pt·qt; t = 0,1. (151)

The Allen (1949) family of quantity indices, QA(q0,q1,p),  
is defined for an arbitrary positive reference price vector  
p >> 0N as follows:

 QA(q0,q1,p) ≡ C( f(q1),p)/C( f(q0),p). (152)

The basic idea of the Allen quantity index dates back to 
Hicks (1941–1942), who observed that if the price vector p 
were held fixed and the quantity vector q is free to vary, then 
C( f(q),p) is a perfectly valid cardinal measure of utility.99

As was the case with the true cost of living, the Allen defi-
nition simplifies considerably if the utility function happens 

96 A possible disadvantage of using (109) or (141) to estimate s is that non-
linear regression techniques have to be used in the estimation procedure. 
Thus, an attractive alternative would be to use either (133) or (150) to 
estimate s. These models are linear in the single unknown parameter.
97 In this section, we no longer assume that f(q) is linearly homogeneous. 
The results in this section were established by Diewert (2009, 239–41).
98 Recall definition (1) in Section 2.
99 Samuelson (1974) called this a money metric measure of utility.
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to be linearly homogeneous. In this case, for any p >> 0N, 
(152) simplifies to

 QA(q0,q1,p) = f(q1)C(1,p)/f(q0)C(1,p) = f(q1)/f(q0). (153)

However, in the general case where the consumer has non-
homothetic preferences, we do not obtain the nice simplifi-
cation given by (153).

As usual, it is useful to specialize the general definition of 
the Allen quantity index and let the reference price vector 
equal either the period 0 price vector p0 or the period 1 price 
vector p1:

 QA(q0,q1,p0) ≡ C( f(q1),p0)/C( f(q0),p0); (154)
 QA(q0,q1,p1) ≡ C( f(q1),p1)/C( f(q0),p1). (155)

Index number formulae that are exact for either of the the-
oretical indices defined by (154) and (155) do not seem to 
exist, at least for the case of nonhomothetic preferences that 
can be represented by a flexible functional form. However, 
we can find an index number formula that is exactly equal to 
the geometric mean of the Allen indices defined by (154) and 
(155), where the underlying preferences are represented by a 
flexible functional form. Before demonstrating this result, 
we need the following proposition:

Proposition 13: Let x and y be N- and M-dimensional vec-
tors, respectively and let F0 and F1 be two general quadratic 
functions defined as follows:

F0(x,y) ≡ a0
0 + a0Tx + b0Ty + (½)xTA0x  

  + (½)yTB0y + xTC0y; A0T = A0; B0T = B0; (156)
F1(x,y) ≡ a0

1 + a1Tx + b1Ty + (½)xTA1x  
  + (½)yTB1y + xTC1y; A1T = A1; B1T = B1, (157)

where a0
i are the scalar parameters, ai and bi are the parame-

ter vectors and Ai, Bi, and Ci are the parameter matrices for i 
= 0,1. Note that Ai and Bi are symmetric matrices. If A0 = A1, 
then the following equation holds for all x0, x1, y0, and y1:100

F0(x1,y0) – F0(x0,y0) + F1(x1,y1) – F1(x0,y1)  
 = [∇xF

0(x0,y0) + ∇xF
1(x1,y1)]·[x1 – x0]. (158)

Straightforward differentiation of the functions defined by 
(156) and (157) and substitution into (158) proves the propo-
sition. The identity (158) is a generalized quadratic identity. 
This identity will prove to be useful, as will be seen later.

Suppose that the consumer’s preferences can be repre-
sented by the general translog cost function, C(u,p) defined 
by (77), with the restrictions (78)–(81). Shephard’s Lemma 
implies that the period t expenditure shares, sn

t, will satisfy 
the following equations:101

100 Balk (1998, 225–26) established this result using the Translog Lemma 
in Caves, Christensen, and Diewert (1982, 1412), which is simply a loga-
rithmic version of (158).
101 We need to assume that the points (u0, p0) and (u1,p1) are in the regular-
ity region where the translog cost function C(u,p) is well-behaved.

sn
t = ∂lnC(ut,pt)/∂lnpn = an

t + bn
tlnut  

  + Σi=1
N ani

tlnpi
t; t = 0,1, (159)

where ut ≡ f(qt) for t = 0,1. Note that lnC(u,p) is quadratic in 
the variables x1 ≡ lnp1, . . .,xN ≡ lnpN and y1 ≡ lnu. Thus, we 
will be able to apply the generalized quadratic identity to 
lnC(u,p).

Recall that in Section 2, the Konüs–Laspeyres cost of liv-
ing index was defined by PK(p0,p1,q0) ≡ C[ f(q0),p1]/C[ f(q0),p0] 
and the Konüs–Paasche cost of living index was defined by 
PK(p0,p1,q1) ≡ C[ f(q1),p1]/C[ f(q1),p0]. Assuming that C(u,p) is 
the translog cost function, we can obtain an exact formula 
for the geometric mean of PK(p0,p1,q0) and PK(p0,p1,q1). The 
logarithm of this geometric mean is

ln{[PK(p0,p1,q0)PK(p0,p1,q1)]1/2}  
 = (½)lnPK(p0,p1,q0) + (½)lnPK(p0,p1,q1) (160)

= (½)ln[C( f(q0),p1)/C( f(q0),p0)] + (½)ln[C( f(q1),p1)/ 
C( f(q1),p0)] using definitions (3) and (4)

= (½)ln[C(u0,p1)/C(u0,p0)] + (½)ln[C(u1,p1)/C(u1,p0)]

= (½){lnC(u0,p1) – lnC(u0,p0) + lnC(u1,p1) – lnC(u1,p0)}

= (½)Σn=1
N {[∂lnC(u0,p0)/∂lnpn] + [∂lnC(u1,p1)/∂lnpn]}[lnpn

1 
– lnpn

0]

using (158) with F0(x,y) = F1(x,y) ≡ lnC(y,x) with y ≡ lnu and 
xn ≡ lnpn for n = 1, . . .,N

= (½)Σn=1
N [sn

0 + sn
1][lnpn

1 – lnpn
0] using (159)

= lnPT(p0,p1,q0,q1),

where PT(p0,p1,q0,q1) is the Törnqvist Theil index  number 
formula PT defined in Chapter 4. The exact index num-
ber formula given by (160) is different from our earlier exact 
index number formula for PT which was given by (88). The 
earlier result was C(u*,p1)/C(u*,p0) = PT(p0,p1,q0,q1), where u* 
was the geometric mean of u0 and u1. Our new result is

PT(p0,p1,q0,q1) = [C( f(q0),p1)/C( f(q0),p0)]1/2 
 [C( f(q1),p1)/C( f(q1),p0)]1/2 . (161)

Thus, PT is also equal to the geometric mean of 
C( f(q0),p1)/C( f(q0),p0) and C( f(q1),p1)/C( f(q1),p0).

The implicit quantity index QT*( p0,p1,q0,q1) that corre-
sponds to the Törnqvist–Theil price index PT is defined as 
the value ratio, p1·q1/ p0·q0, divided by PT. Thus, we have

QT*(p0,p1,q0,q1) ≡ [p1·q1/p0·q0]/PT(p0,p1,q0,q1) (162)
= [C( f(q1),p1)/C( f(q0),p0)]/PT(p0,p1,q0,q1) using (151)

= [C( f(q1),p1)/C( f(q0),p0)]/[{C( f(q0),p1)/C( f(q0),p0)}
{C( f(q1),p1)/C( f(q1),p0)}]1/2 using (161)

= [{C( f(q1),p0)/C( f(q0),p0)}{C( f(q1),p1)/C( f(q0),p1)}]1/2

= [QA(q0,q1,p0)QA(q0,q1,p1)]1/2,

where the last equality follows from definitions (154) and 
(155). Thus, the observable implicit Törnqvist–Theil quan-
tity index, QT*( p

0,p1,q0,q1), is exactly equal to the geometric 
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mean of the two Allen quantity indices defined by (154) and 
(155).

Note that in general, the geometric mean of the two 
“natural” Allen quantity indices defined by (154) and (155) 
matches up with the geometric mean of the two “natural” 
Konüs price indices defined by (3) and (4); that is, using 
these definitions, we have

[PK(p0,p1,q0)PK(p0,p1,q1)]1/2[QA(q0,q1,p0) 
 QA(q0,q1,p1)]1/2 = C( f(q1),p1)/C( f(q0),p0) (163)

= p1·q1/p0·q0.

Thus, in general, these two “natural” geometric mean price 
and quantity indices satisfy the product test. Under our 
translog assumptions, we have a special case of (163) where 
QT*(p0,p1,q0,q1) is equal to [QA(q0,q1,p0)QA(q0,q1,p1)]1/2 and PT(p
0,p1,q0,q1) is equal to [PK(p0,p1,q0)PK(p0,p1,q1)]1/2.102 This result 
justifies the use of PT and QT* even if the consumer does not 
have homothetic preferences. Hence, it indirectly justifies 
the use of the Fisher and Walsh price indices if consumers 
do not have homothetic preferences since these indices will 
approximate PT(p0,p1,q0,q1) to the second order around an 
equal price and quantity point.

12. Modeling Changes in Tastes
Suppose that the consumer’s preference function changes 
going from period 0 to period 1. What is an appropriate 
theoretical concept for a price index under these conditions?

Suppose that the consumer’s utility function is f 0(q) in 
period 0 and f 1(q) in period 1. Let C0(u,p) and C1(u,p) be the 
cost functions that correspond to these preferences for peri-
ods 0 and 1, respectively. A reasonable strategy under these 
circumstances is the following one:

• Calculate the Laspeyres–Konüs cost of living index using 
the preferences of period 0. This is the index PK(p0,p1,q0) 
≡ C0(u0,p1)/C0(u0,p0), where u0 = f(q0) and q0 satisfies p0·q0 = 
C0(u0,p0).

• Calculate the Paasche–Konüs cost of living index using 
the preferences of period 1. This is the index PK(p0,p1,q1) 
≡ C1(u1,p1)/C1(u1,p0), where u1 = f(q1) and q1 satisfies p1·q1 = 
C1(u1,p1).

• Take the geometric mean of PK(p0,p1,q0) and PK(p0,p1,q1) 
as the final measure of price change over the two periods 
under consideration.

Make the additional assumption that the consumer’s prefer-
ences can be modeled by translog cost functions in a region 
of regularity that includes u0 > 0, p0 >> 0N and u1 > 0, p1 >> 0N.  
In this regularity region, the logarithms of the period t cost 
functions Ct(u,p) are defined as follows:

lnC0(u,p) ≡ F0(x,y1) ≡ a0
0 + Σn=1

N an
0xn + b1

0y1  
  + (½)xTAx + (½)b11

0(y1)
2 + Σn=1

N cn
0xny1; (164)

lnC1(u,p) ≡ F1(x,y1) ≡ a0
1 + Σn=1

N an
1xn  

  + b1
1y1 + (½)xTAx + (½)b11

1(y1)
2 + Σn=1

N cn
1xny1, (165)

102 See Diewert (2009, 239–41).

where A = AT, xT ≡ [x1, . . .,xN] ≡ [lnp1, . . .,lnpN] and y1 ≡ lnu. 
Note that the parameters in (164) can be quite different from 
the parameters in (165) except that we assume that the N(N + 
1)/2 aik parameters in the A matrix are the same in (164) and 
(165). It can be seen that the quadratic functions F0(x,y1) and 
F1(x,y1) are special cases of the functions F0(x,y) and F1(x,y) 
defined by (156) and (157) in the previous section. In order for 
Ct(u,p) to be linearly homogeneous in p, we need to impose 
the restrictions Σn=1

N an
t = 1, A1N = 0N and Σn=1

N cn
t = 0 on the 

parameters for t = 0,1, where 1N is a vector of ones of dimen-
sion N.

Shephard’s Lemma implies that the period t expenditure 
shares, sn

t, will satisfy the following equations:

sn
t = ∂lnC(ut,pt)/∂lnpn = an

t + cn
tlnut  

  + Σk=1
N anklnpk

t; t = 0,1 (166)

The logarithm of the geometric mean of PK(p0,p1,q0) and 
PK(p0,p1,q1) is equal to the following expression:

ln{[PK(p0,p1,q0)PK(p0,p1,q1)]1/2}  
 = (½)lnPK(p0,p1,q0) + (½)lnPK(p0,p1,q1) (167)

= (½)ln[C0(u0,p1)/C0(u0,p0)] + (½)ln[C1(u1,p1)/C1(u1,p0)]

= (½){lnC0(u0,p1) – lnC0(u0,p0) + lnC1(u1,p1) – lnC1(u1,p0)}

= (½)Σn=1
N {[∂lnC0(u0,p0)/∂lnpn] + [∂lnC1(u1,p1)/∂lnpn]}[lnpn

1 – 
lnpn

0] using (158)

= (½)Σn=1
N [sn

0 + sn
1][lnpn

1 – lnpn
0] using (166)

= lnPT(p0,p1,q0,q1),

where PT(p0,p1,q0,q1) is the Törnqvist–Theil index number 
formula PT defined in Chapter 4 and ut ≡ ft(qt) for t = 0,1. 
Note that (167) implies the following equalities:

PT(p0,p1,q0,q1) = [PK(p0,p1,q0)PK(p0,p1,q1)]1/2  
 = {[C0(u0,p1)/C0(u0,p0)][C1(u1,p1)/C1(u1,p0)]}1/2, (168)

where ut ≡ ft(qt) for t = 0,1. Thus, at least some forms of taste 
change can be accommodated by the use of the Törnqvist–
Theil price index.

13. Conditional Cost of Living 
Indices
The models of consumer behavior considered in previous 
sections all assumed that the consumer maximized a utility 
function, f(q), subject to a budget constraint of the form p·q = 
e, where e > 0 is the total amount of “income” or expenditure 
that the consumer allocates to the purchase of the N goods 
and services under consideration. However, the utility of the 
consumer may be affected by other variables in addition to 
purchases of market goods and services that are represented 
by q ≡ [q1, . . .,qN]. Thus, we now assume that utility is affected 
by an M dimensional vector of nonmarket environmental103 or 

103 This is the terminology used by Pollak (1989, 181) in his model of the 
conditional cost of living concept.
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demographic104 variables or public goods, z ≡ (z1,z2, . . .,zM). We 
suppose that the preferences of the household over different 
combinations of market commodities q and nonmarket vari-
ables z can be represented by the continuous utility function 
f(q,z).105 For periods t = 0,1, it is assumed that the observed 
household consumption vector qt ≡ (q1

t, . . .,qN
t) > 0N is a solu-

tion to the following household expenditure minimization 
problem:

minq {pt·q: f(q,zt) ≥ ut; q ≥ 0N} ≡ C(pt,ut,zt)  
 = pt·qt; t = 0,1; (169)

where zt is the environmental vector facing household h in 
period t, ut ≡ f(qt,zt) is the utility level achieved by household 
h during period t and C is the conditional cost or expendi-
ture function that is dual to the utility function f.106 Basically, 
these assumptions mean that the household has stable pref-
erences over the same list of market commodities during the 
two periods under consideration and the household chooses 
its market consumption vector in the most cost-efficient way 
during each period, conditional on the environmental vec-
tor zt that it faces during each period t.

With the previous assumptions in mind, the family of 
Pollak (1975, 142) conditional cost of living index between 
periods 0 and 1, conditional on the utility level u and the 
nonmarket vector z, is defined as follows:107

 PPo(p0,p1,u,z) ≡ C(p1,u,z)/C(p0,u,z). (170)

In this definition, the household utility level u and the vec-
tor of nonmarket or environmental variables z are held con-
stant in the numerator and denominator of the right-hand 
side of (170). Thus, only the price variables are different, 
which is precisely what we want in a theoretical definition 
of a consumer price index. Note that if z does not enter the 
consumer’s utility function so that f(q,z) is just f(q), then 
C(u,p,z) becomes C(u,p) and the Pollak conditional cost of 
living indices collapses down to the Konüs family of true 
cost of living indices, PK(p0,p1,q), where u = f(q).

The Laspeyres–Pollak conditional cost of living index is 
defined by (169) when (u,z) = (u0,z0). Using (169) for t = 0, a 
feasibility argument establishes the following upper bound 
to PPo(p0,p1,u0,z0); that is, we have

 PPo(p0,p1,u0,z0) ≤ p1·q0/p0·q0 = PL(p0,p1,q0,q1), (171)

where PL(p0,p1,q0,q1) is the ordinary Laspeyres price index 
for market commodities. The Paasche–Pollak conditional 
cost of living index is defined by (169) when (u,z) = (u1,z1). 
Using (169) for t = 1, a feasibility argument establishes the 
following lower bound to PPo(p0,p1,u1,z1); that is, we have

 PPo(p0,p1,u1,z1) ≥ p1·q1/p0·q1 = PP(p0,p1,q0,q1), (172)

104 Caves, Christensen, and Diewert (1982, 1409) used the terms demo-
graphic variables or public goods to describe the vector of conditioning 
variables z in their generalized model of the Konüs price index or cost 
of living index. Weather variables could also be included in the z vector.
105 We initially assume that f(q,z) is jointly continuous in (q,z), increasing 
in the components of q and concave in the components of q.
106 Conditional cost functions were first defined by Pollak (1975, 142).
107 See also Caves, Christensen, and Diewert (1982, 1409).

where PP(p0,p1,q0,q1) is the ordinary Paasche price index for 
market commodities.108

It is possible to obtain two-sided bounds to a Pollak con-
ditional cost of living index; that is, we have the following 
generalization of Proposition 1:

Proposition 14: There exists a number λ* between 0 and 1 
such that

PL ≤ PPo[p
0,p1,λ*(q0,z0) + (1 – λ*)(q1,z1)] ≤ PP  

 or PP ≤ PP[p0,p1,λ*(q0,z0) + (1 – λ*)(q1,z1)] ≤ PL. (173)

The proof of Proposition 14 is similar to the proof of Propo-
sition 1; see Diewert (2001) for details.

There is one additional result on conditional cost of living 
indices that is very useful, and it involves the use of the gen-
eralized quadratic identity (158) and a generalized translog 
functional form for the conditional cost function C(u,p,z). 
Suppose that the logarithm of the consumer’s conditional 
cost function is defined as follows:

lnC(p,u,z) ≡ F(x,y) ≡ a0 + aTx + bTy + (½)xTAx  
  + (½)yTBy + xTCy; AT = A; BT = B, (174)

where xT ≡ [lnp1, . . .,lnpN], yT ≡ [lnu,z1, . . .,zM], a0 is a scalar 
parameter, a and b are parameter vectors, A is an N by N 
symmetric matrix of parameters, B is an M + 1 by M + 1 
symmetric matrix of parameters, and C is an N by M + 1 
matrix of parameters. In order to impose linear homoge-
neity in prices on C(p,u,z), we require that the following 
restrictions on the parameters hold:

 aT1N = 1; A1N = 0N and CT1N = 0M + 1. (175)

Note that the demographic variables enter the right-hand 
side of (174) in a linear and quadratic fashion; this allows for 
the zm variables to be discrete variables that can take on the 
value 0.109 We assume that the period 0 and 1 price vectors, 
p0 and p1, are strictly positive and that qt > > 0N solves the 
period t conditional cost minimization problem defined by 
(169) for t = 0,1. Thus, we have the following equations:

 pt·qt = C(pt,ut,zt); t = 0,1. (176)

Shephard’s Lemma can be applied to these cost minimiza-
tion problems, since the translog conditional cost function 
C(p,u,z) defined by (174) is differentiable with respect to the 
components of p. Thus, we have the following equations:110

 qn
t = ∂C(pt,ut,zt)/∂pn; n = 1, . . .,N; t = 0,1 (177)
= [C(pt,ut,zt)/pn

t]∂lnC(pt,ut,zt)/∂lnpn.

108 The bounds (171) and (172) can be found in Caves, Christensen, and 
Diewert (1982, 1409–10).
109 Thus, the number of children in a household is a discrete variable that 
can take on the value 0. If we entered the corresponding variable as z1 on 
the right-hand side of (174) as the logarithm of the number of children, the 
definition of C(p,u,z) would break down.
110 See equations (83) in Section 7. We require that (pt,ut,zt) be in the regu-
larity set where C(p,u,z) is positive and increasing in the components of p 
and u and concave in p holding u and z fixed.
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Using definition (174), equations (177) can be rearranged to 
read as follows:

sn
t = ∂lnC(pt,ut,zt)/∂lnpn = an + Σk=1

N anklnpk
t  

  + Σm=1
M cnmzm

t; n = 1, . . .,N; t = 0,1. (178)

Now take the logarithm of the geometric mean of the two 
conditional indices PPo(p0,p1,u0,z0) and PPo(p0,p1,u1,z1). We 
find that

 ln{[PPo(p0,p1,u0,z0)PPo(p0,p1,u1,z1)]1/2} (179)
= (½)[lnC(p1,u0,z0) – lnC(p0,u0,z0) + lnC(p1,u1,z1) 

– lnC(p0,u1,z1)]

= (½)Σn=1
N [(∂lnC(p0,u0,z0)/∂lnpn) + (∂lnC(p1,u1,z1)/∂lnpn)][lnpn

1 
– lnpn

0] using definition (174) and the generalized quadratic 
identity (158)

= (½)Σn=1
N [sn

1 + sn
0][lnpn

1 – lnpn
0] using (178)

= lnPT(p0,p1,q0,q1),

where PT(p0,p1,q0,q1) is the Törnqvist–Theil index number 
formula PT defined in Chapter 4. Note that (179) implies the 
following equalities:111

PT(p0,p1,q0,q1) = [PPo(p0,p1,u0,z0) 
 PPo(p0,p1,u1,z1)]1/2 (180)

= {[C(p1,u0,z0)/C(p0,u0,z0)][C(p1,u1,z1)/C(p0,u1,z1)]}1/2.

Thus, the Törnqvist–Theil price index has many useful 
interpretations.

14. Reservation Prices and New and 
Disappearing Products
New products appear and old products disappear at sub-
stantial annual rates in most economies in the world today. 
This creates substantial problems for national statistical 
offices that are responsible for producing CPIs, since tra-
ditional index number theory is based on matching prices 
for identical products over time. Thus up to now, our treat-
ment of the different approaches to index number theory has 
assumed that the number of consumer goods and services 
available to the public has remained constant over the two 
periods being compared. This implicit assumption is not 
an accurate reflection of reality: In practice, perhaps 1–2 
percent of all consumer products appear or disappear each 
month. The economic approach to index number theory can 
be helpful in providing a framework for treating this lack of 
matching problem.

The basic idea for the treatment of new products in a 
cost of living type price index is as follows. Assume that 
the consumer has the same preferences over continuing and 
new and disappearing products over periods 0 and 1. For a 

111 This result is a special case of a more general result established by 
Caves, Christensen, and Diewert (1982, 1410). Their result also allows for 
taste change between the periods.

product that is not available in one of the two periods under 
consideration, the quantity consumed is obviously equal 
to zero units. The corresponding prices for these products 
that are present in only one of the two periods are missing. 
It turns out that if we can somehow estimate reservation 
prices for these missing products in the two periods under 
consideration, then normal index number theory using the 
economic approach to index number theory can be applied. 
The reservation price for a missing product is the price that 
is just high enough to induce purchasers of the product to 
demand zero units of it. This reservation price approach for 
the treatment of new goods was developed by Hicks (1940, 
114). Hofsten (1952, 95–97) extended the approach of Hicks 
to cover the case of disappearing goods as well.

In Chapter 8, we will consider several alternative methods 
that have been suggested in the literature to estimate reser-
vation prices.112 In the present section, we will use maximum 
overlap price indices to form approximations to reservation 
prices, and we will derive some theoretical bias estimates for 
these approximate reservation prices. A maximum overlap 
index113 is one that constructs a price index using just the 
products that are present in the two periods under consid-
eration. Typically, the maximum overlap price index will be 
biased compared to the “true” cost of living index, which 
uses reservation prices. This bias in the deflator translates 
into a corresponding bias in the real output aggregate. We 
will evaluate this bias in the context of a statistical agency 
that uses a maximum overlap Törnqvist–Theil price index.114

Consider two periods 0 and 1. There are three classes of 
commodities. Class 1 products are present in both periods 
with positive prices and quantities for all N products in this 
group. Denote the period t price and quantity vectors for 
this group of products as p1

t ≡ [p11
t, . . .,p1N

t] >> 0N and q1
t ≡ 

[q11
t, . . .,q1N

t] >> 0N for t = 0,1.
Class 2 products are the new goods and services that are 

not available in period 0 but are available in period 1. Denote 
the period 0 price and quantity vectors for this group of K 
products as p2

0* ≡ [p21
0*, . . .,p2K

0*] >> 0N and q2
0 ≡ [q11

0, . . .,q1K
0] 

= 0N. The prices in the vector p2
0* are the positive reservation 

prices that make the demand for these products in period 
0 equal to 0. These reservation prices have to be estimated 
somehow. The period 1 price and quantity vectors for these 
K products are p2

1 ≡ [p21
1, . . .,p2K

1] >> 0N and q2
1 ≡ [q21

1, . . .,q2K
1] 

>> 0N, and these vectors are observable.
Class 3 products are the disappearing goods and ser-

vices that were available in period 0 but are not available in 
period 1. Denote the period 0 price and quantity vectors for 
this group of M products as p3

0 ≡ [p31
0, . . .,p3M

0] >> 0N and q3
0 

112 These methods include Feenstra’s (1994) CES methodology, the Diew-
ert and Feenstra (2019) (2022) methodology that involves the estimation 
of the preference function that is exact for the Fisher ideal index and 
methodologies based on experimental economics. See Brynjolfsson et al. 
(2019) (2021) and Diewert, Fox, and Schreyer (2022) on the experimental 
approach.
113 This type of index dates back to Marshall (1887). Keynes (1930, 94) 
called it the highest common factor method, while Triplett (2004, 18) 
called it the overlapping link method. See Diewert (1993c, 52–56) for 
additional material on the early history of the new goods problem.
114 The material in this section is mostly due to de Haan and Krsinich 
(2012) (2014). Diewert, Fox, and Schreyer (2017c) extended the de Haan 
and Krisinich analysis to bias estimates if the Laspeyres, Paasche, or 
Fisher maximum overlap indices are used in place of the Törnqvist–Theil 
price index.
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≡ [q31
0, . . .,q3M

0] >> 0N. The period 1 price and quantity vec-
tors for these M products are p3

1* ≡ [p31
1*, . . .,p3M

1*] >> 0N and 
q3

1 ≡ [q31
1, . . .,q3M

1] = 0N. The prices in the vector p3
1* are the 

positive reservation prices that make the demand for these 
products in period 1 equal to 0. Again, these reservation 
prices have to be estimated somehow.

Define the true expenditure shares for product n in Group 
1 for periods 0 and 1, s1n

0 and s1n
1, as the following fractions 

of total expenditure in period 0 or 1:

s1n
0 ≡ p1n

0q1n
0/[p1

0·q1
0 + p2

0*·q2
0 + p3

0·q3
0];  

 n = 1, . . .,N; (181)
= p1n

0q1n
0/[p1

0·q1
0 + p3

0·q3
0] since q2

0 = 0N;

s1n
1 ≡ p1n

1q1n
1/[p1

1·q1
1 + p2

1·q2
1 + p3

1*·q3
1];  

 n = 1, . . .,N; (182)
= p1n

1q1n
1/[p1

1·q1
1 + p2

1·q2
1] since q3

1 = 0N.

Note that these shares can be calculated using observable 
data; that is, these shares do not depend on the imputed 
prices p2

0* and p3
1*.

Define the true expenditure shares for product k in Group 
2 for periods 0 and 1, s2k

0 and s2k
1, as follows:

s2k
0 ≡ p2k

0q2k
0/[p1

0·q1
0 + p2

0*·q2
0  

  + p3
0·q3

0]; k = 1, . . .,K; (183)
= p2k

0q2k
0/[p1

0·q1
0 + p3

0·q3
0] since q2

0 = 0N;

= 0; since q2k
0 = 0;

s2k
1 ≡ p2k

1q2k
1/[p1

1·q1
1 + p2

1·q2
1 + p3

1*·q3
1];  

 k = 1, . . .,K; (184)
= p2k

1q2k
1/[p1

1·q1
1 + p2

1·q2
1] since q3

1 = 0N.

Note that these shares can also be calculated using observ-
able data.

Define the true expenditure shares for product m in Group 
3 for periods 0 and 1, s3m

0 and s3m
1, as follows:

s3m
0 ≡ p3m

0q3m
0/[p1

0·q1
0 + p2

0*·q2
0 + p3

0·q3
0];  

 m = 1, . . .,M; (185)
= p3m

0q3m
0/[p1

0·q1
0 + p3

0·q3
0] since q2

0 = 0N;

s3m
1 ≡ p3m

1q3m
1/[p1

1·q1
1 + p2

1·q2
1 + p3

1*·q3
1];  

 m = 1, . . .,M; (186)

= p3m
1q3m

1/[p1
1·q1

1 + p2
1·q2

1] since q3
1 = 0N;

= 0 since q3m
1 = 0.

Note that these shares can also be calculated using observ-
able data.

Now define the expenditure shares for product Group 1 
using just the products that are in Group 1. These are the 
shares that are relevant for the maximum overlap indices 
which will be defined shortly. The maximum overlap share 
for product n in period t, s1nO

t, is defined as follows:

 s1nO
t ≡ p1n

tq1n
t/p1

t·q1
t; t = 0,1; n = 1, . . .,N. (187)

These maximum overlap shares are also observable. It can 
be seen that the following relationships hold between the 
true Group 1 shares and the maximum overlap Group 1 
shares:115

s1n
0 = s1nO

0p1
0·q1

0/[p1
0·q1

0 + p3
0·q3

0];  
 n = 1, . . .,N; (188)

= s1nO
0[1 – Σm=1

M s3m
0];

s1n
1 = s1nO

1p1
1·q1

1/[p1
1·q1

1 + p2
1·q2

1];  
 n = 1, . . .,N; (189)

= s1nO
1[1 – Σk=1

K s2k
1] .

Let PTO denote the Törnqvist maximum overlap index. The 
logarithm of this index is defined as follows:

 lnPTO ≡ Σn=1
N (1/2)(s1nO

0 + s1nO
1)ln(p1n

1/p1n
0). (190)

The logarithm of the true Törnqvist index, PT, is defined as 
follows:

lnPT ≡ Σn=1
N ½(s1n

0 + s1n
1)ln(p1n

1/p1n
0)  

  + Σk=1
K ½(s2k

0 + s2k
1)ln(p2k

1/p2k
0*) (191)

 + Σm=1
M ½(s3m

0 + s3m
1)ln(p3m

1*/p3m
0)

= Σn=1
N ½(s1n

0 + s1n
1)ln(p1n

1/p1n
0)  

 + Σk=1
K ½(0 + s2k

1)ln(p2k
1/p2k

0*)

 + Σm=1
M ½(s3m

0 + 0)ln(p3m
1*/p3m

0) using (183) and (186)

= Σn=1
N ½{s1nO

0[1 – Σm=1
M s3m

0] + s1nO
1[1 – Σk=1

K s2k
1]}ln(p1n

1/p1n
0)

 + Σk=1
K ½(s2k

1)ln(p2k
1/p2k

0*) + Σm=1
M ½(s3m

0)ln(p3m
1*/p3m

0) using 
(188) and (189)

= lnPTO + ½Σk=1
K s2k

1[ln(p2k
1/p2k

0*)  
– Σn=1

N s1nO
1 ln(p1n

1/p1n
0)]

 + ½Σm=1
M s3m

0[ln(p3m
1*/p3m

0) – Σn=1
N s1nO

0 ln(p1n
1/p1n

0)]  
using (190)

= lnPTO + lnκ + lnμ,

where the logarithms of the terms κ and μ are defined as

lnκ ≡ (1/2)Σk=1
K s2k

1[ln(p2k
1/p2k

0*)  
 – Σn=1

N s1nO
1 ln(p1n

1/p1n
0)] (192)

= (1/2)Σk=1
K s2k

1[ln(p2k
1/p2k

0*) – lnPJO
1];

lnμ ≡ (1/2)Σm=1
M s3m

0[ln(p3m
1*/p3m

0)  
 – Σn=1

N s1nO
0 ln(p1n

1/p1n
0)] (193)

= (1/2)Σm=1
M s3m

0[ln(p3m
1*/p3m

0) – lnPJO
0],

where the (weighted) Jevons index using the maximum 
overlap share weights of period 1 is PJO

1 and the (weighted) 

115 These relationships were developed by de Haan and Krsinich (2012, 31–32).
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Jevons index using the maximum overlap share weights of 
period 0 is PJO

0; that is, the logarithm of these two indices is 
defined as follows:116

lnPJO
1 ≡ Σn=1

N s1nO
1 ln(p1n

1/p1n
0); lnPJO

0  
 ≡ Σn=1

N s1nO
0 ln(p1n

1/p1n
0). (194)

Exponentiating both sides of (191) leads to the following 
relationship between the “true” cost of living index PT and 
the price index PTO that is defined over products that are 
available in both periods:117

 PT = PTO × κ × μ. (195)

The term κ defined by (192) can be regarded as a measure of 
the reduction in the true cost of living due to the introduc-
tion of new products. The period 0 imputed price for new 
product k, p2k

0*, is likely to be higher than the actual price 
for new product k in period 1 adjusted for general inflation, 
p2k

1/PJO
1, and thus κ is likely to be less than 1. The bigger 

the share of new products in period 1, Sk=1
K s2k

1, the more κ 
will be less than 1. Note that the logarithmic contribution 
of each new product to the reduction in the true cost of liv-
ing can be measured using the additive decomposition that 
definition (192) provides.

The inflation adjustment term μ defined by (193) can be 
regarded as a measure of the increase in the true cost of 
living due to the disappearance of existing products. The 
period 1 imputed price for disappearing product m, p3m

1*, is 
likely to be higher than the actual price for product m in 
period 0 adjusted for general inflation, p3m

0PJO
0, and thus μ 

is likely to be greater than 1. The bigger the share of disap-
pearing products in period 0, Σm=1

M s3m
0, the more μ will be 

greater than 1.
The decomposition defined by (191) is also useful in the 

context of defining imputed carry-backward or carry-forward 
prices for products that may be new or unavailable. Recall 
that the imputed reservation prices in period 0 are the prices 
p2k

0* and the imputed reservation prices in period 1 are the 
prices p3m

1*. Rough estimates or more precise econometric 
estimates have to be made for these reservation prices. How-
ever, it is possible to use available information on prices and 
quantities for periods 0 and 1 in order to define the follow-
ing carry-backward prices p2kb

0 for the missing products in 
period 0 and the following carry-forward prices p3mf

1 for the 
missing products in period 1:

p2kb
0 ≡ p2k

1/PJO
1 for k = 1, . . .,K and p3mf

1  
 ≡ p3m

0PJO
0 for m = 1, . . .,M. (196)

Thus, the inflation-adjusted carry-forward price defined by 
(196) for the missing product m in period 1 takes the observed 
price for product m in period 0, p3m

0, and adjusts it for gen-
eral inflation for the group of products that are present in 

116 These indices could also be described as Cobb–Douglas indices. The 
indices defined by (194) have also been described as geometric Paasche 
and geometric Laspeyres indices, respectively.
117 This formula was first derived by de Haan and Krsinich (2012, 31–32) 
(2014, 344). They obtained imputed prices for the missing products 
by using hedonic regressions, which will be studied in some detail in 
Chapter 8.

both periods 0 and 1 using the weighted maximum overlap 
Jevons index PJO

0. Similarly, the inflation-adjusted carry-
backward price defined by (195) for the missing product k 
in period 0 takes the observed price for product k in period 
1, p2k

1, and deflates it by the weighted Jevons maximum 
overlap price index, PJO

1. These inflation-adjusted imputed 
prices are more reasonable than the constant carry-forward 
prices, p3m

0, or constant carry-backward prices, p2k
1, which 

are frequently used to fill in the missing prices. From (190), 
(191), and (189), it can be seen that if the reservation prices 
are equal to their inflation-adjusted carry-forward prices (so 
that p3m

1* = p3mf
1 for m = 1,  .  .  .,M) and inflation-adjusted 

carry-backward prices (so that p2k
0* = p2kb

0 for k = 1, . . .,K), 
then the true Törnqvist index PT will equal its maximum 
overlap counterpart, PTO.

However, in general, economic theory suggests that the 
reservation prices will be greater than their inflation-adjusted 
carry-forward or carry-backward prices. Thus, we define the 
following margin terms, κk and μm,, which express how much 
higher each reservation price is from its inflation-adjusted 
carry-forward or carry-backward price counterpart:

 1 + κk ≡ p2k
0*/p2kb

0; k = 1, . . .,K; (197)
 1 + μm ≡ p3m

1*/p3mf
1; m = 1, . . .,M. (198)

Now substitute definitions (195)–(198) into (191), and we 
obtain the following exact relationship between the true 
Törnqvist index PT and its maximum overlap counterpart 
PTO:

ln(PT/PTO) = – Σk=1
K (1/2)s2k

1 ln(1 + κk)  
  + Σm=1

M (1/2)s3m
0 ln(1 + μm). (199)

Exponentiate both sides of (199) and subtract 1 from both 
sides of the resulting expression. Define the right-hand 
side of the resulting expression as the function g(κ1, . . .,κK, 
m1, . . .,mM) and approximate g by taking the first-order Tay-
lor series approximation to g evaluated at 0 = κ1 = . . . = κK 
= μ1 = . . . = μM. The resulting approximation to (PT/PTO) – 1 
is the following one:118

(PT/PTO) – 1 ≈ Σm=1
M (1/2)s3m

0 μm  
 – Σk=1

K (1/2)s2k
1κk. (200)

The period 0 and 1 value aggregates for the goods and ser-
vices in the group of N + K + M commodities under consid-
eration, V0 and V1, are defined as follows:

 V0 ≡ p1
0·q1

0 + p3
0·q3

0; V1 ≡ p1
1·q1

1 + p2
1·q2

1. (201)

The “true” implicit Törnqvist quantity index QT is defined as 
the value ratio, V1/V0, deflated by the “true” Törnqvist price 
index, PT; that is, we have

 QT ≡ [V1/V0]/PT. (202)

118 This formula is similar in spirit to the highly simplified approximate 
new goods bias formulae obtained by Diewert (1987, 779) (1998, 51–54).
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Statistical agencies can use maximum overlap Törnqvist–
Theil price indices to deflate final demand aggregates in 
order to construct aggregate quantity or volume indices.119 
Thus, in our context, the maximum overlap Törnqvist–Theil 
quantity index, QTO, is defined as follows:

 QTO ≡ [V1/V0]/PTO. (203)

The reciprocal of the bias in QTO relative to its true counter-
part QT can be measured by the ratio QT/QTO:

 QT/QTO = PTO/PT, (204)

where we have used definitions (202) and (203) to derive 
(204). An exact expression for the logarithm of PTO/PT can 
be obtained from (199):

ln(PTO/PT) = Σk=1
K (1/2)s2k

1 ln(1 + κk)  
 – Σm=1

M (1/2)s3m
0 ln(1 + μm). (205)

Exponentiate both sides of (205), and subtract 1 from 
both sides of the resulting expression. Define the right-
hand side of the resulting expression as the function 
h(κ1,  .  .  .,κK,m1,  .  .  .,mM), and approximate h by taking the 
first-order Taylor series approximation to h evaluated at 0 = 
κ1 = . . . = κK = μ1 = . . . = μM. The resulting approximation to 
(QT/QTO) – 1 is the following one:

(QT/QTO) – 1 ≈ Σk=1
K (1/2)s2k

1κk  
 – Σm=1

M (1/2)s3m
0 μm. (206)

Thus, if there are no disappearing goods, the right-hand 
side of (206) becomes Σk=1

K (1/2)s2k
1κk, and this number is 

a measure of the downward bias in the maximum overlap 
Törnqvist quantity index for the value aggregate in percent-
age points. That is, (206) gives the downward bias in welfare 
from ignoring new goods and services.

For analogous bias formulae for price and quantity 
aggregates that are constructed using maximum overlap 
Laspeyres, Paasche, or Fisher indices, see Diewert, Fox, and 
Schreyer (2017b).

15. Becker’s Theory of the 
Allocation of Time
Peter Hill (1999), in discussing the classic study by Nordhaus 
(1997) on the price of light, raised the issue as to how should a 
cost of living index treat household production where consum-
ers combine purchased market goods or “inputs” to produce 
finally demanded “commodities” that yield utility:120

There is another area in which the definition of  a 
COL requires further clarification and precision. 
From what is utility derived? Households do not 
consume many of  the goods and services they 

119 The US Bureau of Labor Statistics uses the Törnqvist price index as 
its target index for its chained CPI. Typically, there are no adjustments 
for new and disappearing products, so these Törnqvist price indices are 
essentially maximum overlap price indices.
120 See also Hill (2009).

purchase directly but use them to produce other 
goods or services from which they derive utility. 
In a recent stimulating and important paper, Nor-
dhaus has used light as a case study. Households 
purchase items such as lamps, electric fixtures and 
fittings, light bulbs and electricity to produce light, 
which is the product they consume directly. . . . The 
light example is striking because Nordhaus pro-
vides a plausible case for arguing that the price of 
light, measured in lumens, has fallen absolutely (at 
least in US dollars) and dramatically over the last 
two centuries as a result of  major inventions, dis-
coveries and “tectonic” improvements in the tech-
nology of  producing light.

The question that arises is whether goods and 
services that are essentially inputs into the produc-
tion of other goods and services should be treated 
in a COL as if  they provided utility directly. In prin-
ciple, a COL should include the shadow, or imputed, 
prices, of the outputs from these processes of pro-
duction and not the prices of the inputs. . . . There is 
a need to clarify exactly how this issue is to be dealt 
with in a COL index.

 Peter Hill (1999, 5)

In this section, we address the issues raised by Hill by 
using the model of household production of final demand 
commodities that was postulated by Becker (1965) many 
years ago. Becker’s model illustrates not only how house-
hold production of the type mentioned by Hill can be inte-
grated into a cost of living framework but also indicates the 
important role that the allocation of household time plays in 
a more realistic model of household behavior. In order to 
measure welfare change more accurately, it is necessary to 
model how a household manages its allocation of time dur-
ing the two periods under consideration.

In Becker’s model of consumer behavior, a household 
(consisting of a single individual for simplicity) purchases qn 
units of market commodity n and combines it with a house-
hold input of time, tn, to produce Qn = fn(qn,tn) units of a 
finally demanded commodity for n = 1,2, . . .,N, where fn is the 
household production function for the nth finally demanded 
commodity.121 Thus, using Becker’s theory, the purchase of 
market goods and services alone does not provide utility for 
the household; these market purchases must be combined 
with household time in order to provide utility. Some exam-
ples of Becker’s finally demanded commodities (or basic 
commodities to use his terminology) are as follows:

• Making a meal: The inputs are the ingredients used, the 
use of utensils and possibly a stove and time required to 
make the meal and the output is the prepared meal.

• Eating a meal: The inputs are the prepared meal and time 
spent eating and the output is a consumed meal.

121 More complicated household production functions could be intro-
duced, but the present assumptions will suffice to show how household 
production can be modeled in a COLI framework using exact index num-
ber formulae. For additional work on Becker’s theory of the allocation 
of time and household production, see Pollak and Wachter (1975) (1977), 
Diewert (2001), Abraham and Mackie (2005), Hill (2009), Landefeld, 
Fraumeni, and Vojtech (2009), Schreyer and Diewert (2014), and Diewert, 
Fox, and Schreyer (2018).
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• Cleaning a house: The inputs are cleaning utensils, soapy 
water, polish and time and the output is a clean house.

• Gardening services: The inputs are tools used in the yard, 
fuel (if power tools are used) and time and the output is a 
beautiful yard.

• Reading a book: The inputs are computer services or a 
physical book and time and the output is a book which 
has been read.

Activities 1, 3, and 4 listed here are examples of basic com-
modities, which could be purchased by the household; that 
is, a cook could be hired to prepare a meal, a house cleaning 
service could be hired to clean the house, and a gardening 
service could be hired to maintain the yard in good condi-
tion. These activities could be called examples of household 
work activities. Activities 2 and 5 are examples of leisure 
activities, where the utility generated by the activity cannot 
be outsourced. We will see subsequently why this distinc-
tion between the two types of household production can be 
important.

We follow Becker’s example and assume that the house-
hold production functions, fn(qn,tn), are linearly homoge-
neous.122 If pn > 0 is the price for a unit of qn and w > 0 is the 
price of household time, then the unit cost functions cn(pn,w) 
that correspond to the fn(qn,tn) can be defined as follows:

cn(pn,w) ≡ minq tn n, {pnqn + wtn : f
n(qn,tn) ≥ 1;  

 qn ≥ 0; tn ≥ 0}; n = 1, . . .,N. (207)

Assume that the household faces the prices pτ ≡ [p1
τ, . . ., pN

τ] 
>> 0N and wτ > 0 for periods τ = 0,1. Further assume that 
the period τ observed purchases of commodity n, qn

τ, and 
time allocated to its consumption in period τ, tn

τ, solve the 
cost minimization problems, minq tn n, {pn

τqn + wτtn : f
n(qn,tn) ≥ 

fn(qn
τ,tn

τ); qn ≥ 0; tn ≥ 0} for n = 1, . . .,N and τ = 0,1. In view 
of the linear homogeneity of the household production func-
tions, fn, we obtain the following equalities:

pn
τqn

τ + wτtn
τ = cn(pn

τ,wt)fn(qn
τ,tn

τ) = Pn
τQn

τ;  
 t = 0,1; n = 1, . . .,N, (208)

where the period τ basic prices and quantities for the nth 
household activity are defined as follows:123

Pn
τ≡ cn(pn

τ,wτ); Qn
τ ≡ fn(qn

τ,tn
τ);  

 τ = 0,1; n = 1, . . .,N. (209)

At this point, the theory of exact index numbers can be used 
in order to obtain empirical estimates for the unobserved 
Pn

τ and Qn
τ. Pick an index number formula that is exact for 

a certain functional form for either cn(pn,w) or fn(qn,tn). For 
example, pick the Fisher price index, PF(pn

0,w0;pn
1,w1;qn

0,tn
0;

122 In addition, following Schreyer and Diewert (2014), we assume that 
the household production functions are nonnegative, once differentiable, 
concave, and increasing in qn and tn. Becker (1965, 496) assumed that the 
household production functions fn were of the Leontief, no substitution 
type.
123 Becker (1965, 497) called Pn the full price for consuming a unit of the 
nth final commodity; that is, it is the sum of the prices of the goods and 
time used to produce a unit of the finally demanded commodity Qn.

qn
1,tn

1), which is exact for certain flexible functional forms124 
for either the nth unit cost function cn(pn,w) or the nth house-
hold production function fn(qn,tn) for n = 1, . . .,N. The basic 
prices and quantities for period 0 are defined as follows:125

 Pn
0 ≡ 1; Qn

0 ≡ pn
0qn

0 + w0tn
0; n = 1, . . .,N. (210)

The basic prices and quantities for period 1 are defined as 
follows:

Pn
1 ≡ PF(pn

0,w0;pn
1,w1;qn

0,tn
0;qn

1,tn
1);  

 Qn
1 ≡ [pn

1qn
1 + w1tn

1]/Pn
1; n = 1, . . .,N. (211)

The Pn
τ and Qn

τ defined by (210) and (211) will be consistent 
with equations (208) provided that the cn or fn have the func-
tional forms that are exact for the Fisher index. For future 
reference, note that the following equations will hold:

Pτ·Qτ ≡ Σn=1
N Pn

τQn
τ = Σn=1

N [pn
τqn

τ + wτtn
τ]  

 = pτ·qτ + wτ[Σn=1
N tn

τ]; τ = 0,1 (212)
where Pτ ≡ [P1

τ, . . .,PN
τ], Qτ ≡ [Q1

τ, . . .,QN
τ], pτ ≡  

[p1
τ, . . .,pN

τ] and qτ ≡ [q1
τ, . . .,qN

τ] for τ = 0,1.

We return to Becker’s model of the allocation of time. In 
addition to spending time on the N household production 
activities, Becker assumed that the household provides tL > 
0 hours of labor market services at the after tax wage rate of 
wL > 0. Becker also assumed that the household spends the 
amount of Y of nonlabor income on the purchase of market 
goods and services.126 Finally, Becker assumed that the con-
sumer-worker has preferences over different combinations 
of the finally demanded commodities, Q1,  .  .  .,QN, that are 
summarized by the (macro) utility function, U(Q1, . . .,QN) ≡ 
U[f1(q1,t1), . . .,f

N(qN,tN)].127 In addition to the household bud-
get constraint, Σn=1

N pnqn ≤ Y + wLtL, the household has to 
satisfy the time constraint, Σn=1

N tn + tL = H, where H is the 
number of hours available in the period under consideration.

Let pτ ≡ [p1
τ,  .  .  .,pN

τ] >> 0N and wL
τ > 0 be the observed 

prices for purchases of market goods and services for period 
t, let tτ ≡ [t1

τ, . . .,tN
τ] >> 0N be the household’s period τ vector 

of time inputs into the household production functions and 
let tL

τ > 0 be the observed household labor supply for peri-
ods τ = 0,1. We assume that qτ, tτ, and tL

τ solve the following 
period τ household-constrained utility maximization prob-
lem for τ = 0,1:128

max q qN tN tL1, , , , , 

{U[ f1(q1,t1), . . .,f
N(qN,tN)] : Yτ  

  + wL
τtL – Σn=1

N pn
τqn ≥ 0; H – Σn=1

N tn – tL ≥ 0}. (213)

124 See Section 5.
125 Definitions (210) and (211) make specific cardinalizations for measur-
ing the unobserved outputs of the N household production functions.
126 If wLtL (equal to after-tax labour earnings) is large enough, it could be 
the case that Y is negative; that is, some of the household labour earnings 
are saved. This does not affect Becker’s theory.
127 The utility function U is assumed to be once differentiable, linearly 
homogeneous, concave, and increasing in the Q1, . . .,QN.
128 We have omitted the nonnegativity constraints tn ≥ 0, tL ≥ 0 and qn ≥ 0 
for n = 1, . . .,N from (212) to save space. Since we have assumed a strictly 
positive solution to (212) for each time period τ, these nonnegativity con-
straints will not be binding and hence can be ignored in what follows.
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We assume that the inequality constraints in (213) are satis-
fied as equalities when evaluated at the qτ, tt, and tL

t solu-
tions to (213). This means that the following equations hold:

 Σn=1
N pn

τqn
τ = Yτ + wL

τtL
τ; τ = 0,1; (214)

 wL
τ[Σn=1

N tn
τ] = wL

τ[H – tL
τ]; τ = 0,1. (215)

Equations (212) will also hold with wτ = wL
τ for τ = 0,1, as 

will be seen later. These equations along with (214) and (215) 
imply that the following equations will hold:

Pτ·Qτ = Σn=1
N [pn

τqn
τ + wL

τtn
τ] = Yτ + wL

τtL
τ  

  + wL
τ[H – tL

τ] = Yt + wL
τH ≡ Ft; τ = 0,1, (216)

where Fτ is Becker’s full income.129 To see why the consum-
er’s regular budget constraint and time constraint can be 
combined into a single constraint, form the Lagrangian 
Lτ(q,t,tL,λ,ω) for the constrained maximization problem 
defined by (213) for τ = 0 or 1:

Lτ(q,t,tL,λ,ω) ≡ U[ f1(q1,t1), . . .,f
N(qN,tN)]  + λ[Yτ + wL

τtL  
 – Σn=1

N pn
τqn] + ω[H – Σn=1

N tn – tL]; τ = 0,1. (217)

Under our regularity conditions on the functions U and 
f1,  .  .  .,fN, there will exist positive Lagrange multipliers, λτ 
> 0 and ωτ > 0 such that the observed period τ solution to 
the period τ constrained maximization problem defined 
by (213), qτ, tτ, and tL

τ, will satisfy the following first-order 
conditions:

[∂U(Q1
τ, . . .,QN

τ)/∂Qn][∂fn(qn
τ,tn

τ)/∂qn] = λτpn
τ;  

 n = 1, . . .,N; τ = 0,1; (218)
[∂U(Q1

τ, . . .,QN
τ)/∂Qn][∂fn(qn

τ,tn
τ)/∂tn] = ωτ;  

 n = 1, . . .,N; τ = 0,1; (219)
 0 = λτwL

τ – ωτ; τ = 0,1. (220)

Equations (220) show that wt = λτwL
τ for τ = 0,1. These equa-

tions justify Becker’s statement that the household budget 
constraint and the corresponding time constraint can be 
combined into a single constraint. Using (220), equations 
(219) become the following equations:

[∂U(Q1
τ, . . .,QN

τ)/∂Qn][∂fn(qn
τ,tn

τ)/∂tn] = λτwL
τ;  

 n = 1, . . .,N; τ = 0,1. (221)

For each τ, take equation n in (218) and multiply both sides 
by qn

τ. Take equation n in (221) and multiply both sides by 
tn

τ. For each τ and n, add these equations. Using the lin-
ear homogeneity of ∂fn(qn,tn)/∂tn and using definitions (209) 
with wτ ≡ wL

τ, which imply that Qn
τ ≡ fn(qn

τ,tn
τ) for each n, we 

obtain the following equations:

129 “This suggests dropping the approach based on explicitly consider-
ing separate goods and time constraints and substituting one in which 
the total resource constraint necessarily equaled the maximum money 
income achievable, which will be simply called ‘full income’” (Gary 
Becker [1965, 497]).

[∂U(Q1
τ, . . .,QN

τ)/∂Qn]Qn
τ = λτ[pn

τqn
τ + wL

τtn
τ];  

 n = 1, . . .,N; τ = 0,1; (222)
= λτ[Pn

τQn
τ] using (208) with wτ ≡ wL

τ.

For each τ, sum the N equations in (222). Using the linear 
homogeneity of U(Q1, . . .,QN) and equations (216), we obtain 
the following equations:

 U(Q1
τ, . . .,QN

τ) = λτPτ·Qτ; t = 0,1 (223)
= λτFτ using definitions (216).

Equations (223) can be solved for the Lagrange multipli-
ers λτ. The solutions are λτ = U(Q1

τ,  .  .  .,QN
τ)/Pt·Qτ for τ = 

0,1. Substitute these values for λτ back into equations (222). 
After some rearrangement, we obtain the following equa-
tions, which are Wold’s Identity equations applied to the 
macro utility function U(Q1, . . .,QN):

 Pτ/Pτ·Qτ = ∇QU(Qτ)/U(Qτ); t = 0,1. (224)

Recall that the Pτ and Qτ are well defined by equations (210) 
and (211) with w0 ≡ wL

0 and w1 ≡ wL
1. At this stage, we can 

assume a functional form for the macro utility function 
U(Q1,  .  .  .,QN) = U(Q), which has an exact index number 
formula associated with it. Thus, assume that U(Q) can be 
approximated by the homogeneous quadratic utility func-
tion, U(Q) ≡ [QTAQ]1/2, where the symmetric matrix A has 
one positive eigenvalue with a strictly positive eigenvec-
tor and the other eigenvalues of A are either equal to 0 or 
negative. Then the Fisher index is exact for this functional 
form. The nominal growth of full consumption going from 
period 0 to 1 is equal to the nominal growth of full income, 
F1/F0 = P1·Q1/P0·Q0, and the real growth of household full 
consumption is equal to the Fisher ideal quantity index, 
QF(P0,P1,Q0,Q1).130 The appropriate consumer price index 
under these conditions is the Fisher ideal price index, PF(P0,
P1,Q0,Q1).

In the aforementioned model of consumer behavior, the 
household price of time for period τ turns out to be the after 
tax wage rate, wL

τ. But there are many households that do 
not offer market labor services; that is, individuals who are 
retired or who are simply not in the labor force. How can we 
value household time in this situation? It is possible to mod-
ify Becker’s model of the consumer-worker household to 
deal with non-worker households. Make the same assump-
tions as in the model explained previously with one excep-
tion: we assume that the Nth household production activity 
is one where the household time input, tN, can be replaced 
by hiring market services, sN, at the price wN > 0. Thus, if the 
Nth activity is yard maintenance, time spent maintaining 
the yard can be replaced by hiring a service that will under-
take the necessary work. Thus, the production function for 
the Nth activity is QN = f N(qN,tN + sN).131

130 The period 0 and 1 levels of household real consumption are set 
equal to U0 ≡ P0·Q0 = p0·q0 + wL

0[Σn=1
N tn

0] and U1 ≡ U0×QF(P0,P1,Q0,Q1) = 
U0×[P0·Q1P1·Q1/P0·Q0P1·Q0]1/2, respectively.
131 Thus, we are assuming that personal yard work and hired yard work 
are perfect substitutes.
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Let pτ ≡ [p1
τ,  .  .  .,pN

τ] >> 0N and wS
τ > 0 be the observed 

prices for purchases of market goods and services for period 
t and let tτ ≡ [t1

τ, . . .,tN
τ] >> 0N be the household’s period τ 

vector of time inputs into the household production func-
tions and for periods τ = 0,1. Let qS

τ > 0 be the household’s 
purchases of market labor services for activity N for t = 0,1. 
We assume that qt, tτ, and qS

τ solve the following period τ 
household-constrained utility maximization problem:132

max q qN t tN qs1 1, , , , , , 

{U[ f1(q1,t1), . . .,f
N–1(qN–1,tN–1), 

 fN(qN,tN + qS)] : (225)
Yτ – wS

τqS – Σn=1
N pn

τqn ≥ 0; H – Σn=1
N tn ≥ 0}; τ = 0,1.

We assume that the functions U, f1, . . .,fN satisfy the same 
regularity conditions as in the Becker model here. Thus, the 
two constraints in (225) will hold as equalities. Hence, we 
will have Yτ = Σn=1

N pn
τqn

τ + wS
τqS

τ, wS
τH = wS

τSn=1
N tn

τ for τ = 
0,1 as well as the following equations:

Σn=1
N pn

τqn
τ + wS

τqS
τ + Sn=1

N wS
τtn

τ  
 = Yτ + wS

τH ≡ Fτ; τ = 0,1, (226)

where the new period τ full income Fτ is equal to period τ 
nonlabor income Yτ plus the value of period τ household 
time H valued at the period τ market service wage for the 
Nth activity, wS

τ.
Form the Lagrangians Lt(q,qS,t,λ,ω) for the constrained 

maximization problems defined by (225) for τ = 0,1:

Lτ(q,qS,t,λ,ω) ≡ U[ f1(q1,t1), . . .,f
N(qN,tN + qS)]  

 + λ[Yτ – Σn=1
N pn

τqn – wS
τqS] + ω[H  

 – Σn=1
N tn – tL]; τ = 0,1. (227)

Under our regularity conditions on the functions U and 
f1,  .  .  .,fN, there will exist positive Lagrange multipliers,  
λτ > 0 and ωτ > 0, such that the observed period τ solution, 
qτ, qS

τ and tτ, to the period τ constrained maximization 
problem defined by (225) will satisfy the following first-
order conditions:

[∂U(Q1
τ, . . .,QN

τ)/∂Qn][∂f n(qn
τ,tn

τ)/∂qn] = λτpn
τ;  

 n = 1, . . .,N – 1; τ = 0,1; (228)
[∂U(Q1

τ, . . .,QN
τ)/∂QN][∂fN(qN

τ,tN
τ + qS

τ)/∂qN]  
 = λτpN

τ; τ = 0,1; (229)

[∂U(Q1
τ, . . .,QN

τ)/∂Qn][∂f n(qn
τ,tn

τ)/∂tn] = ωτ;  
 n = 1, . . .,N – 1; τ = 0,1; (230)

[∂U(Q1
τ, . . .,QN

τ)/∂QN][∂f N(qN
τ,tN

τ + qS
τ)/∂tN]  

 = ωτ; τ = 0,1; (231)
[∂U(Q1

τ, . . .,QN
τ)/∂QN][∂f N(qN

τ,tN
τ + qS

τ)/∂qS]  
 = λτwS

τ; τ = 0,1. (232)

132 We have omitted the nonnegativity constraints qS ≥ 0, tn ≥ 0, and qn ≥ 0 
for n = 1, . . .,N from (225) to save space. Since we have assumed a strictly 
positive solution to (225) for each time period τ, these nonnegativity con-
straints will not be binding and hence can be ignored in what follows.

For τ = 0 or 1, it can be seen that the derivatives on the 
left-hand sides of (231) and (232) are identical. Hence, the 
right-hand sides are equal and we obtain the equations ωτ 
= λτwS

τ for τ = 0,1. Substitute these solutions for the ωτ 
into equations (230) and (231) and we obtain the following 
equations:

[∂U(Qτ)/∂Qn][∂fn(qn
τ,tn

τ)/∂tn] = λτwS
τ;  

 n = 1, . . .,N – 1; τ = 0,1; (233)
[∂U(Qτ)/∂QN][∂fN(qN

τ,tN
τ + qS

τ)/∂tN]  
 = λτwS

τ; t = 0,1. (234)

For τ = 0,1 and n = 1,  .  .  .,N – 1, multiply both sides of 
equation n in (228) by qn

τ and both sides of equation n in 
(233) by tn

τ, and add the resulting two equations. Using the 
linear homogeneity of f n(qn,tn), we have qn

τ[∂f n(qn
τ,tn

τ)/∂qn] + 
tn

τ[∂f n(qn
τ,tn

τ)/∂tn] = f n(qn
τ,tn

τ). Thus, we obtain the following 
equations:

[∂U(Qτ)/∂Qn]f 
n(qn

τ,tn
τ) = λτ[pn

τqn
τ + wS

τtn
τ];  

 n = 1, . . .,N – 1; τ = 0,1. (235)

For each τ = 0,1 and n = 1, . . .,N – 1, equation n in equations 
(235) can be solved for λτ, and this value for λτ can be substi-
tuted back into equations n in (228) and (223). After suitable 
rearrangement, the following equations are obtained:

[∂f n(qn
τ,tn

τ)/∂qn]/f 
n(qn

τ,tn
τ) = pn

τ/[pn
τqn

τ  
  + wS

τtn
τ]; n = 1, . . .,N – 1; τ = 0,1; (236)

[∂f n(qn
τ,tn

τ)/∂tn]/f 
n(qn

τ,tn
τ) = wS

τ/[pn
τqn

τ  
  + wS

τtn
τ]; n = 1, . . .,N – 1; τ = 0,1. (237)

For each n = 1, . . .,N – 1 and for τ =0,1, equations (236) and 
(237) are the Wold’s Identity equations (14) for the household 
production function f n(qn,tn). Thus, we can approximate f n 
by a homogeneous quadratic utility function and use the 
Fisher price and quantity indices to estimate Qn

0 ≡ f n(qn
0,tn

0) 
and Qn

1 ≡ f n(qn
1,tn

1) for n = 1, . . .,N – 1; that is, define Qn
τ and 

the companion prices Pn
t ≡ ch(pn

τ,wS
τ) as follows:

Pn
0 ≡ 1 ≡ cn(pn

0,wS
0); Qn

0 ≡ pn
0qn

0 + wS
0tn

0  
 ≡ f n(qn

0,tn
0); n = 1, . . .,N – 1; (238)

Pn
1 ≡ PF(pn

0,w0;pn
1,w1;qn

0,tn
0;qn

1,tn
1) ≡ cn(pn

1,wS
1);  

Qn
1 ≡ [pn

1qn
1 + w1tn

1]/Pn
1 ≡ f n(qn

1,tn
1);  

 n = 1, . . .,N – 1. (239)

Now use equations (229), (231), and (232) and repeat these 
operations for fN(qN,tN + qS) and obtain the following coun-
terparts to (236)–(239):

[∂fN(qN
τ,tN

τ + qS
τ)/∂qN]/fN(qN

τ,tN
τ + qS

τ)  
 = pN

τ/[pN
τqN

τ + wS
τ(tN

τ + qS
τ)]; t = 0,1; (240)

[∂fN(qN
τ,tN

τ)/∂tN]/fN(qN
τ,tN

τ) = wS
τ(tN

τ + qS
τ)/ 

 [pN
τqN

τ + wS
τ(tN

τ + qS
τ)]; t = 0,1. (241)

PN
0 ≡ 1 ≡ cN(pN

0,wS
0); QN

0 ≡ pN
0qN

0  
  + wS

0(tN
0 + qS

0) ≡ fN(qN
0,tN

0 + qS
0); (242)
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PN
1 ≡ PF(pN

0,wS
0;pN

1,wS
1;qN

0,tN
0  

  + qS
0;qN

1,tN
1 + qS

1) ≡ cN(pN
1,wS

1); (243)
QN

1 ≡ pN
1qN

1 + wS
1(tN

1 + qS
1)]/PN

1≡ f N(qN
1,tN

1 + qS
1).

Definitions (240)–(243) can be substituted back into equa-
tions (228)–(235) in order to derive the following equations:

[∂U(Q1
τ, . . .,QN

τ)/∂Qn]Qn
τ = λτ[pn

τqn
τ + wS

τtn
τ]  

 = λτ[Pn
τQn

τ]; n = 1, . . .,N – 1; τ = 0,1; (244)
[∂U(Q1

τ, . . .,QN
τ)/∂QN]QN

τ = λτ[pN
τqN

τ  
  + wS

τ(tn
τ + qS

τ)] = λτ[PN
τQN

τ] τ = 0,1. (245)

For each τ, sum the N equations in (244) and (245). Using 
the linear homogeneity of U(Q1,  .  .  .,QN) and the definition 
(226) for period τ full income Fτ, we obtain the following 
equations:

 U(Q1
τ, . . .,QN

τ) = λτPτ·Qτ = λτFτ; t = 0,1. (246)

Equations (246) can be solved for the Lagrange multipliers, 
λτ for τ = 0,1. We obtain lt = U(Q1

τ, . . .,QN
τ)/Pt·Qτ for τ = 0,1. 

Substitute these values for λτ back into equations (244) and 
(245). After some rearrangement, we obtain the following 
equations, which are Wold’s Identity equations applied to 
the macro utility function U(Q1, . . .,QN):

 Pτ/Pτ·Qτ = ∇QU(Qτ)/U(Qτ); t = 0,1. (247)

Recall that Pτ and Qτ are well defined by equations (238), 
(239), (242), and (243). Now assume a functional form for 
the macro utility function U(Q1, . . .,QN) = U(Q), which has 
an exact index number formula associated with it. Thus, 
assume that U(Q) can be approximated by the homogeneous 
quadratic utility function, U(Q) ≡ [QTAQ]1/2, where the sym-
metric matrix A has one positive eigenvalue with a strictly 
positive eigenvector and the other eigenvalues of A are either 
equal to 0 or negative. Then the Fisher price and quantity 
indices are exact for this functional form. The nominal 
growth of full consumption going from period 0 to 1 is equal 
to the nominal growth of full income, F1/F0 = P1·Q1/P0·Q0, 
where Fτ are defined by (226) and the real growth of house-
hold full consumption is equal to the Fisher ideal quantity 
index, QF(P0,P1,Q0,Q1).133 The appropriate consumer price 
index under these conditions is the Fisher ideal price index, 
PF(P0,P1,Q0,Q1).

Here are the important points that emerge from our anal-
ysis of the aforementioned two models for the household’s 
allocation of time:134

• Depending on the type of household, the valuation of 
household time is either the after tax wage rate for the 
household or the price of market services that can substi-
tute for household work.

133 The period 0 and 1 levels of household real full consumption are 
set equal to U0 ≡ F0 = P0·Q0 = p0·q0 + wS

0qS
0 + wS

0[Σn=1
N tn

0] and U1 ≡ 
U0×QF(P0,P1,Q0,Q1) = U0×[P0·Q1P1·Q1/P0·Q0P1·Q0]1/2, respectively.
134 These two models are considered in more detail by Schreyer and Diew-
ert (2014). Schreyer (2022) considers models along the lines considered 
here.

• It is possible to use “normal” index number theory to 
provide price and volume indices for utility-maximizing 
households that face both a budget constraint and a time 
constraint.

However, there are many problems with the two models of 
household behavior that were considered earlier:

• The first model did not take into account the possible 
disutility of providing market labor supply, while neither 
model did not take into account the possible disutility 
of providing household work.135 Taking possible disutility 
into account greatly complicates the analysis. In particu-
lar, the scaling of the utility functions, F and f 1, . . .,f N is 
no longer straightforward.

• In more realistic models of household behavior, corner 
solutions to the household utility maximization problems 
emerge as realistic possibilities.136

• In more realistic models of household behavior, it is possi-
ble to identify the “correct” prices of time to value house-
hold labor supply, household time in leisure activities, 
and household time in work activities, but econometric 
estimation is required.137 This means that it will be dif-
ficult for statistical agencies to deal with these difficulties 
in practical settings.

• There are also problems in forming household utility func-
tions when there are multiple persons in the household.138

• Finally, the household production functions for work- 
and leisure-type activities could be subject to technologi-
cal change. In this case, it will be necessary to measure the 
constant quality outputs produced by the household pro-
duction functions directly instead of using the indirect 
methods that rely on inputs that were used in the previous 
models.

In spite of these difficulties, there is no doubt that the alloca-
tion of time plays an important role in determining house-
hold welfare. Hopefully, future research will address some 
of the previous problems.

16. Aggregate Cost of Living 
Indices
In previous sections, we have considered the theory of the 
cost of living index for only a single consumer or household. 
In this section, we consider some of the problems involved 

135 The utility function U[ f 1(q1,t1),  .  .  .,fN(qN,tN)] should be replaced by  
U[ f 1(q1,t1),  .  .  .,f N(qN,tN),tL] for the Becker model, where U[ f1(q1,t1),  .  .  ., 
f N(qN,tN),tL] is decreasing as labour supply tL increases. For the second 
model, the utility function U[ f1(q1,t1),  .  .  .,fN–1(qN–1,tN–1),f

N(qN,tN + qS)] 
should be replaced by U[ f 1(q1,t1), . . .,f 

N–1(qN–1,tN–1),f 
N(qN,tN + qS),tN] where 

this function could be decreasing in the household’s supply of time spent 
tN on final demand activity N.
136 A corner solution to a household utility maximization problem is one 
where the nonnegativity constraints in the consumer’s constrained utility 
maximization problem is binding (that is, some qn or tn are equal to 0) and 
hence cannot be ignored. See Diewert, Fox, and Schreyer (2018) for the 
analysis of corner solutions.
137 See Diewert, Fox, and Schreyer (2018) for approaches to the economet-
ric estimation problems. The econometrics of consumer demand models 
where there are two constraints instead of a single budget constraint is 
not a well-developed area.
138 There are also complications due to changes in the composition of 
households over time resulting from demographic changes.
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in the construction of a cost of living index when there are 
many households or regions in the economy and the goal 
is the production of a national index. Later, we allow for 
an arbitrary number of households, H, so in principle, 
each household in the economy under consideration could 
have its own consumer price index. However, in practice, it 
will be necessary to group households into various classes 
and within each class, it will be necessary to assume that 
the group of households in the class behaves as if it were a 
single household in order to apply the economic approach 
to index number theory.139 Our partition of the economy 
into H household classes can also be given a regional inter-
pretation: Each household class can be interpreted as a 
group of households within a region of the country under 
consideration.

In this section, we will consider an economic approach to 
the CPI that was initiated by Pollak (1980) (1981), who called 
his index concept a social cost of living index. It is a straight-
forward extension of the Konüs Cost of Living Index (COLI) 
for an individual household to a group of households.

Suppose that there are H households (or regions) in the 
economy and suppose further that there are N commod-
ities in the economy in periods 0 and 1 that households 
consume in the two periods. Denote an N-dimensional 
vector of commodity consumption in a given period by q ≡ 
(q1,q2, . . ., qN) as usual. Denote the vector of period t market 
prices faced by household h by ph

t ≡ (ph1
t,ph2

t, . . .,phN
t) for t = 

0,1. Denote the corresponding observed consumption vec-
tor for household h in period t by qh

t ≡ (qh1
t,qh2

t, . . .,qhN
t) for 

t = 0,1. Note that we are not assuming that each household 
faces the same vector of commodity prices. The preferences 
of household h over different combinations of market com-
modities q is represented by the continuous utility func-
tion f h(q) for h = 1,2, . . .,H.140 For periods t = 0,1 and for 
households h = 1,2, . . .,H, it is assumed that the observed 
household h consumption vector qh

t ≡ (qh1
t,  .  .  .,qhN

t) is a 
solution to the following household h expenditure minimi-
zation problem:

minq {ph
t·q : fh(q) ≥ uh

t} ≡ Ch(uh
t,ph

t) = ph
t·qh

t;  
 t = 0,1; h = 1,2, . . . H, (248)

where uh
t ≡ f h(qh

t) is the utility level achieved by household 
h during period t and Ch is the cost or expenditure function 
that is dual to the utility function f h. Basically, these assump-
tions mean that each household has stable preferences over 
the same list of commodities during the two periods under 
consideration, the same households appear in each period, 
and each household chooses its consumption bundle in the 
most cost-efficient way during each period. Let pt be defined 
as the period t price vector of dimension HN that combines 
all of the household-specific period t observed price vec-
tors p1

t,  .  .  .,pH
t into one big price vector, and let qt be the 

companion economy-wide quantity vector that combines all 
of the observed period t quantity vectors q1

t,  .  .  .,qH
t into a 

single vector of dimension HN. Let q be a reference quantity 

139 The problems associated with grouping households will be discussed 
in Section 18.
140 As usual, we assume that each f h(q) is continuous, concave, and 
increasing in the components of q.

vector of dimension HN; that is, q ≡ [q11, . . .,q1N;q21, . . .,q2N; 
. . .;qH1, . . .,qHN].

With the previous definitions in mind, the family of social 
cost of living indices or aggregate Konüs cost of living indices 
for the group of households under consideration is defined 
as follows:141

PK(p0,p1,q) ≡ Σh=1
H Ch( fh(qh),ph

1)/Σh=1
H  

 Ch( fh(qh),ph
0). (249)

The numerator on the right-hand side of (249) is the sum 
over households of the minimum cost, Ch(uh,ph

1), for house-
hold h to achieve the reference utility level uh ≡ fh(qh) given 
that the household h faces the period 1 vector of prices ph

1. 
The denominator on the right-hand side of (249) is the sum 
over households of the minimum cost, Ch(uh,ph

0), for house-
hold h to achieve the same reference utility level uh, given 
that the household faces the period 0 vector of prices ph

0. 
Thus, in the numerator and denominator of (249), only the 
price variables are different, which is precisely what we want 
in a theoretical definition of a consumer price index.

We now specialize the general definition (249) by replac-
ing the general utility vector u by either the period 0 vector of 
household utilities u0 ≡ (u1

0,u2
0, . . . uH

0) or the period 1 vector 
of household utilities u1 ≡ (u1

1,u2
1, . . . uH

1). The choice of the 
base period vector of utility levels leads to the Laspeyres–
Konüs cost of living index, PK(p0,p1,q0), while the choice of the 
period 1 vector of utility levels leads to the Paasche–Konüs 
cost of living index, PK(p0,p1,q1). It turns out that these two 
indices satisfy some inequalities, which are counterparts to 
the inequalities (3) and (4) in Section 2.

PK(p0,p1,q0) ≡ Σh=1
H Ch(uh

0,ph
1)/Σh=1

H Ch(uh
0,ph

0),  
 where uh

0 ≡ f h(qh
0) for h = 1, . . .,H (250)

= Σh=1
H Ch(uh

0,ph
1)/Σh=1

H ph
0·qh

0 using (248) for t = 0142

≤ Σh=1
H ph

1·qh
0/Σh=1

H ph
0·qh

0

since qh
0 is feasible for the cost minimization problem 

Ch(uh
0,ph

1) for h = 1,2, . . .,H
≡ PL(p0,p1,q0,q1),

where PL(p0,p1,q0,q1) is defined to be the economy-wide 
observable (in principle) Laspeyres price index, Σh=1

H ph
1·qh

0/
Σh=1

H ph
0·qh

0 = p1·q0/ p0·q0, which treats each household con-
sumption vector as a separate commodity so that p0, p1, and 
q0 are HN-dimensional vectors.

The inequality (250) says that the theoretical Laspeyres–
Konüs cost of living index, PK(p0,p1,q0), is bounded from 
above by the observable Laspeyres price index PL. In a simi-
lar manner, specializing definition (249), the Paasche–Konüs 

141 See Pollak (1980, 276) (1981, 328) (1989, 182) and Diewert (1983, 190–92) 
(2001, 170) for additional materials on social cost of living indices.
142 It can be seen that PK(p0,p1,q0) is also equal to a weighted average of the 
individual Laspeyres Konüs cost of living indices; that is, PK(p0,p1,q0) = 
Σh=1

H Sh
0Ch(uh

0,ph
1)/Ch(uh

0,ph
0), where Sh

0 ≡ ph
0·qh

0/Σi=1
H pi

0·qi
0 for h = 1, . . .,H. 

Since the weights for the individual household cost of living indices are 
equal to the household’s share of total nominal consumption in period 
0, PK(p0,p1,q0) is a plutocratic aggregate cost of living index to use the ter-
minology of Prais (1959). Prais (1959) defined a democratic COLI as Σh=1

H 
(1/H)Ch(uh

0,ph
1)/Ch(uh

0,ph
0).
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cost of living index, PK(p0,p1,q1), satisfies the following 
inequality:

PK(p0,p1,q1) ≡ Σh=1
H Ch(uh

1,ph
1)/Σh=1

H Ch(uh
1,ph

0),  
 where uh

1 ≡ f h(qh
1,eh

1) for h = 1, . . .,H (251)
= Σh=1

H ph
1·qh

1 /Σh=1
H Ch(uh

1,ph
0) using (248) for t = 1143

≥ Σh=1
H ph

1·qh
1/Σh=1

H ph
0·qh

1 using feasibility arguments
≡ PP(p0,p1,q0,q1),

where PP(p0,p1,q0,q1) is defined as the observable (in princi-
ple) Paasche price index, Σh=1

H ph
1·qh

1/Σh=1
H ph

0·qh
1 = p1·q1/p0·q1. 

The inequality (251) says that the theoretical Paasche–Konüs 
cost of living index, PK(p0,p1,q1), is bounded from below by 
the observable Paasche price index PP.

It is possible to find two-sided bounds for a Konüs cost of 
living index; that is, we have the following proposition:

Proposition 15: Under suitable continuity assumptions on 
preferences, there exists a number λ* between 0 and 1 such 
that

PL ≤ PK(p0,p1,λ*q0 + (1 – λ*)q1) ≤ PP or PP  
 ≤ PK(p0,p1,λ*q0 + (1 – λ*)q1) ≤ PL, (252)

where PL ≡ p1·q0/ p0·q0 and PP ≡ p1·q1/ p0·q1. The proof of Prop-
osition 15 is similar to the proof of Proposition 1; see Diew-
ert (2001, 173) for details.

This result tells us that the theoretical aggregate Konüs 
cost of living index CPI PK(p0,p1,q*) lies between the observ-
able Laspeyres index PL and the Paasche index PP, where 
q* ≡ λ* q0 + (1 – λ*)q1 is an intermediate quantity vec-
tor that lies between q0 and q1. Hence, if PL and PP are 
not too different, a good approximation to a theoretical 
aggregate cost of living index will be the Fisher index PF
(p0,p1,q0,q1) defined as PF(p0,p1,q0,q1) ≡ [PL(p0,p1,q0,q1)PP 
(p0,p1,q0,q1)]1/2. This Fisher price index is computed just like 
the usual Fisher price index, except that each commodity in 
each region (or for each household) is regarded as a separate 
commodity.

It is possible to obtain an alternative estimator for an 
aggregate cost of living index if stronger assumptions on 
household preferences are made. Thus, assume that the 
preferences of household h are represented by the linearly 
homogeneous utility function f h(qh) ≡ [qh

TAhqh]
1/2, where Ah is 

a symmetric matrix which satisfies the regularity conditions 
discussed in Section 5 for h = 1, . . .,H. Under these assump-
tions, the Fisher price and quantity indices will be exact for 
these preferences; see Section 5. Let ch(ph) = ch(ph1, . . .,phN) 
be the unit cost function that corresponds to f h(qh) for h = 
1, . . .,H. Assuming utility-maximizing behavior on the part 
of each household, the following equations will be satisfied:

 ph
t·qh

t = fh(qh
t)ch(ph

t); h = 1, . . .,H; t = 0,1. (253)

143 It can be verified that PK(p0,p1,q1) is equal to the following weighted 
harmonic average of the individual Paasche Konüs cost of living indices: 
PK(p0,p1,q1) = {Σh=1

H Sh
1[Ch(uh

1,ph
1)/Ch(uh

1,ph
0)]–1}–1, where Sh

1 ≡ ph
1·qh

1/Σi=1
H 

pi
1·qi

1 for h = 1, . . .,H.

Now use Fisher price and quantity indices to estimate 
household quantity and price levels, Qh

t ≡ fn(qh
t) and Ph

t ≡ 
ch(ph

t), for t = 0,1 and h = 1, . . .,H as follows:

Ph
0 ≡ 1 ≡ ch(ph

0); Qh
0 ≡ ph

0·qh
0 ≡ fn(qh

0);  
 h = 1, . . .,H; (254)

Ph
1 ≡ PF(ph

0,ph
1,qh

0,qh
1) ≡ ch(ph

1); Qh
1  

 ≡ [ph
1·qh

1]/Ph
1; h = 1, . . .,H. (255)

Under our new assumption of homothetic preferences for 
each household, definition (250) for the Laspeyres–Konüs 
cost of living index PK(p0,p1,q0) simplifies into the following 
equations:

PK(p0,p1,q0) ≡ Σh=1
H Ch(uh

0,ph
1)/Σh=1

H Ch(uh
0,ph

0),  
 where uh

0 ≡ f h(qh
0) for h = 1, . . .,H (256)

= Σh=1
H uh

0ch(ph
1)/Σh=1

H uh
0ch(ph

0) since Ch(uh,ph) = uhc(ph) for 
each h

= Σh=1
H Ph

1Qh
0/Σh=1

H Ph
0Qh

0 using (254) and (255)
= PL(P0,P1,Q0,Q1),

where Pt ≡ [P1
t,  .  .  .,PH

t] and Qt ≡ [Q1
t,  .  .  .,QH

t] for t = 0,1 
and PL(P0,P1,Q0,Q1) is the ordinary Laspeyres price index 
using the aggregate household prices and quantities for the 
two periods under consideration as the price and quantity 
variables.

Similarly, definition (251) for the Paasche–Konüs cost 
of living index PK(p0,p1,q1) simplifies into the following 
equations:

PK(p0,p1,q1) ≡ Σh=1
H Ch(uh

1,ph
1)/Σh=1

H Ch(uh
1,ph

0),  
 where uh

1 ≡ f h(qh
1) for h = 1, . . .,H (257)

= Σh=1
H uh

1ch(ph
1)/Σh=1

H uh
1ch(ph

0) since Ch(uh,ph) = uhc(ph) for 
each h

= Σh=1
H Ph

1Qh
1/Σh=1

H Ph
0Qh

1 using (254) and (255)
≡ PP(P0,P1,Q0,Q1),

where PP(P0,P1,Q0,Q1) is the ordinary Paasche price index 
using the aggregate household prices and quantities for the 
two periods under consideration as the price and quantity 
variables.

The aggregate price indices PK(p0,p1,q0) and PK(p0,p1,q1) 
defined by (256) and (257) are equally plausible measures 
of overall consumer price inflation between periods 0 and 1 
and so it is reasonable to take an average of these two indi-
ces to obtain a “final” estimate of inflation between the two 
periods. As usual, the geometric average leads to an index 
that will satisfy a time reversal test. Thus, we have

[PK(p0,p1,q0)PK(p0,p1,q1)]1/2 = [PL(P0,P1,Q0,Q1) 
 PP(P0,P1,Q0,Q1)]1/2 ≡ PF(P0,P1,Q0,Q1), (258)

where PF(P0,P1,Q0,Q1) is the Fisher index defined over the 
aggregate household prices and quantities for the two peri-
ods under consideration. It is actually a two-stage Fisher 
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index where the first stage of aggregation uses the price and 
quantity data for each household to construct household-
specific Fisher price and quantity levels for each household. 
The two-stage Fisher price index PF(P0,P1,Q0,Q1) defined by 
(258) can be compared to the single-stage Fisher price index 
PF(p0,p1,q0,q1) defined earlier as the geometric mean of PL(p0, 
p1,q0,q1) and PP(p0,p1,q0,q1) defined by (250) and (251). Using 
the results listed in Section 8, we know that the single-stage 
Fisher index will approximate its two-stage counterpart 
to the second order around an equal price and quantity 
point. Thus, normally, we would not expect much difference 
between these alternative measures of overall consumer 
price inflation.

In the following section, we turn our attention to the defi-
nition of aggregate quantity indices.

17. Aggregate Allen Quantity 
Indices
Recall the definition of the Allen quantity index for a sin-
gle household defined in Section 11. In this section, we will 
generalize this index concept to cover the case of many 
households.

Make the same assumptions on households and their 
preference functions that were made at the beginning of the 
previous section. Again assume that the observed household 
h consumption vector qh

t ≡ (qh1
t, . . .,qhN

t) is a solution to the 
following household h expenditure minimization problem 
defined by (248) for t = 0,1 and h = 1, . . .,H. Using the same 
notation that was used at the beginning of the previous sec-
tion, the family of aggregate Allen quantity indices for the 
group of households under consideration is defined as follows:

QA(q0,q1,p) ≡ Σh=1
H Ch( f h(qh

1),ph)/Σh=1
H  

 Ch( f h(qh
0),ph) = Σh=1

H Ch(uh
1,ph)/Σh=1

H Ch(uh
0,ph), (259)

where uh
t ≡ f h(qh

t) for t = 0,1 and h = 1, . . .,H and p ≡ [p1, . . . 
pH] is an NH-dimensional vector of reference prices.

Note that in the numerator and denominator of the last 
equation in (259), only the household utility variables are 
different, which is appropriate for an overall measure of 
household utility which in turn is an overall quantity or 
volume measure. Note also that if H = 1, definition (259) 
reduces to the definition of an Allen (1949) quantity index.

We now specialize the general definition (259) by replac-
ing the reference price vector p by either the period 0 econ-
omy-wide price vector p0 or the period 1 economy-wide price 
vector p1. Thus, define the Laspeyres aggregate Allen quan-
tity index by QA(q0, q1,p0) and the Paasche aggregate Allen 
quantity index by QA(q0, q1,p1). It turns out that these two 
indices satisfy some inequalities, which are counterparts 
to the inequalities (3) and (4) discussed in Section 2. Thus, 
choosing p = p0 leads to the following index:

QA(q0,q1,p0) ≡ Σh=1
H Ch( f h(qh

1),ph
0)/Σh=1

H  
 Ch( f h(qh

0),ph
0) (260)

= Σh=1
H Ch( f h(qh

1),ph
0)/Σh=1

H ph
0·qh

0 using (248) for t = 0144

144 It can be seen that QA(q0,q1, p0) is equal to a weighted average of 
the individual household Laspeyres Allen quantity indices; that is, 
QA(q0,q1, p0) = Σh=1

H Sh
0Ch(uh

1,ph
0)/Ch(uh

0,ph
0), where Sh

0 ≡ ph
0·qh

0/Σi=1
H pi

0·qi
0 

≤ Σh=1
H ph

0·qh
1/Σh=1

H ph
0·qh

0

since qh
1 is feasible for the cost minimization problem 

Ch( f h(qh
1),ph

0) for h = 1,2, . . .,H
≡ QL(p0,p1,q0,q1),

where QL(p0,p1,q0,q1) is defined as the observable (in prin-
ciple) Laspeyres quantity index, Σh=1

H ph
0·qh

1/Σh=1
H ph

0·qh
0 

= p0·q1/ p0·q0, which treats each household consumption  
vector as a separate commodity so that p0, q0, and q1 are  
HN-dimensional vectors.

The inequality (260) says that the theoretical Laspeyres 
Allen aggregate quantity index, QA(q0, q1,p0), is bounded 
from above by the observable Laspeyres quantity index QL. 
In a similar manner, specializing definition (259) by setting 
p = p1, the Paasche–Allen aggregate quantity index, QA(q0, q1, 
p1), satisfies the following inequality:

QA(q0,q1,p1) ≡ Σh=1
H Ch( f h(qh

1),ph
1)/Σh=1

H Ch( f h(qh
0),ph

1) (261)
= Σh=1

H ph
1·qh

1/Σh=1
H Ch( f h(qh

0),ph
1) using (248) for t = 1145

≥ Σh=1
H ph

1·qh
1/Σh=1

H ph
1·qh

0

since qh
0 is feasible for the cost minimization problem 

Ch( f h(qh
0),ph

1) for h = 1,2, . . .,H
≡ QP(p0,p1,q0,q1),

where QP(p0,p1,q0,q1) is defined as the observable (in prin-
ciple) Paasche quantity index, Σh=1

H ph
1·qh

1/Σh=1
H ph

1·qh
0 = p1·q1/ 

p1·q0. The inequality (261) says that the theoretical Paasche–
Allen aggregate quantity index, QA(q0, q1, p1), is bounded 
from below by the observable Paasche quantity index QP ≡ 
p1·q1/ p1·q0.

As usual, it is possible to find two-sided bounds for a rel-
evant Allen aggregate quantity index; that is, we have the 
following proposition:

Proposition 16: Under our regularity conditions, there 
exists a number λ* between 0 and 1 such that

QL ≤ QA(q0,q1,λ*p0 + (1 – λ*)p1) ≤ QP or  
 QP ≤ QA(q0,q1,λ*p0 + (1 – λ*)p1) ≤ QL, (262)

where QL ≡ p0·q1/ p0·q0 and QP ≡ p1·q1/ p1·q0. The proof of Prop-
osition 16 is similar to the proof of Proposition 1.

This result tells us that the theoretical aggregate Allen 
quantity index, QA(q0, q1,λ* p0 + (1 – λ*) p1), lies between the 
observable Laspeyres and Paasche quantity indices, QL 
and QP, where the reference price vector is the intermediate 
price vector, λ*p0 + (1 – λ*) p1. Hence, if QL and QP are not 
too different, a good approximation to a theoretical aggre-
gate quantity index will be the single-stage Fisher quantity 
index QF(p0,p1,q0,q1) defined as [p0·q1p1·q1/p0·q0p1·q0]1/2. This 

for h = 1, . . .,H. Since the weights for the individual household quantity 
indices are equal to the household’s share of total nominal consumption 
in period 0, QA(q0,q1,p0) can be interpreted as a plutocratic aggregate quan-
tity index. A democratic aggregate quantity index can be defined as Σh=1

H 
(1/H)[Ch(uh

1,ph
0)/Ch(uh

0,ph
0)].

145 It can be seen that QA(q0,q1,p1) is equal to a weighted harmonic aver-
age of the individual household Paasche Allen quantity indices; that is, 
QA(q0,q1,p1) = {Σh=1

H Sh
1 [Ch(uh

1,ph
0)/Ch(uh

0,ph
0)]–1}–1.
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single-stage Fisher quantity index is computed just like the 
usual Fisher quantity index, except that each commodity in 
each region (or for each household) is regarded as a sepa-
rate commodity.

The two special cases of the family of aggregate Allen 
quantity indices defined by (260) and (261) are connected to 
the two special cases of family of Konüs cost of living indi-
ces defined by (250) and (251) in the previous section. Using 
these definitions, it is straightforward to show that the fol-
lowing two relationships hold:

PK(p0,p1,q0)QA(q0,q1,p1) =Σh=1
H Ch( f h(qh

1),ph
1)/Σh=1

H  

 Ch( f h(qh
0),ph

0) =Σh=1
H ph

1·qh
1/Σh=1

H ph
0·qh

0; (263)
PK(p0,p1,q1)QA(q0,q1,p0) =Σh=1

H Ch( f h(qh
1),ph

1)/Σh=1
H  

 Ch( f h(qh
0),ph

0) =Σh=1
H ph

1·qh
1/Σh=1

H ph
0·qh

0. (264)

Thus, the aggregate Laspeyres–Konüs price index 
PK(p0,p1,q0) times the aggregate Paasche–Allen quantity 
index QA(q0, q1, p1) equals the aggregate value ratio for the 
group of households, p1·q1/ p0·q0, and the aggregate Paasche–
Konüs price index PK(p0,p1,q1) times the aggregate Laspeyres 
Allen quantity index QA(q0, q1,p0) also equals the aggregate 
value ratio, p1·q1/ p0·q0.

As was the case in the previous section, it is possible to 
obtain an alternative estimator for an aggregate quantity 
index if stronger assumptions on household preferences 
are made. Thus, as in the previous section, assume that the 
preferences of household h are represented by the linearly 
homogeneous utility function fh(qh) ≡ [qh

TAhqh]
1/2, where Ah is 

a symmetric matrix, which satisfies the regularity conditions 
discussed in Section 5 for h = 1, . . .,H. Under these assump-
tions, the individual household Fisher price and quantity 
indices, PF(ph

0,ph
1,qh

0,qh
1) and QF(ph

0,ph
1,qh

0,qh
1), will be exact 

for these preferences. As in the previous section, let ch(ph) = 
ch(ph1, . . .,phN) be the unit cost function that corresponds to 
f h(qh) for h = 1, . . .,H. Assuming utility-maximizing behav-
ior on the part of each household, equations (253)–(255) will 
be satisfied.

Under the aforementioned homothetic utility function 
assumptions on household preferences, definition (260) for 
the Laspeyres Allen aggregate quantity index, QA(q0, q1,p0), 
simplifies into the following expression:

QA(q0,q1,p0) ≡ Σh=1
H Ch(uh

1,ph
0)/Σh=1

H Ch(uh
0,ph

0),  
 where uh

t ≡ f h(qh
t) for h = 1, . . .,H and t = 0,1 (265)

= Σh=1
H uh

1ch(ph
0)/Σh=1

H uh
0ch(ph

0) since Ch(uh,ph) = uhc(ph) for 
each h

= Σh=1
H Ph

0Qh
1/Σh=1

H Ph
0Qh

0 using (254) and (255)
= QL(P0,P1,Q0,Q1),

where Pt ≡ [P1
t, . . .,PH

t] and Qt ≡ [Q1
t, . . .,QH

t] for t = 0,1 and 
QL(P0,P1,Q0,Q1) is the ordinary Laspeyres quantity index 
using the aggregate household prices and quantities, Pt and 
Qt, for the two periods under consideration as the household 
aggregate price and quantity variables.

Similarly, definition (261) for the Paasche–Allen aggre-
gate quantity index QA(q0, q1, p1) simplifies into the following 
expression:

QA(q0,q1,p1) ≡ Σh=1
H Ch(uh

1,ph
1)/Σh=1

H  

 Ch(uh
0,ph

1) (266)
= Σh=1

H uh
1ch(ph

1)/Σh=1
H uh

0ch(ph
1) since Ch(uh,ph)  

= uhc(ph) for each h

= Σh=1
H Ph

1Qh
1/Σh=1

H Ph
1Qh

0 using (254) and (255)
≡ QP(P0,P1,Q0,Q1),

where QP(P0,P1,Q0,Q1) is the ordinary Paasche quantity 
index using the aggregate household prices and quantities 
for the two periods under consideration as the price and 
quantity variables.

The aggregate quantity indices QA(q0, q1,p0) and QA(q0, q1, 
p1) defined by (265) and (266) are equally plausible measures 
of overall consumer quantity or volume growth between 
periods 0 and 1 and so it is reasonable to take an average 
of these two indices to obtain a “final” estimate of aggre-
gate quantity growth between the two periods. As usual, the 
geometric average leads to an index that will satisfy a time 
reversal test. Thus, we have

[QA(q0,q1,p0)QA(q0,q1,p1)]1/2 = [QL(P0,P1,Q0,Q1)QP 
 (P0,P1,Q0,Q1)]1/2 ≡ QF(P0,P1,Q0,Q1), (267)

where QF(P0,P1,Q0,Q1) is the Fisher quantity index defined 
over the aggregate household prices and quantities for the 
two periods under consideration. It is a two-stage Fisher 
index where the first stage of aggregation uses the price 
and quantity data for each household to construct house-
hold-specific Fisher price and quantity levels for each 
household. The two-stage Fisher quantity index QF(P0,P1,
Q0,Q1) defined by (267) can be compared to the single-stage 
Fisher quantity index QF(p0,p1,q0,q1) defined as the geomet-
ric mean of QL(p0,p1,q0,q1) ≡ p0·q1/ p0·q0 and QP(p0,p1,q0,q1) ≡ 
p1·q1/p1·q0. Using the results listed in Section 8, we know that 
the single-stage Fisher quantity index will approximate its 
two-stage counterpart to the second order around an equal 
price and quantity point. Thus, normally, we would not 
expect much difference between these alternative measures 
of overall real aggregate consumption growth.

18. Social Welfare Functions and 
Inequality Indices
Equations (265) and (266) have some interesting implications. 
These equations give the following decompositions for an 
aggregate quantity index: QA(q0,q1,p0) = Σh=1

H uh
1ch(ph

0)/Σh=1
H 

uh
0ch(ph

0) and QA(q0, q1, p1) = Σh=1
H uh

1ch(ph
1)/Σh=1

H uh
0ch(ph

1). 
The numerators in these equations can be interpreted as 
aggregate period 1 quantity levels and the denominators 
as aggregate period 0 quantity levels. These quantity levels 
have the same general form; that is, the period t aggregate 
quantity level Qt is equal to a weighted sum of the period 
t household utility levels so that Qt ≡ Σh=1

H ωhuh
t for t = 0,1, 

where the weights ωh are fixed nonnegative numbers. Func-
tions like Σh=1

H ωhuh
t are called social welfare functions in the 

economics literature. Thus, the two aggregate Allen indices 
can be regarded as specific examples where the indices are 
equal to ratios of social welfare functions.
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Choosing the appropriate weights for a social welfare 
function is a nontrivial problem, which has not been com-
pletely resolved in the economics literature but there is a 
demand for statistical agencies to produce measures of 
social welfare that take into account possible inequality in 
the distribution of income between households.146 We will 
not go into great detail on the complex issues surrounding 
the measurement of social welfare but we will indicate some 
of the problems that are associated with the construction of 
indices of social welfare.

The first problem that needs to be addressed is that the 
individual household utility measures have to be made car-
dinally comparable in some way. Recall the assumptions 
made on household preferences made before equations (253). 
In order to construct meaningful measures for the levels of 
social welfare, it is necessary to make stronger assumptions; 
that is, we now assume that the preferences of household 
h are represented by the linearly homogeneous utility func-
tion f h(qh) ≡ [qh

TAqh]
1/2 for each h where A is a symmetric 

matrix, which satisfies the regularity conditions discussed 
in Section 5. Thus, under these stronger assumptions, we 
are now assuming that the household preference functions 
are identical across households for h = 1, . . .,H. Under these 
assumptions, the Fisher price and quantity indices will be 
exact across households within a time period as well as 
across time periods. Let c(ph) = c(ph1, . . .,phN) be the unit cost 
function that corresponds to f(qh) for h = 1, . . .,H. Assuming 
utility-maximizing behavior on the part of each household, 
the following equations should be satisfied:

 ph
t·qh

t = f(qh
t)c(ph

t); h = 1, . . .,H; t = 0,1. (268)

Now use Fisher price and quantity indices to estimate house-
hold quantity and price levels, Qh

t ≡ f(qh
t) and Ph

t ≡ c(ph
t), for 

t = 0,1 and h = 1, . . .,H as follows:

 P1
0 ≡ 1 ≡ c(p1

0); Q1
0 ≡ p1

0·q1
0 ≡ f(q1

0) ≡ u1
0; (269)

Ph
0 ≡ PF(p1

0,ph
0,q1

0,qh
0) ≡ c(ph

0) ; Qh
0  

 ≡ ph
0·qh

0/Ph
0 ≡ f(qh

0) ≡ uh
0 ; h = 2, . . .,H; (270)

Ph
1 ≡ PF(p1

0,ph
1,q1

0,qh
1) ≡ c(ph

1) ; Qh
1  

 ≡ [ph
1·qh

1]/Ph
1 ≡ f(qh

1) ≡ uh
1; h = 1, . . .,H. (271)

Thus, household 1 in period 0 acts as a numeraire household; 
the Fisher price and quantity indices for the other house-
holds in periods 0 and 1 are computed relative to household 
1 in period 0.147 Once the cardinally comparable utility levels 
uh

t have been computed using definitions (269)–(271), they 
can be used to determine the level of social welfare in each 
period t. For example, the period t level of social welfare 
could be defined as Qt ≡ Σh=1

H ωhuh
t for t = 0,1, where the 

weights ωh are somehow chosen by the statistical office.
However, it has proven to be difficult to come up with 

consensus social welfare weights for ωh. A simple solution 
is to set ωh = 1 for h = 1,  .  .  .,H. The resulting function is 

146 See Hays, Martin, and Mkandawire (2019).
147 This is known as a “star” approach to the construction of multilat-
eral indices, and the resulting indices will depend on the choice of the 
numeraire household. We will introduce more symmetric methods for 
making multilateral comparisons in Chapter 7.

the utilitarian social welfare function. However, this func-
tion shows no concern of the distribution of utility across 
all households. An allocation of the economy’s real expendi-
tures on consumer goods and services that gave most of the 
total group expenditure to one household would generate 
the same level of social welfare using the utilitarian function 
as the distribution that divided the total real expenditures 
equally across households. In order to address distribu-
tional issues, it is necessary to introduce nonlinear social 
welfare functions.

Atkinson (1970, 257) introduced the following mean of 
order r social welfare function:148

 Wr(u1, . . .,uH) ≡ [Σh=1
H (1/H)(uh)

r]1/r, (272)

where r ≤ 1 and r ≠ 0.149 Note that Wr(u1, . . .,uH) is a measure 
of per capita utility rather than a measure of total utility 
for the period under consideration. Using the earlier materi-
als on CES utility functions, we know that Wr(u1, . . .,uH) ≡ 
Wr(u) is a linearly homogeneous, concave increasing func-
tion of the household utility levels, u ≡ [u1,  .  .  .,uH]. When 
r = 1, W1(u) = Sh=1

H (1/H)uh which is per capita utility. As r 
approaches minus infinity, Wr(u1,  .  .  .,uH) approaches minh 
{uh : h = 1, . . .,H}, which is the social welfare function advo-
cated by Rawls (1971).150

It proves to be useful to compare an Atkinson measure of 
social welfare Wr(u1, . . .,uH) with per capita utility for each 
period. Period t per capita utility is defined as follows:

 uA
t ≡ Σh=1

H (1/H)uh
t ≡ W1(u1

t, . . .,uH
t); t = 0,1. (273)

Thus, per capita utility is a special case of the Atkinson fam-
ily of social welfare measures with r = 1. For a general r < 1, 
Atkinson’s (1970, 250) period t equally distributed equivalent 
real income per head, uE

t, is defined (implicitly) by the follow-
ing equation:

 Wr(u1
t, . . .,uH

t) = Wr(uE
t1H); t = 0,1 (274)

= uE
tWr(1H) using the linear homogeneity property of 

Wr(u1, . . .,uH)
= uE

t using definition (272) which implies Wr(1H) = 1.

Thus, actual social welfare in period t, Wr(u1
t,  .  .  .,uH

t), 
is set equal to a level of social welfare where each house-
hold gets the same level of utility, uE

t. Hardy, Littlewood, 
and Polyá (1934, 26) show that the mean of order r func-
tion, Wr(u1,  .  .  .,uH), is increasing in r provided that not all 
uh are the same and nondecreasing in r in general. Since r 
< 1, Wr(u1

t, . . .,uH
t) ≤ W1(u1

t, . . .,uH
t) for t = 0,1. Using these 

148 Atkinson worked with continuous distributions of nominal incomes, 
whereas we work with discrete distributions of real incomes. Fleurbaey 
(2009, 1032) has a discrete version of Atkinson’s approach, which is 
similar to the approach presented here except that nominal incomes are 
used in place of our real incomes. Finally, Jorgenson and Schreyer (2017, 
S466) use a version of the approach presented here except they assume all 
households face the same prices.
149 As usual, if r = 0, define the logarithm of W0(u1, . . .,uH) as Σh=1

H (1/H)
lnuh.150 See also Blackorby and Donaldson (1978).
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inequalities and definitions (273) and (274), we have the fol-
lowing inequalities:

 uE
t/uA

t ≤ 1; t = 0,1. (275)

Kolm’s (1969, 186) period t index of relative injustice or 
Atkinson’s (1970, 257) and Sen’s (1973, 42) period t relative 
inequality index, It, is defined as follows:

 It ≡ 1 – (uE
t/uA

t) ≥ 0; t = 0,1. (276)

Thus, if household utility levels in period t are identical, uE
t 

will equal uA
t and period t inequality It will equal 0. If r is a 

very large negative number and one or more households in 
period t has a very low utility level, then uE

t will be close to 0 
and It will be close to 1, the maximum amount of inequality 
that can occur.

Define the period t equality index as

 Et ≡ uE
t/uA

t; t = 0,1. (277)

Thus, the closer Et is to its maximum value 1, the more 
equal is the distribution of real consumption in the group 
of households under consideration. Since period t Atkinson 
welfare is equal to Wr(u1

t, . . .,uH
t) = uE

t, we can write period 
t welfare as the product of per capita real consumption, uA

t, 
times Et:151

 Wr(u1
t, . . .,uH

t) = uA
tEt t = 0,1. (278)

A practical problem with this approach for measuring social 
welfare is that it is necessary to pick a specific value for r 
in order to implement it.152 Since the results will depend on 
which r is chosen and since there is no general consensus 
on which r to choose, statistical agencies have largely not 
produced practical measures of social welfare. Thus, we will 
conclude this section by considering one more approach to 
the production of social welfare indices: an approach that, 
at first glance, does not require choosing parameters for the 
social welfare function.

Our final approach to the measurement of social welfare 
relies on a discrete version of the Gini (1921) coefficient. We 
first convert the household utility levels uh

t defined by (269)–
(271) into household shares of total utility sh

t for each time 
period:

 sh
t ≡ uh

t/Σi=1
H ui

t; h = 1, . . .,H; t = 0,1. (279)

Now order the households so that household 1 has the low-
est utility in period t, household 2 has the next lowest utility, 
and so on. Thus, for each period t, the shares sh

t will satisfy 
the following inequalities:

 s1
t ≤ s2

t ≤ . . . ≤ sH
t; t = 0,1. (280)

151 See Atkinson (1970, 250) and Fleurbaey (2009, 1032) for this type 
of decomposition applied to nominal incomes, and see Jorgenson and 
Schreyer (2017, S470) for this type of decomposition applied to real 
incomes.
152 For alternative social welfare functions that require exogenous param-
eterization, see Diewert (1985, 77–82), Fleurbaey (2009, 1032–36), and 
Jorgenson and Schreyer (2017).

The area under the cumulative distribution function of the 
share variables sh

t is proportional to At defined as follows:

At ≡ s1
t + (s1

t + s2
t) + (s1

t + s2
t + s3

t) + . . .  
  + (Σh=1

H–1 sh
t) + (Σh=1

H sh
t); t = 0,1 (281)

= Hs1
t + (H – 1)s2

t + (H – 2)s3
t + . . . + 2sH–1

t + sH
t.

Consider the following linear programming problem:

max s s1, , H {Hs1 + (H – 1)s2 + (H – 2)s3 + . . . + 2sH–1 
  + sH : 0 ≤ s1

t ≤ s2
t ≤ . . . ≤ sH

t; Σh=1
H sh = 1}. (282)

The solution to this problem is sh = 1/H for h = 1, . . .,H. Sub-
stitute this solution into the objective function in (282) and 
this will determine the maximum value A* for the objective 
function in (282):

A* ≡ [H + (H – 1) + (H – 2) + . . . + 2 + 1] 
 [1/H] = [H(H + 1)/2][1/H] = (H + 1)/2. (283)

Define the period t Gini index of equality for the distribution 
of household utilities, Et*, as

 Et* ≡ At/A* ≤ 1; t = 0,1, (284)

where At is defined by (281) and A* is defined by (283). The 
inequalities At/A* ≤ 1 follow since At is necessarily less than 
the maximum possible value for At, which is A*. The period 
t Gini coefficient or Gini index of inequality for the discrete 
income distribution, Gt, is defined as

 Gt ≡ 1 – Et*; t = 0,1. (285)

The Gini coefficient as a measure of inequality in nominal 
income distributions is well understood and well accepted in 
economic measurement circles. The algebra stated here simply 
adapts it as a measure of inequality for real income distri-
butions. There are no additional parameters that have to be 
determined by the official statistician.153

The final step is to use Et* to adjust per capita real con-
sumption uA

t defined by definitions (273) for inequality in 
the real income distribution; that is, define period t welfare, 
Wt, as

 Wt ≡ uA
tEt* = uA

t(1 – Gt); t = 0,1. (286)

Thus, for each period t, per capita real consumption for the 
group under consideration, uA

t, is multiplied by the Gini 
equality index Et* to give an estimate of social welfare for 
the group that takes into account the distribution of real 
incomes within the group. Since the Gini coefficient is a 

153 However, the fact that the economic statistician using the Gini equal-
ity index to adjust per capita real income for inequality does not have to 
pick a particular value of r as is the case if an Atkinson social welfare 
function is used to measure inequality does not imply that the use of the 
Gini coefficient methodology is free of value judgments. The social wel-
fare function defined by (286) does imply specific judgments about the 
relative welfare of the individuals in the welfare comparison; see Atkin-
son (1970, 257).
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generally accepted measure of inequality, the social welfare 
estimates defined by (286) are likely to be acceptable to the 
public.154

However, there are a number of practical measurement 
problems that are not addressed in the material here:

• Real income distributions (or more accurately, distribu-
tions of real consumption over households in a coun-
try) do not exist. Thus, the real “income” distribution 
described here may have to be approximated by a cor-
responding nominal distribution of household consump-
tion expenditures for a period. This approximation may 
be satisfactory if all households in the group under con-
sideration face approximately the same prices.

• Some households have more members than other house-
holds, but the theory outlined here implicitly assumed 
that all households had the same size. This problem can 
be addressed by the use of household equivalence scales 
but some measurement error will be introduced by their 
use.155 For references to the literature on alternative 
household equivalence scales, see Fleurbaey (2009, 1051–
52), Jorgenson and Slesnick (1987), and Jorgenson and 
Schreyer (2017, S462–S65).

• The services of consumer durables should be included in 
household consumption.156 Most nominal income (or con-
sumption) distributions for countries ignore the services 
provided by household durable goods. In particular, the 
services provided by OOH are typically missing in pub-
lished income distributions.157 This is a serious omission.

• Finally, adjustments to household nominal expenditures 
should be made for households that receive goods and 
services provided by governments and charitable organi-
zations at no cost or at highly subsidized prices. These 
subsidized goods and services should be valued at com-
parable market prices.158

154 For related work on the use of the Gini coefficient in measures of wel-
fare, see Sen (1976, 30–31) and Fleurbaey (2009, 1034–35).
155 The simplest way to deal with households that differ in the number of 
members is to divide their utility, say uh

t for household h in period t, by 
nh

t, which is the number of household members. Then, when construct-
ing the distribution of utilities for period t, replace uh

t by nh
t copies of per 

person utility, uh
t/nh

t ≡ uh
t*. This crude adjustment of utility for household 

composition neglects the fact that multiple person households can share 
the services of the durable goods owned by the household. A household 
equivalence scale for household h in period t is a household efficiency factor 
ah

t, which is equal to 1 if nh
t = 1 and if nh

t > 1, ah
t > 1. The new adjusted 

per person utility for the household uh
t* is set equal to unadjusted per per-

son utility, uh
t/nh

t, times the household efficiency factor ah
t. Thus, the new 

adjusted for composition per person household utility is uh
t* ≡ uh

tah
t/nh

t ≥ 
uh

t/nh
t. Thus, when constructing the distribution of utilities for period t, 

replace uh
t by nh

t copies of the composition adjusted per person utility, uh
t* 

= uh
tah

t/nh
t. Our suggested approach to adjusting social welfare measures 

for household composition is more or less the same as the procedure sug-
gested by Jorgenson and Schreyer (2017, S466).
156 Christensen and Jorgenson (1969) advocated this inclusion many years 
ago and provided estimates for the United States.
157 various approaches to the measurement of the services provided by 
consumer durables will be considered in Chapter 10.
158 Thus, there is a difference between household expenditures (final con-
sumption expenditures in the System of National Accounts) and actual 
individual consumption, which includes social transfers in kind such as 
free or subsidized services such as health, education, and housing ser-
vices provided by governments at free or below market prices by govern-
ment agencies. The latter concept is the correct concept to use in welfare 
measures.

19. The Matching of Prices Problem
The economic approach to index number theory starts out 
by developing a theory of individual household behavior. 
With the exception of the material in Section 14, our analy-
sis of the economic approach has assumed that prices faced 
by households were all positive in the two periods being 
compared and the quantities purchased by each household 
during the two periods were also positive. However, indi-
vidual households rarely purchase positive amounts of the 
same commodities in two consecutive periods. The shorter 
is the time period, the greater will be this lack of matching 
problem. Part of the problem is due to the existence of sea-
sonal commodities and part is due to the fact that consum-
ers can store goods purchased in one period and consume 
them over multiple periods and the economic approach to 
index number theory does not take the storage problem 
into consideration. In recent years, an increasing number of 
firms have used dynamic pricing; that is, they vary the prices 
of their products by introducing deeply discounted prices 
at random intervals. Thus, individuals can purchase these 
discounted products in one period and gradually consume 
them over multiple periods.

There are a number of ways to address this lack of match-
ing problem:

• Make the reference time period longer; that is, move 
from a weekly index to a monthly index or move from a 
monthly index to a quarterly index.

• Instead of defining products narrowly (that is, by a prod-
uct code and by a particular point of purchase), group 
similar products together and use broadly defined unit 
value prices instead of narrowly defined unit value prices. 
This reduces the number of products in scope for the 
index from N to a number considerably less than N and 
this will increase the number of “matched” products.

• Aggregate households that are “similar” into a group 
of households and apply the economic approach to the 
group.

• Acknowledge that the economic approach is difficult to 
implement at the level of individual households and apply 
the fixed basket approach to index number theory that 
was developed in Chapter 2 to groups of households.

We will address each of the aforementioned points in turn.
There are a few countries that construct quarterly CPIs 

but most countries find that a monthly CPI seems to sat-
isfy most user needs. Thus, moving from a monthly CPI to 
a quarterly CPI is not feasible for most countries. Moving 
to weekly or daily CPIs is likely to encounter severe lack of 
matching problems if they are constructed at the individual 
level.

The problem with moving from narrowly defined prod-
ucts to more broadly defined products is that unit value bias 
or quality adjustment bias is likely to result. It is difficult 
to quantify the tradeoff between obtaining more product 
matches versus increased unit value bias.

The economic approach to index number theory can be 
applied to a group of households under some restrictive 
assumptions. Suppose we have a group of similar house-
holds which have the same homothetic preferences. In par-
ticular, suppose we have H households and N commodities 
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and the unit cost function for each household is c(p) ≡ 
(pTBp)1/2, where B is an N by N symmetric matrix with one 
positive eigenvalue with a strictly positive eigenvector and 
the remaining eigenvalues are nonpositive. We know that 
the Fisher price and quantity indices for each household are 
exact for this functional form. Let the utility function that 
corresponds to this unit cost function be f(q). Let ph

t >> 0N 
and qh

t > 0N be the “observed” price and quantity vectors for 
household h in period t for h = 1, . . .,H and t = 0,1.159 Assum-
ing cost-minimizing behavior for each household in each 
period and using Shephard’s Lemma, the following equa-
tions will hold, where uh

t ≡ f(qh
t) for h = 1, . . .,H and t = 0,1:

qh
t ≡ ∇pc(ph

t)uh
t = Bph

tuh
t/c(ph

t);  
 h = 1, . . .,H and t = 0,1. (287)

Define the period t aggregate quantity vector qt and aggre-
gate utility level ut as follows:

 qt ≡ Σh=1
H qh

t; ut ≡ Σh=1
H uh

t; t = 0,1. (288)

Our final assumption is that all households in each period t 
face the same vector of prices pt:

 ph
t = pt; h = 1, . . .,H and t = 0,1. (289)

Using (287)–(289), we have the following equations:

qt ≡ Σh=1
H qh

t = Σh=1
H Bptuh

t/c(pt)  
 = Bpt[Σh=1

H uh
t]/c(pt) = Bptut/c(pt); t = 0,1. (290)

Thus, qt, pt, and ut satisfy the Shephard’s Lemma equations 
(287), where qt, pt, and ut have replaced qh

t, ph
t, and uh

t. Thus, 
the period t aggregate price and quantity vectors, pt and qt, 
along with the aggregate utility level ut for t = 0 and 1 will 
be exact for the following Fisher aggregate quantity index:

 u1/u0 = [p0·q1p1·q1/p0·q0p1·q0]1/2. (291)

Thus, according to this hypotheses, the aggregate data 
will satisfy the same equations as the micro data. These 
assumptions justify treating the data for the group as if it 
were generated by a single utility-maximizing household. 
This result is better than having no result at all but it does 
rest on two restrictive assumptions: (i) identical homothetic 

159 We have assumed that all prices are positive, but some quantities are 
allowed to equal 0. We assume that positive reservation prices are used 
for products that are not consumed by a household in some period.

preferences and (ii) all members of the group face the same 
vector of prices in each period. Thus, if we apply this the-
ory, we should try to group households so that they are 
demographically similar (so that their preferences can be 
better represented by the same preference function) and 
so that they face similar prices (so grouping households 
by location is also a useful thing to do).160 Jorgenson and 
Schreyer summarized the need to group households in the 
following quotation:

Another, related measurement issue is the level of 
detail at which distributional measures are put in 
place. Ideally, the equivalence scales are directly 
applied to household-level information. In prac-
tice, another simplifying assumption is often used 
in empirical measurements. Rather than applying 
equivalence scales (and, as will be discussed below, 
price indices) at the level of  individual households, 
groups of  households are the object of  measure-
ment in the simplified case. Each group is treated 
like a single, homogenous household. 

Dale Jorgenson and Paul Schreyer (2017, S464)

Finally, it is possible to fall back on our very first approach 
to index number theory that was explained in Chapter 2. 
This theory works as follows: a group of households collec-
tively purchase the vector of goods and services qt in peri-
ods t = 0,1. The corresponding unit value price vector for 
period t is pt for t = 0,1. Two equally reasonable measures of 
price inflation for this group of purchasers are the Laspeyres 
and Paasche price indices, PL ≡ p1·q0/p0·q0 and PP ≡ p1·q1/p0·q1. 
Since both indices are equally plausible, it makes sense to 
take an average of the two to obtain a point estimate of the 
price inflation facing this group of purchasers. The Fisher 
index is perhaps the “best” average because it ends up satis-
fying the time reversal test. A similar theory works well for 
measuring the growth of consumption at constant prices. 
If we use the base period prices as weights, the Laspeyres 
quantity index, QL ≡ p0·q1/p0·q0 is a reasonable measure and 
if we use the current period prices as weights, the Paasche 
quantity index, QP ≡ p1·q1/p1·q0 is another reasonable measure 
for the growth of consumption at constant prices. Again, it 
is reasonable to take a symmetric average of these two mea-
sures to end up with a point estimate for real consumption 
growth. The Fisher quantity index is again “best” because it 
satisfies the time reversal test.

160 This last point helps to justify applying the above methodology to the 
customers of a particular retail outlet.
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Annex: Proofs of Propositions
Proof of Proposition 1: Define g(λ) for 0 ≤ λ ≤ 1 by g(λ) ≡ 
PK(p0, p1, (1 – λ) q0 + λ q1). Note that g(0) = PK(p0,p1,q0) and 
g(1) = PK(p0,p1,q1). There are 24 = (4)(3)(2)(1) possible a priori 
inequality relations that are possible between the four num-
bers g(0), g(1), PL, and PP. However, the inequalities (3) and 
(4) imply that g(0) ≤ PL and PP ≤ g(1). This means that there 
are only six possible inequalities between the four numbers:

 g(0) ≤ PL ≤ PP ≤ g(1); (A1)
 g(0) ≤ PP ≤ PL ≤ g(1); (A2)

 g(0) ≤ PP ≤ g(1) ≤ PL; (A3)

 PP ≤ g(0) ≤ PL ≤ g(1); (A4)

 PP ≤ g(1) ≤ g(0) ≤ PL; (A5)
 PP ≤ g(0) ≤ g(1) ≤ PL. (A6)

Using the assumptions that (a) the consumer’s utility func-
tion f is continuous over its domain of definition; (b) the 
utility function is increasing in the components of q and 
hence is subject to local nonsatiation and (c) the price vec-
tors pt have strictly positive components, it is possible to use 
Debreu’s (1959, 19) Maximum Theorem (see also Diewert 
(1993a, 112–13) for a statement of the Theorem) to show that 
the consumer’s cost function C( f(q),pt) will be continuous 
in the components of q. Thus, using definition (2), it can be 
seen that PK(p0,p1,q) will also be continuous in the compo-
nents of the vector q. Hence, g(λ) is a continuous function 
of λ and assumes all intermediate values between g(0) and 
g(1). By inspecting the inequalities (A1)–(A6), it can be seen 
that we can choose λ between 0 and 1, λ* say, such that PL 
≤ g(l* ) ≤ PP for case (A1) or such that PP ≤ g(λ* ) ≤ PL for 
cases (A2) to (A6). Thus, at least one of the two inequalities 
in (5) holds.

Proof of Proposition 2: Using assumptions (ii) and (iv), 
qt >> 0N solves the concave programming problem max q 
{f(q) : pt·q ≤ et; q ≥ 0N} for t = 0,1. Since qt is strictly posi-
tive, the nonnegativity constraints q ≥ 0N are not binding 
and hence, using the differentiability assumptions (iii), the 
following Lagrangian conditions are necessary and suffi-
cient for qt to solve the period t constrained maximization 
problem in (13):

 ∇f(qt) = ltp
t; t = 0,1; (A7)

 pt·qt = et. (A8)

Take the inner product of both sides of (A7) with qt and solve 
the resulting equation for λt. The solution for t = 0,1 is λt = 
qt·∇f(qt)/pt·qt > 0.161 Substitute this solution for λt into equa-
tion t in (A7). After suitable rearrangement, we obtain the 
equations pt/pt·qt = ∇f(qt)/qt·∇f(qt) for t = 0,1.

Proof of Proposition 3: Let ut = f(qt) for t = 0,1. By assump-
tion (iii), qt solves the cost minimization problem defined by 
C(ut,pt) for t = 0,1. Thus, qt is a feasible solution for the fol-
lowing cost minimization problem where the general price 

161 We assume that at least one component of ∇f(qt) is positive for t = 0,1.

vector p >> 0N has replaced the specific period t price vector 
pt:

 C(ut,p) ≡ minq {p·q : f(q) ≥ ut; q ≥ 0N};  
 t = 0,1 ≤ p·qt, (A9)

where the inequality follows, since qt is a feasible (but not 
necessarily an optimal) solution for the cost minimization 
problem defined by C(ut,p). Since by assumption (iii), qt 
is a solution to the cost minimization problem defined by 
C(ut,pt), we must have the following equalities:

 C(ut,pt) = pt·qt; t = 0,1. (A10)

Define the function gt(p) ≡ C(ut,p) – p·qt for t = 0,1. Since 
C(ut,p) is a concave function in p and since the linear func-
tion – p·qt is also concave in p, it can be seen that gt(p) is also 
a concave function of p for t = 0,1. The inequalities (A9) and 
equalities (A10) show that gt(p) achieves a global maximum 
at p = pt for t = 0,1. Since C(ut,p) is differentiable with respect 
to the components of p at p = pt, the following first-order 
necessary conditions for maximizing C(ut,p) with respect to 
the components of p must hold:

 ∇pg(pt) = ∇pC(ut,pt) – qt = 0N; t = 0,1. (A11)

Equations (A11) can be rearranged to give the following 
equations:

 qt = ∇pC(ut,pt); t = 0,1. (A12)

To establish the uniqueness of qt, let qt* be any other solution 
to the cost minimization problem defined by C(ut,pt) for t 
= 0,1. Repeat the aforementioned proof to show that qt* = 
∇pC(ut,pt) for t = 0,1. Thus, qt = qt* for t = 0,1 and the solu-
tion to the cost minimization problem defined by C(ut,pt) is 
unique for t = 0,1.162

Proof of Proposition 4: Let f *(q) be a given increasing lin-
early homogeneous function which is twice continuously 
differentiable along the ray λq*, where λ > 0 and q* >> 0N. We 
assume that f *(q*) > 0. Since f *(q) is linearly homogeneous, 
we have

 f *(λq*) = λf *(q*) for all λ > 0. (A13)

Differentiate both sides of (A13) with respect to λ and evalu-
ate the resulting derivatives at λ = 1. We obtain the following 
equation:

 f *(q*) = ∇f *(q*)Tq* = Σn=1
N qn

*∂f *(q*)/∂qn. (A14)

162 This method of proof was developed by McKenzie (1956). Shephard 
(1953) (1970) was the first to derive this result starting with a differentiable 
cost function. However, Hotelling (1932, 594) stated a version of the result 
in the context of profit functions and Hicks (1946, 331) and Samuelson 
(1953, 15–16) established the result starting with a differentiable utility 
or production function. For a more complete exposition of the technical 
details and references to the literature, see Diewert (1993a, 107–17).
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Thus, if the first-order partial derivatives of f *(q*) are known 
numbers, then the number f *(q*) is also known and is equal 
to q*T∇f *(q*) = Σn=1

N qn
*∂f *(q*)/∂qn.

Now partially differentiate both sides of (A13) with 
respect to qn for n = 1,  .  .  .,N. The following equations are 
obtained for all λ > 0:

[∂f *(λq*)/∂(λqn)][∂(λqn)/∂λ] = λ∂f *(λq*)/∂(λqn)  
 = λ∂f *(q*)/∂qn n = 1, . . .,N. (A15)

Let fn
*(q) ≡ ∂f *(q)/∂qn denote the function that is the partial 

derivative of f *(q) with respect to qn for n = 1, . . .,N. Using 
this notation, equations (A15) simplify to the following 
equations:

 fn
*(λq*) = fn

*(q*) for all λ > 0; n = 1, . . .,N. (A16)

Thus, the first-order partial derivative functions fn
*(q) of a 

linearly homogeneous function f *(q) are homogeneous of 
degree 0. Now by differentiating both sides of equations 
(A16) with respect to λ and evaluating the resulting second-
order partial derivatives fnk

*(λq*) at λ = 1, we obtain the fol-
lowing system of equations:

 Σk=1
N fnk

*(q*)qn
* = 0; n = 1, . . .,N, (A17)

where fnk
*(q*) ≡ ∂2f*(q)/∂qn∂qk for n,k = 1, . . .,N. The N equa-

tions (A17) can be rewritten more succinctly using matrix 
notation as the following matrix equation:

 ∇2f *(q*)q* = 0N. (A18)

Since f *(q) is assumed to be twice continuously differentia-
ble at q = q*, Young’s Theorem in advanced calculus implies 
that the matrix of second-order derivatives, ∇2f *(q*), is a 
symmetric matrix so that ∂2f *(q)/∂qn∂qk = ∂2f *(q)/∂qk∂qn for 
all n, k = 1, . . .,N. Using matrix notation once again, this 
means that

 [∇2f *(q*)]T = ∇2f *(q*). (A19)

The 1 + N + N2 numbers f *(q*), ∇f *(q*), and ∇2f*(q*) are 
regarded as given numbers or parameters in what follows. 
From the previous derivations, we see that these numbers 
are not independent: equation (A14), f *(q*) = ∇f *(q*)Tq*, 
implies that if the N components in the vector of first-
order partial derivatives ∇f *(q*) are given numbers, then 
the level of the function f *(q) evaluated at the point q* is 
determined by these numbers. Similarly, the symmetry 
conditions (A19) imply that if the N2 second-order partial 
derivatives of f *(q*) are calculated, then these numbers 
are not independent of each other either. If the N(N – 
1)/2 components of ∇2f*(q*) in the upper triangle of this 
matrix are given (so that ∂2f*(q)/∂qn∂qk for 1 ≤ n < k ≤ N 
are given numbers), then the N(N – 1)/2 numbers in the 
lower triangle of this matrix are also determined. Fur-
thermore, the N restrictions given by equations (A18) 
mean that if the upper triangle second-order partial 
derivatives are given (which means that the lower triangle 
second-order partial derivatives are also given), then the 
main diagonal second-order partial derivatives (the N 

derivatives ∂2f*(q)/∂qn∂qn for n = 1, . . .,N) are also deter-
mined (provided that the components of the q* vector are 
all positive). Thus, the assumption of linear homogene-
ity of f *(q) (along with the assumption that second-order 
partial derivatives of f *(q) exist and are continuous at 
q = q*) implies that there are only N(N – 1)/2 indepen-
dent parameters instead of N2 parameters in the matrix 
∇2f*(q*).

Define the utility function f(q) over the set S ≡ (q : q ≥ 0N; 
Aq ≥ 0N; qTAq > 0) as

 f(q) ≡ (qTAq)1/2, where A = AT. (A20)

To show that f(q) is a flexible functional form at q = q* >> 0N, 
we need to solve the following equations for the components 
of the N by N matrix A ≡ [ank], where ank = akn for 1 ≤ n < k 
≤ N:

 f(q*) = f*(q*); (A21)
 ∇f(q*) = ∇f*(q*); (A22)
 ∇2f(q*) = ∇2f*(q*). (A23)

Define matrix A as follows:

 A ≡ f*(q*)∇2f*(q*) + ∇f*(q*)∇f*(q*)T. (A24)

Note that this matrix A is symmetric; that is, A = AT. Use 
matrix A to define f(q) ≡ (qTAq)1/2 and compute f(q*)2:

 f(q*)2 = q*TAq* (A25)
= q*T[ f*(q*)∇2f*(q*) + ∇f*(q*)∇f*(q*)T]q*  

using definition (A24)

= q*T∇f*(q*)∇f*(q*)Tq* using (A18)
= f*(q*)2 using (A14).

Take positive square roots of both sides of (A25) and the 
resulting equation is (A21). Now calculate the vector of first-
order partial derivatives of f(q) defined by (A20) and (A24) 
and evaluate these derivatives at q = q*:

 ∇f(q*) = Aq*/(q*TAq*)1/2 (A26)
= [ f*(q*)∇2f*(q*) + ∇f*(q*)∇f*(q*)T]q*/f*(q*)  

using (A24) and (A25)

= 0N + ∇f*(q*)[∇f*(q*)Tq*]/f*(q*) using (A18)
= ∇f*(q*) using (A14).

Thus, equations (A22) are satisfied. Finally, calculate the 
matrix of second-order partial derivatives of f(q) defined 
by (A20) and (A24) and evaluate these derivatives at q = q*. 
Differentiating the first line in (A26) leads to the following 
matrix equation:

∇2f(q*) = {A/(q*TAq*)1/2} – {Aq*q*TA/ 
 (q*TAq*)3/2} (A27)

= [ f*(q*)]–1{f*(q*)∇2f*(q*) + ∇f*(q*)∇f*(q*)T} – {Aq*q*TA/
(q*TAq*)3/2} using (A24) and (A25)



116

CONSUMER PRICE INDEX MANUAL

= ∇2f *(q*) + [ f *(q*)]-1[∇f *(q*)∇f *(q*)T] – [ f*(q*)]–1[∇f *(q*)∇f * 
(q*)T] using (A25) and (A26)

= ∇2f*(q*).

Thus, equations (A23) are satisfied and f(q) ≡ (qTAq)1/2 is a 
flexible functional form.163 Note that this functional form 
has the minimum number of free parameters (which is  
N(N + 1)/2) that is required to satisfy the 1 + N + N2 equa-
tions (A21)–(A23). In the literature on flexible functional 
forms, such a function is called a parsimonious flexible func-
tional form.

Proof of Proposition 5: Let c(p) = (pTBp)1/2, where B = 
BT and B has one positive eigenvalue with a strictly posi-
tive eigenvector and the remaining N – 1 eigenvalues of B 
are negative. The function c(p) is well defined over the set 
S* ≡ {p: p ³ 0N; Bp ≥ 0N; pTBp > 0}. Under our eigenvalue 
assumptions, a result obtained by Diewert and Hill (2010) 
will imply that c(p) is a concave function over the set S*. It 
will also be increasing, linearly homogeneous, and positive 
over S*. Let q* >> 0N and suppose also that B–1q* >> 0N. Let 
f(q) be the utility function that is dual to c(p). Then, f(q*) 
can be defined by the following modification of definition 
(50) in the main text:164

 f(q*) = 1/max p {c(p) : p·q* = 1; p∈S*}. (A28)

Consider the maximization problem on the right-hand side 
of (A28). If we temporarily drop the constraints p∈S*, then 
the resulting problem is

 max p {(pTBp)1/2 : p·q* = 1}. (A29)

The first-order necessary conditions for an interior maxi-
mum for the constrained maximization problem (A29) are 
equivalent to the following conditions:

 Bp* = λ*q*; (A30)
 p*·q* = 1. (A31)

Since B–1 exists under our assumptions, p* = l*B–1q*. Sub-
stitute this equation into (A31) and solve the resulting 
equation, λ*q*TB–1q* = 0 for λ* = 1/q*TB–1q*, which is posi-
tive since q* and B–1q* are strictly positive vectors by our 
assumptions. Thus, p* = λ*B–1q* = B–1q*/q*TB–1q*. It can be 
seen that this p* is the global maximizer for the problem 
defined by (A29) under our regularity conditions on B. 
Thus, we have

max p {(pTBp)1/2 : p·q* = 1} = (p*TBp*)1/2  
 = (q*TB–1q*)–1/2. (A32)

Since B–1q* >> 0N and λ* > 0, p* = λ*B–1q* >> 0N. From (A30), 
Bp* = λ*q* >> 0N. Thus, p* also solves the maximization 

163 The previous proof of flexibility is an adaptation of the proof of flex-
ibility for this functional form in Diewert (1974b, 125). See also Diewert 
(1976, 140–42) for an alternative proof.
164 See Blackorby and Diewert (1979) for additional material on local 
duality theorems.

problem on the right-hand side of (A28) since p* belongs to 
S*. Thus, we have165

 f(q*) = 1/max p {c(p) : p·q* = 1; p∈S*} (A33)
= 1/(q*TB–1q*)–1/2

= (q*TB–1q*)1/2.

Proof of Proposition 6: Let A ≡ [aik] be an N by N symmetric 
matrix with element aik in row i and column k so that A = AT. 
Suppose r ≠ 0, q >> 0N and define f(q) as follows:166

 f(q) = f (q1, . . .,qN) ≡ [Σi=1
N Σk=1

N aikqi
r/2qk

r/2 ]1/r. (A34)

Denote the nth first-order partial derivative of f(q) as fn(q) ≡ 
∂f(q)/∂qn for n = 1, . . .,N. Assuming that Σi=1

NΣk=1
N aikqi

r/2qk
r/2 

is positive, fn(q) is equal to the following expression:

fn(q) = (1/r)[Σi=1
N Σk=1

N aikqi
r/2qk

r/2 ](1/r)–1 r[Σk=1
N  

 ankqn
(r/2)–1qk

r/2] n = 1, . . .,N (A35)
= [ f(q)]1–r [åk=1

N ankqn
(r/2)–1qk

r/2].

Denote the second-order partial derivative of f(q) with 
respect to qn and qm as fnm(q) ≡ ∂2f(q)/∂qn∂qm for n = 1, . . .,N 
and m = 1, . . .,N. For n < m, fnm(q) is equal to the following 
expression:

fnm(q) = [(1/r) – 1][Σi=1
N Σk=1

N aikqi
r/2qk

r/2](1/r)–2r 
 [Σk=1

N ankqn
(r/2)–1qk

r/2][Σk=1
N amkqm

(r/2)–1qk
r/2] (A36)

 + [ f(q)]1–r [r/2][anmqn
(r/2)–1qm

(r/2)–1] 1 ≤ n < m ≤ N
= (1 – r)[ f(q)]–1fn(q)fm(q) + (r/2)anmqn

(r/2)–1qm
(r/2)–1.

As was seen in the proof of Proposition 4, because the f(q) 
defined by (A34) is linearly homogeneous, we need only to 
choose anm to satisfy equations (A22) and the upper triangle 
of equations (A23) in order to prove that f(q) is a flexible 
functional form; that is, for q* >> 0N. we need anm to satisfy 
the following equations:167

 fn(q
*) = f*

n(q
*); n = 1, . . .,N; (A37)

 fnm(q*) = f*
nm(q*); 1 ≤ n < m ≤ N. (A38)

Temporarily assume that we have found a set of anm so that 
equations (A37) and the following equation are satisfied:

 f(q*) = f*(q*). (A39)

165 This seems to be the model considered by Konüs and Byushgens 
(1926, 171).
166 In order to ensure that f(q) is well defined for any r ≠ 0, we require that 
Σi=1

NΣk=1
N aikqi

r/2qk
r/2 > 0. If each aik ≥ 0 and at least one aik > 0, then for q 

>> 0N, Σi=1
NΣk=1

N aikqi
r/2qk

r/2 will be greater than 0. However, as will be seen 
later in the proof, Σi=1

NΣk=1
N aikqi

r/2qk
r/2 can be positive without assuming 

that each aik ≥ 0.
167 We assume that the exogenous f *(q*) and ∇f *(q*) satisfy the positivity 
restrictions ∇f *(q*) >> 0N, and hence f *(q*) = q*T ∇f *(q*) > 0.
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Evaluate the second-order partial derivatives of f(q) at q* 
using equations (A36) and set the nmth partial derivative 
of f(q) equal to the corresponding nmth partial derivative 
of f*(q*). Using equations (A37) and (A39), these equations 
become the following equations:

f*
nm(q*) = (1 – r)[ f*(q*)]–1f*

n(q
*)f*

m(q*)  
  + (r/2)anm(qn

*)(r/2)–1(qm
*)(r/2)–1; 1 ≤ n < m ≤ N. (A40)

The N(N – 1)/2 equations (A40) determine anm for 1 ≤ n < m ≤ 
N. Define amn = anm for 1 ≤ n < m ≤ N. Thus, all of the anm are 
determined except for the ann for n = 1, . . .,N. Again, assume 
that f(q*) = f *(q*), evaluate equations (A35) at q = q*, and 
set the resulting first-order partial derivatives of f(q*) equal 
to the corresponding given first-order partial derivatives of 
f *(q*). We obtain the following N equations:

f*
n(q

*) = [ f *(q*)]1–r [Σk=1
N ank (qn

*)(r/2)–1(qk
*) r/2];  

 n = 1, . . .,N. (A41)

The N equations (A41) determine the ann for n = 1, . . .,N. It 
turns out that this solution for anm enables f(q) defined by 
(A34) to satisfy all of the equations (A21)–(A23). Thus, f(q) 
is a flexible functional form.168 Note that the resulting f(q) 
will be positive and the first-order derivatives of f(q) will be 
positive in a neighborhood around q* due to the continuity 
of the function f(q) defined by (A34). Finally, note that if r 
= 2, then f(q) = (qTAq)1/2, and so the proof of Proposition 6 
provides an alternative proof for Proposition 4.

Proof of Proposition 7: Let r ≠ 0 and define fr(q) by (53). 
The assumption that qt >> 0N solves the constrained utility 
maximization problem max q {f r(q) : pt·q ≤ et; q∈S}, where S 
is an open convex set means that qt is not on the boundary 
of S, and hence qt will satisfy the first-order conditions for 
the problem max q {f r(q) : pt·q ≤ et} for t = 0,1. The first-order 
necessary conditions for these problems (which are equiva-
lent to the Wold’s Identity conditions (16)) are the following 
conditions:

pn
t/et = pn

t/pt·qt = fr
n(q

t)/fr(qt) = [ fr(qt)]–r [Σk=1
N ank  

 (qn
t)(r/2)–1(qk

t)r/2]; n = 1, . . .,N; t = 0,1, (A42)

where we have used equations (A35) to establish the last 
equation in (A42). Using equations (A42), we obtain the fol-
lowing expressions for the shares sn

t:

sn
t = pn

tqn
t/et = [ f r(qt)]–r [Σk=1

N ank (qn
t)(r/2)(qk

t)r/2];  
 n = 1, . . .,N; t = 0,1. (A43)

Now substitute sn
t defined by (A43) into (54), the definition 

of Qr(p0,p1,q0,q1):

Qr(p0,p1,q0,q1) ≡ {Σn=1
N sn

0(qn
1/qn

0)r/2}1/r 
 {Σn=1

N sn
1(qi

1/qn
0)–r/2}–1/r (A44)

= [ f r(q0)]–1{Σn=1
N Σk=1

N ank (qn
0)(r/2)(qk

1)r/2}1/r [ f r(q1)] 
{∑n=1

N Σk=1
N ank (qn

0)(r/2)(qk
1)r/2}–1/r

= f r(q1)/f r(q0).

168 This method of proof was developed by Diewert (1976, 140–41).

Proof of Proposition 9: Consider the following constrained 
maximization problem:

 max p {cr(p); et = p·qt; p∈S*}. (A45)

Since S* is an open set, the first-order necessary conditions 
for p*∈S* to solve (A45) is that there exist λ* such that the fol-
lowing equations are satisfied:

 ∇cr(p*) = λ*qt; (A46)
 p*·qt = et. (A47)

By premultiplying both sides of (A46) by p*T we obtain the 
equation λ*p*Tqt = p*T∇cr(p*) = cr(p*), where the last equal-
ity follows from the linear homogeneity of cr(p). Thus, λ* = 
cr(p*)/p*·qt = cr(p*)/et, where the last equation follows from 
(A47). Substituting λ* = cr(p*)/et into (A47) gives the equation 
∇cr(p*) = [cr(p*)/et]qt, which in turn can be written as follows:

 qt ≡ et∇cr(p*)/cr(p*). (A48)

But from (64), we have qt ≡ et∇cr(pt)/cr(pt). Thus, if we set p* 
to pt, equation (A48) will be satisfied. We also have pt·qt = 
etpt·∇cr(pt)/cr(pt) = etcr(pt)/cr(pt) = et, so equation (A47) is sat-
isfied if p* = pt. If we define λ* = cr(pt)/et, then (A46) with p* 
= pt becomes ∇cr(p*) = [cr(pt)/et]qt which is (A48) and so p* ≡ 
pt and λ* = cr(pt)/et satisfy equations (A46) and (A47). Thus, 
pt is a candidate to solve (A45) since it satisfies the first-order 
necessary conditions for an interior solution for (A45).

Next, we show that pt actually solves the constrained 
maximization problem defined by (A45). Define λ* ≡ cr(pt)/et 
and define the function g(p) as follows:

 g(p) ≡ cr(p) + λ*[et – p·qt]. (A49)

Since cr(p) is concave over S* by assumption and the func-
tion λ*[et – p·qt] is linear in p (and hence concave everywhere), 
g(p) is a differentiable concave function over S*. Hence, the 
first-order Taylor series approximation to g(p) around the 
point pt will be coincident with or lie above the function; 
that is, we have the following inequality:

 g(p) ≤ g(pt) + ∇g(pt)(p – pt) for all p∈S*. (A50)

Substituting definition (A49) into (A50) and noting that 
∇g(pt) = ∇cr(pt) – λ*qt = 0N (using (A46) with p* = pt and λ* = 
cr(pt)/et), we find that (A50) becomes

cr(p) + λ*[et – p·qt] ≤ cr(pt)  
  + λ*[et – pt·qt]; p∈S*. (A51)

But this inequality does not take into account the constraint 
et = p·qt. If we impose this additional constraint on p, the 
inequality (A51) becomes

 cr(p) ≤ cr(pt); p∈S* and p·qt = et. (A52)

Thus, pt solves the constrained maximization problem 
(A45), and we have
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 cr(pt) = max p {cr(p); et = p·qt; p∈S*}. (A53)

Now use definition (63) with e = et to define f r*(qt), and we 
obtain the following result using (A53):

 f r*(qt) = et/max p {cr(p); et = p·qt; p∈S*} (A54)
= et/cr(pt).

(A54) establishes (65). Now consider the following local util-
ity maximization problem

 max q {fr*(q) : pt·q = et; q∈S}, (A55)

where f r*(q) is defined as

 f r*(q) = et/max p {cr(p); et = p·q; p∈S*}. (A56)

Let q∈S, and we suppose that q also satisfies the consumer’s 
period t budget constraint, pt·q = et. Let p* be a solution to 
max p {cr(p); et = p·q; p∈S*}. Thus, we have

 cr(p*) = max p {cr(p); et = p·q; p∈S*} (A57)
≥ cr(pt),

since pt·q = et, and hence pt is a feasible solution for the con-
strained maximization problem. Using (A54), (A56), and 
(A57), we have fr*(qt) ≥ f r*(q) for all q belonging to S such 
that pt·q = et. Thus, qt solves the local utility maximization 
problem (A55).

Proof of Proposition 10: The proof of the previous propo-
sition showed that qt solves the local utility maximization 
problem, max q {f r*(q); pt·q = et; q∈S}, for t = 0,1.

Conditions (68) (Shephard’s Lemma) and definition (59) 
imply that the following equations will hold:

qn
t/pt·qt = cr

n(pt)/cr(pt) = [cr(pt)]–r [Σk=1
N bnk  

 (pn
t)(r/2)–1(pk

t)r/2]; n = 1, . . .,N; t = 0,1. (A58)

Using equations (A58), we obtain the following expressions 
for the shares sn

t:

sn
t = pn

tqn
t/pt·qt = [cr(pt)]–r [Σk=1

N bnk  
 (pn

t)(r/2)(pk
t)r/2]; n = 1, . . .,N; t = 0,1. (A59)

Now substitute sn
t defined by (A59) into (69), the definition 

of Pr(p0,p1,q0,q1):

Pr(p0,p1,q0,q1) ≡ {Σn=1
N sn

0(pn
1/pn

0)r/2}1/r{Σn=1
N  

 sn
1(pn

1/pn
0)–r/2}–1/r (A60)

= [cr(p0)]–1{Σn=1
N Σk=1

N bnk (pn
0)(r/2)(pk

1)r/2}1/r [cr(p1)]{Σn=1
N Σk=1

N 
bnk (pn

0)(r/2)(pk
1)r/2}–1/r

= cr(p1)/cr(p0).

Proof of Proposition 11: Let p ≡ [p1, . . .,pN] >> 0N. Ignoring 
the constraints q ≥ 0N, the first-order necessary (and suffi-
cient) conditions for q* >> 0N and λ* > 0 to solve the unit cost 
minimization problem defined by (96) are

pn = λ*∂f(q*)/∂qn = λ*αnf(q
*)/qn

*;  
 n = 1, . . .,N; (A61)
 1 = f(q*). (A62)

Substituting (A62) into (A61), we get the N equations pn = 
λ*αn/qn

* for n = 1, . . .,N which can be rearranged to give us 
the following equations:

 qn
* = λ*αn/pn; n = 1, . . .,N. (A63)

Now substitute equations (A63) into equation (A62) and 
using definition (94) for f, we get the following single equa-
tion involving λ*:

 1 = α0Πn=1
N [λ*an/pn]

αn (A64)
= λ*α0Πn=1

N [αn]
αn Πn=1

N [1/pn]
αn.

Therefore, we have the following expression for λ*:

λ* = [α0Πn=1
N [αn]

αn]–1 Πn=1
N  

 [pn]
αn = k Πn=1

N pn nα  > 0, (A65)

where the constant κ is defined as κ ≡ [α0Πn=1
N [αn]

αn]–1. Sub-
stitute λ* defined by (A65) back into equations (A63) and 
we obtain the q* solution to the cost minimization problem 
defined by (96):

 qn
* = κ [Πn=1

N pn nα ]αn/pn; n = 1, . . .,N. (A66)

Thus, the optimized objective function for (96) is equal to 
the following expression:

 c(p) = Σn=1
N pnqn

* (A67)
= Σn=1

N pnκ[Πn=1
N pn nα ]αn/pn using (A66)

= κ[Πn=1
N pn nα ][Σn=1

N αn]
= κ Πn=1

N pn nα  using (95).

Thus, c(p) is defined by (97).
Proof of Proposition 12: If r = 0, then the CES prefer-

ences collapse to Cobb–Douglas preferences, which will 
imply that s0 = s1, and thus the Sato vartia index collapses 
to the Konüs Byushgens index which was studied in Section 
9. Hence, we assume r ≠ 0 and define the consumer’s unit 
cost function by (108). Let p0 >> 0N, p1 >> 0N and define q0 
and q1 using Shephard’s Lemma, equations (109). We assume 
that q0 >> 0N and q1 >> 0N and hence the share vectors s0  
and s1 defined by equations (110) also satisfy s0 >> 0N and s1 
>> 0N. Given these positivity conditions, equations (110) can 
be rewritten as follows:

 Σn=1
N αn(pn

t)r = αi(pi
t)r/si

t; t = 0,1; i = 1, . . .,N. (A68)

By taking the logarithm of both sides of (A68) we obtain the 
following equations:

ln[Σn=1
N αn(pn

t)r] = lnαi + rlnpi
t – lnsi

t; t = 0,1;  
 i = 1, . . .,N. (A69)
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The consumer’s true cost of living index is c(p1)/c(p0) = α0 
[Σn=1

N αn (pn
1)r]1/r/α0 [Σn=1

N αn (pn
0)r]1/r, which equals [Σn=1

N αn 
(pn

1)r]1/r/[Σn=1
N αn (pn

0)r]1/r. Raising both sides of this equa-
tion to the power r and taking the logarithm of the resulting 
equation leads to the following equation:

ln{[c(p1)/c(p0)]r} = ln[Σn=1
N αn (pn

1)r]  
 – ln[Σn=1

N αn (pn
0)r]. (A70)

From (118), the logarithm of PSV(p0,p1,q0,q1)r is defined as 
follows:

ln{PSV(p0,p1,q0,q1)r} = rΣn=1
N wi

*[lnpi
1  

 – lnpi
0]/Σn=1

N wi
*, (A71)

where wi
* ≡ [si

1 – si
0]/[lnsi

1 – lnsi
0] if si

1 ≠ si
0 and wi

* ≡ si
0 if si

1 = 
si

0. Now equate (A71) to (A70) and after suitable rearrange-
ment, we obtain the following equation:

rΣn=1
N wi

*[lnpi
1 – lnpi

0] = Σn=1
N wi

*ln[Σn=1
N αn  

 (pn
1)r] – Σn=1

N wi
*ln[Σn=1

N αn (pn
0)r] (A72)

= Σn=1
N wi

*[lnαi + rlnpi
1 – lnsi

1] – Σn=1
N wi

*[lnαi + rlnpi
0 – lnsi

0] 
using (A69)

= rΣn=1
N wi

*[lnpi
1 – lnpi

0] – Σn=1
N wi

*[lnsi
1 – lnsi

0]

= rΣn=1
N wi

*[lnpi
1 – lnpi

0] – Σn=1
N [si

1 – si
0]

= rΣn=1
N wi

*[lnpi
1 – lnpi

0] since Σn=1
N si

1 = Σn=1
N si

0 = 1.

The last equality follows because if si
0 ≠ si

1, then wi
*[lnsi

1 – lnsi
0] 

= {[si
1 – si

0]/[lnsi
1 – lnsi

0]}[lnsi
1 – lnsi

0] = si
1 – si

0. If si
1 = si

0, then 
wi

* = si
0 but lnsi

1 – lnsi
0 = 0 so wi

*[lnsi
1 – lnsi

0] = 0 = si
1 – si

0. Thus, 
we have shown that ln{[c(p1)/c(p0)]r} = ln{PSV(p0,p1,q0,q1)r} and 
thus that c(p1)/c(p0) = PSV(p0,p1,q0,q1).

We note that the Sato vartia quantity index QSV(p0,p1,q0, 
q1) can be defined by interchanging prices and quantities in 
the definition of the Sato vartia price index; that is, define 
QSV(p0,p1,q0,q1) ≡ PSV(q0,q1,p0,p1). The aforementioned proof 
can be adapted to show that f(q1)/f(q0) = QSV(p0,p1,q0,q1), 
where f(q) is defined by (134). In order to prove this result, 
we require that s < 1 and s ≠ 0.
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ELEMENTARY INDICES* 6
1. Introduction
In all countries, the calculation of a CPI proceeds in two 
(or more) stages. In the first stage of calculation, elemen-
tary price indices are calculated for the elementary expen-
diture aggregates of a CPI. In the second and higher stages 
of aggregation, these elementary price indices are combined 
to obtain higher level indices using information on the 
expenditures on each elementary aggregate as weights. An 
elementary aggregate consists of the expenditures by a speci-
fied group of consumers on a relatively homogeneous set of 
products defined within the consumption classification used 
in the CPI.

At the first stage of aggregation, one of two possible situ-
ations can occur:

• Detailed price and quantity (or price and value) informa-
tion on all transacted products in the elementary aggre-
gate is available for the time period under consideration.1

• Price information is available only for the products in the 
aggregate under consideration. Moreover, the price infor-
mation may be collected only for a sample of the entire set 
of product prices that are in scope.

At higher levels of aggregation, typically price and quantity 
(or value) information is available. Thus, for higher levels 
of aggregation and for situations where detailed price and 
quantity information is available at the first stage of aggre-
gation, the materials in previous chapters can be applied; 
that is, Lowe, Laspeyres, Paasche, and Fisher indices can be 
used at higher levels of aggregation and at the elementary 
level if detailed price and quantity information is available. 
However, for situations where quantity or value informa-
tion is not available, most of the index number theory out-
lined in previous chapters is not directly applicable. In this 
case, an elementary price index relies only on price data. 
The situation where only price information is available 
will be the focus of this chapter. However, some elemen-
tary indices can be constructed using price and quantity (or 

1 With the increased availability of scanner data both for retail outlets 
and for individual consumers, the first situation is increasingly likely. 
Also it may be the case that the statistical office will have access to price 
and quantity data on deliveries to households from regulated electricity 
and telecom firms. In the annex to this chapter, we will use such a data 
set for the UK fixed-line telecom sector in order to show how the various 
elementary indices to be considered below perform in practice.

expenditure) data, and so some attention will be paid to this 
situation as well.2

The question of what is the most appropriate formula to 
use to construct an elementary price index is considered in 
this chapter.3 The quality of a CPI depends heavily on the 
quality of the first stage of aggregation elementary indices, 
which are the basic building blocks from which CPIs are 
constructed.

CPI compilers have to select representative products within 
an elementary aggregate and then collect a sample of prices 
for each of the representative products, usually from a sam-
ple of different outlets. The individual products whose prices 
are actually collected are described as the sampled products. 
Their prices are collected over successive time periods. An 
elementary price index is therefore typically calculated from 
two sets of matched price observations. In this chapter, we 
will assume that there are no missing observations and no 
changes in the quality of the products sampled so that the 
two sets of prices are perfectly matched. In the following 
chapter, we will consider alternative strategies when there 
are multiple time periods and missing observations; that 
is, in Chapter 7, we will discuss multilateral index number 
theory. In Chapter 8, the treatment of new and disappearing 
goods and services and the related problems associated with 
measuring quality change will be discussed.

Before we define the elementary indices used in practice, 
we will first consider in Section 2 what a suitable definition 
for an ideal elementary index is. An ideal index will make 
use of expenditure data (as well as price data) even though 
it cannot always be implemented in practice due to lack of 
expenditure and quantity data. The problems involved in 
aggregating transaction prices for the same product over 
time are also discussed in this section. In general, the dis-
cussion in Section 2 provides a theoretical target index that 
uses both price and quantity information. “Practical” ele-
mentary price indices that are constructed using only infor-
mation on prices will be discussed in subsequent sections.

Section 3 provides some additional discussion about the 
problems involved in picking a suitable level of disaggrega-
tion for the elementary aggregates. Should the elementary 
aggregates have a regional dimension in addition to a prod-
uct dimension? Should prices be collected from retail outlets 
or from households? These are the types of questions dis-
cussed in this section.

Section 4 introduces the main elementary index formu-
lae that are used in practice, and Section 5 develops some 

2 Thus, scanner data are increasingly applied at the elementary level by 
national statistical agencies. The use of scanner data can lead to chain 
drift problems, which will be addressed in the following chapter.
3 The material in this chapter draws heavily on the contributions of Dalén 
(1992), Balk (1994) (2002) (2008), and Diewert (1995) (2002).

* This chapter draws heavily on Chapter 20 of the Consumer Price Index 
Manual; see ILO, IMF, OECD, UNECE, Eurostat, World Bank (2004; 
355–371). The author thanks Elizabeth Abraham, Carsten Boldsen, Yuri 
Dikhanov, Kevin Fox, Heidi Ertl, Robert Hill, Ronald Johnson, Claude 
Lamboray, Cindy MacDonald, Marshall Reinsdorf, Mark Ruddock, 
Chihiro Shimizu, Mick Silver, Jasmin Whelan, and Grant Yake for their 
helpful comments.
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elementary aggregate for the two time periods under consid-
eration is available. This assumption allows us to define an 
ideal elementary aggregate. Subsequent sections will relax 
this strong assumption about the availability of detailed 
price and quantity data on transactions, but in any case, it is 
useful to have a theoretically ideal target for the “practical” 
elementary index.

The detailed price and quantity data, although perhaps 
not available to the statistician, are, in principle, available 
in the outside world. It is frequently the case that at the 
respondent level (that is, at the outlet or firm level), some 
aggregation of the individual transaction information has 
been executed, usually in a form that suits the respondent’s 
financial or management information system. This respon-
dent-determined level of information could be called the 
basic information level. This is, however, not necessarily the 
finest level of information that could be made available to 
the price statistician. One could always ask the respondent 
to provide more disaggregated information. For instance, 
instead of monthly data one could ask for weekly data; or, 
whenever appropriate, one could ask for regional instead of 
global data; or, one could ask for data according to a finer 
product classification. The only natural barrier to further 
disaggregation is the individual transaction level.4

It is now necessary to discuss a problem5 that arises when 
detailed data on individual transactions are available, either 
at the level of the individual household or at the level of an 
individual outlet. Recall that in previous chapters, the price 
and quantity indices, P(p0,p1,q0,q1) and Q(p0,p1,q0,q1), were 
introduced. These (bilateral) price and quantity indices  
decomposed the value ratio V1/V0 into a price change part 
P(p0,p1,q0,q1) and a quantity change part Q(p0,p1,q0,q1). In 
this framework, it was taken for granted that the period t 
price and quantity for product i, pi

t, and qi
t were well defined.6 

However, these definitions are not straightforward since 
individual consumers may purchase the same item during 
period t at different prices. Similarly, if we look at the sales of 
a particular shop or outlet that sells to consumers, the same 
item may sell at very different prices during the course of the 
period. Hence, before a traditional bilateral price index of 
the form P(p0,p1,q0,q1) considered in previous chapters can 
be applied, there is a nontrivial time aggregation problem 
that must be solved in order to obtain the basic prices pi

t and 
qi

t which are the components of the price vectors p0 and p1 
and the quantity vectors q0 and q1.

Walsh7 and Davies (1924) (1932) suggested a solution to 
this time aggregation problem: the appropriate quantity at 

4 The material in this section is based on Balk (1994).
5 This time aggregation problem was discussed briefly in Chapter 2.
6 Note that the period of time t could represent any period of time: a quar-
ter, a month, a week, a day, or an hour.
7 Walsh explained his reasoning as follows: “Of all the prices reported of 
the same kind of article, the average to be drawn is the arithmetic; and the 
prices should be weighted according to the relative mass quantities that 
were sold at them” (Correa Moylan Walsh (1901; 96)). “Some nice ques-
tions arise as to whether only what is consumed in the country, or only 
what is produced in it, or both together are to be counted; and also there 
are difficulties as to the single price quotation that is to be given at each 
period to each commodity, since this, too, must be an average. Through-
out the country during the period a commodity is not sold at one price, 
nor even at one wholesale price in its principal market. various quantities 

numerical relationships between the various “practical” 
indices. These relationships will be illustrated for a particu-
lar data set in Annex A to this chapter.

Section 6 develops the axiomatic or test approach to 
bilateral elementary indices when only price information is 
available.

Section 7 contains some material on the importance of 
the time reversal test.

Section 8 concludes with an overview of the various 
results.

Annex A looks at the problems that arise when house-
holds have to pay a fixed fee to gain access to various prod-
ucts or services that a firm sells. For the most part, these 
access fees are not very large, so their treatment in a CPI 
does not make a material difference. However, in the case 
of telecommunication services, alternative treatments 
of access fees lead to very different price (and quantity) 
indices, as will be seen in the annex. Also, as mentioned 
earlier, the numerical relationships between the various 
elementary indices that are developed in Section 5 will be 
illustrated in Annex A with actual telecom data from the 
United Kingdom.

Annex B lists the objections to the use of the Carli index 
made by Robert Hill in his testimony to the UK House of 
Lords on the use of the Carli index in the UK’s Retail Price 
Index.

2. Ideal Elementary Indices
The aggregates covered by a CPI are usually arranged in the 
form of a tree-like hierarchy, such as the Classification of 
Individual Consumption by Purpose (COICOP). An aggre-
gate is a set of economic transactions pertaining to a set of 
products and a set of economic agents over a specified time 
period. Every economic transaction relates to the change of 
ownership of a specific, well-defined product (good or ser-
vice) at a particular place and date and comes with a quan-
tity and a price. A price index for an aggregate is typically 
calculated as a weighted average of the price indices for the 
subaggregates, the (expenditure or sales) weights, and type 
of average being determined by the index formula. One can 
descend in such a hierarchy as far as available informa-
tion allows the weights to be decomposed. The lowest level 
aggregates are called elementary aggregates. They are basi-
cally of two types:

• Those for which all detailed price and quantity informa-
tion is available

• Those for which the statistician, considering the opera-
tional cost and the response burden of getting detailed 
price and quantity information about all the transactions, 
decides to make use of a representative sample of prod-
ucts and respondents

As indicated earlier, the practical relevance of studying 
this topic is large. Since the elementary aggregates form 
the building blocks of a CPI, the choice of an inappropriate 
formula at this level can have a tremendous impact on the 
overall index.

In this section, it will be assumed that detailed price and 
quantity information for all transactions pertaining to the 
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so it will not matter very much which of these alternative 
indices is chosen.9 Hence, the theoretically ideal elementary 
index number formula is taken to be one of the three formu-
lae PF(p0,p1,q0,q1), PW(p0,p1,q0,q1), or PT(p0,p1,q0,q1), where the 
period t quantity of item n, qn

t, is the total quantity of that 
narrowly defined item purchased by the household during 
period t (or sold by the outlet during period t), and the cor-
responding price for item n is pn

t, the time aggregated unit 
value, for t = 0,1 and for items n = 1,2,. . .,N.

In the following sections, various “practical” elemen-
tary price indices will be defined. These indices do not have 
quantity weights and thus are functions only of the price 
vectors p0 and p1. Thus, when a practical elementary index 
number formula, say PE(p0,p1), is compared to an ideal ele-
mentary price index, say the Fisher price index PF(p0,p1,q0, 
q1), then obviously PE will differ from PF because the prices 
are not weighted according to their economic importance in 
the practical elementary formula. It is useful to list the fol-
lowing possible sources of difference between a practical 
elementary price index PE(p0,p1) and an ideal target index:

• Weighting bias or, more generally, formula bias—that is, 
a price index of the form PE(p0,p1)—is not able to weight 
prices according to the economic importance of the prod-
uct in the consumer’s total expenditures on the group of 
products under consideration.10

• Sampling bias—that is, the statistical agency may not be 
able to collect information on all N products in the ele-
mentary aggregate—that is, only a sample of the N prices 
may be collected.11

• Time aggregation bias—that is, even if a price for a nar-
rowly defined item is collected by the statistical agency, it 
may not be equal to the theoretically appropriate time-
aggregated unit value price.12

• Item aggregation bias or unit value bias. The statistical 
agency may classify certain distinct products as being 
essentially equivalent, and thus the unit value aggregate 
for this group of aggregated products may not take into 
account possible significant quality differences in the 
group of aggregated products. For example, products 
that are thought to be very similar and are sold in the 
same units of measurement could be treated as a single 
product.13

9 Theorem 5 in Diewert (1978; 888) showed that PF, PT, and PW will 
approximate each other to the second order around an equal price and 
quantity point. However, if there are violent fluctuations in prices and 
quantities, a second-order approximation to any one of these formulae 
may not be very accurate.
10 For materials on how to measure formula bias, see Diewert (1998), 
White (1999) (2000), and Chapter 7.
11 This is a specialized topic with a long history. It will not be covered in 
this volume.
12 Many statistical agencies send price collectors to various outlets on cer-
tain days of the month to collect list prices of individual items. Usually, 
price collectors do not work on weekends when many sales take place, 
and thus the collected prices may not be fully representative of all trans-
actions that occur. Thus, these collected prices can be regarded only as 
approximations to the time aggregated unit values for those items.
13 For materials on unit value bias, see Diewert and von der Lippe (2010) 
and Silver (2010) (2011) and the additional references in these papers.

this very first stage of aggregation is the total quantity pur-
chased of the narrowly defined item and the corresponding 
price is the value of purchases of this item divided by the 
total amount purchased, which is a narrowly defined unit 
value. In more recent times, most researchers have adopted 
the Walsh and Davies solution to the time aggregation prob-
lem.8 Note that this solution to the time aggregation prob-
lem has the following advantages:

• The quantity aggregate is intuitively plausible, being the 
total quantity of the narrowly defined item purchased 
by the household (or sold by the outlet) during the time 
period under consideration.

• The product of the price times quantity equals the total 
value purchased by the household (or sold by the outlet) 
during the time period under consideration.

We will adopt this solution to the time aggregation problem 
as our concept for the price and quantity at this preliminary 
stage of aggregation.

Having decided on an appropriate theoretical definition 
of price and quantity for an item at the very lowest level of 
aggregation (that is, a narrowly defined unit value and the 
total quantity sold of that item at the individual outlet), 
we now consider how to aggregate these narrowly defined 
elementary prices and quantities into an overall elementary 
aggregate. Suppose that there are N lowest level items or spe-
cific products in this chosen elementary category. Denote the 
period t quantity of item n by qn

t and the corresponding time-
aggregated unit value price by pn

t for t = 0,1 and for items  
n = 1,2,. . .,N. Define the period t quantity and price vectors 
as qt ≡ [q1

t,q2
t,. . .,qN

t] and pt ≡ [p1
t,p2

t,. . .,pN
t] for t = 0,1. It is 

now necessary to choose a theoretically ideal index number 
formula P(p0,p1,q0,q1) that will aggregate the individual item 
prices into an overall aggregate price relative to the N items 
in the chosen elementary aggregate. However, this problem 
of choosing a functional form for P(p0,p1,q0,q1) is identical 
to the overall index number problem that was addressed in 
previous chapters. In the previous chapters, four different 
approaches to index number theory were studied that led to 
specific index number formulae as being “best” from each 
perspective. From the viewpoint of fixed basket approaches, 
it was found that the Fisher (1922) and Walsh (1901) price 
indices, PF and PW, appeared to be the “best.” From the 
viewpoint of the test approach, the Fisher index appeared to 
be the “best.” From the viewpoint of the stochastic approach 
to index number theory, the Törnqvist–Theil index num-
ber formula PT was considered as the “best.” Finally, from 
the viewpoint of the economic approach to index number 
theory, the Walsh price index PW, the Fisher ideal index PF, 
and the Törnqvist–Theil index number formula PT were all 
regarded as equally desirable. It was also shown that the 
same three index number formulae numerically approxi-
mate each other very closely under certain conditions, and 

of it are sold at different prices, and the full value is obtained by adding 
all the sums spent (at the same stage in its advance toward the consumer), 
and the average price is found by dividing the total sum (or the full value) 
by the total quantities” (Correa Moylan Walsh (1921a; 88)).
8 See, for example, Szulc (1987; 13), Dalén (1992; 135), Reinsdorf (1994), 
Diewert (1995; 20–21), Reinsdorf and Moulton (1997), and Balk (2002).
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Each of the aforementioned dimensions for choosing the 
domain of definition for an elementary aggregate will be 
discussed in turn.

As the time period is compressed, several problems 
emerge:

• Purchases (by households) and sales (by outlets) become 
erratic and sporadic. Thus, the frequency of unmatched 
purchases or sales from one period to the next increases 
and in the limit (choose the time period to be one min-
ute), nothing will be matched, and bilateral index number 
theory fails at the individual consumer level.17

• As the time period becomes shorter, chained indices 
exhibit more “drift”; that is, if the data at the end of a 
chain of periods reverts to the data in the initial period, 
the chained index does not revert back to unity. As was 
discussed in Section 8 of Chapter 2, it is only appropri-
ate to use chained indices when the underlying price and 
quantity data exhibit relatively smooth trends. When the 
time period is short, seasonal fluctuations18 and periodic 
sales and advertising campaigns19 can cause prices and 
quantities to oscillate (or “bounce” to use Szulc’s (1983; 
548) term), and hence it is not appropriate to use chained 
indices under these circumstances. If Fixed-Base indi-
ces are used in this short time period situation, then the 
results will usually depend very strongly on the choice of 
the base period. In the seasonal context, not all products 
may even be in the marketplace during the chosen base 
period.20 All of these problems can be mitigated by choos-
ing a longer time period so that trends in the data will 
tend to dominate the short-term fluctuations.

• As the time period contracts, virtually all goods become 
durable, in the sense that they yield services not only for 
the period of purchase but for subsequent periods. Thus, 
the period of purchase or acquisition becomes different 
from the periods of use, leading to many complications.21

• As the time period contracts, users will usually not be par-
ticularly interested in the short-term fluctuations of the 
resulting index, and there will be demands for smoothing 
the necessarily erratic results. Put another way, users will 
desire a way of summarizing the weekly or daily move-
ments in the index into monthly or quarterly movements 
in prices. Hence, from the viewpoint of meeting the needs 

17 This problem was noted in Section 19 of Chapter 5. David Richardson 
(2003; 51) also made this point: “Defining items with a finer granularity, 
as is the case if quotes in different weeks are treated as separate items, 
results in more missing data and more imputations.” However, high-fre-
quency CPIs could be successfully constructed if aggregation over house-
holds or outlets is permitted.
18 See Chapter 9 for a monthly seasonal example where chained month-to-
month indices exhibit significant drift.
19 See Feenstra and Shapiro (2003) for an example of a weekly superla-
tive index that exhibits massive chain drift. Substantial chain drift can 
also occur using monthly indices; see Szulc (1983) (1987). See Richardson 
(2003; 50–51) and Ivancic, Diewert, and Fox (2011) for additional discus-
sions of the issues involved in choosing weekly unit values versus monthly 
unit values.
20 See Chapter 9 for suggested solutions to these seasonality problems.
21 See Chapter 10 for more material on the possible CPI treatment of 
durable goods.

• Aggregation over agents or aggregation over entities bias 
or aggregation over outlets bias. The unit value for a par-
ticular item may be constructed by aggregating overall 
households in a region or a certain demographic class or 
by aggregating overall outlets or shops that sell the item 
in a particular region.14

• New and disappearing products bias—that is, PE(p0,p1) 
measures price change only over matched products for 
the two periods being compared; new products and dis-
appearing products are ignored in standard elementary 
indices that depend only on prices.15

Approximations to the numerical differences between vari-
ous elementary indices of the form PE(p0,p1) and various 
superlative indices will be developed in Chapter 7.

In the following section, the problems of aggregation and 
classification will be discussed in more detail.

3.  Aggregation and Classification 
Problems for Elementary 
Aggregates
Hawkes and Piotrowski (2003) noted that the definition of 
an elementary aggregate involves aggregation over four pos-
sible dimensions:16

• A time dimension—that is, the item unit value could be 
calculated for all item transactions for a year, a month, a 
week, or a day.

• A spatial dimension—that is, the item unit value could be 
calculated for all item transactions in the country, prov-
ince, state, city, neighborhood, or individual location.

• A product dimension—that is, the item unit value could 
be calculated for all item transactions in a broad general 
category (for example, food), in a more specific category 
(for example, margarine), for a particular brand (ignoring 
package size), or for a particular narrowly defined item 
(for example, a particular AC Nielsen universal product 
code).

• A sectoral (or entity or economic agent) dimension—that 
is, the item unit value could be calculated for a particular 
class of households or a particular class of outlets.

14 For materials on possible methods to measure outlet substitution bias, 
see Diewert (1998). The problems associated with measuring aggregation 
over consumers’ bias were noted in the final sections of Chapter 5.
15 This problem was addressed in Section 14 of Chapter 5. It will be 
addressed in more detail in Chapters 7 and 8.
16 Hawkes and Piotrowski (2003; 31) combined the spatial and sectoral 
dimensions into the spatial dimension. They also acknowledged the pio-
neering work of Theil (1954), who identified three dimensions of aggre-
gation: aggregation over individuals, aggregation over products, and 
aggregation over time. It should be noted that William Hawkes was a 
pioneer in realizing the importance of scanner data for the construction 
of CPIs; see Hawkes (1997). Other important contributors include Reins-
dorf (1996), Silver (1995), Silver and Heravi (2001) (2003) (2005), de Haan 
and van der Grient (2011), Ivancic, Diewert, and Fox (2011), and de Haan 
and Krsinich (2014).
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period to the same item in the current period. Hence, the 
finer the product classification, the smaller will be the num-
ber of matched price comparisons that are possible.25 This 
would not be a problem if the unmatched prices followed 
the same trend as the matched ones in a particular elemen-
tary aggregate, but in at least some circumstances, this will 
not be the case.26 Thus, the finer the classification system 
is, the more work (in principle) there will be for the statis-
tical agency to quality adjust or impute the prices that do 
not match. Choosing a relatively coarse classification system 
can lead to a very cost-efficient system of quality adjustment 
(that is, essentially no explicit quality adjustment or imputa-
tion is done for the prices that do not exactly match), but it 
may not be very accurate. The statistical agency will have 
to balance the theoretical purity of a very fine classification 
system with the possible loss of product matches.

The final issue in choosing a classification scheme is the 
issue of choosing a sectoral dimension; that is, should the 
unit value for a particular item be calculated for a particular 
outlet or a particular household or for a class of outlets or 
households? Before this question can be answered, it is nec-
essary to ask whether the individual outlet or the individual 
household is the appropriate finest level of entity classifi-
cation. If the economic approach to the CPI is taken, then 
the individual household is the appropriate finest level of 
entity classification.27 However, if the time period is short, a 
single household will not work very well as the basic unit 
of entity observation due to the sporadic nature of many 
purchases by an individual household; that is, there will 
be tremendous difficulties in matching prices across peri-
ods for individual households. However, for a grouping 
of “similar” households that is sufficiently large, it does 
become feasible in theory to use the grouped household as 
the entity classification rather than the outlet as is usually 
done. This is not usually done because of the costs and 
difficulties involved in collecting individual household 
data on prices and expenditures.28 Thus, price information 
is usually collected from retail establishments or outlets that 
sell mainly to households. Matching problems are mitigated 

25 This is part of the matching problem discussed at the end of Chapter 5.
26 Silver and Heravi (2001) (2003; 286) (2005) and Koskimäki and vartia 
(2001) stressed this point and presented empirical evidence to back up 
their point. Feenstra (1994) and Balk (2000) used the assumption of CES 
preferences to deal with the new products problem. Their approaches will 
be discussed in Chapter 8.
27 This point has been made emphatically by two authors in a book on 
scanner data and price indices: “In any case, unit values across stores 
are not the prices actually faced by households and do not represent the 
per period price in the COLI, even if the unit values are grouped by type 
of retail outlet” (Jack E. Triplett (2003; 153–154)). “Furthermore, note 
that the relationship being estimated is not a proper consumer demand 
function but rather an ‘establishment sales function.’ Only after making 
further assumptions – for example, fixing the distribution of consumers 
across establishments – is it permissible to jump to demand functions” 
(Eduardo Ley (2003; 380)).
28 However, it is possible to collect accurate household data in certain cir-
cumstances; see Gudnason (2003), who pioneered a receipts methodology 
for collecting household price and expenditure data in Iceland. Also, in 
the future, as monetary transactions are replaced by debit and credit card 
transactions, it will become possible to construct individual household 
estimates of real consumption, provided that product codes are included 
in the transaction records.

of users, there may be relatively little demand for high-
frequency indices.

In view of these considerations, it is recommended that the 
index number time period be at least four consecutive weeks 
or a month.22

It is also necessary to choose the spatial dimension of 
the elementary aggregate. Should item prices in each city 
or region be considered as separate aggregates, or should 
a national item aggregate be constructed? Obviously, if it is 
desired to have regional CPIs that aggregate up to a national 
CPI, then it will be necessary to collect item prices by region. 
However, it is not clear how fine the “regions” should be. It 
could be as fine as a grouping of households in a postal code 
or to individual outlets across the country.23 There does not 
seem to be a clear consensus on what the optimal degree of 
spatial disaggregation should be.24 Each statistical agency 
will have to make its own judgments on this matter, taking 
into account the costs of data collection and the demands of 
users for a spatial dimension for the CPI.

How detailed should the product dimension be? The pos-
sibilities range from regarding all products in a general cat-
egory as being equivalent to the other extreme, where only 
a product in a particular package size made by a particu-
lar manufacturer or service provider is regarded as being 
equivalent. All things being equal, Triplett (2004) stressed 
the advantages of matching products at the most detailed 
level possible, since this will prevent quality differences 
from clouding the period-to-period price comparisons. This 
is sensible advice, but then what are the drawbacks to work-
ing with the finest possible product classification? The major 
drawback is that the finer the classification is, the more diffi-
cult it will be to match the item purchased or sold in the base 

22 If there is very high inflation in the economy (or even hyperinflation), 
then it may be necessary to move to weekly or even daily indices. Also, 
it should be noted that some index number theorists feel that new theo-
ries of consumer behavior should be developed that could utilize weekly 
or daily data: “Some studies have endorsed unit values to reduce high 
frequency price variation, but this implicitly assumes that the high fre-
quency variation represents simply noise in the data and is not meaning-
ful in the context of a COLI. That is debatable. We need to develop a 
theory that confronts the data, not truncate the data to fit the theory” 
(Jack E. Triplett (2003; 153)). However, until such new theories are ade-
quately developed, it seems pragmatic to define the item unit values over 
months or quarters rather than days or weeks.
23 Iceland no longer uses regional weights but uses individual outlets as 
the primary geographical unit; see Gudnason (2003; 18).
24 Hawkes and Piotrowski note that it is quite acceptable to use national 
elementary aggregates when making international comparisons between 
countries: “When we try to compare egg prices across geography, how-
ever, we find that lacing across outlets won’t work, because the eyelets on 
one side of the shoe (or outlets on one side of the river) don’t match up 
with those on the other side. Thus, in making interspatial comparisons, 
we have no choice but to aggregate outlets all the way up to the regional 
(or, in the case of purchasing power parities, national) level. We have no 
hesitation about doing this for interspatial comparisons, but we are reluc-
tant to do so for intertemporal ones. Why is this?” William J. Hawkes and 
Frank W. Piotrowski (2003; 31–32). An answer to their question is that it 
is preferable to match like with like as closely as possible, which leads 
statisticians to prefer the finest possible level of aggregation, which, in the 
case of intertemporal comparisons, would be the individual household 
or the individual outlet. However, in making cross-region comparisons, 
matching is not possible unless regional item aggregates are formed, as 
Hawkes and Piotrowski pointed out earlier.
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using this strategy (but not eliminated) because the retail 
outlet generally sells the same items on a continuing basis.

If expenditures by all households in a region are aggre-
gated together, will they equal sales by the retail outlets in 
the region? Under certain conditions, the answer to this 
question is yes. The conditions are that the outlets do not 
sell any items to purchasers who are not local households 
(no regional exports or sales to local businesses or govern-
ments), and that the regional households do not make any 
purchases of consumption items other than from the local 
outlets (no household imports or transfers of products to 
local households by governments). Obviously, these restric-
tive conditions will not be met in practice, but they may hold 
as a first approximation.

The effects of regional aggregation and product aggrega-
tion can be examined owing to a study by Koskimäki and 
Ylä-Jarkko (2003). This study utilized scanner data for the 
last week in September 1998 and September 2000 on but-
ter, margarine, and other vegetable fats, vegetable oils, soft 
drinks, fruit juices, and detergents. This information was 
provided by the AC Nielsen company for Finland. At the 
finest level of item classification (the AC Nielsen Universal 
Product Code), the number of individual items in the sample 
was 1,028. The total number of outlets in the sample was 
338. Koskimäki and Ylä-Jarkko considered four levels of 
spatial disaggregation:

• The entire country (1 level)
• Provinces (4 levels)
• AC Nielsen regions (15 levels)
• Individual outlets (338 levels)

They also considered four levels of product disaggregation:

• The COICOP 5-digit classification (6 levels)
• The COICOP 7-digit classification (26 levels)
• The AC Nielsen brand classification (266 levels)
• The AC Nielsen individual Universal Product Code (1,028 

distinct products)

In order to illustrate the ability to match products over the 
two-year period as a function of the degree of fineness of 
the classification, Koskimäki and Ylä-Jarkko (2003; 10) pre-
sented a table that shows that the proportion of transactions 
that could be matched across the two years fell steadily as 
the fineness of the classification scheme increased. At the 
highest level of aggregation (the national and COICOP 5 
digit), all transactions could be matched over the two-year 
period, but at the finest level of aggregation (338 outlets 
times 1,028 individual products or 347,464 classification 
cells in all), only 61.7 percent of the value of transactions 

in 2000 could be matched back to their 1998 counterparts. 
Their Table 7 is reproduced as Table 6.1 here.

For each of these 16 levels of product and regional disag-
gregation, for the products that were available in Septem-
ber of 1998 and 2000, Koskimäki and Ylä-Jarkko (2003; 9) 
calculated Laspeyres and Fisher price indices. They found 
substantial differences in these indices as the degree of dis-
aggregation increased.

Another study on the effects of alternative methods of 
unit value aggregation over outlets (that is, treat each unit 
value for each product in each store as a unique product ver-
sus aggregating products over stores and chains) was con-
ducted by Ivancic and Fox (2013). They used 65 weeks of 
scanner data on the sales of different types of instant coffee 
sold by four supermarket chains in Australia in 110 stores. 
The data were collected between February 1997 and April 
1998. They contain information on 110 stores that belong to 
four supermarket chains located in the metropolitan area 
of one of the major capital cities in Australia. These stores 
accounted for over 80 percent of grocery sales in the vari-
ous capital cities of Australia during this period. After data 
exclusions, 436,103 weekly observations on 157 coffee items 
were used in their study.29 Their results on alternative meth-
ods of aggregation can be summarized as follows:

The results show that when non-superlative index 
numbers are used to calculate price change, aggrega-
tion choices can have a huge impact. However, the 
issue of aggregation seems to become relatively trivial 
when the standard Fisher and Törnqvist superlative 
indices are used, with an extremely close range of es-
timates of price change found across different aggre-
gation methods. This result seems to provide further 
support for the use of these superlative indices over the 
use of non-superlative indices to estimate price change. 

Lorraine Ivancic and Kevin J. Fox (2013; 643)

The non-superlative index numbers30 were chained Laspey-
res and Paasche indices, and the superlative indices were 
chained Fisher and Törnqvist–Theil indices.

Thus, the problem of determining the “best” unit value to 
insert into an index number formula is far from settled. We 
will look at this problem again in Chapter 11.

Another issue that arises in the context of defining exactly 
what prices and quantities should be entered into an index 
number formula is the following one: Should statistical 

29 Their paper also lists some related studies.
30 The weekly unit values by product were aggregated into monthly unit 
values.

Table 6.1 Proportion of Transactions in 2000 That Could Be Matched to 1998
  COICOP COICOP AC Nielsen AC Nielsen

  5 digit 7 digit Brand UPC
Country 1.000 1.000 0.982 0.801
Province 1.000 1.000 0.975 0.774
AC Nielsen Region 1.000 1.000 0.969 0.755
Individual Outlet 0.904 0.904 0.846 0.617
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agencies exclude sale prices? In general, this is not a recom-
mended practice since very large amounts of a product can 
be sold at a sale price. Fox and Syed (2016; 404) found that 
the exclusion of sale prices can introduce a substantial bias. 
They also found that even when sale prices are included, they 
are systematically underweighted, but the underweighting 
remains fairly stable over time so that inflation measure-
ment is not significantly affected. They also found evidence 
that the typical practice of using data from an incomplete 
period in constructing unit values can lead to an upward 
bias in the resulting price index.31

4. Some Elementary Indices 
That Have Been Suggested Over 
the Years
Suppose that there are N products in a chosen elementary 
category. Denote the period t price of item n by pn

t for t = 
0,1 and for items n = 1,2,. . .,N. As usual, define the period t 
price vector as pt ≡ [p1

t,p2
t,. . .,pN

t] for t = 0,1.
The first simple elementary index number formula was 

derived by the French economist Dutot (1738):

PD(p0,p1) ≡ [Σn=1
N (1/N) pn

1]/[Σn=1
N (1/N) pn

0]  
 = [Σn=1

N pn
1]/[Σn=1

N pn
0] = p1·1N/p0·1N. (1)

Thus, the Dutot elementary price index is equal to the arith-
metic average of the N period 1 prices divided by the arith-
metic average of the N period 0 prices.

The second simple elementary index number formula was 
developed by the Italian economist Carli (1764):

 PC(p0,p1) ≡ Σn=1
N (1/N)(pn

1/pn
0). (2)

Thus, the Carli elementary price index is equal to the arith-
metic average of the N item price ratios or price relatives, 
pn

1/pn
0. This formula was already encountered in our study 

of the unweighted stochastic approach to index numbers; 
recall definition (2) in Chapter 4.

The third simple elementary index number formula was 
introduced by the English economist Jevons (1865):

 PJ(p0,p1) ≡ Πn=1
N (pn

1/pn
0)1/N. (3)

Thus, the Jevons elementary price index is equal to the geo-
metric average of the N item price ratios or price relatives, 
pn

1/pn
0. Again, this formula was introduced as formula (4) 

in our discussion of the unweighted stochastic approach to 
index number theory in Chapter 4.

The fourth elementary index number formula PH is the 
harmonic average of the N item price relatives, and it was 
first suggested in passing as an index number formula by 
Jevons (1865; 121) and Coggeshall (1887):

 PH(p0,p1) ≡ [Σn=1
N (1/N)(pn

1/pn
0)–1]–1. (4)

31 Diewert, Fox, and de Haan (2016) also found this effect. The direction 
of this bias may be due to an increasing frequency of end-of-month or 
quarter sales.

Finally, the fifth elementary index number formula is the 
geometric average of the Carli and harmonic formulae; that 
is, it is the geometric mean of the arithmetic and harmonic 
means of the N price relatives:

 PCSWD(p0,p1) ≡ [PC(p0,p1) PH(p0,p1)]1/2. (5)

This index number formula was first suggested by Fisher 
(1922; 472) as his formula 101. Fisher also observed that, 
empirically for his data set, PCSWD was very close to the Jevons 
index, PJ, and these two indices were his “best’ unweighted 
index number formulae. In more recent times, Carruthers, 
Sellwood, and Ward (1980; 25) and Dalén (1992; 140) also 
proposed PCSWD as an elementary index number formula.

It should be noted that the Jevons index is now the most 
commonly used elementary index (when only price informa-
tion is available). The Dutot and Carli formulae are used by 
a few statistical agencies.

Having defined the most commonly used elementary for-
mulae, the question now arises: Which formula is the “best”? 
Obviously, this question cannot be answered until desirable 
properties for elementary indices are developed. This will 
be done in a systematic manner in Section 6 (using the test 
approach), but in the present section, one desirable property 
for an elementary index will be noted. This is the time rever-
sal test, which was noted earlier in Chapters 2 and 3. In the 
present context, this test for the elementary index P(p0,p1) 
becomes

 P(p0,p1)P(p1,p0) = 1. (6)

This test says that if the prices in period 2 revert to the ini-
tial prices of period 0, then the product of the price change 
going from period 0 to 1, P(p0,p1), times the price change 
going from period 1 to 2, P(p1,p0), should equal unity; that 
is, under the stated conditions, we should end up where we 
started.32 It can be verified that the Dutot, Jevons, and Car-
ruthers, Sellwood, Ward, and Dalén indices, PD, PJ, and 
PCSWD, all satisfy the time reversal test but that the Carli and 
Harmonic indices, PC and PH, fail this test. In fact, these last 
two indices fail the test in the following biased manner:

 PC(p0,p1) PC(p1,p0) ≥ 1, (7)
 PH(p0,p1) PH(p1,p0) ≤ 1, (8)

with strict inequalities holding in (7) and (8) provided 
that the period 1 price vector p1 is not proportional to the 
period 0 price vector p0.33 Thus, the Carli index will gener-
ally have an upward bias, while the harmonic index will gen-
erally have a downward bias. Fisher (1922; 66 and 383) was 
quite definite in his condemnation of  the Carli index due to 
its upward bias.34 Because it fails the time reversal test, the 

32 This test can also be viewed as a special case of Walsh’s (1901) multipe-
riod identity test (63) in Chapter 2.
33 These inequalities follow from the fact that a harmonic mean of N positive 
numbers is always equal to or less than the corresponding arithmetic mean; 
see Walsh (1901;517) or Fisher (1922; 383–384). This inequality is a special 
case of Schlömilch’s Inequality; see Hardy, Littlewood, and Pólya (1934; 26).
34 See also Szulc (1987; 12) and Dalén (1992; 139). Dalén (1994; 150–151) 
provided some nice intuitive explanations for the upward bias of the Carli 
index.
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Carli index is not used in compiling elementary price indi-
ces for the HICP, which is the official Eurostat index used 
to compare consumer prices across the European Union 
countries.

In the following section, some numerical relationships 
between the five elementary indices defined in this section will 
be established. Then in the subsequent section, a more com-
prehensive list of desirable properties for elementary indices 
will be developed and the five elementary formulae will be 
evaluated in the light of these properties or tests.

5. Numerical Relationships between 
Some Elementary Indices
It can be shown35 that the Carli, Jevons, and Harmonic ele-
mentary price indices satisfy the following inequalities:

 PH(p0,p1) ≤ PJ(p0,p1) ≤ PC(p0,p1);  (9)

that is, the Harmonic index is always equal to or less than 
the Jevons index, which in turn is always equal to or less 
than the Carli index. In fact, the strict inequalities in (9) will 
hold provided that the period 0 vector of prices, p0, is not 
proportional to the period 1 vector of prices, p1.

The inequalities (9) do not tell us by how much the Carli 
index will exceed the Jevons index and by how much the 
Jevons index will exceed the Harmonic index. Hence, in the 
remainder of this section, some approximate relationships 
between the five indices defined in the previous section will 
be developed that will provide some practical guidance on the 
relative magnitudes of each of the indices.

The first approximate relationship that will be derived is 
between the Jevons index PJ and the Dutot index PD. For 
each period t, define the arithmetic mean of the N prices per-
taining to that period as follows:

 pt* ≡ Σn=1
N (1/N) pn

t; t = 0,1. (10)

Now define (implicitly) the multiplicative deviation of the nth 
price in period t relative to the mean price in that period, 
en

t, as follows:

 pn
t = pt*(1 + en

t); n = 1,. . .,N; t = 0,1. (11)

Note that (10) and (11) imply that the deviations en
t sum to 0 

in each period; that is, we have

 Σn=1
N en

t = 0; t = 0,1. (12)

Note that the Dutot index can be written as the ratio of the 
mean prices, p1*/p0*; that is, we have

 PD(p0,p1) = p1*/p0*. (13)

35 Each of the three indices PH, PJ, and PC is a mean of order r, where 
r equals –1, 0, and 1, respectively, and so the inequalities follow from 
Schlömilch’s inequality.

Now substitute equations (11) into the definition of the 
Jevons index (3):

 PJ(p0,p1) = Πn=1
N [p1*(1 + en

1)/p0*(1 + en
0)]1/N (14)

= [p1*/p0*] Πn=1
N [(1 + en

1)/(1 + en
0)]1/N

= PD(p0,p1) f(e0,e1) using definition (1),

where et ≡ [e1
t,.  .  .,eN

t] for t = 0 and 1, and the function f is 
defined as follows:

 f(e0,e1) ≡ ΠN=1
N [(1 + en

1)/(1 + en
0)]1/N. (15)

Expand f(e0,e1) by a second-order Taylor series approxima-
tion around e0 = 0N and e1 = 0N. Using (12), it can be verified36 
that we obtain the following second-order approximate rela-
tionship between PJ and PD:

 PJ(p0,p1) ≈ PD(p0,p1)[1 + (1/2N)e0·e0 – (1/2N)e1·e1] (16)
= PD(p0,p1)[1 + (1/2)var(e0) – (1/2)var(e1)],

where var(et) is the variance of the period t multiplicative 
deviations; that is, for t = 0,1:

 var(et) ≡ (1/N)Σn=1
N (en

t – et*)2 (17)
= (1/N)Σn=1

N (en
t)2 since et* = 0 using (12)

= (1/N)et·et.

Under normal conditions,37 the variance of the deviations 
of the prices from their means in each period is likely to be 
approximately constant, and so under these conditions, the 
Jevons price index will approximate the Dutot price index 
to the second order.

Note that with the exception of the Dutot formula, the 
remaining four elementary indices defined in Section 4 are 
functions of the relative prices of the N items being aggregat-
ed.38 This fact is used in order to derive some approximate 

36 This approximate relationship was first obtained by Carruthers, Sell-
wood, and Ward (1980; 25).
37 If there are significant changes in the overall inflation rate, some stud-
ies indicate that the variance of deviations of prices from their means can 
also change. Also if N is small, then there will be sampling fluctuations in 
the variances of the prices from period to period, leading to random dif-
ferences between the Dutot and Jevons indices. If prices are normalized 
to equal 1 in period 0, this amounts to choosing particular units of mea-
surement for the N products. In this case, var(e0) = 0, and the approxima-
tion (16) becomes the inequality PJ(p0,p1) < PD(p0,p1) if var(e1) > 0. In this 
case where normalized prices are used, the Dutot index becomes a Carli 
index which has an upward bias relative to the Jevons index. Annex A 
shows that this bias can be substantial.
38 The Dutot index can be rewritten as a function of relative prices 
and shares that depend only on period 0 prices as follows: PD(p0,p1) = 
Σn=1

N Σn
0(pn

1/pn
0), where Σn

0 ≡ pn
0/Σi=1

N pi
0 for n = 1,.  .  .,N; see IMF, ILO, 

Eurostat, UNECE, OECD, and World Bank (2020; 180). This publica-
tion also notes the following problem with the use of the Dutot formula: 
“Even when the varieties are fairly homogeneous and measured in the 
same units, the Dutot’s implicit weights may still not be satisfactory. 
More weight is given to the price changes for the more expensive variet-
ies, but in practice, they may well account for only small shares of the 
total expenditure within the aggregate. Consumers are unlikely to buy  
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relationships between these four elementary indices. Thus, 
define the nth price relative as

 rn ≡ pn
1/pn

0; n = 1,. . .,N. (18)

Define the arithmetic mean of the n price relatives as

 r* ≡ (1/N)Σn=1
N rn = PC(p0,p1), (19)

where the last equality follows from definition (2) of the 
Carli index. Finally, define (implicitly) the deviation en of 
the nth price relative rn from the arithmetic average of the N 
price relatives r* as follows:

 rn = r*(1 + en); n = 1,. . .,N. (20)

Note that (19) and (20) imply that the deviations en sum to 0; 
that is, we have

 Σn=1
N en = 0. (21)

Now substitute equations (20) into the definitions of PC, PJ, 
PH, and PCSWD, (2)–(5), in order to obtain the following rep-
resentations for these indices in terms of the vector of devia-
tions, e ≡ [e1,. . .,eN]:39

 PC(p0,p1) = Σn=1
N (1/N)rn = r* ≡ r*fC(e); (22)

PJ(p0,p1) = Πn=1
N rn

1/N = r*Πn=1
N (1 + en)

1/N ≡ r*fJ(e); (23)

PH(p0,p1) = [Σn=1
N (1/N)(rn)

–1]–1 = r*[Σn=1
N  

 (1/N)(1 + en)
–1]–1 ≡ r*fH(e); (24)

PCSWD(p0,p1) = [PC(p0,p1)PH(p0,p1)]1/2  
 = r*[ fC(e)fH(e)]1/2 ≡ r*fCSWD(e), (25)

where the last equation serves to define the deviation func-
tions fC(e), fJ(e), fH(e), and fCSWD(e). The second-order Taylor 
series approximations to each of these functions40 around 
the point e = 0N are

 fC(e) ≈ 1; (26)
 fJ(e) ≈ 1 – (1/2N)e·e = 1 – (1/2)var(e); (27)

 fH(e) ≈ 1 – (1/N)e·e = 1 – var(e); (28) 
 fCSWD(e) ≈ 1 – (1/2N)e·e = 1 – (1/2)var(e), (29)

where we have made repeated use of (21) in deriving these 
approximations.41 Thus, to the second order, the Carli index 
PC will exceed the Jevons and Carruthers, Sellwood, Ward, 

varieties at high prices if the same varieties are available at lower prices” 
(IMF, ILO, Eurostat, UNECE, OECD, and World Bank (2020; 180–181)).
39 Note that the vector of deviations e defined by equations (20) is different 
from the deviation vectors e0 and e1 defined by equations (11).
40 From (22), it can be seen that fC(e) is identically equal to 1 so that (26) 
will be an exact equality rather than an approximation.
41 These second-order approximations were developed by Dalén (1992; 
143) for the case r* = 1 and by Diewert (1995; 29) for the case of a general r*.

and Dalén indices, PJ and PCSWD, by (1/2)r*var(e), which is r* 
times one half the variance of the N price relatives pn

1/pn
0. 

Similarly, to the second order, the Harmonic index PH will 
lie below the Jevons and Carruthers, Sellwood, Ward, and 
Dalén indices, PJ and PCSWD, by r* times one half the vari-
ance of the N price relatives pn

1/pn
0.

Thus, empirically, it is expected that the Jevons and Car-
ruthers, Sellwood, Ward, and Dalén indices will be very 
close to each other.42 Using the previous approximation 
result (16), it is expected that the Dutot index PD will also be 
fairly close to PJ and PCSWD, with some fluctuations over time 
due to changing variances of the period 0 and 1 deviation 
vectors, e0 and e1. Thus, it is expected that these three ele-
mentary indices will give much the same numerical answers 
in empirical applications. On the other hand, the Carli index 
can be expected to be substantially above these three indi-
ces, with the degree of divergence growing as the variance of 
the N price relatives grows. Similarly, the Harmonic index 
can be expected to be substantially below the three middle 
indices, with the degree of divergence growing as the vari-
ance of the N price relatives grows.

6. The Test Approach to Elementary 
Indices
Recall that in Chapter 3, the axiomatic approach to bilateral 
price indices P(p0,p1,q0,q1) was developed. In the present sec-
tion, the elementary price index P(p0,p1) depends only on the 
period 0 and 1 price vectors, p0 and p1, respectively, so that 
the elementary price index does not depend on the period 0 
and 1 quantity vectors, q0 and q1. One approach to obtaining 
new tests or axioms for an elementary index is to look at the 
20 or so axioms that were listed in Chapter 3 for bilateral 
price indices P(p0,p1,q0,q1) and adapt those axioms to the 
present context; that is, use the old bilateral tests for P(p0,p1,
q0,q1) that do not depend on the quantity vectors q0 and q1 as 
tests for an elementary index P(p0,p1).43 This approach will 
be utilized in the present section.

The first eight tests or axioms are reasonably straightfor-
ward and uncontroversial:

T1: Continuity: P(p0,p1) is a continuous function of the N 
positive period 0 prices p0 ≡ [p1

0,. . .,pN
0] and the N positive 

period 1 prices p1 ≡ [p1
1,. . .,pN

1].
T2: Identity: P(p,p) = 1; that is, if the period 0 price vector 

equals the period 1 price vector, then the index is equal 
to unity.

T3: Monotonicity in Current Period Prices: P(p0,p1) < P(p0,p) 
if p1 < p; that is, if any period 1 price increases, then the 
price index increases.

T4: Monotonicity in Base Period Prices: P(p0,p1) > P(p,p1) if 
p0 < p; that is, if any period 0 price increases, then the 
price index decreases.

42 Reinsdorf and Triplett (2009; 63) noted that for the case N = 2, 
PCSWD(p0,p1) = PJ(p0,p1). This paper and Diewert (1993) provide a review of 
early approaches to index number theory and the construction of a CPI.
43 This was the approach used by Diewert (1995; 5–17), who drew on the 
earlier work of Eichhorn (1978; 152–160) and Dalén (1992).
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T5: Proportionality in Current Period Prices: P(p0,λp1) = 
λP(p0,p1) if λ > 0; that is, if all period 1 prices are multi-
plied by the positive number λ, then the initial price index 
is also multiplied by λ.

T6: Inverse Proportionality in Base Period Prices: P(λp0,p1) = 
λ–1 P(p0,p1) if λ > 0; that is, if all period 0 prices are multi-
plied by the positive number λ, then the initial price index 
is multiplied by 1/λ.

T7: Mean Value Test: min n{pn
1/pn

0 : n = 1,. . .,N} ≤ P(p0,p1) 
≤ max n{pn

1/pn
0 : n = 1,. . .,N}; that is, the price index lies 

between the smallest and largest price relatives.
T8: Symmetric Treatment of Outlets: P(p0,p1) = P(p0*,p1*), 

where p0* and p1* denote the same permutation of the com-
ponents of p0 and p1; that is, if we change the ordering of 
the outlets (or households) from which we obtain the price 
quotations for the two periods, then the elementary index 
remains unchanged.

Eichhorn (1978; 155) showed that Tests 1, 2, 3, and 5 imply 
Test 7, so that not all of these tests are logically independent.

The following tests are more controversial and not neces-
sarily accepted by all price statisticians.

T9: The Price Permutation Test: P(p0,p1) = P(p0*,p1**), where 
p0* and p1** denote possibly different permutations of the 
components of p0 and p1; that is, if  the ordering of the price 
quotes for both periods is changed in possibly different 
ways, then the elementary index remains unchanged.

Obviously, T8 is a special case of T9, where the two permu-
tations of the initial ordering of the prices are restricted to 
be the same. Thus, T9 implies T8. Test T9 was developed by 
Dalén (1992; 138). He justified this test by suggesting that 
the price index should remain unchanged if outlet prices 
“bounce” in such a manner that the outlets are just exchang-
ing prices with each other over the two periods.44

The following test was also proposed by Dalén (1992) in 
the elementary index context:

T10: Time Reversal: P(p1,p0) = 1/P(p0,p1); that is, if  the data 
for periods 0 and 1 are interchanged, then the resulting 
price index should equal the reciprocal of the original price 
index.

It is difficult to accept an index that gives a different answer 
if the ordering of time is reversed.

T11: Circularity: P(p0,p1)P(p1,p2) = P(p0,p2); that is, the price 
index going from period 0 to 1 times the price index going 
from period 1 to 2 equals the price index going from period 
0 to 2 directly.

44 Since a typical official CPI consists of approximately 600 to 1000 sepa-
rate strata where an elementary index needs to be constructed for each 
stratum, it can be seen that many strata will consist of quite heteroge-
neous items. Thus, for a fruit category, some of the N items whose prices 
are used in the elementary index will correspond to quite different types 
of fruit with quite different prices. Randomly permuting these prices in 
periods 0 and 1 will lead to very odd price relatives in many cases, which 
may cause the overall index to behave badly unless the Jevons or Dutot 
formula is used.

The circularity and identity tests imply the time reversal 
test; (just set p2 = p0). The circularity property would seem 
to be a very desirable property: It is a generalization of a 
property that holds for a single price relative.

Elementary price indices may be calculated as direct 
price indices by comparing the prices of the current 
period with those of a fixed price reference period or as 
chained short-term indices obtained by multiplying the 
monthly (or quarterly) price indices into a long-term 
price index. Many statistical offices chose to calculate 
the elementary price indices by chaining the short-term 
(monthly or quarterly) indices because this has some 
practical advantages when dealing with replacements in 
the sample. For elementary indices calculated as chained 
short-term price indices, it is crucial that the index meets 
the circularity test.

T12: Commensurability: P(λ1p1
0,. . ., λNpN

0; λ1p1
1,. . ., λNpN

1) = 
P(p1

0,. . .,pN
0; p1

1,. . .,pN
1) = P(p0,p1) for all λ1 > 0, . . ., λN > 

0; that is, if  we change the units of measurement for each 
product in each outlet, then the elementary index remains 
unchanged.

In the bilateral index context, virtually every price statisti-
cian accepts the validity of this test. However, in the elemen-
tary context, this test is more controversial. If the N items 
in the elementary aggregate are all very homogeneous, then 
it makes sense to measure all of the items in the same units. 
Hence, if we change the unit of measurement in this homo-
geneous case, then test T12 should restrict each of the λn to 
be the same number (say λ), and test T12 becomes the fol-
lowing test:

P(λp0,λp1) = P(p0,p1) for all p0  
 >> 0N, p1 >> 0N and λ > 0. (30)

Note that (30) will be satisfied if tests T5 and T6 are satisfied.
However, in actual practice, elementary strata may not 

be very homogeneous: There may be thousands of individ-
ual items in each elementary aggregate, and the hypothesis 
of item homogeneity may not be warranted. Under these 
circumstances, it is important that the elementary index 
satisfies the commensurability test, since the units of mea-
surement of the heterogeneous items in the elementary 
aggregate are arbitrary and hence the price statistician can 
change the index simply by changing the units of measurement 
for some of the items.45

This completes the listing of the tests for an elementary 
index. There remains the task of evaluating how many tests 
are passed by each of the five elementary indices defined in 
Section 2.

The following results hold:

• The Jevons elementary index PJ satisfies all of the above 
tests.

• The Dutot index PD satisfies all of the tests with the excep-
tion of the important Commensurability Test T12, which 
it fails.

45 The empirical example in Annex A shows that changing the units of 
measurement for the Dutot index makes a huge difference.
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• The Carli and Harmonic elementary indices, PC and PH, 
fail the price permutation test T9, the time reversal test 
T10, and the circularity test T11 but pass the other tests.

• The geometric mean of the Carli and Harmonic elemen-
tary indices, PCSWD, fails only the price permutation test 
T9 and the circularity test T11.46

Since the Jevons elementary index PJ satisfies all of the tests, 
it emerges as being “best” from the viewpoint of the axiom-
atic approach to elementary indices.

The Dutot index PD satisfies all of the tests with the 
important exception of the Commensurability Test T12, 
which it fails. If there are heterogeneous items in the ele-
mentary aggregate, this is a rather serious failure, and 
hence price statisticians should be careful in using this 
index under these conditions. If the N items under consid-
eration are all measured in the same units and the prod-
ucts are close substitutes so that the product prices vary 
in a proportional manner over time, then the Dutot index 
could be used.47 But if prices vary almost proportionally 
over time, then almost any reasonable index number for-
mula will pick up the common factor of proportionality. 
The empirical example in Annex A shows that if there are 
systematic divergent trends in prices, then the Dutot index 
can change dramatically as the units of measurement are 
changed.

The use of the Dutot, Carli, and Harmonic indices should 
be avoided.

The geometric mean of the Carli and Harmonic elemen-
tary indices fail only the price permutation test T9 and 
the circularity test T11. The failure of test T9 is probably 
not a fatal failure, and PCSWD will usually be numerically 
close to PJ and so it will be close to satisfying the circular-
ity test.48

The Carli and Harmonic elementary indices, PC and PH, 
fail the price permutation test T9, the time reversal test T10, 
and the circularity test T11 and pass the other tests. The 
failure of the time reversal test T10 (with an upward bias 
for the Carli and a downward bias for the Harmonic) is a 
rather serious failure, and so price statisticians should not 
use these indices.

In the following section, we present an argument due 
originally to Irving Fisher on why it is desirable for an index 
number formula to satisfy the time reversal test.

7.  Fisher’s Rectification Procedure 
and the Time Reversal Test
There is a problem with the Carli and Harmonic indices that 
was first pointed out by Irving Fisher:49 The rate of price 

46 But using the approximations given by (27) and (29), PCSWD will satisfy 
circularity approximately.
47 Evans (2012; 4) compared the Slovenian CPI with its corresponding 
HICP and found very little difference over the period 1998–2011. The Slo-
venian national CPI used Dutot indices at the elementary level and the 
Slovenian HICP used Jevons indices at the elementary level.
48 This is the case for the numerical example in the annex.
49 “Just as the very idea of an index number implies a set of commodi-
ties, so it implies two (and only two) times (or places). Either one of the 
two times may be taken as the ‘base’. Will it make a difference which is 
chosen? Certainly it ought not and our Test 1 demands that it shall not. 
More fully expressed, the test is that the formula for calculating an index 
number should be such that it will give the same ratio between one point 

change measured by the index number formula between 
two periods is dependent on the period that is regarded as 
the base period. Thus, the Carli index, PC(p0,p1), as defined 
by (2), takes period 0 as the base period and calculates 
(one plus) the rate of price change between periods 0 and 
1.50 Instead of choosing period 0 to be the base period, we 
could equally choose period 1 to be the base period and 
measure a reciprocal inflation rate going backward from 
period 1 to period 0, and this backward measured infla-
tion rate would be Σn=1

N (1/N)(pn
0/pn

1). In order to make this 
backward inflation rate comparable to the forward infla-
tion rate, we then take the reciprocal of Σn=1

N (1/N)(pn
0/pn

1), 
and thus the overall inflation rate going from period 0 to 1 
using period 1 as the base period is the following Backward 
Carli index PBC:51

 PBC(p0,p1) ≡ [Σn=1
N (1/N)(pn

1/pn
0)–1]–1 = PH(p0,p1);  (31)

that is, the Backward Carli index equals the Harmonic index 
PH(p0,p1) defined earlier by (4).

If the forward and backward methods of computing price 
change between periods 0 and 1 using the Carli formula 
were equal, then we would have the following equality:52

 PC(p0,p1) = PH(p0,p1). (32)

Fisher argued that a good index number formula should 
satisfy (32) since the end result of using the formula should 
not depend on which period was chosen as the base peri-
od.53 This seems to be a persuasive argument: If for what-
ever reason, a particular formula is favored, where the base 
period 0 is chosen to be the period that appears before the 
comparison period 1, then the same arguments that justify 
the forward-looking version of the index number formula 
can be used to justify the backward-looking version. If the 
forward and backward versions of the index agree with one 
another, then it does not matter which version is used, and 
this equality provides a powerful argument in favor of using 
the formula. If the two versions do not agree, then rather 
than picking the forward version over the backward version, 
a more symmetric procedure would be to take an average 
of the forward- and backward-looking versions of the index 
formula.

Fisher provided an alternative way for justifying the 
equality of the two indices in equation (32). He argued that 
the forward-looking inflation rate using the Carli formula 

of comparison and the other point, no matter which of the two is taken as 
the base” (Irving Fisher (1922; 64)).
50 Instead of calculating price inflation between periods 0 and 1, period 
1 can be replaced by any period t that follows period 1; that is, p1 in the 
Carli formula PC(p0,p1) can be replaced by pt and then the index PC(p0,pt) 
measures price change between periods 0 and t. The arguments concern-
ing PC(p0,p1) that follow apply equally well to PC(p0,pt).
51 Fisher (1922; 118) termed the backward-looking counterpart to the 
usual forward-looking index the time antithesis of the original index  
number formula. Thus, PH is the time antithesis to PC. The Harmonic 
index defined by (4) is also known as the Coggeshall (1887) index.
52 Of course, equation (32) is not satisfied.
53 “The justification for making this rule is twofold: (1) no reason can 
be assigned for choosing to reckon in one direction which does not also 
apply to the opposite, and (2) such reversibility does apply to any individ-
ual commodity. If sugar costs twice as much in 1918 as in 1913, then neces-
sarily it costs half as much in 1913 as in 1918” (Irving Fisher (1922; 64)).
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is PC(p0,p1) = Σn=1
N (1/N)(pn

1/pn
0). As noted earlier, the back-

ward-looking inflation rate using the Carli formula is Σn=1
N 

(1/N)(pn
0/pn

1) = PC(p1,p0). Fisher54 argued that the product of 
the forward-looking and backward-looking indices should 
equal unity; that is, a good formula should satisfy the follow-
ing equality (which is equivalent to (32)):

 PC(p0,p1)PC(p1,p0) = 1. (33)

But (33) is the usual time reversal test that was listed in the 
previous section. Thus, Fisher provided a reasonably com-
pelling case for the satisfaction of this test.

As we have seen in Section 4,55 the problem with the Carli 
formula is that it not only fails satisfy the equalities (32) or 
(33) but also fails (33) with the following definite inequality:

 PC(p0,p1)PC(p1,p0) > 1, (34)

unless the price vector p1 is proportional to p0 (so that p1 = 
λp0 for some scalar λ > 0), in which case (33) will hold. The 
main implication of the inequality (34) is that the use of the 
Carli index will tend to give higher measured rates of inflation 
than a formula that satisfies the time reversal test (using the 
same data set and the same weighting).

Fisher showed how the downward bias in the backward-
looking Carli index PH and the upward bias in the forward-
looking Carli index PC could be cured. The Fisher time 
rectification procedure56 as a general procedure for obtain-
ing a bilateral index number formula that satisfies the time 
reversal test works as follows. Given a bilateral price index 
P, Fisher (1922; 119) defined the time antithesis P° for P as 
follows:

 P°(p0,p1,q0,q1) ≡ 1/P(p1,p0,q1,q0). (35)

Thus, P° is equal to the reciprocal of the price index that 
has reversed the role of time, P(p1,p0,q1,q0). Fisher (1922; 
140) then showed that the geometric mean of P and P°, 
say P* ≡ [P×P°]1/2, satisfies the time reversal test, P*( p0, 
p1,q0,q1)P*(p1,p0,q1,q0) = 1.

In the present context, PC is only a function of p0 and 
p1, but the same rectification procedure works, and the 
time antithesis of PC is the harmonic index PH. Applying 
the Fisher rectification procedure to the Carli index, the 

54 “Putting it in still another way, more useful for practical purposes, the 
forward and backward index number multiplied together should give 
unity” (Irving Fisher (1922; 64)).
55 Recall the inequalities (7) and (8) above.
56 Actually, Walsh (1921b; 542) showed Fisher (1921) how to rectify a for-
mula so it would satisfy the factor reversal test and Fisher (1922) simply 
adapted the methodology of Walsh to the problem of rectifying a formula 
so that it would satisfy the time reversal test.

resulting rectified Carli formula, PRC, turns out to equal 
the Carruthers, Sellwood, and Ward (1980) and the Dalén 
elementary index PCSWD defined earlier by (5):

PRC(p0,p1) ≡ [PC(p0,p1)PBC(p0,p1)]1/2  
 = [PC(p0,p1)PH(p0,p1)]1/2 = PCSWD(p0,p1). (36)

Thus, PCSWD is the geometric mean of the forward-looking 
Carli index PC and its backward-looking counterpart PBC = 
PH, and, of course, PCSWD will satisfy the time reversal test.57

8. Conclusion
The main results in this chapter can be summarized as 
follows:

• In order to define a “best” elementary index number for-
mula, it is necessary to have a target index number con-
cept. In Section 2, it is suggested that normal bilateral 
index number theory applies at the elementary level as well 
as at higher levels, and hence the target concept should be 
one of the Fisher, Törnqvist, or Walsh formulae.

• When aggregating the prices of the same narrowly defined 
item within a period, the narrowly defined unit value is a 
reasonable target price concept.

• The axiomatic approach to traditional elementary indices 
(that is, no quantity or value weights are available) sup-
ports the use of the Jevons formula under most circum-
stances.58 The Carruthers, Sellwood, and Ward formula 
can be used as an alternative to the Jevons formula, but 
both will give much the same numerical answers.

• The Carli index has an upward bias (with respect to satis-
fying the time reversal test), and the Harmonic index has 
a downward bias.

• All five unweighted elementary indices are not really 
satisfactory. A much more satisfactory approach would 
be to collect quantity or value information along with 
price information and form sample superlative indices as 
the preferred elementary indices. However, if a chained 
superlative index is calculated, it should be examined for 
chain drift; that is, a chained index should only be used 
if the data are relatively smooth and subject to long-term 
trends rather than short-term fluctuations.59

57 See Figure A6.2 in the annex where it will be seen that for our empirical 
example, the Jevons index cannot be distinguished from the Carruthers, 
Sellwood, Ward and Dalen index.
58 One exception to this advice is when a price can be 0 in one period and 
positive in another comparison period. In this situation, the Jevons index 
will fail and the corresponding item will have to be ignored in the elemen-
tary index. The problems raised by missing prices will be considered at 
greater length in the subsequent chapters on multilateral methods and 
strongly seasonal products.
59 If the price and quantity data are subject to large fluctuations, then 
multilateral methods should be used instead of a bilateral index number 
formula. Multilateral methods will be discussed in Chapter 7.
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Annex A
Alternative Approaches to the Treatment of 
Access Charges
An interesting CPI problem arises when there is a fixed 
access charge for the right of consumers to purchase prod-
ucts or services from a supplier. Examples of such charges 
are annual club memberships, annual fees for the use of a 
credit card, and fixed charges for access to telecommunica-
tion services. In this annex, we will outline three different 
approaches that could be used by consumer price statisti-
cians to deal with these charges, which are independent of 
the actual consumption of the goods and services that the 
payment of a fixed charge allows consumers to purchase.

The notation that is used in this annex is similar to that 
used in Section 2 with some new notation for the fixed 
charge. Thus, let pt ≡ [p1

t,. . .,pN
t] and qt ≡ [q1

t,. . .,qN
t] be the 

period t price and quantity vectors for the purchases of the 
goods or services that the payment of the access charge Pt > 
0 allows the consumer or group of consumers to purchase 
for t = 0,1.

Define et as the period t expenditure on the actual goods 
and services purchased and vt as the value of period t total 
expenditures on the group of products, which is equal to et 
plus the period t access fixed charge Pt. It is also useful to 
define the period t fixed cost margin mt as the ratio of Pt to 
et. Thus, we have the following definitions:

et ≡ pt·qt ≡ Σn=1
N pn

tqn
t; vt ≡ pt·qt + Pt = et  

  + Pt; mt ≡ Pt/et; t = 0,1. (A.1)

In the analysis that follows, we will look at some “practi-
cal” price indices and compare their magnitudes. However, 
before we define these indices, it is useful to look at three 
alternative utility maximization models that help motivate 
the alternative practical indices.

Suppose the “consumer” has the utility function f(q). The 
first utility maximization model that we will consider is a 
“traditional” model that treats the period t fixed charge as 
a charge on the “income” that the consumer allocates to the 
N products in the group of products under consideration. 
Thus, the Model 1 period t utility maximization problem for 
the subgroup of products under consideration is the follow-
ing one:

 max q {f(q): pt·q ≤ vt – Pt = et; q ≥ 0N}. (A.2)

If the CPI were constructed in only a single stage, then 
Model 1 is a “practical” model that price statisticians could 
use to guide the construction of the national CPI. However, 
a typical CPI is constructed by aggregating over both prod-
uct groupings and outlets or households. In order to imple-
ment the Model 1 approach, price statisticians would have 
to keep track of the various fixed charges that occur for 
various outlets and product groups as well as collecting the 
basic price and quantity information. The CPI subindices  
that would be computed using this approach would also 
have to include (separately) information on the fixed charges 
by product group. The national accounts division of the 
national statistical agency would not be able to take a CPI 
subindex and use it for deflation purposes if that subgroup 

of products included substantial fixed charges; that is, the 
period t CPI subindex would be appropriate for deflating the 
actual product expenditures et, but the subindex would not be 
appropriate for deflating actual group expenditures (includ-
ing the fixed charges) Pt.

The second utility maximization problem treats the 
access charge as a separate product that gives utility to con-
sumers even if they do not consume any products or services 
that the access charge enables. The new utility function is 
f *(q,Q), where Q = 1 represents the contribution of access to 
overall utility for the subgroup of product under consider-
ation. Thus, the Model 2 period t utility maximization prob-
lem for the subgroup of products under consideration is the 
following one:

 max q {f *(q,1): pt·q + Pt ≤ vt; q ≥ 0N}. (A.3)

This way of thinking about fixed charges in the telecom-
munications context is used by national regulators. The 
approach taken to the treatment of access charges is of 
some importance in measuring the productivity of telecom-
munications firms, as will be seen in the example that fol-
lows. The advantage of this approach is that the CPI index 
that is constructed using this framework will be suitable for 
national accounts deflation purposes; that is, the period t 
subindex that is a result of using this approach can be used 
to deflate total period t expenditures vt on the product class.

The third utility maximization problem allocates the 
period t fixed charge Pt in proportional to expenditure man-
ner across the “usage” prices pt. Recall that (A.1) defined the 
period t margin mt as Pt/et. The margin is treated in much 
the same way as a general sales tax is treated; that is, it is 
added on to the period t usage prices pt. Thus, the Model 3 
period t utility maximization problem for the subgroup of 
products under consideration is the following one:60

 max q {f(q): (1 + mt)pt·q ≤ vt; q ≥ 0N}. (A.4)

When price statisticians apply the economic approach to 
index number theory, it is assumed that the observed period 
t quantity vector qt solves the corresponding period t util-
ity maximization problem. It is also assumed that the first 
inequality constraint in problems (A.2)–(A.4) holds with 
equality. Thus, if qt solves problem (A.2) for period t, then 
pt·qt = vt – Pt = et for t = 0,1; if qt solves problem (A.3) for 
period t, then pt·qt = vt – Pt = et for t = 0,1; and if qt solves 
problem (A.4) for period t, then (1 + mt)pt·qt = vt for t = 0,1. 
Using the definitions for mt, et, and vt in (A.1), it can be seen 
that (1 + mt)pt·qt = [1 + (Pt/et)]pt·qt = [1 + (Pt/pt·qt)]pt·qt = pt·qt +  
Pt = vt for t = 0,1. Thus, for all three utility maximization 
problems, it is assumed that the various equalities in defini-
tions (A.1) are satisfied.

We use these alternative models of economic behavior 
to motivate the definitions of the alternative Laspeyres 
and Paasche indices. Next, we will define the Laspeyres and 
Paasche indices that correspond to the three models 
and compare their magnitudes.

60 Models 1 and 3 will not work if qt = 0N for some period t. If this case 
occurs empirically, then Model 2 or some other model will have to be 
used.
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The Laspeyres and Paasche indices comparing the prices 
of period 1 to the corresponding prices of period 0 using the 
Model 1 framework, PL1 and PP1, respectively, are defined as 
follows:

 PL1 ≡ p1×q0/p0·q0,  (A.5)
 PP1 ≡ p1×q1/p0·q1. (A.6)

The Laspeyres and Paasche indices comparing the prices of 
period 1 to the corresponding prices of period 0 using the 
Model 2 framework, PL2 and PP2, respectively, are defined as 
follows:

 PL2 ≡ [p1·q0 + P1]/[p0·q0 + P0] (A.7)
= [PL1 + (P1/e0)]/[1 + (P0/e0)] dividing the numerator and 

denominator by e0,

 PP2 ≡ [p1·q1 + P1]/[p0·q1 + P0] (A.8)
= [1 + (P1/e1)]/[PP1

–1 + (P0/e1)] dividing the numerator and 
denominator by e1.

We also used definitions (A.5) and (A.6) in deriving the sec-
ond lines of (A.7) and (A.8).

Using definitions (A.5) and (A.7), it is possible to compare 
PL1 to PL2:

 PL1 – PL2 = PL1 – {[PL1 + (P1/e0)]/[1 + (P0/e0)]} (A.9)
= [1 + (P0/e0)]–1[PL1{1 + (P0/e0)} – PL1 – (P1/e0)]

= [1 + m0]–1[PL1 (P
0/e0) – (P1/e0)]

= [1 + m0]–1[PL1 (P
0/e0) – (P1/P0)(P0/e0)]

= [m0/(1 + m0)][PL1 – (P1/P0)].

Thus, if the Laspeyres price index PL1 for the N products 
that are made available by paying the access charge in each 
period is equal to one plus the growth rate in the access 
charges, P1/P0, then PL1 will be equal to PL2 (which is the 
Laspeyres price index that treats the access charge as a nor-
mal product). If PL1 is greater than P1/P0, then PL1 will be 
greater than PL2; if PL1 is less than P1/P0, then PL1 will be 
less than PL2. If m0 is large and the difference between PL1 
and P1/P0 is also large, then the difference between PL1 and 
PL2 can be substantial. This case can occur in the case of a 
telecommunications subindex.61

Using definitions (A.6) and (A.8), it is possible to com-
pare PP1 to PP2, but the resulting formula is a bit more 
complicated:

PP1
–1 – PP2

–1 = PP1
–1 – {[PP1

–1 + (P0/e1)]/ 
 [1 + (P1/e1)]} (A.10)

61 Our analysis for the case of Laspeyres price indices also applies to 
other fixed basket indices; that is, simply replace the base period quantity 
vector q0 by the fixed basket quantity vector q* and apply our analysis 
pertaining to the differences between the various Laspeyres indices. The 
definitions for e0, v0, and m0 become e0 ≡ p0·q*, v0 ≡ e0 + P0, and m0 ≡ P0/e0. 
PL1 becomes p1·q*/p0·q*, PL2 becomes [p1×q* + P1]/[p0·q* + P0], and PL3 (which 
will be defined below) becomes (1 + m1)p1·q*/(1 + m0)p0·q*, where e1 ≡ p1×q*, 
v1 ≡ e1 + P1, and m1 ≡ P1/e1.

= [1 + (P1/e1)]–1 [PP1
–1{1 + (P1/e1)} – PP1

–1 – (P0/e1)]

= [1 + m1]–1[PP1
–1(P1/e1) – (P0/e1)]

= [1 + m1]–1[PP1
–1(P1/e1) – (P0/P1)(P1/e1)]

= [m1/(1 + m1)][PP1
–1 – (P1/P0)–1].

By multiplying both sides of (A.10) by PP1PP2, the following 
expression is obtained:

PP2 – PP1 = [m1/(1 + m1)]  
 PP2 [1 – PP1 (P

1/P0)-1] (A.11)
= [m1/(1 + m1)] PP2 [P

1/P0]–1 [(P1/P0) – PP1].

Finally, By multiplying both sides of (A.11) by –1, we obtain 
the following counterpart to (A.9):

PP1 – PP2 = [m1/(1 + m1)]  
 PP2 [P

1/P0]–1 [PP1 – (P1/P0)]. (A.12)

Thus, if the Paasche price index PP1 for the N products that 
are made available by paying the access charge in each 
period is equal to one plus the growth rate in the access 
charges, P1/P0, then PP1 will be equal to PP2 (which is the 
Paasche price index that treats the access charge as a normal 
product). If PP1 is greater than P1/P0, then PP1 will be greater 
than PP2; if PP1 is less than P1/P0, then PP1 will be less than 
PP2. If m1 is large and the difference between PP1 and P1/P0 
is also large, then the difference between PP1 and PP2 can be 
substantial.62

We turn now to the Model 3 framework. The Laspeyres 
and Paasche indices comparing the prices of period 1 to the 
corresponding prices of period 0 using the Model 3 frame-
work, PL3 and PP3, respectively, are defined as follows:

 PL3 ≡ (1 + m1)p1·q0/(1 + m0)p0·q0 (A.13)
= [(1 + m1)/(1 + m0)] PL1 dividing the numerator and 

denominator by e0;

(A.14) PP3 ≡ (1 + m1)p1·q1/(1 + m0)p0·q1

= (1 + m1)/[(1 + m0)PP1
–1] dividing the numerator and 

denominator by e1;
= [(1 + m1)/(1 + m0)]PP1.

It is very easy to compare PL3 to PL1 and compare PP3 to PP1. 
Using definitions (A.13) and (A.14), we have

 PL3/PL1 = PP3/PP1 = (1 + m1)/(1 + m0). (A.15)

Thus, PL3 will equal PL1 and PP3 will equal PP1 if m
1 ≡ P1/e1 

is equal to m0 ≡ P0/e0 or if P1/P0 = e1/e0. PL3 will be greater 
than PL1 and PP3 will be greater than PP1 if m

1 > m0 or if P1/P0 
> e1/e0. These results are very straightforward and easy to 
understand.

62 Note that the conditions for “bias” between PL1 and PL2 and for “bias” 
between PP1 and PP2 are very similar in structure.
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The more interesting comparisons are between PL3 and 
PL2 and between PP3 and PP2. For the Laspeyres compari-
sons, using (A.7) and (A.13), we have

PL2 – PL3 = {[PL1 + (P1/e0)]/[1 + (P0/e0)]}  
 – {(1 + m1)PL1/(1 + m0)} (A.16)

= [1 + m0]–1[PL1 + (P1/e0) – (1 + {P1/e1})PL1]

= [1 + m0]–1[(P1/e0) – (P1/e1)PL1]
= m1[1 + m0]–1[(e1/e0) – PL1].

Thus, if the usage expenditure ratio, e1/e0, is equal to the 
Laspeyres price index for the available products or services, 
PL1, then PL2 will equal PL3. In the telecommunications 
context, typically usage expenditures will grow more rap-
idly than the usage Laspeyres price index so that e1/e0 will 
be much greater than PL1, which will imply that PL2 will be 
greater than PL3 using (A.16). If m1 is also large, then PL2 will 
be substantially greater than PL3.

63 In the telecommunica-
tions context, the choice of index number method will mat-
ter, as will be shown in the empirical example.

Using definitions (A.8) and (A.14), we have the following 
equality:

PP2
–1 – PP3

–1 = {[PP1
–1 + (P0/e1)]/[1 + (P1/e1)]}  

 – {(1 + m0)PP1
–1/(1 + m1)} (A.17)

= [1 + m1]–1{PP1
–1 + (P0/e1) – PP1

–1 – PP1
–1(P0/e0)}

= [1 + m1]–1[(P0/e1) – PP1
–1(P0/e0)]

= m0[1 + m1]–1[(e1/e0)–1 – PP1
–1].

Divide both sides of (A.17) by PP3
–1 in order to obtain the 

following equalities:

 PP3/PP2 – 1 = m0[1 + m1]–1[(e1/e0)–1 – PP1
–1]PP3 (A.18)

= m0[1 + m1]–1[(e1/e0)–1 – PP1
–1](1 + m1)(1 + m0)–1PP1 

using (A.14)

= m0 (1 + m0)–1[PP1(e
1/e0)–1 – 1]

= m0 (1 + m0)–1(e1/e0)–1[PP1 – (e1/e0)].

63 Note that e1/e0 = PL1QP1, where QP1 ≡ p1·q1/p1·q0 is the Paasche quantity 
index for usage expenditures. Thus, (A.16) can be rewritten as PL2 – PL3 = 
m1[1 + m0]–1PL1[QP1 – 1]. Thus, if QP1 > 1, then PL2 > PL3.

By multiplying both sides of (A.18) by –PP2, we obtain the 
following equality:

PP2 – PP3 = m0 (1 + m0)–1(e1/e0)–1PP2 
 [(e1/e0) – PP1]. (A.19)

Thus, if the usage expenditure ratio, e1/e0, is equal to the 
Paasche price index for the available products or services, 
PP1, then PP2 will equal PP3. As noted earlier, in the telecom-
munications context, typically usage expenditures will grow 
more rapidly than the usage Paasche price index so that e1/e0 
will be much greater than PP1, which will imply that PP2 will 
be greater than PP3 using (A.19). If m0 is also large, then PP2 
will be substantially greater than PP3.

64 Thus, again, in the 
telecommunications context, the choice of index number 
method will matter.

For empirical evidence on the huge differences in actual 
national indices that the alternative treatment of access 
charges can make in the telecommunications context, we 
draw on the UK data that are provided in the recent study 
by Abdirahman, Coyle, Heys, and Stewart (2020).65 The UK 
retail telecom revenues for fixed lines vn

t ≡ pn
tqn

t and the cor-
responding quantities qn

t for the years 2010–2017 are listed 
in Table A.1. These data are not “pure” CPI data in that 
they do not refer to the purchases by households but instead 
refer to all retail purchases. However, these data will serve 
as an example that will show that the above three alternative 
treatment of access charges can lead to significantly differ-
ent price (and quantity) indices.

The revenues in Table A1 are expressed in millions of UK 
Pounds. The five “products” and their units of measurement 
for the corresponding quantities are as follows:

• 1 = UK geographic calls in millions of minutes
• 2 = International calls in millions of minutes
• 3 = Calls to mobile phones in millions of minutes
• 4 = Other calls in millions of minutes

64 Note that e1/e0 = PP1QL1, where QL1 ≡ p0·q1/p0·q0 is the Laspeyres quantity 
index for usage expenditures. Thus, (A.19) can be rewritten as PP2 – PP3 = 
m0 (1 + m0)–1(e1/e0)–1PP2PP1[QL1 – 1]. Thus, if QL1 > 1, then PP2 > PP3.65 Their recent study extends their earlier important study; see Abdirah-
man, Coyle, Heys, and Stewart (2017). These papers make clear that the 
alternative treatment of access charges makes a big difference not only to 
price indices but also to the measurement of national output, consump-
tion, and productivity.

Table A.1 Fixed-Line UK Retail Telecommunications Revenues and Quantities
Year t v1

t v2
t v3

t v4
t v5

t q1
t q2

t q3
t q4

t q5
t et vt

2010 935 293 849 824 3259 65134 4850 5642 14736 23752 2901 6160
2011 787 237 675 742 3375 56083 4570 4471 13066 23872 2441 5816
2012 723 198 566 659 3706 51985 4111 3902 11506 24462 2146 5852
2013 673 155 488 620 3964 46191 3455 3351 10681 24970 1936 5900
2014 577 132 430 620 4148 40766 3015 2940 9028 25549 1759 5907
2015 498 123 369 604 4462 35586 2749 2735 8855 26075 1594 6056
2016 428 111 270 596 4776 30471 2169 2811 7826 26482 1405 6181
2017 362 89 228 543 4969 24705 1550 2587 6126 26661 1222 6191
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• 5 = Fixed-line access charges; units are the number of 
lines in thousands

Note that et ≡ v1
t + v2

t + v3
t + v4

t is the total revenue or expen-
diture for year t on the various types of calls made from 
fixed lines in the United Kingdom and vt ≡ et + v5

t is the total 
expenditure including access charges v5

t. The ratio of access 
charges in year t to the corresponding total call revenues is 
the margin mt ≡ v5

t/et, which is listed in Table A2. From Table 
A2, it can be seen that mt increases steadily from 1.12 in 2010 
to 4.07 in 2017. Thus, the treatment of access charges is likely 
to make a substantial difference to any telecom price index 
based on these data.

The unit value prices for each product can be constructed 
using the information in Table A1; that is, we have pn

t ≡ 
vn

t/qn
t* for n = 1,. . .,5 and t = 2010,. . .,2017. In order to see 

more clearly how the prices of the various telecom products 
have changed over the sample period, normalize the unit 
value prices to 1 in the base year 2010; that is, define the nor-
malized prices and quantities, pn

t* and qn
t*, as follows:66

pn
t* ≡ pn

t/pn
2010; qn

t* ≡ qn
tpn

2010; n = 1,. . .,5;  
 t = 2010,. . .,2017. (A.20)

Table A.2 lists the normalized prices and quantities for the 
five products along with the margin series, mt ≡ v5

t/et.
It can be seen that relative prices and relative quantities 

vary considerably over the sample period. This will lead to 
dispersion among alternative index number formulae. We 
utilize the data in the previous tables to compute alternative 
indices for each of the three approaches outlined earlier for 
the treatment of access charges.67

For the Approach 1 indices, we ignore the access charges 
and simply compute the alternative indices using only the 
prices and quantities for the first four products. In Table 
A.3, the “unweighted” price indices68 that were defined in 
Section 4 are listed. The Fixed-Base Harmonic, Caruthers, 
Sellwood, Ward, Dalén, and Carli indices, PH

t, PCWSD
t, and 

66 If we change the units of measurement of prices, then we have to change 
the corresponding units of measurement for quantities in the opposite 
direction in order to preserve values.
67 We will also consider a fourth approach which is relevant for producer 
price indices.
68 The term “unweighted” really means “equally weighted.” These indices 
do not make any use of quantity or value information. Thus, they do not 
take into account the economic importance of each product. This is not 
a problem if expenditure shares are roughly equal but typically this is 
not the case.

PC
t and their chained counterparts, PHCH

t, PCWSDCH
t, and 

PCCH
t, are listed in this table. The Fixed-Base and chained 

Dutot and Jevons indices coincide, and so these indices 
are simply listed as PD

t and PJ
t in Table A.3. These indices 

were calculated using pn
t = vn

t/qn
t, where vn

t and qn
t are listed 

in Table A.1. All of these indices with the exception of the 
Dutot index are independent of the units of measurement. 
Instead of using the original units of measurement to calcu-
late the Dutot index, we could “standardize” the unit value 
prices using the normalized prices pn

t* ≡ pn
t/pn

2010 listed in 
Table A.2 and calculate a new Dutot index using the nor-
malized prices.69 It turns out that this new Dutot index PDN

t 
using normalized prices in place of the original prices is 
equal to the Fixed-Base Carli index PC

t, so we did not list 
PDN

t in Table A.3. For all of the index number formulae that 
appear in Table A.3 with the exception of the Dutot index 
PD

t, it does not matter whether we use the prices and quan-
tities listed in Table A.1 or their normalized counterparts 
listed in Table A.2.

It can be seen that the Dutot index using normalized 
prices, PDN

t = PC
t, ends up well above its Jevons index coun-

terpart, PJ
t, when t = 2017. In Section 5, we indicated that 

under certain circumstances, the Jevons and Dutot indi-
ces should be approximately equal; see the approximate 
 equality (16). Using our current notation, the approximate 
equality (16) becomes the following one:

PJ
t ≈ PDN

t[1 + (1/2)var(ε2010) - (1/2)var(εt)];  
 t = 2011, 2012, . . ., 2017, (A.21)

where pA
t ≡ (1/4)( p1

t* + p2
t* + p3

t* + p4
t*), εn

t ≡ (pn
t*/pA

t) – 1 for 
n = 1,2,3,4, εt ≡ [ε1

t, ε2
t, ε3

t, ε4
t] and var(εt) ≡ (1/4)Σn=1

4 (εn
t)2 for 

t = 2010,. . .,2017. Since the normalized prices pn
t* all equal 1 

when t = 2010, we see that var(e2010) = 0. Moreover, because 
p3

t* trends down and p4
t* trends up as t increases, var(εt) is 

increasing over time and hence, using the above approxi-
mate equality, it can be seen that PJ

t will tend to be less than 
PDN

t and the gap will grow over time as var(εt) increases. 
Thus, we have an explanation for why the gap between PJ

t 
and PDN

t = PC
t increases over time.70

69 Thus, define PDN
t ≡ [p1

t* + p2
t* + p3

t* + p4
t*]/[p1

2010* + p2
2010* + p3

2010* + p4
2010*] 

= [p1
t* + p2

t* + p3
t* + p4

t*]/[4] = (1/4)Σn=1
4 (pn

t/pn
2010) ≡ PC

t, where the second 
equality follows from pn

2010* = 1 for n = 1,2,3,4. Thus, the Dutot index 
using normalized prices in place of the initial prices is equal to the Fixed-
Base Carli index, PC

t, for t = 2010,. . .,2017.
70 As we have seen above, using normalized prices in the Dutot formula 
converts the Fixed-Base Dutot index into a Fixed-Base Carli index. 

Table A.2 Normalized Prices and Quantities for the UK Fixed-Line Retail Sector
Year t p1

t* p2
t* p3

t* p4
t* p5

t* q1
t* q2

t* q3
t* q4

t* q5
t* mt

2010 1.0000 1.0000 1.0000 1.0000 1.0000 935.00 293.00 849.00 824.00 3259.00 1.1234
2011 0.9776 0.8584 1.0033 1.0156 1.0304 805.07 276.08 672.79 730.62 3275.47 1.3826
2012 0.9689 0.7973 0.9640 1.0243 1.1042 746.25 248.36 587.17 643.39 3356.42 1.7269
2013 1.0150 0.7426 0.9678 1.0381 1.1570 663.07 208.72 504.25 597.25 3426.12 2.0475
2014 0.9860 0.7247 0.9720 1.2282 1.1833 585.20 182.14 442.41 504.82 3505.57 2.3582
2015 0.9749 0.7406 0.8966 1.2198 1.2472 510.84 166.07 411.56 495.15 3577.74 2.7993
2016 0.9785 0.8471 0.6383 1.3619 1.3144 437.41 131.03 423.00 437.61 3633.58 3.3993
2017 1.0208 0.9505 0.5857 1.5852 1.3583 354.64 93.64 389.29 342.55 3658.14 4.0663
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The large differences between the Dutot index using the 
original units of measurement, PD

t,, and the version of the 
Dutot index that uses normalized prices, PDN

t (which turns 
out to be equal to the Fixed-Base Carli index PC

t), indicates 
that the Dutot formula should be used with extreme caution 
even if there are common units of measurement for the indi-
vidual products in scope for the index.

From Table A.3, it can be seen that the Jevons index is 
approximately equal to both the Fixed-Base and chained 
Carruthers, Ward, Sellwood, and Dalén indices; that is, we 
have the following approximate equalities that are consis-
tent with the analysis in Section 5:

PJ
t ≈ PCSWD

t ≈ PCSWDCH
t;  

 t = 2011, 2012, . . ., 2017. (A.22)

From Table A.3, it can be seen that the following inequali-
ties hold:

PH
t < PJ

t < PC
t; PHCH

t < PJ
t < PCCH

t; 
 t = 2011, 2012, . . ., 2017. (A.23)

These inequalities are consistent with the inequalities (9) 
discussed in Section 5.

Note that in 2017, the Dutot index PD
2017 was equal to 

0.8851, while the Fixed-Base Carli index PC
2017 was equal to 

1.0355. Thus, PC
2017/PD

2017 = 1.0355/0.8851 = 1.170. Thus, there 
is a 17.0 percent spread between these indices listed in Table 
A.3, which is substantial. The choice of an unweighted index 
number formula matters.

The fact that the Jevons indices PJ
t approximate the Car-

ruthers, Sellwood, Ward, and Dalén indices PCSWD
t can be 

demonstrated in another way. From Diewert (1978; 893), it is 
known that the Fisher index number formula, PF(p1,pt,q1,qt), 
approximates the Törnqvist–Theil index, PT(p1,pt,q1,qt), to 
the second order around a point where p1 = pt and q1 = qt. 
It is obvious that the Törnqvist–Theil index collapses down 
to the Jevons index PJ

t = PJ(p1,pt) ≡ Πn=1
N (ptn/p1n)

1/N if each 
expenditure share in periods 1 and t is equal to 1/N. Rein-
sdorf and Triplett (2009; 63) and Diewert (2013; 6) showed 
that if all expenditure shares in periods 1 and t are equal to 

Hence, the divergence is explained by the fact that a geometric mean of 
numbers that are not all equal (the Jevons index) will always be less than 
the corresponding arithmetic mean (the Dutot index using normalized 
prices which is the Fixed-Base Carli index). Recall that the indices other 
than the Dutot index are invariant to the units of measurement.

1/N, then the Fisher index collapses down to the Carruthers, 
Sellwood, Ward, and Dalén index PCSWD(p1,pt) = PCSWD

t. 
Thus, using the Diewert (1978; 893) second-order approxi-
mation result, it can be seen that PJ(p1,pt) will approximate  
PCSWD(p1,pt) to the second order around any point, where  
p1 = pt.71 In Chapter 5, the Walsh (1901; 398) (1921a; 97) index 
was defined as follows:72

PW(p1,pt,q1,qt) ≡ Σn=1
N ptn(qtnq1n)

1/2/ 
 Σn=1

N p1n(qtnq1n)
1/2 (A.24)

= Σn=1
N (ptn/p1n)

1/2 (ptnqtnp1nq1n)
1/2/Σn=1

N (p1n/ptn)
1/2 (ptnqtnp1nq1n)

1/2

= Σn=1
N (ptn/p1n)

1/2 (stns1n)
1/2/Σn=1

N (p1n/ptn)
1/2 (stns1n)

1/2,

where s1n ≡ p1nq1n/p
1·q1 and stn ≡ ptnqtn/p

t·qt for n = 1,. . .,N are 
the period 1 and t expenditure shares. If we again assume 
that all expenditure shares in periods 1 and t are equal to 
1/N, then the Walsh index collapses down to the following 
Dikhanov elementary index PDI(p1,pt):73

 PDI(p1,pt) ≡ Σn=1
N (ptn/p1n)

1/2 /Σn=1
N (p1n/ptn)

1/2. (A.25)

Diewert’s 1978 second-order approximation result also 
applies to Walsh and Fisher indices, so it carries over in the 
present special case where expenditure shares are assumed 
to be equal and constant across periods. Thus, PDI(p1,pt) will 
approximate PJ(p1,pt) and PCSWD(p1,pt) to the second order 
around any point where pt = λp1.74

We turn to the Approach 1 weighted indices for our UK 
telecom data set. Denote the year t Fixed-Base Laspeyres, 
Paasche, and Fisher indices by PL1

t, PP1
t, and PF1

t and their 
chained counterparts by PLCH1

t, PPCH1
t, and PFCH1

t. These 
indices are listed in Table A.4.

Note that the weighted indices listed in Table A.4 are gener-
ally higher than their unweighted counterparts listed in Table 
A.3. The chained Laspeyres indices are always above their 
chained Paasche counterparts, but this is not always the case 
for the Fixed-Base Laspeyres and Paasche indices. Note also 

71 This second-order approximation result also holds if pt = λp1 for any 
 scalar λ > 0.
72 All prices and quantities are assumed to be positive.
73 Yuri Dikhanov in a private communication suggested this approxima-
tion to the Walsh index.
74 Using the data for our telecom example, the Dikhanov indices PDI

t 
were as follows; 1.0000, 0.9616, 0.9345, 0.9327, 0.9609, 0.9427, 0.9214, and 
0.9740. These numbers are very close to their PJ

t and PCWSD
t counterparts.

Table A.3 Approach 1 Unweighted Price Indices
Year t PD

t PJ
t PH

t PCSWD
t PC

t PHCH
t PCSWDCH

t PCCH
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 0.9733 0.9616 0.9594 0.9616 0.9637 0.9594 0.9616 0.9637
2012 0.9404 0.9345 0.9302 0.9344 0.9386 0.9319 0.9345 0.9370
2013 0.9358 0.9328 0.9241 0.9324 0.9409 0.9294 0.9328 0.9362
2014 0.9705 0.9610 0.9440 0.9607 0.9777 0.9544 0.9611 0.9677
2015 0.9314 0.9427 0.9278 0.9428 0.9580 0.9355 0.9427 0.9499
2016 0.8445 0.9213 0.8882 0.9217 0.9565 0.8972 0.9204 0.9442
2017 0.8851 0.9742 0.9153 0.9736 1.0355 0.9447 0.9731 1.0024
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that the spread between the six weighted indices listed in Table 
A.4 for 2017 is much smaller than the corresponding spread 
between the unweighted indices in Table A.3: The highest 
index value was 1.0690 for the chained Laspeyres index and 
the lowest index value was 1.0355 for the Fixed-Base Paas-
che index. Thus, the index spread in 2017 was 1.0690/1.0355 =  
1.032 or a 3.2 percent spread, which is far smaller than the 
unweighted index spread in 2017, which was 17.0 percent.

Since the Paasche and Laspeyres indices have equal jus-
tifications, we prefer the Fisher index, which is an average 
of these two indices which satisfies the time reversal test. To 
choose between the Fixed-Base Fisher and its chained coun-
terpart, we look at the spread between the Laspeyres and 
Paasche indices in 2017. For the Fixed-Base versions of these 
indices, the spread is equal to PLFB

2017/PPFB
2017 = 1.0466/1.0355 = 

1.011 or 1.1 percent. For the chained versions of these indices, 
the spread is equal to PLCH

2017/PPCH
2017 = 1.0690/1.0481 = 1.020 

or 2.0 percent. Since the spread is smaller for the Fixed-Base 
indices, we prefer the Fixed-Base indices over the chained 
indices, and hence our preferred index for the present data set 
is the Fisher Fixed-Base index, PFFB

t.
For the Approach 2 weighted indices, we treat the total 

access charges v5
t ≡ Pt as the aggregate price of access in year 

t,75 and we set the corresponding year t quantity, Qt, equal to 
1. The prices and quantities for products 1–4 are the pn

t and 
qn

t that are listed in Table A.1. The price of access, Pt = v5
t, 

75 This is only an approximation to Model 2 defined by (A.3) since the 
UK data are aggregate retail sales data rather than individual household con-
sumption data. Also Model 2 defined by (A.3) is a model that applies to 
a single household; we have neglected the complications that arise when 
aggregating over households.

is listed in Table A.1. Denote the resulting year t Fixed-Base 
Laspeyres, Paasche, and Fisher indices by PL2

t, PP2
t, and PF2

t 
and their chained counterparts by PLCH2

t, PPCH2
t, and PFCH2

t. 
These indices are listed in Table A.5. We also list (one plus) 
the rate of growth in the access charges, Pt/P2010, and (one 
plus) the rate of growth in expenditures on products 1–4, 
et/e2010. Note that Pt/P2010 increases rapidly over time, while 
et/e2010 decreases rapidly.

Bringing access charges into the scope of the index has 
led to a general increase in the weighted index numbers. The 
Fixed-Base Fisher index for Approach 1 ended up at 1.0481 
in 2017, whereas the Fixed-Base Fisher index for Approach 2 
ended up at 1.3442. This is a very large difference. The Fixed-
Base Laspeyres index ended up at 1.2996, while the coun-
terpart Fixed-Base Paasche index ended up at 1.3946. The 
corresponding chained indices ended up at 1.3419 and 1.3465. 
Thus, for Approach 2, we prefer the chained Fisher index 
over its Fixed-Base counterpart since the spread between 
the Laspeyres and Paasche indices is much smaller for the 
chained indices. However, the two Fisher indices were very 
close to each other, and they ended up at 1.3463 and 1.3442, so 
in this case, it does not matter which Fisher index is chosen.

Recall equation (A.9), which established the follow-
ing relationship between the year t Approach 1 Laspeyres 
index, PL1

t, and the Approach 2 Laspeyres index, PL2
t: PL1

t – 
PL2

t = [m2010/(1 + m2010)][PL1
t – (Pt/P2010)]. From Tables A.4 and 

A.5, it can be seen that PL1
t < Pt/P2010 for all t > 2010, and thus 

PL1
t < PL2

t for t = 2011,. . .,2017. Similarly, (A.12) established 
the following relationship between the year t Approach 1 
Paasche index, PP1

t, and the Approach 2 Paasche index, PP2
t: 

PP1
t – PP2

t = [mt/(1 + mt)]PP2
t [Pt/P2010]–1 [PP1

t – (Pt/P2010)]. From 
Tables A.4 and A.5, it can be seen that PP1

t < Pt/P2010 for all 

Table A.4 Approach 1 Laspeyres, Paasche, and Fisher Indices
Year t PL1

t PP1
t PLCH1

t PPCH1
t PF1

t PFCH1
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 0.9839 0.9825 0.9839 0.9825 0.9832 0.9832
2012 0.9658 0.9644 0.9661 0.9648 0.9651 0.9655
2013 0.9802 0.9811 0.9805 0.9797 0.9807 0.9801
2014 1.0243 1.0259 1.0274 1.0249 1.0251 1.0262
2015 0.9979 1.0066 1.0034 1.0009 1.0022 1.0022
2016 0.9746 0.9832 0.9931 0.9790 0.9789 0.9860
2017 1.0466 1.0355 1.0690 1.0481 1.0411 1.0585

Table A.5 Approach 2 Laspeyres, Paasche, and Fisher Indices, Pt/P2010 and et/e2010

Year t PL2
t PP2

t PLCH2
t PPCH2

t PF2
t PFCH2

t Pt/P2010 et/e2010

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 1.0112 1.0126 1.0112 1.0126 1.0119 1.0119 1.0356 0.8414
2012 1.0565 1.0671 1.0611 1.0658 1.0618 1.0634 1.1372 0.7397
2013 1.1051 1.1276 1.1137 1.1203 1.1163 1.1170 1.2163 0.6674
2014 1.1558 1.1877 1.1659 1.1722 1.1716 1.1691 1.2728 0.6063
2015 1.1943 1.2506 1.2198 1.2282 1.2221 1.2240 1.3691 0.5495
2016 1.2343 1.3185 1.2797 1.2870 1.2757 1.2834 1.4655 0.4843
2017 1.2996 1.3946 1.3419 1.3465 1.3463 1.3442 1.5247 0.4212
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t > 2010, and thus PP1
t < PP2

t for t = 2011,.  .  .,2017. These 
inequalities also imply that PF1

t < PF2
t for t = 2011,. . .,2017. 

Thus, due to the very rapid growth in access charges over 
the sample period, the Approach 2 Laspeyres, Paasche, and 
Fisher indices will be much larger than their Approach 1 
counterparts.

For the Approach 3 weighted indices, the access charges 
are spread across products 1–4 in a proportional man-
ner. Thus, define 1 + mt ≡ vt/et and pn

t** ≡ (1 + mt)pn
t* for n 

= 1,2,3,4 and t = 2010,. . .,2017. The corresponding quanti-
ties are the qn

t* listed in Table A.2.76 Denote the Approach 3 
year t Fixed-Base Laspeyres, Paasche, and Fisher indices by 
PL3

t, PP3
t, and PF3

t and their chained counterparts by PLCH3
t, 

PPCH3
t, and PFCH3

t. These indices are listed in Table A.6.
Allocating the access charges across the first four type of 

call products leads to a very large increase in the weighted 
index numbers. The Fixed-Base Fisher indices for Approach 
1 and 2 end up at 1.0481 and 1.3442, respectively, in 2017, 
whereas the Fixed-Base Fisher index for Approach 3 ends 
up at 2.4839. These differences are very large. The Approach 
3 Fixed-Base Laspeyres and Paasche spread in 2017 was 
smaller than the corresponding spread in their chained 
counterparts, so the Fixed-Base Fisher index PF3

t is our pre-
ferred weighted index for this approach.

Using our current notation, the equalities in (A.15) trans-
late into the following equalities:

PL3
t/PL1

t = PP3
t/PP1

t = (1 + mt)/(1 + m2010); 
 t = 2010,. . .,2017. (A.26)

From Table A.2, we see that mt is monotonically increasing. 
Thus, using (A.26), it can be seen that the inequalities PL3

t > 
PL1

t and PP3
t > PP1

t for t > 2010 must hold.
Using our current notation, (A.16) can be rewritten as 

follows:

PL3
t – PL2

t = mt[1 + m2010]–1[PL1
t – (et/e2010)]; 

 t = 2010,. . .,2017. (A.27)

76 Instead of using pn
t** ≡ (1 + mt)pn

t* and qn
t* for n = 1,..,4 from Table A.2 

as the primary data that are used in the various Laspeyres, Paasche and 
Fisher indices, we could use (1 + mt)pn

t and qn
t for n = 1,..,4 from Table 

A.1 as the primary data. The indices remain the same since the Laspey-
res, Paasche, and Fisher indices are invariant to changes in the units of 
measurement.

Tables A.4 and A.5 list the usage expenditure ratios (et/e2010) 
and the Approach 1 Laspeyres indices PL1

t. Using these 
series, it can be seen that PL1

t > et/e2010 for t > 2010. Thus, 
using (A.27), we must have PL3

t > PL2
t for t > 2010.

Using our current notation, (A.19) can be rewritten as 
follows:

PP3
t – PP2

t = m2010[1 + m2010]–1 PP2
t[PP1

t – (et/e2010)]; 
 t = 2010,. . .,2017. (A.28)

Tables A.4 and A.5 list the usage expenditure ratios (et/e2010) 
and the Approach 1 Paasche indices PP1

t, and it can be seen 
that PP1

t > et/e2010 for t > 2010. Thus, using (A.28), we must 
have PP3

t > PP2
t for t > 2010. It follows that it is also the case 

that PF3
t > PF2

t for t > 2010.
Finally, we consider Approach 4. This approach is used 

when constructing producer price indices for the telecom 
sector in the regulation literature that attempts to measure 
the Total Factor Productivity of the sector. In this approach, 
the number of line connections is used as the output measure 
for access charges.77 Thus, this approach simply uses vn

t and 
qn

t that are listed in Table A.1 (and the implied prices pn
t ≡  

vn
t/qn

t for n = 1,.  .  .,5) in the usual index number formulae 
that are considered in this annex. Denote the Approach 4 
year t Fixed-Base Laspeyres, Paasche, and Fisher indices by 
PL4

t, PP4
t, and PF4

t and their chained counterparts by PLCH4
t, 

PPCH4
t, and PFCH4

t. These indices are listed in Table A.7.
Using the Approach 4 methodology, it can be seen that 

the Fixed-Base Paasche index grows more rapidly than 
the corresponding Fixed-Base Laspeyres index. The addi-
tion of product 5 to the first four products has caused this 
somewhat unusual phenomenon. The price of product 5 
increases 1.36 fold over the sample period, which is much 
higher than a weighted average of the prices of the first four 
products; that is, PL1

t and PP1
t increased 1.047 fold and 1.036 

fold, respectively, over the sample period. At the same time, 
q5

t increased, while q1
t–q4

t decreased substantially over the 
sample period. Under these conditions, PP4

t will increase 
more rapidly than PL4

t. Table A.7 also indicates that the 
spread between PL4

2017 and PP4
2017 is larger than the spread 

between the chained indices PL4CH
2017 and PP4CH

2017. Under 

77 See, for example, Lawrence and Diewert (2006; 218) where the distribu-
tor’s number of line connections is regarded as an output of the firm. 
Their paper is concerned with electricity distribution but the same meth-
odology is used for telecommunication firms.

Table A.6 Approach 3 Laspeyres, Paasche, and 
Fisher Indices
Year t PL3

t PP3
t PLCH3

t PPCH3
t PF3

t PFCH3
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 1.1040 1.1024 1.1040 1.1024 1.1032 1.1032
2012 1.2403 1.2385 1.2407 1.2391 1.2394 1.2399
2013 1.4068 1.4081 1.4072 1.4061 1.4074 1.4066
2014 1.6199 1.6225 1.6249 1.6209 1.6212 1.6229
2015 1.7854 1.8010 1.7953 1.7909 1.7932 1.7931
2016 2.0191 2.0369 2.0575 2.0282 2.0280 2.0428
2017 2.4972 2.4706 2.5506 2.5008 2.4839 2.5256

Table A.7 Approach 4 Laspeyres, Paasche, and 
Fisher Indices
Year t PL4

t PP4
t PLCH4

t PPCH4
t PF4

t PFCH4
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 1.0085 1.0097 1.0085 1.0097 1.0091 1.0091
2012 1.0390 1.0484 1.0427 1.0470 1.0437 1.0449
2013 1.0737 1.0927 1.0800 1.0857 1.0832 1.0829
2014 1.1084 1.1316 1.1135 1.1178 1.1199 1.1156
2015 1.1298 1.1733 1.1479 1.1541 1.1513 1.1510
2016 1.1544 1.2209 1.1904 1.1953 1.1872 1.1929
2017 1.2115 1.2796 1.2419 1.2438 1.2451 1.2428



142

CONSUMER PRICE INDEX MANUAL

these conditions, we prefer the chained Fisher index PFCH4
t 

over its Fixed-Base counterpart PF4
t. However, Table A.7 

indicates that the difference between the Fixed-Base and 
chained Fisher indices is negligible using Approach 4.

Table A.8 lists the Fixed-Base and chained Fisher indices 
for all four approaches.

From Table A.8, it can be seen that the Approach 1 Fisher 
indices (which ignored the access charges) generate the low-
est increase in prices, followed by the Approach 4 indices 
(which include access charges as a regular product with 
the quantity set equal to the number of lines), followed by 
the Approach 2 indices (which include access charges but 
hold the corresponding quantity fixed at unity), and finally 

followed by the Approach 3 Fisher indices (which spread the 
access charges across the other products). These alternative 
approach Fisher indices are plotted in Figure A6.1.

It can be seen that the differences between Fixed-Base 
and chained Fisher indices for each approach are small, but 
the differences between the four approaches is very large 
indeed. Thus, in the case of fixed-line telecommunications 
services, the choice of an approach to the treatment of 
access charges is important.

In the case where quantity or expenditure weights are not 
available, the choice of an elementary index number for-
mula is also important for the telecommunications sector; 
recall Table A.3, which listed the unweighted indices using 

Table A.9 Approach 4 Unweighted Price Indices
Year t PD

t PJ
t PH

t PCSWD
t PC

t PHCH
t PCSWDCH

t PCCH
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 0.9920 0.9750 0.9728 0.9749 0.9770 0.9728 0.9749 0.9770
2012 0.9941 0.9662 0.9605 0.9661 0.9717 0.9629 0.9662 0.9694
2013 1.0083 0.9739 0.9629 0.9734 0.9841 0.9697 0.9738 0.9780
2014 1.0403 1.0019 0.9838 1.0012 1.0188 0.9950 1.0019 1.0088
2015 1.0349 0.9970 0.9779 0.9967 1.0158 0.9891 0.9970 1.0048
2016 0.9986 0.9892 0.9498 0.9882 1.0280 0.9660 0.9882 1.0108
2017 1.0403 1.0412 0.9792 1.0379 1.1001 1.0133 1.0400 1.0674

Table A.8 Fixed-Base and Chained Fisher Indices for All Four Approaches
Year t PF1

t PFCH1
t PF2

t PFCH2
t PF3

t PFCH3
t PF4

t PFCH4
t

2010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2011 0.9832 0.9832 1.0119 1.0119 1.1032 1.1032 1.0091 1.0091
2012 0.9651 0.9655 1.0618 1.0634 1.2394 1.2399 1.0437 1.0449
2013 0.9807 0.9801 1.1163 1.1170 1.4074 1.4066 1.0832 1.0829
2014 1.0251 1.0262 1.1716 1.1691 1.6212 1.6229 1.1199 1.1156
2015 1.0022 1.0022 1.2221 1.2240 1.7932 1.7931 1.1513 1.1510
2016 0.9789 0.9860 1.2757 1.2834 2.0280 2.0428 1.1872 1.1929
2017 1.0411 1.0585 1.3463 1.3442 2.4839 2.5256 1.2451 1.2428
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Figure A6.1 Alternative Approach Fisher Indices
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the prices of products 1–4. To conclude this annex, we list 
the same unweighted indices as were listed in Table A.3 but 
using the prices of products 1–5 in Table A.9.

The 2017 spread in these unweighted indices is  
1.1001/0.9792 = 1.123 or 12.3 percent. Recall that the cor-
responding index spread for the Approach 1 unweighted 
price indices was 17.0 percent, so the addition of product 
5 has lowered the spread significantly. These indices used 
the prices that correspond to the values and quantities listed 
in Table A.1. Recall that the Dutot index using normalized 
prices, PDN

t, was equal to the chained Carli index, PCCH
t, 

listed in Table A.3. A similar result holds here: PDN
t is equal 

to PCCH
t listed in Table A.8. The indices listed in Table A.8 

are plotted in Figure A6.2. It can be seen that PJ
t, PCSWD

t, and 
PCSWDCH

t cannot be distinguished in Figure A6.2.78 These 
series are in the middle of the listed indices, with the chained 
Carli and Carli indices, PCCH

t and PC
t, well above the middle 

series and the chained Harmonic and Harmonic indices, 
PHCH

t and PH
t, well below the middle series. The Dutot series 

PD
t is initially well above the other series, but it joins up with 

the middle series at the end of the sample period. The Dutot 
index PDN

t using the normalized prices listed in Table A.2 
coincides with the Fixed-Base Carli index PC

t. Thus, there is 
a substantial difference in the Dutot indices as the units of 
measurement change. The remaining indices are invariant 
to changes in the units of measurement.

78 Recall the approximate equalities (27) and (29) in Section 5.

Some of the conclusions that can be drawn from this 
annex are as follows:

• Unweighted elementary indices can differ substantially 
depending on which formula is used.

• The Carli Fixed-Base and chained indices are not recom-
mended due to their failure of the time reversal test with a 
built-in upward bias.

• The Dutot index is also not recommended due to its lack 
of invariance to changes in the units of measurement. 
Even if the units of measurement are the same, the empir-
ical example shows that changing the units of measure-
ment can make a huge difference.

• The approach used to allocate access charges can make 
a substantial difference to the CPI in the case of regu-
lated network industries where access charges can be 
substantial.79

• In the case of regulated industries, price, and quantity 
data will often be available to the price statistician.80 In 
this case, weighted indices are preferred over unweighted 
indices because they take into account the economic 
importance of the various outputs of the regulated indus-
try. The example in this annex shows that there can be 
significant differences between weighted and unweighted 
indices.

79 This point was noted by Abdirahman, Coyle, Heys, and Stewart (2017) 
(2020).
80 Unfortunately, data submitted to regulators is usually quarterly data 
which presents challenges in the context of producing a monthly CPI. 
However, national income accountants have to produce quarterly CPIs 
and perhaps more importantly, national accounts price indices can be 
revised. Hence, as better information becomes available to the price stat-
istician, better (revised) indices can be produced.
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Annex B
Additional Problems Associated with the Use 
of the Carli Index
Robert Hill (2018) submitted some testimony to the United 
Kingdom’s House of Lords Economic Affairs Committee on 
the use of the Carli Index in the UK’s Retail Price Index. His 
points 3–5 listed here deal with problems associated with 
the use of the Carli index. Since his testimony is not eas-
ily accessible and some of his points were not made in this 
chapter, the first five points in his testimony are quoted here.

1. I am responding to the latest call for evidence from the 
House of Lords Economic Affairs Committee in my ca-
pacity as a researcher in the field of price indices. I am 
a British citizen based at University of Graz in Austria, 
where I am Professor of Macroeconomics. I served on the 
Expert Advisory Group for Paul Johnson’s report on UK 
Consumer Prices Statistics. I have also served as an advi-
sor to Eurostat on the treatment of OOH in the HICP.

2. In this statement I will focus on what I think are the two 
most serious problems with the RPI. These are its use of 
the Carli formula at the elementary level and its treatment 
of OOH.

3. Irving Fisher warned against using the Carli formula in 
his 1922 book on index numbers. Carli fails the time re-
versal test and suffers from a systematic upward bias. For 
example, if prices change from periods 1 to 2, but then in 
period 3 return to their original period 1 levels, a chained 
Carli index will always find that the price level is higher in 
period 3 than in period 1 (except in the special case where 
all prices change by exactly the same proportion from one 
period to the next).

4. Levell (2015) provides a detailed comparison of the Carli 
and Jevons price index formulae. Carli takes an arithmetic 
mean of the price relatives while Jevons takes a geometric 
mean. While Levell ends up rightly favoring Jevons, he is 
at times too kind to Carli, which could cause some con-
fusion among users. Indeed, there seems to be a percep-
tion in some circles that there are trade-offs between Carli 
and Jevons. For example, Leyland (2011) states: “The RSS 
does not have a view on whether the arithmetic or geo-
metric mean is the better approach but it does consider 
the issue a major concern.”

5. In my opinion the use of the Carli index is indefensible. 
To see why, I will revisit some of the points made by Lev-
ell. Levell assesses the Carli index from three perspec-
tives, referred to in the literature as the test, statistical, 
and economic approaches. From the test perspective, 
Jevons is unambiguously better than Carli. Jevons is the 
only elementary price index formula that satisfies all the 
14 tests considered by Levell. Up to this point I am in 
complete agreement with Levell. Turning to the statis-
tical approach discussed in page 316, Levell states that 
“Ultimately our object of interest here is E(p1

i/p0
i).” He 

then goes on to show that Jevons is a downward-biased 
measure of E(p1

i/p0
i). My problem here is that I disagree 

that E(p1
i/p0

i) should be our object of interest since it 
treats price rises and falls asymmetrically. A better ap-
proach is to focus on the natural logarithm of the price 
indices with the following object of interest: E[ln(p1

i/p0
i)]. 

In this setting Jevons unambiguously outperforms Carli 
under the statistical approach. Turning finally to the eco-
nomic approach, Levell notes that in the case of Leon-
tief preferences – where there is no substitution effect – a 
case can be made for Carli. This argument dates back at 
least to the ILO CPI Manual of 2004, which on page 16 
contains the following statement: “With Leontief prefer-
ences, a Laspeyres index provides an exact measure of 
the cost of living index. In this case, the Carli calculated 
for a random sample would provide an estimate of the 
cost of living provided that the items were selected with 
probabilities proportional to the population expenditure 
shares.” This statement has caused a lot of confusion in 
the literature. I agree that in this case Laspeyres is an 
exact measure. But what follows regarding Carli is mis-
leading. First, the whole point with elementary indices 
is that there are no expenditure shares. Second, if we as-
sume the items are sampled proportionally to expendi-
ture shares, then what we have is not Carli but a weighted 
arithmetic mean of the price relatives. If we assume fur-
ther that the reference expenditure shares are those of the 
earlier of the two periods being compared, then instead 
of Carli we have Laspeyres. So what this statement is re-
ally saying is that if we have Leontief preferences and we 
replace Carli with Laspeyres, then we will get the right 
answer. This is not very helpful. It is not true that Carli 
performs well when preferences are Leontief or close to 
Leontief. The only situation when Carli is free of upward 
bias is when all prices change at the same rate (which is 
the Hicks, not Leontief, aggregation case). In conclusion, 
whichever way you look at it, the Carli index is flawed 
and should not be used. Jevons has much better proper-
ties (Robert Hill (2018)).

Hill makes two important conclusions in his point 5:

• The econometric or statistical approach to index number 
theory frequently assumes that the goal of the exercise is 
to measure the average relative price increase—that is, to 
measure some average over n of the price ratios, ptn/p1n. 
Using this perspective, econometricians may assert that, 
for example, the Törnqvist–Theil index is a biased esti-
mator for the target index. But this “bias” vanishes if we 
make the goal the measurement of the average log(ptn/p1n). 
As Hill notes, the first approach treats price rises and 
falls more asymmetrically than the second approach. 
In any case, the more important economic and basket 
approaches to consumer index number theory do not take 
the statistical approach to index number theory.

• Hill’s second main point has to do with justifications 
for the use of the Carli index under special assumptions 
about the nature of consumer preferences. His dismissal 
of this type of argument seems to be on target.
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THE CHAIN DRIFT PROBLEM AND  
MULTILATERAL INDICES 7
1. Introduction
The Consumer Price Index Manual1 recommended that the 
Fisher, Walsh, or Törnqvist–Theil price index be used as a 
target month-to-month index in a CPI, provided that monthly 
price and expenditure data for the class of expenditures in 
scope were available. In recent years, retail chains in sev-
eral countries (for example, Australia, Canada, Japan, the 
Netherlands, Norway, and Switzerland) have been willing 
to donate their sales value and quantity sold information 
by detailed product to their national statistical agencies, so 
it has become possible to calculate month-to-month super-
lative indices for at least some strata of the country’s CPI.2 
However, the following issue arises: Should the indices fix 
a base month (for 12 or 13 months) and calculate Fisher 
fixed-base indices, or should they calculate chained month-
to-month Fisher indices? The 2004 CPI Manual offered the 
following advice on this choice in the chapter on seasonal 
commodities:3

• Determine the set of commodities that are present in the 
marketplace in both months of the comparison of prices 
between the two periods.

• For this maximum overlap set of commodities, calcu-
late one of the three indices recommended in previous 
chapters using the chain principle; that is, calculate the 
chained Fisher, Walsh, or Törnqvist–Theil index.

The CPI Manual suggested the use of chained superlative 
indices as a target index for the following three reasons:4

• The set of seasonal commodities that overlaps during two 
consecutive months is likely to be much larger than the 
set obtained by comparing the prices of any given month 
with a fixed-base month (like January of a base year). 
Hence, the comparisons made using chained indices will 
be more comprehensive and accurate than those made 
using a fixed-base.

1 See paragraph 22.63 in the ILO, Eurostat, IMF, OECD, UN, and the 
World Bank (2004).
2 Some countries may be able to obtain price and quantity data for 
individual products from third-party data aggregators. This can be a 
cost-effective strategy for a statistical agency. In other cases, price and 
quantity data for regulated industries can be obtained from regulators.
3 For more on the economic approach and the assumptions on consumer 
preferences that can justify month-to-month maximum overlap indices, 
see Diewert (1999a, 51–56).
4 See the ILO, Eurostat, IMF, OECD, UN, and the World Bank (2004, 
407).

• In many economies, on average 2 or 3 percent of price 
quotes disappear each month due to the introduction of 
new commodities and the disappearance of older ones. 
This rapid sample attrition means that fixed-base indices  
rapidly become unrepresentative, and hence it seems 
preferable to use chained indices that can more closely 
follow marketplace developments.

• If prices and quantities are trending relatively smoothly 
over time, chaining will reduce the spread between the 
Paasche and Laspeyres indices.5 Since these indices pro-
vide reasonable bounds for true cost of living indices, 
reducing the spread between these indices will narrow the 
zone of uncertainty about the cost of living.

Thus, the 2004 Manual recommended the use of chained 
Fisher, Walsh, or Törnqvist–Theil indices as a target index 
concept. But, as will be seen in the subsequent text, this 
advice does not always work out too well.

The problem with this advice is the assumption of smooth 
trends in prices and quantities. Hill (1993, 388), drawing on 
the earlier research of Szulc (1983, 1987) and Hill (1988, 136–
37), noted that it is not appropriate to use the chain system 
when prices oscillate or “bounce” to use Szulc’s (1983, 548) 
term. This phenomenon can occur in the context of regular 
seasonal fluctuations or in the context of sales. The extent 
of the price bouncing problem or the problem of chain drift 
can be measured if we make use of the following test due to 
Walsh (1901, 389; 1921b, 540):6

multiperiod identity test:  
P(p0,p1,q0,q1)P(p1,p2,q1,q2)P(p2,p0,q2,q0) = 1,

where pt ≡ [pt1,  .  .  .,ptN] and qt ≡ [qt1,  .  .  .,qtN] are the period 
t price and quantity vectors and ptn and qtn are the period t 
price and quantity for commodity n for n = 1, .  .  .,N in the 
class of commodities under consideration. P(p0,p1,q0,q1) is 
a bilateral index number formula that is a function of the 
prices and quantities of periods 0 and 1. Thus, price change 

5 See Diewert (1978, 895) and Hill (1988, 1993, 387–388). Chaining under 
these conditions will also reduce the spread between fixed-base and 
chained indices using pF, pW or pT as the basic bilateral formula.
6 Fisher (1922, 293) realized that the chained Carli, Laspeyres, and Young 
indices could be subject to upward chain drift, but for his empirical exam-
ple, there was no evidence of chain drift for the Fisher formula. However, 
Persons (1921, 110) came up with an empirical example where the Fisher 
index exhibited substantial downward chain drift. Frisch (1936, 9) seems 
to have been the first to use the term “chain drift.” Both Frisch (1936, 8–9) 
and Persons (1928, 100–5) discussed and analyzed the chain drift prob-
lem. These indices will be formally defined later in the chapter.
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Paasche indices have chain drift bias that is extraordinary, 
but what is interesting is that the chained Fisher has a 2 per-
cent downward bias and the chained Törnqvist has a close to 
3 percent downward bias.

What explains the results in Table 7.2? The problem is 
this: When commodity one comes off sale and goes back to 
its regular price in period 3, the corresponding quantity does 
not return to the level it had in period 1—the period 3 demand 
is only 1 unit, whereas the “normal” period 1 demand for 
commodity 1 was 10 units. It is only in period 4 that demand 
for commodity one recovers to the period 1 level. However, 
since prices are the same in periods 3 and 4, all of the chain 
links show no change (even though quantities are changing), 
and this is what causes the difficulties. If demand for com-
modity one in period 3 had immediately recovered to its 
“normal” period 1 level of 10, then there would be no chain 
drift problem.13

There are at least four possible real-time solutions to the 
chain drift problem:

• Use a fixed-base index
• Use a multilateral index14

13 If the economic approach to index number theory is adopted, what 
causes chain drift in the above example is inventory stocking behavior on 
the part of households. The standard theory for the cost of living index 
implicitly assumes that all purchased goods are nondurable and used up 
in the period of purchase. In real life, households can stockpile goods 
when they go on sale, and it is this stockpiling phenomenon that leads to 
a downward chain drift for a superlative index. For an example where a 
chained superlative index has upward chain drift, see Section 7. Feenstra 
and Shapiro (2003) also looked at the chain drift problem that was caused 
by sales and restocking dynamics. Their suggested solution to the chain 
drift problem was to use a fixed-base index, which was also the advice of 
Persons (1921, 112).
14 A multilateral price index compares the average price levels over mul-
tiple periods. A bilateral price index compares the price levels over two 
periods. Multilateral price indices were originally applied in making 
cross-country comparisons of prices. The use of multilateral indices in the 
time series context dates back to Persons (1921), Fisher (1922, 297–308), 
Gini (1931), and Balk (1980, 1981). Fisher (1922, 305) suggested taking the 
arithmetic average of the Fisher “star” indices, whereas Gini suggested 
taking the geometric mean of the star indices. For additional material on 

is calculated over consecutive periods, but an artificial final 
period is introduced as the final period where the prices and 
quantities revert back to the prices and quantities in the very 
first period. The test asks that the product of all of these price 
changes should equal unity. If prices have no definite trends 
but are simply bouncing up and down in a range, then this 
test can be used to evaluate the amount of chain drift that 
occurs if chained indices are used under these conditions. 
Chain drift occurs when an index does not return to unity 
when prices in the current period return to their levels in the 
base period.7 Fixed-base indices that satisfy the time reversal 
test will satisfy Walsh’s test and hence will not be subject to 
chain drift as long as the base period is not changed.

The Manual did not take into account how severe the 
chain drift problem could be in practice.8 The problem is 
mostly caused by sales (that is, highly discounted prices) of 
products.9 An example will illustrate the problem.

Suppose that we are given the price and quantity data 
for two commodities for four periods. The data are listed 
in Table 7.1.10

The first commodity is subject to periodic sales (in period 
2), when the price drops to ½ of its normal level of 1. In period 
1, we have “normal” off-sale demand for commodity 1, which 
is equal to 10 units. In period 2, the sale takes place and 
demand explodes to 5,000 units.11 In period 3, the commodity 
is off sale and the price is back to 1, but many shoppers have 
stocked up in the previous period, so demand falls to only 1 
unit. Finally in period 4, the commodity is off sale and we 
are back to the “normal” demand of 10 units. Commodity 2 
exhibits no price or quantity change across periods: Its price 
is 1 in all periods and the quantity sold is 100 units in each 
period. Note that the only thing that has happened going 
from period 3 to 4 is that the demand for commodity one has 
picked up from 1 unit to the “normal” level of 10 units. Also 
note that, conveniently, the period 4 data are exactly equal to 
the period 1 data so that for Walsh’s test to be satisfied, the 
product of the period-to-period chain links must equal one.12

Table 7.2 lists the fixed-base Fisher, Laspeyres, and Paas-
che price indices, PF(FB), PL(FB), and PP(FB), and as expected, 
they behave perfectly in period 4, returning to the period 
1 level of 1. Then the chained Fisher, Törnqvist–Theil, 
Laspeyres, and Paasche price indices, PF(CH), PT(CH), PL(CH), 
and PP(CH), are listed. Obviously, the chained Laspeyres and 

7 See the ILO, Eurostat, IMF, OECD, UN and the World Bank (2004, 445).
8 Szulc (1983, 1987) demonstrated how big the chain drift problem could be 
using chained Laspeyres indices, but the authors of the 2004 Manual did not 
realize that chain drift could also be a problem with chained superlative indices.
9 Pronounced fluctuations in the prices and quantities of seasonal com-
modities can also cause chain drift.
10 This example is taken from Diewert (2012).
11 This example is based on an actual example that used Dutch scanner data. 
When the price of a detergent product went on sale in the Netherlands at 
approximately one half of the regular price, the volume sold shot up approxi-
mately one thousand fold; see de Haan (2008, 15) and de Haan and van der 
Grient (2011). These papers brought home the magnitude of volume fluctua-
tions due to sales and led Ivancic, Diewert, and Fox (2009, 2011) to propose 
the use of rolling window multilateral indices to mitigate the chain drift 
problem.
12 The traditional economic approach to index number theory does not 
take into account the stockpiling problem. It is possible to modify the 
traditional economic approach, but the resulting theory is difficult to 
implement; see Section 10 of Diewert and Shimizu (2022).

Table 7.1 Price and Quantity Data for Two Products 
for Four Periods
Period t p1

t p2
t q1

t q2
t

1 1.0 1.0 10 100
2 0.5 1.0 5000 100
3 1.0 1.0 1 100
4 1.0 1.0 10 100

Table 7.2 Fixed-Base and Chained Fisher, 
Törnqvist–Theil, Laspeyres, and Paasche Indices
Period P F(FB) P L(FB) P P(FB) P F(CH) P T(CH) P L(CH) P P(CH)

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.698 0.955 0.510 0.698 0.694 0.955 0.510
3 1.000 1.000 1.000 0.979 0.972 1.872 0.512
4 1.000 1.000 1.000 0.979 0.972 1.872 0.512
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• Use annual weights for a past year or
• Give up on the use of weights at the first stage of aggrega-

tion, and simply use the Jevons index, which does not rely 
on representative weights.

There are two problems with the first solution: (i) The results 
depend asymmetrically on the choice of the base period, and 
(ii) with new and disappearing products,15 the base period 
prices and quantities may lose their representativeness; that 
is, over long periods of time, matching products becomes 
very difficult.16

A problem with the second solution is that as an extra 
period of data becomes available, the indices may have to 
be recomputed. This is not a major problem. A solution to 
this problem is to use a rolling window of observations and 
the results of the current window to update the index to the 
current period. This methodology was suggested by Ivancic, 
Diewert, and Fox (2009, 2011) and is being used by the Aus-
tralian Bureau of Statistics (2016). There is the problem of 
deciding exactly how to link the results of the current rolling 
window to the indices generated by the previous rolling win-
dow, but again, this is not a major problem.17 However, it is 
possible to solve these linking problems by making use of a 
different class of multilateral methods, namely methods that 
rely on linking the data of the current period with a prior 
period that has the most similar structure of relative prices. 
This new class of multilateral methods will be explained in 
Sections 18 and 20.

The problem with the third possible solution is that the 
use of annual weights will inevitably result in some substitu-
tion bias, usually in the range of 0.15–0.40 percentage points 
per year.18

The problem with the fourth possible solution is that the 
use of an index that does not use quantity or expenditure 
weights will give equal weight to the prices of products that 

multilateral indices, see Diewert (1988, 1999b), Balk (1996, 2008), and 
Diewert and Fox (2020).
15 We use the term “products” as meaning “goods and services.”
16 Persons (1928, 99–100) has an excellent discussion on the difficulties of 
matching products over time.
17 Ivancic, Diewert, and Fox (2009, 2011) suggested that the movement of 
the rolling window indices for the last two periods in the new window be 
linked to the last index value generated by the previous window. How-
ever, Krsinich (2016) suggested that the movement of the indices gener-
ated by the new window be linked to the previous window index value for 
the second period in the previous window. Krsinich called this a window 
splice as opposed to the IDF movement splice. de Haan (2015, 27) sug-
gested that perhaps the linking period should be in the middle of the old 
window, which the Australian Bureau of Statistics (2016, 12) termed a 
half splice. Ivancic, Diewert, and Fox (2010) suggested that the average of 
all links for the last period in the new window to the observations in the 
old window could be used as the linking factor. Diewert and Fox (2021) 
looked at these alternative methods for linking. Average or mean linking 
seems to be the safest strategy. Of course, another strategy would be to 
use relative price similarity linking and an expanding window length. This 
method is explained in Section 18.
18 For retrospective studies on upper-level substitution bias for national 
CPIs, see Diewert, Huwiler, and Kohli (2009); Huang, Wimalaratne, and 
Pollard (2015); and Armknecht and Silver (2014). For studies of lower-
level substitution bias for a Lowe index, see Diewert, Finkel, and Artsev 
(2009) and Diewert (2014).

may be unimportant in household budgets, which can lead 
to a biased CPI.

There is a possible fifth method to avoid chain drift 
within a year when using a superlative index, and that is to 
simply compute a sequence of 12 year-over-year monthly 
indices so that say January prices in the previous year would 
be compared with January prices in the current year and 
so on. Handbury, Watanabe, and Weinstein (2013) used this 
methodological approach for the construction of year–over-
year monthly superlative Japanese CPIs using the Nikkei 
point-of-sale database. This database has monthly price 
and expenditure data covering the years 1988 to 2010 and 
contains 4.82 billion price and quantity observations. This 
type of index number was recommended in Chapter 22 of 
the 2004 Consumer Price Index Manual as a valid year-over-
year index that would avoid seasonality problems. How-
ever, central banks and other users require month-to-month 
CPIs in addition to year-over-year monthly CPIs, and so 
the approach of Handbury, Watanabe, and Weinstein does 
not solve the problems associated with the construction of 
superlative month-to-month indices.

Many national statistical agencies are using web-scraping 
to collect large numbers of prices as a substitute for selective 
sampling of prices at the first stage of aggregation. Thus, 
it is of interest to look at elementary indices that depend 
only on prices, such as the Carli (1804), Dutot (1738), and 
Jevons (1865) indices, and compare these indices to superla-
tive indices; that is, under what conditions will these indices 
adequately approximate a superlative index.19

The two superlative indices that we will consider in this 
chapter are the Fisher (1922) and the Törnqvist20 indices. 
The reasons for singling out these two indices as preferred 
bilateral index number formulae are as follows: (i) both indi-
ces can be given a strong justification from the viewpoint 
of the economic approach to index number theory; (ii) the 
Fisher index emerges as probably being the “best” index 
from the viewpoint of the axiomatic or test approach to 
index number theory;21 (iii) the Törnqvist index has a strong 
justification from the viewpoint of the stochastic approach 
to index number theory.22 Thus, there are strong cases for 
the use of these two indices when making comparisons of 
prices between two periods when detailed price and quan-
tity data are available.

19 We will also look at the approximation properties of the CES price 
index with equal weights.
20 The usual reference is Törnqvist (1936), but the index formula did not 
actually appear in this paper. It did appear explicitly in Törnqvist and 
Törnqvist (1937). It was listed as one of Fisher’s (1922) many indices: 
namely number 123. It was explicitly recommended as one of his top 
five ideal indices by Warren Persons (1928, 86), so it probably should be 
called the Persons index. Theil (1967) developed a compelling descriptive 
statistics justification for the index. Superlative indices are explained in 
Diewert (1976, 2021a).
21 See Diewert (1992).
22 See Theil (1967, 136–37) or Chapter 4.
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When comparing two indices, two methods for making 
the comparisons will be used: (i) second-order Taylor series 
approximations to the index differences; (ii) the difference 
between two indices can frequently be written as a covari-
ance, and it is possible in many cases to determine the likely 
sign of the covariance.23

When looking at scanner data from a retail outlet (or price 
and quantity data from a firm that uses dynamic pricing to 
price its products or services24), a fact emerges: If a product 
or a service is offered at a highly discounted price (that is, 
it goes on sale), then the quantity sold of the product can 
increase by a very large amount. This empirical observation 
will allow us to make reasonable guesses about the signs of 
various covariances that express the difference between two 
indices. If we are aggregating products that are close sub-
stitutes for each other, then a heavily discounted price may 
not only increase the quantities sold of the product but also 
increase the expenditure share of the sales in the list of prod-
ucts or services that are in scope for the index.25 It turns out 
that the behavior of shares in response to discounted prices 
does make a difference in analyzing the differences between 
various indices: In the context of highly substitutable prod-
ucts, a heavily discounted price will probably increase the 
market share of the product, but if the products are weak 
substitutes (which is typically the case at higher levels of 
aggregation), then a discounted price will typically increase 
sales of the product but not increase its market share. These 
two cases (strong or weak substitutes) will play an important 
role in our analysis.

Sections 2 and 3 look at relationships between the fixed-
base and chained Carli, Dutot, Jevons, and constant elas-
ticity of substitution (CES) elementary indices that do 
not use expenditure share or quantity information. These 
indices are used by national statistical agencies at the first 
stage of aggregation when they calculate price indices for 
components of their CPIs in the case when quantity or value 
information is not available. It should be noted that we will 
start our analysis of various index number formulae by first 
developing the concept of a price level, which is an average 
of prices pertaining to a given period of time. A bilateral 
price index calculates price change between two periods. A 
price index could be a ratio of two price levels, or it could 
be an average of price ratios, where the price of a good or 
service in the comparison period is in the numerator and the 
corresponding price in the base period is in the denomina-
tor. Comparing price levels for two periods is quite different 
from undertaking price comparisons over multiple periods. 
In the multiple period case, it turns out to be easier to com-
pare price levels across periods rather than taking averages 
of price ratios as is done in the case of bilateral compari-
sons. Thus, from the viewpoint of the economic approach 
to index number theory, it is simpler to target the estimation 
of unit cost functions rather than target the estimation of 
a ratio of unit cost functions. Once we have estimates for 

23 This second method for making comparisons can be traced back to 
Bortkiewicz (1923).
24 Airlines and hotels are increasingly using dynamic pricing; that is, they 
change prices frequently.
25 In the remainder of this chapter, we will speak of products, but the 
same analysis applies to services.

period-by-period price levels, we can easily form ratios of 
these estimates, which will give us “normal” index numbers.

Section 4 looks at the relationships between the Laspey-
res, Paasche, geometric Laspeyres, geometric Paasche, 
Fisher, and Törnqvist bilateral price indices. Section 5 
investigates how close the unweighted Jevons index is to 
the geometric Laspeyres PGL

t, geometric Paasche PGP
t, and 

Törnqvist PT
t price indices.

Section 6 develops some relationships between the Törn-
qvist index and geometric indices that use average annual 
shares as weights.

Section 7 looks at the differences between fixed-base and 
chained Törnqvist indices.

Multilateral indices finally make their appearance in Sec-
tion 8: the fixed-base Törnqvist index is compared to the 
Gini, Eltetö, Köves, and Szulc (GEKS) and GEKS-Törn-
qvist or Caves, Christensen, Diewert, and Inklaar (CCDI) 
multilateral indices.

Sections 9 and 10 compare unit value and quality-adjusted 
unit value indices to the Fisher index. It turns out that some 
multilateral indices are actually quality-adjusted unit value 
indices, as will be seen in Section 12. Section 11 compares 
the Lowe index to the Fisher index.

Section 12 examines the Geary–Khamis (GK) multilat-
eral index and shows that it is actually a special case of a 
quality-adjusted unit value index.

Sections 13 and 14 introduce time product dummy 
multilateral indices. Section 13 assumes that there are no 
missing products in the window of time periods under con-
sideration, while Section 14 deals with the case of miss-
ing products. Sections 15 and 16 introduce weighted time 
product dummy indices for the case of two periods; the 
missing products case is considered in Section 16. Finally, 
the weighted TPD multilateral indices for T periods with 
missing products are discussed in  Section 17. Readers who 
are only interested in the general case can skip Sections 
13–16 and just consider the general case in Section 17.

Section 18 introduces a less familiar multilateral method 
that is based on linking observations that have the most sim-
ilar structure of relative prices. This similarity method for 
linking observations has for the most part been used in the 
context of making cross-country comparisons. This class of 
methods depends on the choice of a measure of dissimilarity 
between the prices of two observations. The dissimilarity 
measure used in Section 18 is Diewert’s (2009) asymptotic 
linear measure of relative price dissimilarity.

A problem with the dissimilarity measure used in Section 
18 is that it requires positive prices for all products.26 Thus, 
in Section 19, a simple method for constructing imputed 
prices for missing products is described.

In Section 20, a new measure of relative price  dissimilarity, 
the predicted share measure of relative price dissimilarity, is 
defined as the measure that does not require positive prices for 
all products in the two periods that are compared. This new 
measure can be adapted to measures of dissimilarity between 
relative quantities. Section 20 also introduces another method 
for constructing bilateral index number links between pairs 

26 Products that are absent in both periods that are being compared can 
be ignored. However, for products that are present in only one of the 
two comparison periods, the dissimilarity measure defined in Section 18 
requires that an imputed price for the missing products be constructed.
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of observations that have either proportional price vectors 
or proportional quantity vectors. This new method has some 
good axiomatic properties, as will be seen in Section 21.

Section 21 introduces an axiomatic or test approach to 
evaluate the properties of alternative multilateral methods 
for generating price and quantity levels cross multiple time 
periods. However, this section makes only a start on the axi-
omatic approach to evaluating alternative price levels for 
many time periods.

Section 22 summarizes some of the more important 
results in this chapter.

The Annex evaluates all of these indices for a grocery 
store scanner data set that is publicly available. This data 
set had a number of missing prices and quantities. Some 
of these missing prices may be due to lack of sales or 
shortages of inventory. A general problem is how should 
the introduction of new products and the disappearance 
of (possibly) obsolete products be treated in the context 
of forming a CPI? Hicks (1940, 140) suggested a general 
approach to this measurement problem in the context 
of the economic approach to index number theory. His 
approach was to apply normal index number theory but 
estimate (or guess at) hypothetical prices that would 
induce utility-maximizing purchasers of a related group 
of products to demand 0 units of unavailable products. 
With these virtual (or reservation or imputed) prices in 
hand, one can just apply normal index number theory 
using the augmented price data and the observed quantity 
data. The empirical example discussed in the Annex uses 
the scanner data that was used in Diewert and Feenstra 
(2017, 2022) for frozen juice products for a Dominick’s 
store in Chicago for three years. This data set had 20 
observations where qtn = 0. For these 0 quantity observa-
tions, Diewert and Feenstra estimated positive Hicksian 
reservation prices for these missing price observations, 
and these imputed prices are used in the empirical exam-
ple in the Annex. The Annex lists the Dominick’s data 
along with the estimated reservation prices. The Annex 
also has tables and charts of the various index number 
formulae that are discussed in the main text of the study.

2. Comparing CES Price Levels  
and Price Indices
In this section, we will begin our analysis by considering 
alternative methods by which the prices for N related prod-
ucts could be aggregated into an aggregate price level for the 
products for a given period.

We introduce some notation that will be used in the rest 
of the chapter. It is supposed that price and quantity data 
for N closely related products has been collected for T time 
periods.27 Typically, a time period is a month. Denote the 
price of product n in period t as ptn and the correspond-
ing quantity during period t as qtn for n = 1, . . .,N and t = 
1, . . .,T. Usually, ptn will be the period t unit value price for 

27 The T periods can be regarded as a window of observations, followed 
by another window of length T that has dropped the first period from the 
window and added the data of period T + 1 to the window. The literature 
on how to link the results of one window to the next window was briefly 
discussed in the Introduction section and is discussed at length by Diewert 
and Fox (2021).

product n in period t; that is, ptn ≡ vtn/qtn, where vtn is the total 
value of product n that is sold or purchased during period 
t and qtn is the total quantity of product n that is sold or 
purchased during period t. We assume that qtn ≥ 0 and ptn 
> 0 for all t and n.28 The restriction that all products have 
positive prices associated with them is a necessary one for 
much of our analysis since many popular index numbers are 
constructed using logarithms of prices, and the logarithm of 
a zero price is not well defined. However, our analysis does 
allow for possible 0 quantities and values for some products 
for some time periods. Denote the period t strictly positive 
price vectors as pt ≡ [pt1, . . .,ptN] >> 0N and nonnegative (and 
nonzero) quantity vectors as qt ≡ [qt1,  .  .  .,qtN] > 0N, respec-
tively, for t = 1, . . .,T, where 0N is an N-dimensional vector 
of zeros. As usual, the inner product of the vectors pt and qt 
is denoted by pt·qt ≡ Σn=1

N ptnqtn > 0. Define the period t sales 
(or expenditure) share for product n as stn ≡ ptnqtn/p

t·qt for n 
= 1, . . .,N and t = 1, . . .,T. The period t sales or expenditure 
share vector is defined as st ≡ [st1, . . .,stN] > 0N for t = 1, . . .,T.

In many applications, the N products will be closely 
related, and they will have common units of measurement 
(by weight, or by volume, or by “standard” package size). In 
this context, it is useful to define the period t “real” share for 
product n of total product sales or purchases, Stn ≡ qtn/1N·qt 
for n = 1, . . .,N and t = 1, . . .,T, where 1N is an N-dimensional 
vector of ones. Denote the period t real share vector as St ≡ 
[St1, . . .,StN] for t = 1, . . .,T.

Define a generic product weighting vector as α ≡ [α1, . . .,aN]. 
We assume that α has strictly positive components that sum 
to one; that is, we assume that α satisfies

 α·1N = 1; a >> 0N. (1)

Let p ≡ [p1,  .  .  .,pN] >> 0N be a strictly positive price vec-
tor. The corresponding mean of order r of the prices p (with 
weights α) or CES price level mr,α(p) is defined as follows:29

 mr,α(p) ≡ [Σn=1
N αn pn

r]1/r; r ≠ 0; (2)
≡ Πn=1

N (pn); r = 0.

It is useful to have a special notation for mr,α(p) when r = 1:

 pα ≡ Σn=1
N αnpn = α·p. (3)

Thus, pα is an α-weighted arithmetic mean of the prices 
p1,p2,  .  .  .,pN, and it can be interpreted as a weighted Dutot 
price level.30

28 In the case where qtn = 0, vtn = 0 as well and hence ptn ≡ vtn/qtn is not well 
defined in this case. In the case where qtn = 0, we will assume that ptn is a 
positive imputed price. Imputed prices will be discussed in Section 19.
29 Hardy, Littlewood, and Pólya (1934, 12–13) refer to this family of 
means or averages as elementary weighted mean values and study their 
properties in great detail. The function mr,α(p) can also be interpreted 
as a Constant Elasticity of Substitution (CES) unit cost function if r ≤ 
1. The corresponding utility or production function was introduced into 
the economics literature by Arrow et al. (1961). For additional material 
on CES functions, see Diewert (2022a), Feenstra (1994), and Diewert and 
Feenstra (2017, 2022).
30 The ordinary Dutot (1738) price level for the period t prices pt is defined 
as pD

t ≡ (1/N)Σn=1
N ptn. Thus, it is equal to m1,α(pt) when α = (1/N)1N.
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From Schlömilch’s (1858) Inequality,31 we know that 
mr,α(p) ≥ ms,α(p) if r ≥ s and mr,α(p) ≤ ms,α(p) if r ≤ s. How-
ever, we do not know how big the gaps are between these 
price levels for different r and s. When r = 0, m0,α(p) becomes 
a weighted geometric mean or a weighted Jevons (1865) or 
Cobb–Douglas price level, and it is of interest to know how 
much higher the weighted Dutot price level is than the corre-
sponding weighted Jevons price level. Proposition 1 provides 
an approximation to the gap between mr,α(p) and m1,α(p) for 
any r, including r = 0.

Define the α-weighted variance of p/pa ≡ [p1/pα, . . .,pN/pα], 
where pα is defined by (3) as follows:32

 varα(p/pα) ≡ Σn=1
N αn[(pn/pα) – 1]2. (4)

Proposition 1: Let p >> 0N, α >> 0N, and α·1N = 1. Then 
mr,α(p)/m1,α(p) is approximately equal to the following 
expression for any r:

 mr,α(p)/m1,α(p) ≈ 1 + (½)(r – 1)varα(p/pα), (5)

where varα(p/pα) is defined by (4). The expression on the 
right-hand side of (5) uses a second-order Taylor series 
approximation to mr,α(p) around the equal price point p = 
pα1N, where pα is defined by (3).33

Proof: Straightforward calculations show that the level, 
vector of first-order partial derivatives and matrix of second-
order partial derivatives of mr,α(p) evaluated at the equal 
price point p = pα1N are equal to the following expressions: 
mr,α(pα1N) = pα ≡ α·p; ∇pmr,α(pα1N) = α; ∇2

ppmr,α(pα1N) = (pα)
–1 

(r – 1)( α–ααT), where α is a diagonal N by N matrix with 
the elements of the column vector α running down the main 
diagonal and αT is the transpose of the column vector α. 
Thus, ααT is a rank one N by N matrix.

Thus, the second-order Taylor series approximation to 
mr,α(p) around the point p = pα1N is given by the following 
expression:

mr,α(p) ≈ pα + α·(p – pα1N) + (½)(p – pα1N)T 
 (pα)

–1(r – 1)( α–ααT)(p – pα1N) (6)
= pα + (½)(pα)

–1(r – 1)(p – pα1N)T(pα)
–1( α –ααT)(p – pα1N) 

using (1) and (3)

= pα[1 + (½)(r – 1)(pα)
–2(p – pα1N)T( α–ααT)(p – pα1N)]

= m1,α(p)[1 + (½)(r – 1)varα(p/pa)] using (2), (3) and (4).
Q.E.D.

The approximation (6) also holds if r = 0. In this case, (6) 
becomes the following approximation:34

31 See Hardy, Littlewood, and Pólya (1934, 26) for a proof of this result.
32 Note that the α-weighted mean of p/pα is equal to Σn=1

N αn pn/pα = 1. 
Thus, (4) defines the corresponding weighted variance.
33 For alternative approximations for the differences between mean 
of order r averages, see vartia (1978, 278–79). vartia’s approximations 
involve  variances of logarithms of prices, whereas our approxima-
tions involve  variances of deflated prices. Our analysis is a variation on 
his pioneering analysis.
34 Note that m0,α(p) can be regarded as a weighted Jevons (1865) price level 
or a Cobb and Douglas (1928) price level. Similarly, pα ≡ m1,α(p) can be 
regarded as a weighted Dutot (1738) price level or a Leontief (1936) price 
level.

 m0,α(p) ≡ Πn=1
N (pn)

αn (7)
≈ m1,α(p)[1 – (½)varα(p/pα)]

= m1,α(p){1 – (½)Σn=1
N αn[(pn/pα) – 1]2} using (4)

 = [Σn=1
N αnpn]{1 – (½)Σn=1

N αn[(pn/pα) – 1]2} using (2)  
for r = 1

≤ Σn=1
N αnpn.

Thus, the bigger is the variation in the N prices p1,  .  .  .,pN, 
the bigger will be varα(p/pa) and the more the weighted arith-
metic mean of the prices, Σn=1

N αnpn will be greater than the 
corresponding weighted geometric mean of the prices Πn=1

N 
(pn)αn. Note that if all of the pn are equal, then varα(p/pα) will 
be equal to 0 and the approximations in (6) and (7) become 
exact equalities.

At this point, it is useful to define the Jevons (1865) 
and Dutot (1738) period t price levels for the prices in our 
window of observations, pJ

t and pD
t, and the correspond-

ing Jevons and Dutot price indices, PJ
t and PD

t, for t = 
1, . . .,T:

 pD
t ≡ Σn=1

N (1/N)ptn; (8)
 pJ

t ≡ Πn=1
N ptn

1/N; (9)

 PD
t ≡ pD

t/pD
1; (10)

 PJ
t ≡ pJ

t/pJ
1 = Πn=1

N (ptn/p1n)
1/N. (11)

Thus, the period t price index is simply the period t price 
level divided by the corresponding period 1 price level. 
Note that the Jevons price index can also be written as 
the geometric mean of the long-term price ratios (ptn/p1n) 
between the period t prices relative to the corresponding 
period 1 prices.

The weighted Dutot and Jevons period t price levels using a 
weight vector α that satisfies the restrictions (1), pDα

t and pJα
t, 

are defined by (12) and (13) and the corresponding weighted 
Dutot and Jevons period t price indices, PDα

t35 and PJα
t,36 are 

defined by (14) and (15) for t = 1, . . .,T:

 pDα
t ≡ Σn=1

N αnptn = m1,α(pt); (12)
 pJα

t ≡ Πn=1
N (ptn)

αn = m0,α(pt); (13)

 PDα
t ≡ pDα

t/pDα
1 = α·pt/α·p1; (14)

 PJα
t ≡ pJα

t/pJα
1 = Πn=1

N (ptn/p1n)
αn. (15) 

Obviously, (12)–(15) reduce to definitions (8)–(11) if α = 
(1/N)1N. We can use the approximation (7) for p = p1 and p = 
pt in order to obtain the following approximate relationship 
between the weighted Dutot price index for period t, PDα

t, 
and the corresponding weighted Jevons index PJα

t:

 PJα
t ≡ pJα

t/pJα
1; t = 1, . . .,T (16) 

= m0,α(pt)/m0,α(p1) using (2) and (13)

35 A weighted Dutot index can also be interpreted as a Lowe (1823) index.
36 This type of index is frequently called a geometric Young index; see 
Armknecht and Silver (2014, 4–5).



153

THE CHAIN DRIFT PROBLEM AND MULTILATERAL ALTERNATIVE APPROACH FISHER INDICES

≈ m1,α(pt){1 – (½)Σn=1
N αn[(ptn/pα

t) – 1]2}/m1,α(p1){1 – (½)Σn=1
N 

αn[(p1n/pα
1) – 1]2} using (7) for p = pt and p = p1 where pα

t ≡ 
α·pt and pα

1 ≡ α·p1

= PDα
t{1 – (½)Σn=1

N αn[(ptn/pα
t) – 1]2}/{1 – (½)Σn=1

N αn[(p1n/pα
1) 

– 1]2}
= PDα

t{1 – (½)varα(pt/pα
t)}/{1 – (½)varα(p1/pα

1)}.

In the elementary index context where there are no trends in 
prices in diverging directions, it is likely that varα(p

t/pα
t) will 

be approximately equal to varα(p
1/pα

1).37 Under this condi-
tion, the weighted Jevons price index PJα

t is likely to be approxi-
mately equal to the corresponding weighted Dutot price index, 
PDα

t. Of course, this approximate equality result extends to 
the case where α = (1/N)1N, and so it is likely that the Dutot 
price indices PD

t are approximately equal to their Jevons price 
index counterparts PJ

t.38 However, if  the variance of the 
deflated period 1 prices is unusually large (small), then there 
will be a tendency for PJ

t to exceed (to be less than) PD
t for  

t > 1.39

At higher levels of aggregation where the products may not 
be very similar,40 it is likely that there will be divergent trends 
in prices over time. In this case, we can expect varα(pt/pα

t) 
to exceed varα(p1/pα

1). Thus, using (16) under these circum-
stances leads to the likelihood that the weighted index PJα

t 
will be significantly lower than PDα

t. Similarly, under the 
diverging trends in prices hypothesis, we can expect the ordi-
nary Jevons index PJ

t to be lower than the ordinary Dutot 
index PD

t.41

We conclude this section by finding an approximate rela-
tionship between a CES price index and the corresponding 
weighted Dutot price index PDα

t. This approximation result 
assumes that econometric estimates for the parameters of 
the CES unit cost function mr,α(p) defined by (2) are available 
so that we have estimates for the weighting vector α (which 
we assume satisfies the restrictions (1)) and the parameter 
r, which we assume satisfies r ≤ 1.42 The CES period t price 

37 Note that the vectors pt/pα
t and p1/pa

1 are price vectors that are divided 
by their α-weighted arithmetic means. Thus, these vectors have elimi-
nated general inflation between periods 1 and t.
38 The same approximate inequalities hold for the weighted case. An 
approximation result similar to (16) for the equal weights case where a = 
(1/N)1N was first obtained by Carruthers, Sellwood, and Ward (1980, 25). 
See Diewert (2022b), equation (16).
39 If we are allowed to change the units of measurement for the N prod-
ucts, then if we choose units of measurement that divide the price of prod-
uct n in each period t by its price in period 1, then the transformed Dutot 
index becomes PD

t* ≡ Σn=1
N (ptn/p1n)/Σn=1

N (p1n/p1n) = Σn=1
N (ptn/p1n)/N, which 

equals the Carli index, PC
t. On the other hand, the transformed Jevons 

index becomes PJ
t* ≡ Πn=1

N (ptn/p1n)
1/N/Πn=1

N (p1n/p1n)
1/N = Πn=1

N (ptn/p1n)
1/N = 

PJ
t. Thus the Jevons index remains unchanged by the change of units but 

the Dutot index has become the Carli index PC
t which is always greater 

than the corresponding transformed Dutot index PD
t* using Schlomilch’s 

inequality unless prices are proportional over the two periods, in which 
case, we have equality. Thus in general, we expect the transformed Dutot 
index to have an upward bias relative to the transformed Jevons index 
which is equal to the original Jevons index.
40 If the products are not very similar, then the Dutot index should not 
be used since it is not invariant to changes in the units of measurement.
41 Furthermore, as we shall see later, the Dutot index can be viewed as a fixed 
basket index where the basket is a vector of ones. Thus it is subject to sub-
stitution bias that will show up under the divergent price trends hypothesis.
42 These restrictions imply that mr,α(p) is a linearly homogeneous, non-
decreasing, and concave function of the price vector p. These restrictions 
must be satisfied if we apply the economic approach to price index theory.

levels using a weight vector α that satisfies the restrictions 
(1) and an r ≤ 1, pCESα,r

t, and the corresponding CES period 
t price indices, PCESα,r

t, are defined as follows for t = 1, . . .,T:

 pCESα,r
t ≡ [Σn=1

N αnptn
r]1/r = mr,α(pt); (17)

 PCESα,r
t ≡ pCESα,r

t/pCESα,r
1 = mr,α(pt)/mr,α(p1). (18) 

Now use the approximation (6) for p = p1 and p = pt in order 
to obtain the following approximate relationship between 
the weighted Dutot price index for period t, PDα

t, and the 
corresponding period t CES index, PCESα,r

t for t = 1, . . .,T:

 PCESα,r
t ≡ pCESα,r

t/pCESα,r
1; (19)

= mr,α(pt)/mr,α(p1) using (18)

≈ [m1,α(pt)/m1,α(p1)][1 + (½)(r – 1)varα(pt/pα
t)]/[1 + (½) 

(r – 1)varα(p1/pα
1)]

= PDα
t{1 + (½)(r –1)Σn=1

N αn[(ptn/pα
t) – 1]2}/{1 + (½)(r –1)Σn=1

N 
αn[(p1n/pα

1) – 1]2},

where we used definitions (4), (12), and (14) to establish the 
last equality in (19). Again, in the elementary index con-
text with no diverging trends in prices, we could expect 
varα(pt/pα

t) ≈ varα(p1/pα
1) for t = 2, . . .,T. Using this assump-

tion about the approximate constancy of the (weighted) 
variance of the deflated prices over time and using (16) 
and (19), we obtain the following approximations for t = 
2,3, . . .,T:

 PCESα,r
t ≈ PJα

t ≈ PDα
t . (20)

Thus, under the assumption of approximately constant 
variances for deflated prices, the CES, weighted Jevons, 
and weighted Dutot price indices should approximate each 
other fairly closely, provided that the same weighting vector 
α is used in the construction of these indices.43

The parameter r that appears in the definition of the CES 
unit cost function is related to the elasticity of substitution Σ; 
that is, it turns out that Σ = 1 – r.44 Thus, as r takes on val-
ues from 1 to –∞, Σ will take on values from 0 to + ∞. In the 
case where the products are closely related, typical estimates 
for Σ range from 1 to 10. If we substitute Σ = 1 – r into the 
approximations (19), we obtain the following approxima-
tions for t = 1, . . .,T:

PCESα,r
t ≈ PDα

t [1 – (½)Σvarα(pt/pα
t)]/ 

 [1 – (½)Σvarα(p1/pα
1)]. (21) 

The approximations in (21) break down for large and 
positive Σ (or equivalently, for very negative r); that is, the 
expressions in square brackets on the right-hand sides of (21) 

43 Again, the approximate relationship PCESα,r
t ≈ PDα

t may not hold if the 
variance of the prices in the base period, varα(p1/pα

1), is unusually large 
or small. Also under the diverging trends in price assumption, varα(pt/pα

t) 
will tend to increase relative to varα(p1/pα

1) and the approximate equali-
ties in (20) will become inequalities.
44 See Feenstra (1994, 158) or equation (115) in Diewert (2022a).
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will pass through 0 and become meaningless as s becomes 
very large. The approximations become increasingly accu-
rate as Σ approaches 0 (or as r approaches 1). Of course, 
the approximations also become more accurate as the dis-
persion of prices within a period becomes smaller. For Σ 
between 0 and 1 and with “normal” dispersion of prices, the 
approximations in (21) should be reasonably good. How-
ever, as Σ becomes larger, the expressions in square brackets 
will become closer to 0, and the approximations in (21) will 
become more volatile and less accurate as Σ increases from 
an initial 0 value.

If the products in the aggregate are not very similar, it is 
more likely that there will be divergent trends in prices over 
time, and in this case, we can expect varα(pt/pα

t) to exceed 
varα(p1/pα

1). In this case, the approximate equalities (20) will 
no longer hold. In the case where the elasticity of substitution 
Σ is greater than 1 (so r < 0) and vara(pt/pα

t) > varα(p1/pα
1), we 

can expect that PCESα,r
t < PDα

t and the gaps between these two 
indices will grow bigger over time as varα(pt/pα

t) grows larger 
than varα(p1/pα

1).
In the following section, we will use the mean of order r 

function to aggregate the price ratios ptn/p1n into an aggre-
gate price index for period t directly; that is, we will not con-
struct price levels as a preliminary step in the construction 
of a price index.

3. Using Means of Order r to 
Aggregate Price Ratios
In the previous section, we compared various elementary 
indices using approximate relationships between price levels 
constructed by using means of order r to construct the aggre-
gate price levels. In this section, we will develop approximate 
relationships between price indices constructed by using 
means of order r to aggregate over price ratios.

In what follows, it is assumed that the weight vector α 
satisfies conditions (1); that is, α >> 0N and α·1N = 1. Define 
the mean of order r price index for period t (relative to period 
1), Pr,α

t, as follows for t = 1, . . .,T:

 Pr,α
t ≡ [Σn=1

N αn(ptn/p1n)
r]1/r; r ≠ 0; (22)

≡ Πn=1
N (ptn/p1n)αn; r = 0.

When r = 1 and α = (1/N)1N, then Pr,α
t becomes the fixed-base 

Carli (1804) price index (for period t relative to period 1), PC
t, 

defined as follows for t = 1, . . .,T:

 PC
t ≡ Σn=1

N (1/N)(ptn/p1n). (23)

With a general α and r = 1, Pr,a
t becomes the fixed-base 

weighted Carli price index, PCα
t,45 defined as follows for 

t = 1, . . .,T:

 PCα
t ≡ Σn=1

N αn(ptn/p1n). (24)

45 This type of index was developed by Arthur Young (1812, 72), and so we 
could call this index the Young index, PYα

t.

Using (24), it can be seen that the α-weighted mean of the 
period t long-term price ratios ptn/p1n divided by PCa

t is equal 
to 1; that is, we have for t = 1, . . .,T:

 Σn=1
N αn(ptn/p1nPCα

t) = 1. (25)

Denote the α-weighted variance of the deflated period t 
price ratios ptn/p1nPCα

t as varα(pt/p1PCα
t) and define it as fol-

lows for t = 1, . . .,T:

 varα(pt/p1PCα
t) ≡ Σn=1

N αn[(ptn/p1nPCα
t) – 1]2. (26)

Proposition 2: Let p >> 0N, α >> 0N, and α·1N = 1. Then, 
Pr,α

t/P1,a
t = Pr,a

t/PCα
t is approximately equal to the following 

expression for any r and t = 1, . . .,T:

 Pr,α
t/PCα

t ≈ 1 + (½)(r – 1)varα(pt/p1PCα
t), (27)

where Pr,α
t is the mean of order r price index (with weights 

α) defined by (22), PCα
t is the α-weighted Carli index 

defined by (24) and vara(pt/p1PCα
t) is the α-weighted vari-

ance of the deflated long-term price ratios (ptn/p1n)/PCα
t 

defined by (26).
Proof: Replace the vector p in Proposition 1 by the vec-

tor [pt1/p11,pt2/p12, . . .,ptN/p1N].46 Then the ratio mr,α(p)/m1,α(p) 
which appears on the left-hand side of (5) becomes the ratio 
Pr,α

t/P1,a
t = Pr,a

t/PCα
t using definitions (22) and (24). The terms 

pα and varα(p/pα) which appear on the right-hand side of (5) 
become PCα

t and varα(pt/p1PCα
t), respectively. With these sub-

stitutions, (5) becomes (27) and we have established Proposi-
tion 2. Q.E.D.

It is useful to look at the special case of (27) when r = 0. In 
this case, using definitions (22) and (15), we can establish the 
following equalities for t = 1, . . .,T:

 P0,α
t ≡ Πn=1

N (ptn/p1n)
αn = PJα

t, (28)

where PJα
t is the period t weighted Jevons or Cobb–Douglas 

price index defined by (15) in the previous section.47 Thus, 
when r = 0, the approximations defined by (27) become the 
following approximations for t = 1, . . .,T:

 PJα
t/PCα

t ≈ 1 – (½)varα(pt/p1PCα
t). (29)

Thus, the bigger is the α-weighted variance of the deflated 
period t long-term price ratios, (pt1/p11)/PCα

t, . . ., (ptn/p1n)/PCα
t, 

the more the period t-weighted Carli index PCα
t will exceed 

the corresponding period t-weighted Jevons index PJα
t.

46 In Proposition 1, some prices in either period could be 0. However, 
Proposition 2 requires that all period 1 prices be positive.
47 Again, recall that Armknecht and Silver (2014, 4) call this index the 
geometric Young index.



155

THE CHAIN DRIFT PROBLEM AND MULTILATERAL ALTERNATIVE APPROACH FISHER INDICES

When α = (1/N)1N, the approximations (29) become the 
following approximate relationships between the period t 
Carli index PC

t defined by (23) and the period t Jevons index 
PJ

t defined by (11) for t = 1, . . .,T:48

 PJ
t/PC

t ≈ 1 – (½)var(1/N)1(pt/p1PC
t) (30)

= 1 – (½)Σn=1
N (1/N)[(ptn/p1nPC

t) – 1]2.

Thus, the Carli price indices PC
t will exceed their Jevons 

counterparts PJ
t (unless pt = λtp

1 in which case prices in 
period t are proportional to prices in period 1 and in this 
case, PC

t = PJ
t).49 This is an important result, since from an 

axiomatic perspective, the Jevons price index has much bet-
ter properties than the corresponding Carli indices50 and in 
particular, typically chaining Carli indices will lead to large 
upward biases as compared to their Jevons counterparts.

The results in this section can be summarized as follows: 
holding the weight vector a constant, the weighted Jevons 
price index for period t, PJα

t will lie below the corresponding 
weighted Carli index, PCα

t, (unless all prices move in a pro-
portional manner, in which case PJα

t will equal PCα
t) with the 

gap growing as the α-weighted variance of the deflated price 
ratios, (pt1/p11)/PCα

t, . . ., (ptn/p1n)/PCα
t, increases.51

In the following section, we turn our attention to weighted 
price indices where the weights are not exogenous constants 
but depend on observed sales or expenditure shares.

4. Relationships between Some 
Share-Weighted Price Indices
In this section (and in subsequent sections), we will look at 
comparisons between price indices that use information on 
the observed expenditure or sales shares of products in addi-
tion to price information. Recall that stn ≡ ptnqtn/p

t·qt for n = 
1, . . .,N and t = 1, . . .,T.

The fixed-base Laspeyres (1871) price index for period t, 
PL

t, is defined as the following base period share-weighted 
arithmetic average of the price ratios, ptn/p1n, for t = 1, . . .,T:

 PL
t ≡ Σn=1

N s1n(ptn/p1n). (31)

48 Results that are essentially equivalent to (30) were first obtained by 
Dalén (1992) and Diewert (1995). The approximations in (27) and (29) for 
weighted indices are new. vartia and Suoperä (2018, 5) derived alternative 
approximations. The analysis in this section is similar to vartia’s (1978, 
276–89) analysis of Fisher’s (1922) five-tined fork.
49 From Schlömilch’s inequality, we know that PC is always equal to or 
greater than PJ; the approximate result (30) provides an indication of the 
size of the gap between the two indices.
50 See Diewert (1995, 2022b) and Reinsdorf (2007) on the axiomatic 
approach to equally weighted elementary indices. The Jevons index 
emerges as the best index from the viewpoint of the axiomatic approach.
51 Since the Jevons price index has the best axiomatic properties, this 
result implies that CPI compilers should avoid the use of the Carli index 
in the construction of a CPI. This advice goes back to Fisher (1922, 
29–30). Since the Dutot index will approximate the corresponding Jevons 
index provided that the products are similar and there are no system-
atic divergent trends in prices, Dutot indices can be satisfactory at the 
elementary level. If the products are not closely related, Dutot indices 
become problematic since they are not invariant to changes in the units 
of measurement. Moreover, in the case of nonsimilar products, divergent 
trends in prices become more probable and, using (16), the Dutot index 
will tend to be above the corresponding Jevons index.

It can be seen that PL
t is a weighted Carli index PCα

t of the 
type defined by (24) in the previous section where α ≡ s1 ≡ 
[s11,s12,  .  .  .,s1N]. We will compare PL

t with its weighted geo-
metric mean counterpart PGL

t, which is a weighted Jevons 
index PJa

t where the weight vector is α = s1. Thus, the loga-
rithm of the fixed-base geometric Laspeyres price index for  
t = 1, . . .,T is defined as follows:52

 ln PGL
t ≡ Σn=1

N s1n ln(ptn/p1n). (32)

Since PGL
t and PL

t are weighted geometric and arithmetic 
means of the price ratios ptn/p1n (using the weights in the 
period 1 share vector s1), Schlömilch’s inequality implies 
that PGL

t ≤ PL
t for t = 1,  .  .  .,T. The inequalities (29), with 

α = s1, give us approximations to the gaps between PGL
t = PJα

t 
and PCα

t = PL
t. Thus, we have following approximate equali-

ties for α = s1 and t = 1, . . .,T:

PGL
t/PL

t ≈ 1 – (½)varα(pt/p1PL
t) = 1  

 – (½)Σn=1
N s1n[(ptn/p1nPL

t) – 1]2. (33)

The fixed-base Paasche (1874) price index for period t, PP
t, is 

defined as the following period t share-weighted harmonic 
average of the price ratios, ptn/p1n, for t = 1, . . .,T:

 PP
t ≡ [Σn=1

N stn(ptn/p1n)
–1]–1. (34)

We will compare PP
t with its weighted geometric mean 

counterpart PGP
t, which is a weighted Jevons index PJα

t 
where the weight vector is α = st. The logarithm of the fixed-
base geometric Paasche price index for t = 1, . . .,T is defined 
as follows:

 ln PGP
t ≡ Σn=1

N stn ln(ptn/p1n). (35)

Since PGP
t and PP

t are weighted geometric and harmonic 
means of the price ratios ptn/p1n (using the weights in the 
period t share vector st), Schlömilch’s inequality implies 
that PP

t ≤ PGP
t for t = 1, . . .,T. However, we cannot apply the 

inequalities (29) directly to give us an approximation to the 
size of the gap between PGP

t and PP
t. According to defini-

tion (34), the reciprocal of PP
t is a period t share-weighted 

average of the reciprocals of the long-term price ratios,  
p11/pt1, p12/pt2, .  .  . , p1N/ptN. Thus, using definition (34), we 
have the following equations and inequalities for α = st and 
t = 1, . . .,T:

 [PP
t]–1 = Σn=1

N stn(p1n/ptn) (36)
≥ Πn=1

N (p1n/ptn)sm
= [PGP

t]–1 using definition (35),

where the inequalities follow from Schlömilch’s inequal-
ity; that is, a weighted arithmetic mean is always equal 
to or greater than the corresponding weighted geomet-
ric mean. Note that the first equation in (36) implies that 
the period t share-weighted mean of the reciprocal price  

52 vartia (1978, 272) used the terms “geometric Laspeyres” and “geometric 
Paasche” to describe the indices defined by (32) and (35).
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ratios, p1n/ptn, is equal to the reciprocal of PP
t. Now adapt the 

approximate equalities (29) in order to establish the follow-
ing approximate equalities for t = 1, . . .,T:

[PGP
t]–1/[PP

t]–1 ≈ 1 – (½)Σn=1
N stn[(p1n/ptn  

 [PP
t]–1) – 1]2. (37)

The approximate equalities (37) for t = 1,  .  .  .,T may be 
rewritten as follows:

 PGP
t ≈ PP

t/{1 – (½)Σn=1
N stn[(p1nPP

t/ptn) – 1]2}. (38)

Thus, for t = 1, .  .  .,T, we have PGP
t ≥ PP

t (and the approxi-
mate equalities (38) measure the gaps between these indices) 
and PGL

t ≤ PL
t (and the approximate equalities (33) measure 

the gaps between these indices). Later we will show that the 
inequalities PGP

t ≤ PGL
t are likely if the N products are close 

substitutes for each other.
Suppose that prices in period t are proportional to the 

corresponding prices in period 1 so that pt = λtp
1 where λt 

is a positive scalar. Then it is straightforward to show that  
PP

t = PGP
t = PGL

t = PL
t = λt and the implicit error terms for 

equation t in (33) and (38) are equal to 0.
Define the period t fixed-base Fisher (1922) and Törn-

qvist–Theil price indices, PF
t and PT

t, as the following geo-
metric means for t = 1, . . .,T:

 PF
t ≡ [PL

t PP
t]1/2; (39)

 PT
t ≡ [PGL

t PGP
t]1/2 . (40)

Thus, PF
t is the geometric mean of the period t fixed-base 

Laspeyres and Paasche price indices while PT
t is the geomet-

ric mean of the period t fixed-base geometric Laspeyres and 
geometric Paasche price indices. Now use the approximate 
equalities in (33) and (38) and substitute these equalities into 
(40) in order to obtain the following approximate equalities 
between PT

t and PF
t for t = 1, . . .,T:

 PT
t ≡ [PGL

t PGP
t]1/2 (41)

 ≈ [PL
t PP

t]1/2 ε(p1,pt,s1,st)
 = PF

t ε(p1,pt,s1,st),

where the approximation error function ε(p1,pt,s1,st) for t = 
1, . . .,T is defined as follows:

ε(p1,pt,s1,st) ≡ {1 – (½)Σn=1
N s1n[(ptn/p1nPL

t) – 1]2}1/2/ 
 {1 – (½)Σn=1

N stn[(p1nPP
t/ptn) – 1]2}1/2. (42)

Thus, PT
t is approximately equal to PF

t for t = 1,  .  .  .,T. 
But how good are these approximations? We know from 
Diewert (1978) that PT

t = PT(p1,pt,s1,st) approximates PF
t = 

PF(p1,pt,s1,st) to the second order around any point where pt 
= p1 and st = s1.53 Since the approximations in (33) and (38) 

53 This result can be generalized to the case where pt = λp1 and st = s1.

are also second order approximations, it is likely that the 
approximation given by (41) is fairly good.54

In general, if the products are highly substitutable and 
if prices and shares trend in opposite directions, then we 
expect that the base period share-weighted variance Σn=1

N 
s1n[(ptn/p1nPL

t) – 1]2 and the current period share-weighted 
variance Σn=1

N stn[(p1nPP
t/ptn) – 1]2 will increase as t increases. 

It appears that the second variance expression increases 
more than the first one because the change in expenditure 
shares from s1n to stn tends to magnify the squared differ-
ences [(p1nPP

t/ptn) – 1]2. Thus, as say ptn increases and the dif-
ference (p1nPP

t/ptn) – 1 decreases, the share stn will become 
smaller, and this decreasing share weight stn will lead to 
a further shrinkage of the term stn[(p1nPP

t/ptn) – 1]2. On the 
other hand, if ptn decreases substantially, the difference 
(p1nPP

t/ptn) – 1 will substantially increase and the share stn 
will become larger, and this increasing share weight stn 
will further magnify the term stn[(p1nPP

t/ptn) – 1]2. For large 
changes in prices, the magnification effects will tend to 
be more important than the shrinkage effects of changing 
expenditure shares. This overall share magnification effect 
does not occur for the base period share-weighted variance 
Σn=1

N s1n[(ptn/p1nPL
t) – 1]2. Thus, if the products are highly sub-

stitutable and there are large divergent trends in prices, PT 
will tend to increase relative to PF as time increases under 
these conditions. The more substitutable the products are, 
the greater will be this tendency.

Our tentative conclusion at this point is that the approxi-
mations defined by (33), (38) and (41) are good enough to pro-
vide rough estimates of the differences in the six price indices 
involved in these approximate equalities. In an empirical 
example using scanner data, Diewert (2018) found that the 
variance terms on the right-hand sides of (38) tended to be 
larger than the corresponding variances on the right-hand 
sides of (33) and these differences led to a tendency for the fixed-
base Fisher price indices PF

t to be slightly smaller than the cor-
responding fixed-base Törnqvist–Theil price indices PT

t.55

We conclude this section by developing an exact relation-
ship between the geometric Laspeyres and Paasche price 
indices. Using definitions (32) and (35) for the logarithms 
of these indices, we have the following exact decomposition 
for the logarithmic difference between these indices for t = 
1, . . .,T:56

lnPGP
t – lnPGL

t = Σn=1
N stn ln(ptn/p1n) – Σn=1

N s1n ln(ptn/p1n)
 = Σn=1

N [stn – s1n][lnptn – lnp1n]. (43)

54 However, the Diewert (1978) second-order approximation is different 
from the present second-order approximations that are derived from 
Proposition 2. Thus, the closeness of e(p1,pt,s1,st) to 1 depends on the 
closeness of the Diewert second-order approximation of PT

t to PF
t and 

the closeness of the second-order approximations that were used in (33) 
and (38), which use different Taylor series approximations. vartia and 
Suoperä (2018) used alternative Taylor series approximations to obtain 
relationships between various indices.
55 vartia and Suoperä (2018) also found a tendency for the Fisher price 
index to lie slightly below their Törnqvist counterparts in their empirical 
work.
56 vartia and Suoperä (2018, 26) derived this result and noticed that the 
right-hand side of (43) could be interpreted as a covariance. They also 
developed several alternative exact decompositions for the difference  
lnPGP

t – lnPGL
t. Their paper also developed a new theory of “excellent” 

index numbers.
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Define the vectors lnpt ≡ [lnpt1,lnpt2, . . .,lnptN] for t = 1, . . .,T. 
It can be seen that the right-hand side of equation t in (43) is 
equal to [st – s1]·[lnpt – lnp1], the inner product of the vectors 
x ≡ st – s1 and y ≡ lnpt – lnp1. Let x* and y* denote the arith-
metic means of the components of the vectors x and y. Note 
that x* ≡ (1/N)1N·x = (1/N)1N·[st – s1] = (1/N)[1 – 1] = 0. The 
covariance between x and y is defined as Cov(x,y) ≡ (1/N)[x – 
x*1N]·[y – y*1N] = (1/N) x·y – x*y* = (1/N) x·y57 since x* is equal 
to 0. Thus, the right-hand side of (43) is equal to N Cov(x,y) 
= N Cov(st – s1,lnpt – lnp1); that is, the right-hand side of (43) 
is equal to N times the covariance of the long-term share 
difference vector, st – s1, with the long-term log price differ-
ence vector, lnpt – lnp1. Hence if this covariance is positive, 
then lnPGP

t – lnPGL
t > 0 and PGP

t > PGL
t. If this covariance is 

negative, then PGP
t < PGL

t. We argue here that for the case 
where the N products are close substitutes, it is likely that 
the covariances on the right-hand side of equations (43) are 
negative for t > 1.

Suppose that the observed price and quantity data are 
approximately consistent with purchasers having identical 
Constant Elasticity of Substitution preferences. CES prefer-
ences are dual to the CES unit cost function mr,α(p), which is 
defined by (2), where α satisfies (1) and r ≤ 1. It can be shown58 
that the sales share for product n in a period where purchas-
ers face the strictly positive price vector p ≡ [p1, . . .,pN] is the 
following share:

 sn(p) ≡ αnpn
r/Σi=1

N αipi
r; n = 1, . . .,N. (44)

Upon differentiating sn(p) with respect to pn, we find that the 
following relations hold:

 ∂lnsn(p)/∂lnpn = r[1–sn(p)]; n = 1, . . .,N. (45)

Thus, ∂lnsn(p)/∂lnpn < 0 if r < 0 (or equivalently, if the 
elasticity of substitution Σ ≡ 1 – r is greater than 1) and 
∂lnsn(p)/∂lnpn > 0 if r satisfies 0 < r < 1 (or equivalently, if 
the elasticity of substitution satisfies 0 < Σ < 1).59 If we are 
aggregating prices at the first stage of aggregation where 
the products are close substitutes and purchasers have com-
mon CES preferences, then it is likely that the elasticity of 
substitution is greater than 1 and hence as the price of prod-
uct n decreases, it is likely that the share of that product will 
increase. Hence we expect the terms [stn – s1n][lnptn – lnp1n] to 
be predominantly negative; that is, if p1n is unusually low, 
then lnptn – lnp1n is likely to be positive and stn – s1n is likely to 
be negative. On the other hand, if ptn is unusually low, then 
lnptn – lnp1n is likely to be negative and stn – s1n is likely to 
be positive. Thus, for closely related products, we expect 
the covariances on the right-hand sides of (43) to be nega-
tive and for PGP

t to be less than PGL
t. We can combine this 

inequality with our previously established inequalities to 
conclude that for closely related products, it is likely that 
PP

t < PGP
t < PT

t < PGL
t < PL

t. On the other hand, if we are 
aggregating at higher levels of aggregation, then it is likely 

57 This equation is the covariance identity that was first used by Bortkie-
wicz (1923) to show that normally the Paasche price index is less than the 
corresponding Laspeyres index.
58 See equations (110) in Diewert (2022a) or Diewert and Feenstra (2017).
59 Thus, define product n as a strong substitute compared with all other 
products if ∂lnsn(p)/∂lnpn < 0 and as a weak substitute if ∂lnsn(p)/∂lnpn > 0.

that the elasticity of substitution is in the range 0 < Σ < 1,60 
and in this case, the covariances on the right-hand sides of 
(43) will tend to be positive and hence in this case, it is likely 
that PGP

t > PGL
t. We also have the inequalities PP

t < PGP
t and 

PGL
t < PL

t in this case.61

We turn now to some relationships between weighted 
and unweighted (that is, equally weighted) geometric price 
indices.

5. Relationships between the 
Jevons, geometric Laspeyres, 
geometric Paasche, and Törnqvist 
Price Indices
In this section, we will investigate how close the unweighted 
Jevons index PJ

t is to the geometric Laspeyres PGL
t, geomet-

ric Paasche PGP
t, and Törnqvist PT

t price indices.
We first investigate the difference between the logarithms 

of PGL
t and PJ

t. Using the definitions for these indices, we 
have the following log differences for t = 1, . . .,T:

lnPGL
t – lnPJ

t = Σn=1
N [s1n – (1/N)][lnptn – lnp1n]

 = NCov(s1 – (1/N)1N, lnpt – lnp1) ≡ εt. (46)

In the elementary index context where the N products are 
close substitutes and product shares in period 1 are close 
to being equal, it is likely that εt is positive; that is, if ln p1n 
is unusually low, then s1n is likely to be unusually high and 
thus it is likely that s1n – (1/N) > 0 and lnptn – lnp1n minus the 
mean of the log ratios ln(ptn/p1n) is likely to be greater than 
0, and hence εt is likely to be greater than 0, implying that 
PGL

t > PJ
t. However, if N is small and the shares have a high 

variance and if product n goes on sale in period 1, then we 
cannot assert that s1n is likely to be greater than 1/N, and 
hence we cannot be confident that εt is likely to be greater 
than 0 and hence we cannot predict with certainty that PGL

t 
will be greater than PJ

t.
There are three simple sets of conditions that will imply 

that PGL
t = PJ

t: (i) the covariance on the right-hand side of 
(46) equals 0; that is, Cov(s1 – (1/N)1N, lnpt – lnp1) = 0; (ii) 
period t price proportionality; that is, pt = λtp

1 for some lt > 
0; (iii) equal sales shares in period 1; that is, s1 = (1/N)1N.

Now look at the difference between the logarithms of 
PGP

t and PJ
t. Using the definitions for these indices, for t = 

1, . . .,T, we have:

lnPGP
t – lnPJ

t = Σn=1
N [stn – (1/N)][lnptn – lnp1n]

 = NCov(st – (1/N)1N, lnpt – lnp1) ≡ ct. (47)

60 See Shapiro and Wilcox (1997), who found that Σ = 0.7 fit the US data 
well at higher levels of aggregation. See also Armknecht and Silver (2014, 
9), who noted that estimates for Σ tend to be greater than 1 at the lowest 
level of aggregation and less than 1 at higher levels of aggregation.
61 See vartia (1978, 276–90) for a similar discussion about the relation-
ships between PL

t, PP
t, PF

t, PGL
t, PGP

t, and PT
t. vartia extended the discus-

sion to include period 1 and period t share-weighted harmonic averages 
of the price ratios, ptn/p1n. See also Armknecht and Silver (2014, 10) for a 
 discussion on how weighted averages of the above indices could approxi-
mate a superlative index at higher levels of aggregation.
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In the elementary index context where the N products are 
close substitutes and the shares st are close to being equal, 
then it is likely that ηt is negative; that is, if ln ptn is unusu-
ally low, then stn is likely to be unusually high and thus it is 
likely that stn – (1/N) > 0 and lnptn – lnp1n minus the mean of 
the log ratios ln(ptn/p1n) is likely to be less than 0 and hence 
ht is likely to be less than 0 implying that PGP

t < PJ
t. However 

if N is small and the period t shares st are not close to being 
equal, then again, we cannot confidently predict the sign of 
the covariance in (47).

Again, there are three simple sets of conditions that will 
imply that PGP

t = PJ
t: (i) the covariance on the right-hand 

side of (47) equals 0; that is, Cov(st – (1/N)1N, lnpt – lnp1) = 0; 
(ii) period t price proportionality; that is, pt = λtp

1 for 
some lt > 0; and (iii) equal sales shares in period t; that is, 
st = (1/N)1N.

Using the definitions for PT
t and PJ

t, the log difference 
between these indices for t = 1, . . .,T is as follows:

lnPT
t – lnPJ

t = Σn=1
N [(½)stn + (½)s1n – (1/N)][lnptn – lnp1n]

= NCov[(½)st + (½)s1 – (1/N)1N, lnpt – lnp1]

= (N/2)Cov(st – (1/N)1N, lnpt – lnp1) + (N/2) 
Cov(s1 – (1/N)1N, lnpt – lnp1)

 = (½)εt + (½)ηt. (48)

As usual, there are three simple sets of conditions that will 
imply that PT

t = PJ
t: (i) the covariance on the right-hand side 

of (48) equals 0; that is, Cov[(½)st + (½)s1 – (1/N)1N,lnpt – 
lnp1] = 0 = (½)εt + (½)ηt or equivalently, Cov(st – (1/N)1N, 
lnpt – lnp1) = – Cov(s1 – (1/N)1N, lnpt – lnp1); (ii) period t price 
proportionality; that is, pt = ltp

1 for some λt > 0; and (iii) the 
arithmetic average of the period 1 and t sales shares are all 
equal to 1/N; that is, (½)st + (½)s1 = (1/N)1N.

If the trend deflated prices ptn/lt are distributed indepen-
dently across time and independently of the sales shares stn, 
then it can be seen that the expected values of the εt and 
ηt will be 0 and hence PT

t ≈ PJ
t for t = 1,  .  .  .,T. Thus, it 

can be the case that the ordinary Jevons price index is able 
to provide an adequate approximation to the superlative 
Törnqvist price index in the elementary price index con-
text. However, if the shares are trending and if prices are 
trending in divergent directions, then PJ

t will not be able to 
approximate PT

t.
In the general case, we expect PT

t to be less than PJ
t. The 

mean of the average shares for product n in periods 1 and t, 
(½)stn + (½)s1n, is 1/N. Define the means of the log prices in 
period t as lnpt

*≡ (1/N)Σn=1
N lnptn for t = 1, . . .,T. Note that pt

* 
is the geometric mean of the period t prices. Thus, using the 
first line of (48) and the covariance identity, we have:

lnPT
t – lnPJ

t = Σn=1
N [(½)stn + (½)s1n – (1/N)][lnptn – lnp1n]

= Σn=1
N [(½)stn + (½)s1n – (1/N)][lnptn – lnp1n – lnpt

* + lnp1
*]

= Σn=1
N [(½)stn + (½)s1n – (1/N)][ln(ptn/pt

*)  
 – ln(p1n/p1

*)]. (49)

The second line in (49) follows from the first line because 
Σn=1

N [(½)stn + (½)s1n – (1/N)] = 0 and so if these N terms 
are multiplied by a constant, the resulting sum of terms 

will still equal 0. Define the deflated price for product n in 
period t as ptn/pt

* for t = 1, . . .,T. Assume that the products 
are highly substitutable. Suppose that the deflated price 
of product n goes down between periods 1 and t so that 
ln(ptn/pt

*) – ln(p1n/p1
*) is negative. Under these conditions, 

there will be a tendency for the average expenditure share 
for product n, (½)stn + (½)s1n, to be greater than the aver-
age of these shares, which is 1/N. Thus, the term [(½)stn + 
(½)s1n – (1/N)][ln(ptn/pt

*) – ln(p1n/p1
*)] is likely to be negative. 

Now suppose that the deflated price of product n goes up 
between periods 1 and t so that ln(ptn/pt

*) – ln(p1n/p1
*) is 

positive. Under these conditions, there will be a tendency  
for the average expenditure share for product n, (½)stn + 
(½)s1n, to be less than the average of these shares. Again, 
the term [(½)stn + (½)s1n – (1/N)][ln(ptn/pt

*) – ln(p1n/p1
*)] is 

likely to be negative. Thus, if the products under consider-
ation are highly substitutable, we expect PT

t to be less than 
PJ

t.62 If the products are not highly substitutable, we expect 
PT

t to be greater than PJ
t.

The results in this section can be summarized as follows: 
The unweighted Jevons index, PJ

t, can provide a reasonable 
approximation to a fixed-base superlative index like PT

t pro-
vided that the expenditure shares do not systematically trend 
with time and prices do not systematically grow at diverging 
rates. If these assumptions are not satisfied, then it is likely 
that the Jevons index will have some bias relative to a super-
lative index; PJ

t is likely to exceed PT
t as t becomes large if 

the products are close substitutes and PJ
t is likely to be less 

than PT
t if the products are not close substitutes.

6. Relationships between 
Superlative Fixed-Base Indices and 
Geometric Indices That Use Average 
Annual Shares as Weights
We consider the properties of weighted Jevons indices 
where the weight vector is an annual average of the observed 
monthly shares in a previous year. Recall that the weighted 
Jevons (or Cobb Douglas) price index PJα

t was defined by 
(15) in Section 2 as PJα

t ≡ Πn=1
N (ptn/p1n)αn where the product 

weighting vector α satisfied the conditions α >> 0N and α·1N 
= 1. The following counterparts to the covariance identities 
(46)–(48) hold for t = 1,  .  .  .,T where the geometric Young 
index or weighted Jevons index PJα

t has replaced PJ
t:63

lnPGL
t – lnPJα

t = Σn=1
N [s1n – αn][lnptn – lnp1n]

 = NCov(s1 – α, lnpt – lnp1); (50)

lnPGP
t – lnPJα

t = Σn=1
N [stn – αn][lnptn – lnp1n]

 = NCov(st – α, lnpt – lnp1); (51)

lnPT
t – lnPJα

t = Σn=1
N [(½)stn + (½)s1n – αn][lnptn – lnp1n]

62 This is perhaps an important result in the context where a statistical 
agency is collecting web scraped prices for very similar products and 
using an equally weighted geometric mean of these scraped prices as an 
estimated elementary price level. The resulting Jevons price index may 
have an upward bias relative to its superlative counterpart.
63 The relationship (52) was obtained by Armknecht and Silver (2014, 
9); that is, by taking logarithms on both sides of their equation (12), we 
obtain the first equation in equations (52).
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= NCov[(½)st + (½)s1 – α, lnpt – lnp1]
 = (½)[lnPGL

t – lnPJα
t] + (½)[lnPGP

t – lnPJα
t]. (52)

Define α as the arithmetic average of the first T* observed 
share vectors st:

 α ≡ Σt=1
T* (1/T*)st. (53)

In the context where the data consist of  monthly peri-
ods, T* will typically be equal to 12; that is, the elemen-
tary index under consideration is the weighted Jevons 
index PJα

t where the weight vector a is the average of  the 
observed expenditure shares for the first 12 months in the 
sample.

The decompositions (50)–(52) will hold for α defined by 
(53). If the N products are highly substitutable, it is likely 
that Cov(s1 – a, lnpt – lnp1) > 0 and Cov(st – α, lnpt – lnp1) < 
0 and hence it is likely that PGL

t > PJα
t and PGP

t < PJα
t. If the 

products are not close substitutes, then it is likely that PGL
t < 

PJα
t and PGP

t > PJα
t. If there are no divergent trends in prices, 

then it is possible that the average share price index PJα
t could 

provide an adequate approximation to the superlative Törn-
qvist index PT

t.
Note t = 1, . . .,T in equations (50)–(52). However, annual 

share indices that are implemented by statistical agencies 
are not constructed in exactly this manner. The practical 
month-to-month indices that are constructed by statistical 
agencies using annual shares of  the type defined by (53) do 
not choose the reference month for prices to be month 1; 
rather they chose the reference month for prices to be T* + 
1, the month that follows the first year.64 Thus, the refer-
ence year for share weights precedes the reference month 
for prices. In this case, the logarithm of  the month t ≥  
T* + 1 annual share-weighted Jevons index, lnPJα

t, is defined 
as follows:

lnPJα
t ≡ Σn=1

N αn[lnptn – lnpT* + 1,n];  
 t = T* + 1,T* + 2, . . .,T, (54)

where α is the vector of annual average share weights defined 
by (53). The following counterparts to the identities (50)–(52) 
hold for t = T* + 1,T* + 2, . . .,T, where α is defined by (53) and 
PJα

t is defined by (54):

lnPGL
t – lnPJα

t = Σn=1
N [sT* + 1,n – αn][lnptn–lnpT* + 1,n]

 = NCov(sT* + 1–α, lnpt–lnpT* + 1); (55)

lnPGP
t – lnPJα

t = Σn=1
N [stn–αn][lnptn–lnpT* + 1,n]

 = NCov(st – α, lnpt – lnpT* + 1); (56)

lnPT
t – lnPJα

t = Σn=1
N [(½)stn + (½)sT* + 1,n–αn][lnptn–lnpT* + 1,n]

= NCov[(½)st + (½)sT* + 1–α, lnpt–lnpT* + 1]
 = (½)[lnPGL

t–lnPJa
t] + (½)[lnPGP

t–lnPJa
t]. (57)

If the N products are highly substitutable, it is likely 
that Cov(sT* + 1–α, lnpt–lnpT* + 1) > 0 so that PGL

t > PJα
t. It  

64 In actual practice, the reference month for prices can be many months 
after T*.

is also likely that Cov(st–α, lnpt–lnpT* + 1) < 0 and hence it 
is likely that PGP

t < PJα
t in the highly substitutable case. 

If the products are not close substitutes, then it is likely 
that PGL

t < PJα
t and PGP

t > PJα
t. If there are no divergent 

trends in prices, then it is possible that the average share 
price index PJα

t could provide an adequate approxima-
tion to the superlative Törnqvist index PT

t. However, if 
there are divergent trends in prices and shares and the 
products are highly substitutable with each other, then 
we expect the covariance in (56) to be more negative than 
the covariance in (55) is positive so that PT

t will tend to 
be less than the annual shares geometric index PJα

t. Thus, 
PJα

t will tend to have a slight substitution bias if the prod-
ucts are highly substitutable, which is an intuitively plau-
sible result.

As usual, there are three simple sets of conditions that will 
imply that PT

t = PJα
t: (i) the covariance on the right-hand side 

of (57) equals 0; that is, Cov[(½)st + (½)sT* + 1–α, lnpt–lnpT* + 1] 
= 0 or equivalently, Cov(sT* + 1–α, lnpt–lnpT* + 1) = – Cov(st–α, 
lnpt–lnpT* + 1); (ii) period t price proportionality (to the prices 
of the price reference period); that is, pt = ltp

T* + 1 for some 
λt > 0; (iii) the arithmetic average of the period T* + 1 and t 
sales shares are all equal to α defined by (53); that is, (½)st + 
(½)sT* + 1 = α. This last condition will hold if the shares st are 
constant over all time periods and a is defined by (53).

Suppose that there are linear trends in shares and diver-
gent linear trends in log prices; that is, suppose that the fol-
lowing assumptions hold for t = 2,3, . . .,T:

 st = s1 + β(t–1); (58)
 lnpt = lnp1 + γ(t–1); (59)

where β ≡ [β1, . . .,bN] and γ ≡ [γ1, . . .,g N] are constant vectors 
and b satisfies the additional restriction:65

 β·1N = 0. (60)

In the case where the products are highly substitutable, if 
the price of product n, ptn, is trending upward so that γn is 
positive, then we could expect that the corresponding share 
stn is trending downward so that βn is negative. Similarly, if 
γn is negative, then we expect that the corresponding βn is 
positive. Thus, we expect that Σn=1

N βnγn = β·γ < 0.
Substituting (58) into definition (53) gives us the following 

equation for the annual share weight vector under the linear 
trends assumption:

α ≡ Σt=1
T* (1/T*)st

= Σt=1
T* (1/T*)[s1 + β(t–1)]

 = s1 + (½)β(T*-1). (61)

Using (57)–(59) and (61), we have the following equations for 
t = T* + 1,T* + 2, . . .,T:

65 Since expenditure shares must be nonnegative, if β ≠ 0N then some com-
ponents of β will be negative, and thus the linear trends in shares assump-
tion (58) cannot hold forever. Assumptions (58) and (59) will generally be 
only approximately true, and they cannot hold indefinitely.
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lnPT
t – lnPJα

t = [(½)st + (½)s1– α]·[lnpt–lnp1]
 = (½)β·γt(t–T*–1). (62)

Thus, if the inner product of the vectors β and γ is not 
equal to 0, lnPT

t and lnPJα
t will diverge at a quadratic rate 

as t increases. Under these trend assumptions, the average 
share geometric index PJα

t will be subject to some substitu-
tion bias (as compared to PT

t which controls for substitution 
bias66), which will grow over time.67 As indicated earlier, it is 
likely that β·γ < 0 so that it is likely that PT

t will be below PJα
t 

under the assumption of strong substitutability and diverg-
ing trends in prices and shares.

Note that in real life, new products appear and existing 
products disappear. The analysis presented in this section 
and in previous sections can take this fact into account 
in theory if the price statistician has somehow calculated 
approximate reservation prices for products that are not 
available in the current period. Note that product churn 
means that shares are not constant over time; that is, product 
churn will lead to nonsmooth trends in product shares. How-
ever, superlative indices like PF

t and PT
t can deal with new 

and disappearing products in a way that is consistent with 
consumer theory, provided that suitable reservation prices 
have been either estimated or approximated by suitable 
rules of thumb.

7. To Chain or Not to Chain
In the discussions here, attention has been focused on 
direct indices that compare the prices of period t with 
the prices of period 1. But it is also possible to move from 
period 1 prices to period t prices by moving from one 
period to the next and cumulating the jumps. If the sec-
ond method is used, the resulting period t price index is 
called a chained index. In this section, we will examine the 
possible differences between direct and chained Törnqvist 
price indices.

It is convenient to introduce some new notation. Denote 
the Törnqvist price index that compares the prices of period 
j to the prices of period i (the base period for the compari-
son) by PT(i,j). The logarithm of PT(i,j) is defined as follows 
for i,j = 1, . . .,N:

lnPT(i,j) ≡ (½)Σn=1
N (sin + sjn)(lnpjn – lnpin)

 = (½)(si + sj)·(lnpj – lnpi). (63)

The chained Törnqvist price index going from period 1 to 
T will coincide with the corresponding direct index if the 
indices PT(i,j) satisfy the following multiperiod identity test, 
which was developed by Walsh (1901, 389; 1921b, 540):

 PT(1,2)PT(2,3) . . . PT(T–1,T)PT(T,1) = 1. (64)

66 We regard an index as having some substitution bias if it diverges from 
a superlative index which controls for substitution bias. See Diewert 
(1976) for the formal definition of a superlative index.
67 If all prices grow at the same geometric rate, then it can be verified that 
PJa

t = PGL
t = PGP

t = PT
t. If in addition, assumptions (58)–(60) hold, then γ = 

λ1N for some scalar λ > 0 and using assumption (60), we have β·γ = 0, and 
thus PT

t = PJα
t under our assumptions.

This test can be used to measure the amount that the chained 
indices between periods 1 and T differ from the correspond-
ing direct index that compares the prices of period 1 and T; 
that is, if the product of indices on the left-hand side of (64) 
is different from unity, then we say that the index number 
formula is subject to chain drift and the difference between 
the left-hand and right-hand sides of (64) is used to mea-
sure the magnitude of the chain drift problem.68 In order to 
determine whether the Törnqvist price index formula satis-
fies the multiperiod identity test (64), take the logarithm of 
the left-hand side of (64) and check whether it is equal to the 
logarithm of 1 which is 0. Thus, substituting definitions (63) 
into the logarithm of the left-hand side of (64) leads to the 
following expressions:69

lnPT(1,2) + lnPT(2,3) + . . . + lnPT(T–1,T) + lnPT(T,1)
= ½Σn=1

N (s1n + s2n)(lnp2n–lnp1n) + ½Σn=1
N (s2n + s3n) 

(lnp3n–lnp2n) + . . .

 + ½Σn=1
N (sT–1,n + sTn)(lnpTn–lnpT–1,n) + ½Σn=1

N (sTn + s1n)
(lnp1n–lnpTn)

= ½Σn=1
N (s1n–s3n)lnp2n + ½Σn=1

N (s2n–s4n)lnp3n + . . . + ½Σn=1
N 

(sT–2,n–sTn)lnpT–1,n

  + ½Σn=1
N (sTn–s2n)lnp1n + ½Σn=1

N (sT–1,n–s1n)lnpTn. (65)

In general, it can be seen that the Törnqvist price index for-
mula will be subject to some chain drift; that is, the sums of 
terms on the right-hand side of (65) will not equal 0 in gen-
eral. However, there are four sets of conditions where these 
terms will sum to 0.

The first set of conditions makes use of the first equality 
on the right-hand side of (65). If the prices vary in strict pro-
portion over time, so that pt = λtp

1 for t = 2,3, . . .,T, then it is 
straightforward to show that (64) is satisfied.

The second set of conditions makes use of the second 
equality in equations (65). If the shares st are constant over 
time,70 then it is obvious that (64) is satisfied.

The third set of conditions also makes use of the second 
equality in (65). The sum of terms Σn=1

N (s1n–s3n)lnp2n is equal 
to (s1-s3)·lnp2, which in turn is equal to (s1–s3)·(lnp2–lnp2*) = 
NCov(s1–s3,lnp2), where lnp2* ≡ (1/N) Σn=1

N lnp2n, the mean 
of the components of lnp2. Thus, the N sets of summations 
on the right-hand side of the second equation in (65) can 
be interpreted as constant times the covariances of a differ-
ence in shares (separated by one or more time periods) with 
the logarithm of a price vector for a time period that is not 
equal to either of the time periods involved in the difference 
in shares. Thus, if the covariance equalities Cov(s1–s3,lnp2) 
= Cov(s2–s4,lnp3) = . . . = Cov(sT–2–sT,lnpT–1) = Cov(sT–s2,lnp1) 
= Cov(sT–1–s1,lnpT) = 0, then (64) will be satisfied. These zero 

68 Walsh (1901, 401) was the first to propose this methodology to measure 
chain drift. It was independently proposed later by Persons (1921, 110) 
and Szulc (1983, 540). Fisher’s (1922, 284) circular gap test could also be 
interpreted as a test for chain drift.
69 Persons (1928, 101) developed a similar decomposition using the bilat-
eral Fisher formula instead of the Törnqvist formula. See also de Haan 
and Krsinich (2014) for an alternative decomposition.
70 If purchasers of the products have Cobb–Douglas preferences, then the 
sales shares will be constant.
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covariance conditions will be satisfied if the log prices of one 
period are uncorrelated with the shares of all other periods. 
If the time period is long enough and there are no trends 
in log prices and shares, so that prices are merely bounc-
ing around in a random fashion,71 then these zero covari-
ance conditions are likely to be satisfied to a high degree of 
approximation, and thus under these conditions, the Törn-
qvist–Theil price index is likely to be largely free of chain 
drift. However, in the elementary index context where retail-
ers have periodic highly discounted prices, the zero correla-
tion conditions are unlikely to hold. Suppose that product 
n goes on sale during period 2 so that lnp2n is well below the 
average price for period 2. Suppose product n is not on sale 
during periods 1 and 3. If purchasers have stocked up on 
product n during period 2, it is likely that s3n will be less than 
s1n, and thus it is likely that Cov(s1–s3,lnp2) < 0. Now suppose 
that product n is not on sale during period 2. In this case, it 
is likely that lnp2n is greater than the average log price dur-
ing period 2. If product n was on sale during period 1 but 
not period 3, then s1n will tend to be greater than s3n, and 
thus Cov(s1–s3,lnp2) > 0. However, if product n was on sale 
during period 3 but not period 1, then s1n will tend to be less 
than s3n, and thus Cov(s1–s3,lnp2) < 0. These last two cases 
should largely offset each other, and so we are left with the 
likelihood that Cov(s1–s3,lnp2) < 0. Similar arguments apply 
to the other covariances, and so we are left with the expecta-
tion that the chained Törnqvist index used in the elementary 
index context is likely to drift downward relative to its fixed-
base counterpart.72

Since the Fisher index normally approximates the Törn-
qvist fairly closely, we expect both the chained Fisher and 
Törnqvist indices to exhibit downward chain drift. How-
ever, it is not always the case that a superlative index is sub-
ject to downward chain drift. Feenstra and Shapiro (2003) 
found upward chain drift in the Törnqvist formula using 
a scanner data set. Persons (1928, 100–5) had an extensive 
discussion of the chain drift problem with the Fisher index, 
and he gave a numerical example on page 102 of his article 
that showed how upward chain drift could occur. We have 
adapted his example in Table 7.3.

Product 1 is on sale in period 1 and goes back to a rela-
tively high price in periods 2 and 3 and then goes on sale 
again, but the discount is not as steep as the period 1 dis-
count. Product 2 is at its “regular” price for periods 1–3 and 
then rises steeply in period 4. Products 1 and 2 are close sub-
stitutes, so when product 1 is steeply discounted, only 1 unit 
of product 2 is sold in period 1, while 100 units of product 
1 are sold. When the price of product 1 increases fivefold in 
period 2, demand for the product falls and purchasers switch 
to product 2, but the adjustment to the new higher price of 
product 1 is not complete in period 2: in period 3 (where 
prices are unchanged from period 2), purchasers continue to  

71 Szulc (1983) introduced the term “price bouncing” to describe the 
behavior of soft drink prices in Canada at the elementary level.
72 Fisher (1922, 284) found little difference in the fixed-base and chained 
Fisher indices for his particular data set which he used to compare 119 
different index number formulae. Fisher noted that the Carli, Laspeyres, 
and share-weighted Carli chained indices showed upward chain drift. 
However, Persons (1921, 110) showed that the Fisher chained index ended 
up about 4 percent lower than its fixed-base counterpart for his agricul-
tural data set covering 10 years. This is an early example of the downward 
chain drift associated with the use of the Fisher index.

move away from product 1 and toward product 2. It is this 
incomplete adjustment that causes the chained index to 
climb above the fixed-base index in period 3.73 Thus, it is not 
always the case that the Fisher index is subject to downward 
chain drift, but we do expect that “normally,” this would be 
the case.

The fourth set of conditions that ensure that there is 
no chain drift are assumptions (58) and (59); that is, the 
assumption that shares and log prices have linear trends. To 
prove this assertion, substitute these equations into either 
one of the two right-hand side equations in (65), and we find 
that the resulting sum of terms is 0.74 This result is of some 
importance at higher levels of aggregation where aggregate 
prices and quantities are more likely to have smooth trends. 
If the trends are actually linear, then this result shows that 
there will be no chain drift if the Törnqvist–Theil index 
number formula is used to aggregate the data.75 However, 
when this formula is used at the elementary level when there 
are frequent fluctuations in prices and quantities, chain drift 
is likely to occur, and thus the use of a fixed-base index or a 
multilateral index is preferred under these conditions.

As was mentioned in the introduction, a main advantage 
of the chain system is that under conditions where prices and 
quantities are trending smoothly, chaining will reduce the 
spread between the Paasche and Laspeyres indices.76 These 
two indices each provide an asymmetric perspective on the 
amount of price change that has occurred between the two 
periods under consideration, and it could be expected that 
a single-point estimate of the aggregate price change should 
lie between these two estimates. Thus, at higher levels of 
aggregation, the use of either a chained Paasche or Laspey-
res index will usually lead to a smaller difference between 
the two and hence to estimates that are closer to the “truth.” 
However, at lower levels of aggregation, smooth changes in 
prices and quantities are unlikely to occur.

An alternative to the use of a fixed-base index is the use 
of a multilateral index. A problem with the use of a fixed-
base index is that it depends asymmetrically on the choice 
of the base period. If the structure of prices and quantities 

73 Persons (1928, 102) explained that it was incomplete adjustment that 
caused the Fisher chained index to climb above the corresponding fixed-
base index in his example. Ludwig von Auer (2019) proposed a similar 
theory.
74 This result was first established by Alterman, Diewert, and Feenstra 
(1999, 61–65).
75 This transitivity property carries over to an approximate transitivity 
property for the Fisher and Walsh index number formulae using the fact 
that these indices approximate the Törnqvist–Theil index to the second 
order around an equal price and quantity point; see Diewert (1978) on 
these approximations.
76 See Diewert (1978, 895) and Hill (1988) for additional discussion on the 
benefits and costs of chaining.

Table 7.3 Prices and Quantities for Two Products and 
the Fisher Fixed-Base and Chained Price Indices
t p1

t p2
t q1

t q2
t PF

t PFCh
t

1 2 1 100 1 1.00000 1.00000
2 10 1 40 40 4.27321 4.27321
3 10 1 25 80 3.55553 4.27321
4 5 2 50 20 2.45676 2.96563
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for the base period is unusual and fixed-base index numbers 
are used, then the choice of the base period could lead to 
“unusual” results. Multilateral indices treat each period 
symmetrically and thus avoid this problem. In the follow-
ing section, we will introduce some possible multilateral 
indices that are free of chain drift (within our window of T 
observations).77

8. Relationships between the 
Törnqvist Index and the GEKS and 
CCDI Multilateral Indices
It is useful to introduce some additional notation at this 
point. Denote the Laspeyres, Paasche, and Fisher price indi-
ces that compare the prices of period j to the prices of period 
i (the base period for the comparison) by PL(i,j), PP(i,j), 
and PF(i,j), respectively. These indices for r,t = 1, . . .,N are 
defined as follows:

 PL(r,t) ≡ pt·qr/pr·qr; (66)
 PP(r,t) ≡ pt·qt/pr·qt; (67)
 PF(r,t) ≡ [PL(r,t)PP(r,t)]1/2 . (68) 

The Fisher indices have very good axiomatic properties and 
hence are preferred indices from the viewpoint of the test or 
axiomatic approach.78

Obviously, one could choose period 1 as the base period 
and form the following sequence of price levels relative to 
period 1: PF(1,1) = 1, PF(1,2), PF(1,3), . . . , PF(1,T). But one 
could also use period 2 as the base period and use the follow-
ing sequence of price levels: PF(2,1), PF(2,2) = 1, PF(2,3), . . . ,  
PF(2,T). Each period could be chosen as the base period, 
and thus we end up with T alternative series of Fisher price 
levels. Since each of these sequences of price levels is equally 
plausible, Gini (1931) suggested that it would be appropriate 
to take the geometric average of these alternative price levels 
in order to determine the final set of price levels. Thus, the 
GEKS price levels79 for periods t = 1,2, . . .,T are defined as 
follows:

 pGEKS
t ≡ [Πr=1

T PF(r,t)]1/T. (69)

Note that all time periods are treated in a symmetric man-
ner in these definitions. The GEKS price indices PGEKS

t are 
obtained by normalizing the aforementioned price levels so 
that the period 1 index is equal to 1. Thus, we have the fol-
lowing definitions for PGEKS

t for t = 1, . . .,T:

 PGEKS
t ≡ pGEKS

t/pGEKS
1. (70)

77 Ivancic, Diewert, and Fox (2009, 2011) advocated the use of multilateral 
indices adapted to the time series context in order to control chain drift. 
Balk (1980, 1981) also advocated the use of multilateral indices in order to 
address the problem of seasonal commodities.
78 See Diewert (1992) for details on the axiomatic properties of the Fisher index.
79 Eltetö and Köves (1964) and Szulc (1964) independently derived the 
GEKS price indices using an alternative route. Thus, the name GEKS 
has the initials of all four primary authors of the method. Ivancic, Diew-
ert, and Fox (2009, 2011) suggested the use of the GEKS index in the time 
series context.

It is straightforward to verify that the GEKS price indices 
satisfy Walsh’s multiperiod identity test, which becomes the 
following test in the present context:

[PGEKS
2/PGEKS

1][PGEKS
3/PGEKS

2] . . .  
 [PGEKS

T/PGEKS
T–1][PGEKS

1/PGEKS
T] = 1. (71)

Thus, the GEKS indices are not subject to chain drift within 
the window of T periods under consideration.

Recall definition (63), which defined the logarithm of the 
Törnqvist price index, lnPT(i,j), that compared the prices of 
period j to the prices of period i. The GEKS methodology 
can be applied using PT(r,t) in place of the Fisher PF(r,t) as 
the basic bilateral index building block. Thus, define the 
period t GEKS Törnqvist price level, pGEKST

t, for t = 1, . . .,T 
as follows:

 pGEKST
t ≡ [Πr=1

T PT(r,t)]1/T. (72)

The GEKST price indices PGEKST
t are obtained by normal-

izing these price levels so that the period 1 index is equal to 
1. Thus, we have the following definitions for PGEKST

t for t = 
1, . . .,T:

 PGEKST
t ≡ pGEKST

t/pGEKST
1. (73)

Since PT(r,t) approximates PF(r,t) to the second order around 
an equal price and quantity point, PGEKST

t will usually be 
quite close to the corresponding PGEKS

t indices.
It is possible to provide a very simple alternative approach 

to the derivation of the GEKS Törnqvist price indices.80 
Define the sample average sales share for product n, s•n, 
and the sample average log price for product n, lnp•n, for n = 
1, . . .,N as follows:

 s•n ≡ Σt=1
T (1/T)stn; (74)

 lnp•n ≡ Σt=1
T (1/T)lnptn. (75)

The logarithm of the CCDI price level for period t, lnpCCDI
t, is 

defined by comparing the prices of period t with the sample 
average prices using the bilateral Törnqvist formula; that is, 
for t = 1, . . .,T, we have the following definitions:

 lnpCCDI
t ≡ Σn=1

N ½(stn + s•n)(lnptn – lnp•n). (76)

The CCDI price index for period t, PCCDI
t, is defined as the 

following normalized CCDI price level for t = 1, . . .,T:

 PCCDI
t ≡ pCCDI

t/pCCDI
1. (77)

Using the aforementioned definitions, the logarithm of 
the CCDI price index for period t is equal to the following 
expression for t = 1, . . .,T:

lnPCCDI
t = lnpCCDI

t – lnpCCDI
1

80 This approach was developed by Inklaar and Diewert (2016). It is an 
adaptation of the distance function approach used by Caves, Chris-
tensen, and Diewert (1982) to the price index context.
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= Σn=1
N (½)(stn + s•n)(lnptn – lnp•n) – Σn=1

N (½)(s1n + s•n) 
(lnp1n – lnp•n)

= lnPT
t + Σn=1

N (½)(stn – s•n)(lnp1n – lnp•n)  
– Σn=1

N (½)(s1n – s•n)(lnptn – lnp•n)
 = lnPGEKST

t, (78)

where the last equality follows from direct computa-
tion or from the computations of Inklaar and Diewert 
(2016).81 Thus, the CCDI multilateral price indices are 
equal to the GEKS Törnqvist multilateral indices defined 
by (73). Define s• ≡ [s•1,  .  .  ., s•N] as the vector of sample 
average shares and lnp• ≡ [lnp•1,  .  .  .,lnp•N] as the vector of 
sample average log prices. Then the last two terms on the 
right-hand side of the penultimate equality in (78) can be 
written as (½)NCov(st – s•,lnp1 – lnp•) – (½)NCov(s1 – s•, 
lnpt – lnp•). If the fluctuations in shares and prices are not 
too high, it is likely that both covariances are close to 0, and 
thus lnPCCDI

t ≈ lnPT
t for each t.82 Thus, under these condi-

tions, it is likely that lnPCCDI
t ≈ lnPT

t for each t. Moreover, 
under the assumptions of linear trends in log prices and lin-
ear trends in shares, assumptions (58) and (59), it was seen 
in the previous section that the period t bilateral Törnqvist 
price index, PT

t, was equal to its chained counterpart for 
any t.83 This result implies that PT

t = PCCDI
t = PGEKST

t for t = 
1, . . .,T under the linear trends assumption. Thus, we expect 
the period t multilateral index, PGEKST

t = PCCDI
t, to approxi-

mate the corresponding fixed-base period t Törnqvist price 
index, PT

t, provided that prices and quantities have smooth 
trends.

Since PF
t approximates PT

t, we expect that the following 
approximate equalities will hold under the smooth trends 
assumption for t = 1, . . .,T:

 PF
t ≈ PT

t ≈ PGEKS
t ≈ PGEKST

t = PCCDI
t. (79)

These indices will be free from chain drift within the win-
dow of T periods;84 that is, if prices and quantities for any 
two periods in the sample are equal, then the price index will 
register the same value for these two periods.

Unit values taken over heterogeneous products are often 
used at the first stage of aggregation. In the following sec-
tion, bias estimates for unit value price levels will be derived, 
and in the subsequent section, quality-adjusted unit value 
price levels will be studied.

81 The second from last equality was derived by Diewert and Fox (2021).
82 For Diewert’s (2018) empirical example, the sample average of these 
two sets of covariance terms turned out to be 0 with variances equal to 
0.00024 and 0.00036, respectively.
83 See the discussion below (65) in the previous section. Note that the 
assumption of linear trends in shares is not consistent with the existence 
of new and disappearing products.
84 See de Haan (2015) and Diewert and Fox (2021) for discussions of the 
problems associated with linking the results from one rolling window 
multilateral comparison to a subsequent window of observations. Empir-
ically, there does not appear to be much chain drift when the indices gen-
erated by subsequent windows are linked.

9. Unit Value Price and Quantity 
Indices
As was mentioned in Section 2, there was a preliminary 
aggregation over time problem that needed to be addressed; 
that is, exactly how should the period t prices and quanti-
ties for commodity n, pn

t, and qn
t that are used in an index 

number formula be defined? During any time period t, there 
will typically be many transactions in a specific commodity 
n at a number of different prices. Hence, there is a need to 
provide a more precise definition for the “average” or “rep-
resentative” price for commodity n in period t, pn

t. Starting 
with Drobisch (1871), many measurement economists and 
statisticians advocated the use of the unit value (total value 
transacted divided by the total quantity) as the appropriate 
price pn

t for commodity n and the total quantity transacted 
during period t as the appropriate quantity, qn

t; for example, 
see Walsh (1901, 96; 1921a, 88), Fisher (1922, 318), and Davies 
(1924, 183; 1932, 59). If it is desirable to have qn

t be equal to 
the total quantity of commodity n transacted during period 
t and also desirable to have the product of the price pn

t times 
quantity qn

t to be equal to the value of period t transactions 
in commodity n, then one is forced to define the aggregate 
period t price for commodity n, pn

t, to be the total value 
transacted during the period divided by the total quantity 
transacted, which is the unit value for commodity n.85

There is general agreement that a unit value price is an 
appropriate price concept to be used in an index number 
formula if the transactions refer to a narrowly defined 
homogeneous commodity. Our task in this section is to look 
at the properties of a unit value price index when aggregat-
ing over commodities that are not completely homogeneous. 
We will also look at the properties of the companion unit 
value quantity index in this section.

The period t unit value price level, pUV
t, and the corre-

sponding period t unit value price index, which compares the 
price level in period t to that in period 1, PUV

t, for t = 1, . . .,T 
are defined as follows:

 pUV
t ≡ pt·qt/1N·qt; (80)

PUV
t ≡ pUV

t/pUV
1

= [pt·qt/1N·qt]/[p1·q1/1N·q1]
 = [pt·qt/p1·q1]/QUV

t, (81)

where the period t unit value quantity index, QUV
t, for t = 

1, . . .,T is defined as follows:

 QUV
t ≡ 1N·qt/1N·q1. (82)

It can be seen that the unit value price index satisfies Walsh’s 
multiperiod identity test, and thus PUV

t is free from chain 
drift.

However, there is a big problem in using the unit value 
price index when the commodities in scope are not homoge-
neous: The unit value price index is not invariant to changes 

85 For additional discussion on unit value price indices, see Balk (2008, 
72–74), Diewert, and von der Lippe (2010), Silver (2010, 2011), and de 
Haan and Krsinich (2018).
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in the units of measurement of the individual products in the 
aggregate.

We will look at the relationship of the unit value quan-
tity indices, QUV

t, with the corresponding Laspeyres, Paas-
che, and Fisher fixed-base quantity indices, QL

t, QP
t, and QF

t, 
defined here for t = 1, . . .,T:

 QL
t ≡ p1·qt/p1·q1 = Σn=1

N s1n(qtn/q1n); (83)
 QP

t ≡ pt·qt/pt·q1 = [Σn=1
N stn(qtn/q1n)

–1]–1; (84)
 QF

t ≡ [QL
tQP

t]1/2. (85)

For the second set of equations in (83), we require that  
q1n > 0 for all n, and for the second set of equations in (84), 
we require that all qtn > 0. Recall that the period t sales or 
expenditure share vector st ≡ [st1, . . .,stN] was defined at the 
beginning of Section 2. The period t quantity share vector St 
≡ [St1, . . .,StN] was also defined in Section 2 for t = 1, . . .,T 
as follows:

 St ≡ qt/1N·qt. (86)

Here, we will make use of the following identities (87), which 
hold for t = 1, . . .,T:

Σn=1
N [pUV

t – ptn]qtn = Σn=1
N [(pt·qt/1N·qt) – ptn]qtn using 

 definitions (80)
 = (pt·qt/1N·qt)1N·qt – pt·qt = 0. (87)
The following relationships between QUV

t and QL
t hold for  

t = 1, . . .,T:

QUV
t – QL

t = [1N·qt/1N·q1] – [p1·qt/p1·q1] using (82) and (83)
= Σn=1

N S1n(qtn/q1n) – Σn=1
N s1n(qtn/q1n) using (86) and (83)

= Σn=1
N [S1n – s1n](qtn/q1n)

 = NCov(S1 – s1,qt/q1), (88)

where the vector of period t to period 1 relative quantities 
is defined as qt/q1 ≡ [qt1/q11, qt2/q12 . . . ,qtN/q1N]. As usual, there 
are three special cases of (88), which will imply that QUV

t =  
QL

t. (i) S1 = s1 so that the vector of period 1 real quantity 
shares S1 is equal to the period 1 sales share vector s1. This 
condition is equivalent to p1 = λ11N so that all period 1 
prices are equal.86 (ii) qt = λtq

1 for t = 2,3,  .  .  .,T so that 
quantities vary in strict proportion over time and (iii)  
Cov(S1 – s1,qt/q1) = 0.87

There are two problems with this bias formula: (i) It is 
difficult to form a judgment on the sign of the covariance 
Cov(S1 – s1,qt/q1) and (ii) the decomposition given by (88) 

86 Consider the case where p1 = λ1N. Units of measurement for the N com-
modities can always be chosen so that all prices are equal in period 1. 
Then QUV

t = QL
t, and hence PUV

t = PP
t, where PUV

t is defined by (81) and 
PP

t is the fixed-base Paasche price index defined by (34). Thus, for this 
particular choice for units of measurement, the unit value price index PUV

t 
is equal to a fixed-base Paasche price index, which will typically have a 
downward bias relative to a superlative index.
87 For similar bias formulae, see Balk (2008, 73–74) and Diewert and von 
der Lippe (2010).

requires that all components of the period 1 quantity vector 
be positive.88 It would be useful to have a decomposition that 
allowed some quantities (and sales shares) to be equal to 0. 
Consider the following alternative decomposition to (88) for 
t = 1, . . .,T:

QUV
t – QL

t = [1N·qt/1N·q1] – [p1·qt/p1·q1] using (82) and (83)
= Σn=1

N [(qtn/1N·q1) – (p1nqtn/p
1·q1)]

= Σn=1
N [(1/1N·q1) – (p1n/p

1·q1)]qtn

= Σn=1
N [(p1·q1/1N·q1) – p1n][qtn/p

1·q1]

= Σn=1
N [pUV

1 – p1n][qtn/p
1·q1] using (80) for t = 1

= Σn=1
N [pUV

1 – p1n][qtn – q1nQUV
t]/p1·q1 using (87) for t = 1

= QUV
t Σn=1

N [pUV
1 – p1n][(qtn/QUV

t) – q1n]/p
1·q1

= QUV
t Σn=1

N s1n[(pUV
1/p1n) – 1][(qtn/q1nQUV

t) – 1]  
if q1n > 0 for all n

 = QUV
t εL

t, (89)

where the period t error term εL
t for t = 1, . . .,T is defined as

 εL
t ≡ Σn=1

N [pUV
1 – p1n][(qtn/QUV

t) – q1n]/p
1·q1.89 (90)

If q1n > 0 for n = 1, . . .,N, then εL
t is equal to Σn=1

N s1n[(pUV
1/p

1n) – 1][(qtn/q1nQUV
t) – 1].

Note that the terms on the right-hand side of (90) can be 
interpreted as (N/p1·q1) times the covariance Cov(pUV

11N–p1, 
qt–QUV

tq1) since 1N·(qt–QUV
tq1) = 0. If the products are substi-

tutes, it is likely that this covariance is negative, since if p1n is 
unusually low, we would expect that it would be less than the 
period 1 unit value price level pUV

1 so that pUV
1 – p1n > 0. Fur-

thermore, if p1n is unusually low, then we would expect that 
the corresponding q1n is unusually high, and thus it is likely 
that q1n is greater than qtn/QUV

t, and so qtn – q1nQUV
t < 0. Thus, 

the N terms in the covariance will tend to be negative pro-
vided that there is some degree of substitutability between 
the products.90 Looking at formula (90) for εL

t, it can be seen 
that all terms on the right-hand side of (90) do not depend 
on t, except for the N period t deflated product quantity 
terms, qtn/QUV

t for n = 1, . . .,N. Hence, if there is a great deal 
of variation in the period t quantities qtn, then qtn/QUV

t – q1n 
could be positive or negative, and thus the tendency for εL

t 
to be negative will be a weak one. Thus, our expectation is 
that the error term εL

t is likely to be negative, and hence QUV
t 

< QL
t for t ≥ 2, but this expectation is a weak one.

88 We are assuming that all prices are positive in all periods (so if there are 
missing prices they must be replaced by positive imputed prices), but we 
are not assuming that all quantities (and expenditure shares) are positive.
89 Note that this error term is homogeneous of degree 0 in the components 
of p1, q1, and qt. Hence, it is invariant to proportional changes in the com-
ponents of these vectors.
90 The results in previous sections looked at responses of product shares 
to changes in prices and with data that are consistent with CES prefer-
ences, and the results depended on whether the elasticity of substitution 
was greater or less than unity. In the present section, the results depend 
on whether the elasticity of substitution is equal to or greater than 0; that 
is, it is the response of quantities (rather than shares) to lower prices that 
matters.
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It should be noted that PUV
t and QUV

t do not depend on the 
estimated reservation prices for the missing products; that is, 
the definitions of PUV

t and QUV
t zero out the estimated reser-

vation prices.
As usual, there are three special cases of (89) that will 

imply that QUV
t = QL

t: (i) p1 = λ11N so that all period 1 prices 
are equal; (ii) qt = λtq

1 for t = 2,3, . . .,T so that the quanti-
ties vary in strict proportion over time; (iii) Cov(pUV

11N – 
p1,qt – QUV

tq1) = 0. These conditions are equivalent to our 
earlier conditions of (88).

If we divide both sides of equation t in equations (89) 
by QUV

t, we obtain the following system of identities for  
t = 1, . . .,T:

 QL
t/QUV

t = 1 – εL
t, (91)

where we expect εL
t to be a small negative number in the 

elementary index context.
The identities in (89) and (91) are valid if we interchange 

prices and quantities. The quantity counterparts to pUV
t and 

PUV
t defined by (80) and (81) are the period t Dutot quantity 

level qD
t and quantity index QD

t91 defined as qD
t ≡ pt·qt/1N·pt = 

αt·qt (where αt ≡ pt/1N·pt is a vector of period t price weights 
for qt) and QD

t ≡ qUV
t/qUV

1 = [pt·qt/p1·q1]/PD
t, where we redefine 

the period t Dutot price level as pD
t ≡ 1N·pt and the period t 

Dutot price index as PD
t ≡ pD

t/pD
1 = 1N·pt/1N·p1, which coin-

cides with our earlier definition (10) for PD
t. Using these defi-

nitions and interchanging prices and quantities, equation 
(91) becomes the following equations for t = 1, . . .,T:

 PL
t/PD

t = 1– εL
t*, (92)

where the period t error term εL
t* for t = 1, . . .,T is defined as

 εL
t* ≡ Σn=1

N [qD
1 – q1n][(ptn/PD

t) – p1n]/p
1·q1. (93)

If p1n is unusually low, then it is likely that it will be less than 
ptn/PD

t, and it is also likely that q1n will be unusually high 
and hence greater than the average period 1 Dutot quantity 
level, qD

1. Thus, the N terms in the definition of εL
t* will tend 

to be negative, and thus 1 – εL
t* will tend to be greater than 

1. Thus, there will be a tendency for PD
t < PL

t for t ≥ 2, but 
again, this expectation is a weak one if there are large fluctu-
ations in the deflated period t prices, ptn/PD

t, for n = 1, . . .,N.
It can be verified that the following identities hold for the 

period t Laspeyres, Paasche, and unit value price and quan-
tity indices for t = 1, . . .,T:

 pt·qt/p1·q1 = PUV
tQUV

t = PP
tQL

t = PL
tQP

t. (94)

Equation (94) implies the following identities for t = 1, . . .,T:

 PUV
t/PP

t = QL
t/QUV

t = 1 – εL
t, (95)

which follow from equations (91). Thus, we expect that PUV
t 

> PP
t for t = 2,3, . . .,T if the products are substitutes and eL

t 
is negative.92

91 Balk (2008, 7) called QUV
t a Dutot-type quantity index.

92 As was discussed earlier, if all prices are equal in the base period, then  
εL

t = 0 and PUV
t/PP

t = QL
t/QUV

t = 0.

We now turn our attention to developing an exact rela-
tionship between QUV

t and the Paasche quantity index QP
t. 

Using definitions (82) and (84), we have for t = 1, . . .,T:

[QUV
t]–1 – [QP

t]–1 = [1N·q1/1N·qt] – [pt·q1/pt·qt]  
using (82) and (84)

= Σn=1
N [Stn – stn][q1n/qtn]

 = NCov(St –st,q1/qt), (96)

where the second set of equalities follows from (88) and (86), 
assuming that qtn > 0 for n = 1, . . .,N.

As usual, there are three special cases of (96) that will 
imply that QUV

t = QP
t: (i) St = st so that the vector of period 

t real quantity shares St is equal to the period t sales share 
vector st. This condition is equivalent to pt = λt1N, which 
implies that all period t prices are equal.93 (ii) qt = ltq

1 for t = 
2,3,  .  .  .,T so that quantities vary in strict proportion over 
time. (iii) NCov(St –st,q1/qt) = 0.

Again, there are two problems with this bias formula: (i) it 
is difficult to form a judgment on the sign of the covariance 
NCov(St –st,q1/qt) and (ii) the decomposition given by (96) 
requires that all components of the period t quantity vec-
tor be positive. We will proceed to develop a decomposition 
that does not require the positivity of qt. The following exact 
decomposition holds for t = 1, . . .,T:

[QUV
t]–1 – [QP

t]–1 = [1N·q1/1N·qt] – [pt·q1/pt·qt]
= Σn=1

N [(q1n/1N·qt) – (ptnq1n/p
t·qt)]

= Σn=1
N [(1/1N·qt) – (ptn/p

t·qt)]q1n

= Σn=1
N [(pt·qt/1N·qt) – ptn][q1n/p

t·qt]

= Σn=1
N [pUV

t – ptn][q1n/p
t·qt] using (80) for t = t

= Σn=1
N [pUV

t – ptn][q1n – (qtn/QUV
t)]/pt·qt using (87) for t = t

= [QUV
t]–1 Σn=1

N [pUV
t – ptn][(q1nQUV

t) – qtn]/p
t·qt

= [QUV
t]–1 Σn=1

N stn[(pUV
t/ptn) – 1][(q1nQUV

t/qtn) – 1] if qtn > 0 for 
all n

 = [QUV
t]–1 εP

t, (97)

where the period t error term εP
t for t = 1, . . .,T is defined as 

follows:

 εP
t ≡ Σn=1

N [pUV
t – ptn][(q1nQUV

t) – qtn]/p
t·qt.94 (98)

93 If pt = λ1N, so that all prices are equal in period t, then it can be shown 
directly that PUV

t = PL
t. Thus, for the particular choice for units of mea-

surement that makes all prices equal in period t, the unit value price index 
PUV

t is equal to a fixed-base Laspeyres price index which will typically 
have an upward bias relative to a superlative index.
94 Note that this error term is homogeneous of degree 0 in the compo-
nents of pt, q1, and qt. Thus, for λ > 0, we have εP(pt,q1,qt) = εP(λpt,q1,qt) 
= εP(pt,λq1,qt) = εP(pt,q1,λqt). Note also that εP

t is well defined if some 
quantities are equal to 0 and εP

t does depend on the reservation prices 
ptn for products n that are not present in period t. If product n is missing 
in period t, then it is likely that the reservation price ptn is greater than 
the unit value price level for period t, pUV

t, and since qtn = 0, it can be seen 
that the nth term on the right-hand side of (98) will be negative; that is, 
the greater the number of missing products in period t, the greater is the 
likelihood that εP

t is negative.
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If qtn > 0 for n = 1, . . .,N, then εP
t is equal to Σn=1

N 
stn[(pUV

t/ptn) – 1][(q1nQUV
t/qtn) – 1].

Note that the terms on the right-hand side of (97) can be 
interpreted as (N/pt·qt) times Cov(pUV

t1N – pt,q1 – [QUV
t]–1qt) 

since 1N·(q1 – [QUV
t]–1qt) = 0. If the products are substitut-

able, it is likely that this covariance is negative, since if ptn 
is unusually low, we would expect that it would be less than 
the period t unit value price pUV

t so that pUV
t – ptn > 0. If ptn 

is unusually low, then we also expect that the corresponding 
qtn is unusually high, and thus it is likely that qtn is greater 
than q1nQUV

t, and so q1nQUV
t – qtn < 0. Thus, the N terms in the 

covariance will tend to be negative. Thus, our expectation is 
that the error term εP

t < 0 and [QUV
t]–1 < [QP

t]–1 or QUV
t > QP

t 
for t ≥ 2.95

There are three special cases of (97) that will imply that 
QUV

t = QP
t: (i) pt = λt1N so that all period t prices are equal; (ii) 

qt = λtq
1 for t = 2,3, . . .,T so that quantities vary in strict pro-

portion over time; and (iii) Cov(pUV
t1N – pt,q1 – [QUV

t]–1qt) = 0.
If we divide both sides of equation t in equations (97) by 

[QUV
t]–1, we obtain the following system of identities for t = 

1, . . .,T:

 QP
t/QUV

t = [1 – εP
t]–1, (99)

where we expect εP
t to be a small negative number if the 

products are substitutable. Thus, we expect QP
t < QUV

t < QL
t 

for t = 2,3, . . .,T.
Equations (97) and (99) are valid if we interchange prices 

and quantities. Using the definitions for the Dutot price and 
quantity levels and indices t and interchanging prices and 
quantities, equation (99) becomes PP

t /PD
t = [1 – εP

t*]–1, where 
εP

t* ≡ Σn=1
N [qD

t – qtn][(p1nPD
t) – ptn]/p

t·qt for t = 1, . . .,T. If ptn 
is unusually low, then it is likely that it will be less than ptn/
PD

t, and it is also likely that qtn will be unusually high and 
hence greater than the average period t Dutot quantity level 
qD

t. Thus, the N terms in the definition of εP
t* will tend to be 

negative and, there is hence a tendency for [1 – εP
t*]–1 to be 

less than 1. Thus, there will be a tendency for PP
t < PD

t for 
t ≥ 2.

Equations (94) imply the following identities for t = 
1, . . .,T:

 PUV
t/PL

t = QP
t/QUV

t = [1 – εP
t]–1, (100)

which follow from equations (99). Thus, we expect that 
PP

t < PUV
t < PL

t for t = 2,3,  .  .  .,T if the products are 
substitutes.96

Equations (95) and (100) develop exact relationships 
for the unit value price index PUV

t, with the corresponding 
fixed-base Laspeyres and Paasche price indices, PL

t and PP
t. 

Taking the square root of the product of these two sets of 
equations leads to the following exact relationships between 

95 Our expectation that eP
t is negative is more strongly held than our 

expectation that εL
t is negative.

96 If pt = λ1N, then εP
t = 0, PUV

t = PL
t and QUV

t = QP
t. Thus, if prices in 

period t are all equal, the period t fixed-base unit value index will equal 
the fixed-base Laspeyres price index. Thus, the unit value index will tend 
to have an upward bias relative to a superlative index in this equal period 
t prices case.

the fixed-base Fisher price index, PF
t, and its unit value 

counterpart period t index, PUV
t, for t = 1, . . .,T:

 PUV
t = PF

t{(1 – εL
t)/( 1 – εP

t)}1/2, (101)

where εL
t and εP

t are defined by (90) and (98). If there are no 
strong (divergent) trends in prices and quantities, then it is 
likely that eL

t is approximately equal to eP
t, and hence under 

these conditions, it is likely that PUV
t ≈ PF

t; that is, the unit 
value price index will provide an adequate approximation 
to the fixed-base Fisher price index under these conditions. 
However, with diverging trends in prices and quantities 
(in opposite directions), we would expect the error term εP

t 
defined by (98) to be more negative than the error term εL

t 
defined by (90), and thus under these conditions, we expect 
the unit value price index PUV

t to have a downward bias rela-
tive to its Fisher price index counterpart PF

t.97

However, if there are missing products in period 1 so that 
that some q1n are equal to 0 and the corresponding imputed 
prices p1n are greater than the unit value price for observa-
tion 1, pUV

1, then the nth term in the sum of terms on the 
right-hand side of (90) can become negative and large in 
magnitude, which can make eL

t defined by (90) much more 
negative than εP

t, which in turn means that PUV
t will be 

greater than unit value price index PF
t using (101). Thus, 

under these circumstances, the unit value price index PUV
t 

will have an upward bias relative to its Fisher price index 
counterpart PF

t.
It is possible that unit value price indices can approxi-

mate their Fisher counterparts to some degree in some cir-
cumstances, but these approximations are not likely to be 
very accurate. If the products are somewhat heterogeneous, 
and there are some divergent trends in price and quantities, 
then the approximations are likely to be poor.98 They are 
also likely to be poor if there is substantial product turnover.

10. Quality-Adjusted Unit Value 
Price and Quantity Indices
In the previous section, the period t unit value quantity 
level was defined by qUV

t ≡ 1N·qt = Σn=1
N qtn for t = 1,  .  .  .,T. 

The corresponding period t unit value quantity index was 
defined by (82) for t = 1, . . .,T; that is, QUV

t ≡ 1N·qt/1N·q1. In the 
present section, we will consider quality-adjusted unit value 
quantity levels, qUVα

t, and the corresponding quality-adjusted 
unit value quantity indices, QUVα

t, defined as follows for t = 
1, . . .,T:

97 The Dutot price index counterparts to the exact relations (101) are PF
t 

= PD
t{(1 – εL

t*)/( 1 – εP
t*)}1/2 for t =1, . . .,T. Thus, with diverging trends in 

prices and quantities (in opposite directions), we would expect the error 
term εP

t* to be more negative than the error term εL
t* and hence we would 

expect PD
t > PF

t for t ≥ 2. Note that the Dutot price index can be inter-
preted as a fixed basket price index where the basket is proportional to 
a vector of ones. Thus, with divergent trends in prices and quantities in 
opposite directions, we would expect the Dutot index to exhibit substitu-
tion bias and hence we would expect PD

t > PF
t for t ≥ 2.

98 The problem with unit value price indices is that they correspond to an 
additive quantity level. If one takes the economic approach to index num-
ber theory, then an additive quantity level corresponds to a linear utility 
function which implies an infinite elasticity of substitution between prod-
ucts, which is too high in general.
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 qUVα
t ≡ α·qt; (102)

 QUVα
t ≡ qUVα

t/qUVα
1 = α·qt/α·q1, (103)

where α ≡ [α1, . . .,aN] is a vector of positive quality adjustment 
factors. Note that if consumers value their purchases of the 
N products according to the linear utility function f(q) ≡ α·q, 
then the period t quality-adjusted aggregate quantity level 
qUVα

t = α·qt can be interpreted as the aggregate (sub) utility of 
consumers of the N products. Note that this utility function 
is linear, and thus the products are perfect substitutes, after 
adjusting for the relative quality of the products. The bigger 
an is, the more consumers will value a unit of product n over 
other products. The period t quality-adjusted unit value price 
level and price index, pUVa

t and PUVα
t, are defined as follows 

for t = 1, . . .,T:

 pUVα
t ≡ pt·qt/qUVα

t = pt·qt/α·qt; (104)
 PUVα

t ≡ pUVα
t/pUVα

1 = [pt·qt/p1·q1]/QUVα
t. (105)

It is easy to check that the quality-adjusted unit value price 
index satisfies Walsh’s multiperiod identity test and thus is 
free from chain drift.99 Note that the PUVα

t and QUVα
t do not 

depend on any estimated reservation prices; that is, the defini-
tions of PUVα

t and QUVα
t zero out any reservation prices that 

are applied to missing products.
Quality-adjusted unit value price indices are consistent 

with the economic approach to index number theory. If 
consumers of the N products under consideration all have 
linear utility functions of the form f(q) ≡ α·q = Σn=1

N αnqn, 
then QUVα

t defined by (103) accurately represents real wel-
fare growth going from period 1 to t, and PUVα

t defined 
by (105) represents consumer inflation over this period. It 
does not matter if there are new or disappearing products 
over this period; aggregate welfare or utility for period t 
is well defined as Σn=1

N αnqtn even if some qtn are equal to 
0. If qtn = 0, then the contribution of product n to utility 
in period t is αnqn = 0. Furthermore, the quality-adjusted 
unit value price and quantity indices are invariant to 
changes in the units of measurement if we make the con-
vention that if the units of measurement of qn are changed 
to λnqn for some positive constant λn, then the correspond-
ing αn is changed to αn/λn.

100 Note that regular unit value 
price indices are not invariant to changes in the units of 
measurement.

From the viewpoint of the economic approach to index 
number theory, the problem with quality-adjusted unit 
value price and quantity indices is that the underlying 
linear utility function assumes that the N products under 
consideration are perfect substitutes after quality adjust-
ment. Linear preferences are a special case of Constant 
Elasticity of Substitution preferences, and the elasticity of 
substitution for a linear preference is equal to plus infinity. 

99 The term “quality-adjusted unit value price index” was introduced by 
Dalén (2001). Its properties were further studied by de Haan (2004b, 2010) 
and de Haan and Krsinich (2018). von Auer (2014) considered a wide vari-
ety of choices for the weight vector α (including α = p1 and α = pt), and he 
looked at the axiomatic properties of the resulting indices.
100 Some methods for estimating αn are suggested in Diewert and Feenstra 
(2017) and Diewert (2022c).

Empirical estimates for the elasticity of substitution are far 
less than plus infinity.101

We will start out by comparing QUVα
t to the correspond-

ing Laspeyres, Paasche, and Fisher period t quantity indi-
ces, QL

t, QP
t and QF

t. The algebra in this section follows the 
algebra in the preceding section. Thus, the counterparts to 
the identities (87) in the previous section are the following 
identities for t = 1, . . .,T:

Σn=1
N [αnpUVα

t – ptn]qtn = Σn=1
N [αn(pt·qt/α·qt) – ptn]qtn using 

definitions (104)
 = (pt·qt/α·qt)α·qt – pt·qt = 0. (106)

The difference between the quality-adjusted unit value 
quantity index for period t, QUVα

t, and the Laspeyres quan-
tity index for period t, QL

t, can be written as follows for t = 
1, . . .,T:

QUVα
t – QL

t = [α·qt/α·q1] – [p1·qt/p1·q1] using (83) and (103)
= Σn=1

N [(αnqtn/α·q1) – (p1nqtn/p
1·q1)]

= Σn=1
N [(αn/α·q1) – (p1n/p

1·q1)]qtn

= Σn=1
N [(αnp

1·q1/α·q1) – p1n][qtn/p
1·q1]

= Σn=1
N [αnpUVα

1 – p1n][qtn/p
1·q1] using (104) for t = 1

= Σn=1
N [αnpUVα

1 – p1n][qtn – q1nQUVα
t]/p1·q1  

using (106) for t = 1

= QUVα
t Σn=1

N αn[pUVα
1 – (p1n/αn)][(qtn/QUVα

t) – q1n]/p
1·q1

 = QUVα
t εLa

t, (107)

where the period t error term εLa
t for t = 1, . . .,T is defined as

εLα
t ≡ Σn=1

N αn[pUVα
1 – (p1n/αn)][(qtn/QUVα

t)  
 – q1n]/p

1·q1.102 (108)

Assuming that αn > 0 for n = 1, . . .,N, the vector of period t 
quality-adjusted prices pα

t for t = 1, . . .,T is defined as follows:

 pα
t ≡ [pt1α, . . ., ptNα] ≡ [pt1/α1,pt2/α2, . . .,ptN/αN]. (109)

It can be seen that pUVα
1 – (p1n/αn) is the difference between 

the period 1 unit value price level, pUVα
1, and the period 1 

101 Quality-adjusted unit value price and quantity levels are also consis-
tent with Leontief (no substitution) preferences. In this case, the dual unit 
cost function is equal to c(p) ≡ Σn=1

N βnpn, where βn are the positive pref-
erence parameters. The period t quantity vector that is consistent with 
these preferences is qt = utβ for t = 1, . . .,T, where β ≡ [β1, . . .,βN] and ut is 
the period t utility level. Thus, the quantity vectors qt will vary in strict 
proportion over time. This model of consumer behavior is inconsistent 
with situations where there are new and disappearing products over the T 
periods. Moreover, empirically, quantity vectors do not vary in a propor-
tional manner over time.
102 This error term is homogeneous of degree 0 in the components of p1, q1, 
and qt. Hence, it is invariant to proportional changes in the components 
of these vectors. Definition (108) is only valid if all αn > 0. If this is not 
the case, redefine εLα

t as Σn=1
N [αnpUVa

1–p1n][qtn–q1nQUVα
t]/p1·q1 and with this 

change, the decomposition defined by the last line of (107) will continue 
to hold. It should be noted that εLα

t does not have an interpretation as a 
covariance between a vector of price differences and a vector of quantity 
differences.
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quality-adjusted price for product n, p1n/αn. Define the 
period t quality-adjusted quantity share for product n (using 
the vector a of quality adjustment factors) as follows for t = 
1, . . .,T and n = 1, . . .,N:

 Stnα ≡ αnqtn/α·qt. (110)

The vector of period t quality-adjusted real product shares 
(using the vector α of quality adjustment factors) is defined 
as Sa

t ≡ [St1α,St2α, . . .,StNα] for t = 1, . . .,T. It can be seen that 
these vectors are share vectors in that their components sum 
to 1; that is, we have for t = 1, . . .,T:

 1N·Sα
t = 1. (111)

Using the above definitions, we can show that the period t 
quality-adjusted unit value price level, pUVα

t, defined by (104) 
is equal to a share-weighted average of the period t quality-
adjusted prices ptnα = ptn/αn defined by (109); that is, for t = 
1, . . .,T, we have the following equations:

pUVα
t = pt·qt/α·qt using (104)

= Σn=1
N (ptn/αn)(αnqtn)/α·qt

= Σn=1
N Stnαptna using (109) and (110)

 = Sα
t·pα

t. (112)

Now we are in a position to determine the likely sign of εLa
t 

defined by (108). If the products are substitutable, it is likely 
that εLα

t is negative, since if p1n is unusually low, then it is 
likely that the quality-adjusted price for product n, p1n/αn, 
is below the weighted average of the quality-adjusted prices 
for period 1, which is pUVα

1 = Sα
1·pα

1 using (112) for t = 1. 
Thus, we expect that pUVa

1 – (p1n/αn) > 0. If p1n is unusually 
low, then we would expect that the corresponding q1n is 
unusually high, and thus it is likely that q1n is greater than 
qtn/QUVα

t, and so qtn/QUVα
t – q1n < 0. Thus, the sum of the N 

terms on the right-hand side of (108) is likely to be negative. 
Our expectation103 is that the error term eLα

t < 0, and hence 
QUVα

t < QL
t for t ≥ 2.

As usual, there are three special cases of (108) that will 
imply that QUVα

t = QL
t: (i) pα

1 = λ11N so that all period 1 
quality-adjusted prices are equal;104 (ii) qt = ltq 1 for t = 
2,3, . . .,T so that quantities vary in strict proportion over 
time; (iii) the following sum of price differences times 
quantity differences equals 0; that is, Σn=1

N [αn pUVα
1 – p1n]

[(qtn/QUVα
t) – q1n] = 0.

If we divide both sides of equation t in equations (108) 
by QUVα

t, we obtain the following system of identities for t 
= 1, . . .,T:

 QL
t/QUVα

t = 1 – εLa
t, (113)

103 As in the previous section, this expectation is not held with great con-
viction if the period t quantities have a large variance.
104 The condition pα

1 = λ11N is equivalent to p1 = λ1α. Thus, if we choose 
a to be proportional to the period 1 price vector p1, then QUVα

t = QL
t and 

PUVα
t = PP

t, the fixed-base Paasche price index. Thus, with this choice of 
a, the quality-adjusted unit value index will usually have a downward 
bias relative to a superlative index. This result requires that p1 be strictly 
positive.

where we expect εLα
t to be a small negative number if the 

products are substitutes.105

The difference between the reciprocal of the quality-
adjusted unit value quantity index for period t, [QUVα

t]–1, and 
the reciprocal of the Paasche quantity index for period t, 
[QP

t]–1, can be written as follows for t = 1, . . .,T:

[QUVα
t]–1 – [QP

t]–1 = [α·q1/α·qt] – [pt·q1/pt·qt]  
using (84) and (103)

= Σn=1
N [(αnq1n/α·qt) – (ptnq1n/p

t·qt)]

= Σn=1
N [(αn/α·qt) – (ptn/p

t·qt)]q1n

= Σn=1
N [(αnp

t·qt/α·qt) – ptn][q1n/p
t·qt]

= Σn=1
N [αnpUVα

t – ptn][q1n/p
t·qt] using (104)

= Σn=1
N [αnpUVα

t – ptn][q1n – (qtn/QUVα
t)]/pt·qt using (106)

= [QUVα
t]–1 Σn=1

N αn[pUVα
t – (ptn/αn)][(q1nQUVα

t) – qtn]/p
t·qt

 = [QUVα
t]–1 εPa

t, (114)

where the period t error term εPa
t for t = 1, . . .,T is defined as

εPα
t ≡ Σn=1

N αn[pUVα
t – (ptn/αn)][(q1nQUVα

t)  
 – qtn]/p

t·qt.106 (115)

If the products are substitutable, it is likely that ePα
t is neg-

ative, since if ptn is unusually low, then it is likely that the 
period t quality-adjusted price for product n, ptn/αn, is below 
the weighted average of the quality-adjusted prices for 
period t, which is pUVα

t = Sα
t·pα

t using (112). Thus, we expect 
that pUVa

t – (ptn/αn) > 0. If ptn is unusually low, then we would 
expect that the corresponding qtn is unusually high, and thus 
it is likely that qtn is greater than q1nQUVα

t, and so q1nQUVα
t – qtn 

< 0. Thus, the sum of the N terms on the right-hand side of 
(115) is likely to be negative. Thus, our expectation is that 
the error term εPa

t < 0 and hence [QUVα
t]–1 < [QP

t]–1 for t ≥ 2. 
Assuming that εLa

t is also negative, we have QP
t < QUVα

t < QL
t 

for t = 2, . . .,T as inequalities that are likely to hold.
As usual, there are three special cases of (114) that will 

imply that QUVα
t = QP

t: (i) pα
t = λt1N so that all period t 

quality-adjusted prices are equal; (ii) qt = λtq
1 for t = 2, 

3, .  .  .,T so that quantities vary in strict proportion over 
time; (iii) the following sum of price differences times 
quantity differences equals zero: that is, Σn=1

N [αnpUVa
t – 

ptn][(q1nQUVα
t) – qtn] = 0.

If we divide both sides of equation t in equations (114) 
by [QUVα

t]–1, we obtain the following system of identities for 
t = 1, . . .,T:

 QP
t/QUVα

t = [1 – εPa
t]–1, (116)

105 If q1n = 0 and the period 1 quality-adjusted reservation price p1n/αn is 
greater than the period 1 unit value price pUVα

1, then εLa
t defined by (108) 

could be a large negative number.
106 This error term is homogeneous of degree 0 in the components of pt, q1, 
and qt. Hence, it is invariant to proportional changes in the components 
of these vectors. Definition (115) is only valid if all an > 0. If this is not 
the case, then redefine εPa

t as Σn=1
N [αnpUVa

t – ptn][(q1nQUVα
t) – qtn]/p

t·qt, and 
with this change, the decomposition defined by the last line of (114) will 
continue to hold..
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where we expect εPα
t to be a small negative number if the 

products are substitutes.
Equations (113) and (116) develop exact relationships for 

the quality-adjusted unit value quantity index QUVα
t with the 

corresponding fixed-base Laspeyres and Paasche quantity 
indices, QL

t and QP
t. Taking the square root of the product 

of these two sets of equations leads to the following exact 
relationships between the fixed-base Fisher quantity index, 
QF

t, and its quality-adjusted unit value counterpart period t 
quantity index, QUVα

t, for t = 1, . . .,T:

 QF
t = QUVa

t{(1 – εLα
t)/( 1 – εPa

t)}1/2, (117) 

where εLα
t and εPa

t are defined by (108) and (115). If there 
are no strong (divergent) trends in prices and quantities, 
then it is likely that εLα

t is approximately equal to ePα
t, 

and hence under these conditions, it is likely that QUVα
t ≈ 

QF
t; that is, the quality-adjusted unit value quantity index 

will provide an adequate approximation to the fixed-
base Fisher price index under these conditions. However, 
if there are divergent trends in prices and quantities (in 
opposite directions), then it is likely that ePα

t will be more 
negative than εLα

t, and hence it is likely that QF
t < QUVα

t 
for t = 2, . . .,T; that is, with divergent trends in prices and 
quantities, the quality-adjusted unit value quantity index is 
likely to have an upward bias relative to its Fisher quantity 
index counterparts.107

Using equations (105), we have the following counterparts 
to equations (94) for t = 1, . . .,T:

 pt·qt/p1·q1 = PUVα
tQUVα

t = PP
tQL

t = PL
tQP

t. (118)

Equations (113), (116), and (118) imply the following identi-
ties for t = 1, . . .,T:

 PUVα
t/PP

t = QL
t/QUVα

t = 1 – εLa
t; (119)

 PUVα
t/PL

t = QP
t/QUVα

t = [1 – εPa
t]–1. (120)

We expect that εL
t and εPa

t will be predominantly negative if 
the products are highly substitutable, and thus in this case, 
the quality-adjusted unit value indices PUVα

t should satisfy 
the inequalities PP

t < PUVα
t < PL

t for t = 2,3, . . .,T.
Taking the square root of the product of equations (119) 

and (120) leads to the following exact relationships between 
the fixed-base Fisher price index, PF

t, and its quality-
adjusted unit value counterpart period t index, PUVα

t, for 
t = 1, . . .,T:

 PUVα
t = PF

t{(1 – εLα
t)/( 1 – εPa

t)}1/2, (121)

where εLα
t and εPa

t are defined by (108) and (115). If there 
are no strong (divergent) trends in prices and quantities, 
then it is likely that εLα

t is approximately equal to ePα
t, and 

hence under these conditions, it is likely that PUVα
t ≈ PF

t; that 
is, the quality-adjusted unit value price index will provide 
an adequate approximation to the fixed-base Fisher price 

107 As was the case in the previous section, if there are missing products 
in period 1, the expected inequality QF

t < QUVα
t may be reversed because 

εLα
t defined by (108) may become significantly negative if some q1n equal 0, 

while their corresponding reservation prices p1n are positive.

index under these conditions. However, if there are diver-
gent trends in prices and quantities, then we expect εPα

t to 
be more negative than eLα

t, and hence there is an expecta-
tion that PUVα

t < PF
t for t = 2, . . .,T; that is, we expect that 

normally PUVα
t will have a downward bias relative to PF

t.108 
However, if there are missing products in period 1, then the 
bias of PUVα

t relative to PF
t is uncertain.

11. Relationships between Lowe 
and Fisher Indices
We now consider how a Lowe (1823) price index is related to 
a fixed-base Fisher price index. The framework that we con-
sider is similar to the framework developed in Section 6 for 
the annual share-weighted Jevons index, PJα

t. In the present 
section, instead of using the average sales shares for the first 
year in the sample as weights for a weighted Jevons index, we 
use annual average quantities sold (or purchased) in the first 
year as a vector of quantity weights for subsequent periods. 
Define the annual average quantity vector q* ≡ [q1

*, . . .,qN
*] for 

the first T* periods in the sample that make up a year, q*, as 
follows:109

 q* ≡ (1/T*)Σt=1
T* qt. (122)

As was the case in Section 6, the reference year for the 
weights precedes the reference month for the product prices. 
Define the period t Lowe (1823) price level and price index, 
pLo

t and PLo
t by (123) and (124), respectively, for t = T* + 1,T* 

+ 2, . . .,T:

 pLo
t ≡ pt·α; (123)

 PLo
t ≡ pLo

t/pLo
T* + 1 = pt·α/pT* + 1·α, (124)

where the constant price weights vector α is the annual aver-
age weights vector q* defined by (122); that is, we have

 α ≡ q*. (125)

The period t Lowe quantity level, qLo
t, and the corresponding 

period t Lowe quantity index, QLo
t, for t = T* + 1,T* + 2, . . .,T 

are defined as follows:

108 Recall that the weighted unit value quantity level, qUVα
t is defined as the 

linear function of the period t quantity data, α·qt. If T ≥ 3 and the price 
and quantity data are consistent with purchasers maximizing a utility 
function that generates data that is exact for the Fisher price index QF

t, 
then QUVα

t will tend to be greater than QF
t (and hence PUVα

t will tend to 
be less than PF

t) for t ≥ 2. See Marris (1984, 52), Diewert (1999b, 49), and 
Diewert and Fox (2021) on this point.
109 If product n was not available in the first year of the sample, then the 
nth component of q*, qn

*, will equal 0 and hence the nth component of the 
weight vector α defined by (125) will also equal 0. If product n was also 
not available in periods t ≥ T* + 1, then looking at definitions (123) and 
(124), it can be seen that PLO

t will not depend on the reservation prices 
pnt for these subsequent periods where product n is not available. Thus, 
under these circumstances, the Lowe index cannot be consistent with 
the (Hicksian) economic approach to index number theory since Konüs 
(1924) true cost of living price indices will depend on the reservation 
prices. However, if the products in the elementary aggregate are indeed 
highly substitutable, then the assumption of a linear utility function will 
provide an adequate approximation to the “truth” and the estimation of 
reservation prices becomes unimportant.
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qLo
t ≡ pt·qt/pLo

t = pt·qt/pt·α = Σn=1
N (ptnαn/p

t·α) 
 (qtn/αn);

110 (126)
 QLo

t ≡ qLo
t/qLo

T* + 1 = [pt·qt/pT* + 1·qT* + 1]/PLo
t. (127)

It can be seen that the Lowe price index defined by (124) is 
equal to a weighted Dutot price index; see definition (14). It is 
also structurally identical to the quality-adjusted unit value 
quantity index QUVα

t defined in the previous section, except 
that the role of prices and quantities has been reversed. 
Thus, the identity (107) in the previous section will be valid if 
we replace QUVα

t by PLo
t, replace QL

t by PL
t, and interchange 

prices and quantities on the right-hand side of (107).111 The 
resulting identities for t = T* + 1,T* + 2, . . .,T are as follows:

PLo
t – PL

t = Σn=1
N [(αn ptn/α·pT* + 1) – (ptnqT* + 1,n/p

T* + 1·qT* + 1)]
= Σn=1

N [(αn/α·pT* + 1) – (qT* + 1,n/p
T* + 1·qT* + 1)]ptn

= Σn=1
N [(αnp

T* + 1·qT* + 1/α·pT* + 1) – qT* + 1,n][ptn/p
T* + 1·qT* + 1]

= Σn=1
N [αnqLo

T* + 1 – qT* + 1,n][ptn/p
T* + 1·qT* + 1] using (126) for  

t = T* + 1

= Σn=1
N [αnqLo

T* + 1 – qT* + 1,n][ptn – pT* + 1,nPLo
t]/pT* + 1·qT* + 1 112

= PLo
t Σn=1

N [αnqLo
T* + 1 – qT* + 1,n][(ptn/PLo

t) – pT* + 1,n]/p
T* + 1·qT* + 1

= PLo
t Σn=1

N αn[qLo
T* + 1 – (qT* + 1,n/αn)][(ptn/PLo

t) – pT* + 1,n]/p
T* + 

1·qT* + 1

 = PLo
t εLα

t, (128)

where the period t error term εLa
t is now defined for t = T* + 

1, . . .,T as follows:

εLα
t ≡ Σn=1

N αn[qLo
T* + 1 – (qT* + 1,n/αn)][(ptn/PLo

t)  
 – pT* + 1,n]/p

T* + 1·qT* + 1.113 (129)

If the products are substitutable, it is likely that eLα
t is nega-

tive, since if pT* + 1,n is unusually low, then it is likely that (ptn/
PLo

t) – pT* + 1,n > 0 and that qT* + 1,n/αn is unusually large and 
hence is greater than qLo

T* + 1, which is a weighted average of 
the period T* + 1 quantity ratios, qT* + 1,1/α1, qT* + 1,2/α2, . . ., qT* 

+ 1,N/αN using definition (126) for t = T* + 1. Thus, the sum 
of the N terms on the right-hand side of (129) is likely to be 
negative. Thus, our expectation114 is that the error term eLα

t 
< 0 and hence PLo

t < PL
t for t > T* + 1.

110 This last inequality is only valid if all αn > 0. It can be seen that the 
Lowe quantity level for period t, qLo

t, is a share-weighted sum of the 
period t quality-adjusted quantities, qtn/αn.111 We also replace period 1 by period T* + 1.
112 This step follows from the following counterpart to (106): Σn=1

N [αnqLo
T* 

+ 1 – qT* + 1,n]pT* + 1,n = 0.
113 Note that this error term is homogeneous of degree 0 in the compo-
nents of pT* + 1, qT* + 1, and pt. Hence, it is invariant to proportional changes 
in the components of these vectors. Definition (129) is valid only if all αn 
> 0. If this is not the case, redefine εLα

t as Σn=1
N [αnqLo

T* + 1 – qT* + 1,n][(ptn/PLo
t) 

– pT* + 1,n]/p
T* + 1·qT* + 1, and with this change, the decomposition defined by 

the last line of (128) will continue to hold.
114 This expectation is not held with great conviction if the period t prices 
have a large variance.

αn can be interpreted as inverse quality indicators of the 
utility provided by one unit of the nth product. Suppose 
purchasers of the N commodities have Leontief preferences 
with the utility function f(q1,q2,  .  .  .,qN) ≡ minn {qn/αn : n = 
1,2,  .  .  .,N}. Then, the dual unit cost function that corre-
sponds to this functional form is c(p1,p2, . . .,pN) ≡ Σn=1

N pnαn 
= p·α. If we evaluate the unit cost function at the prices 
of period t, pt, we obtain the Lowe price level for period 
t defined by (123); that is, pLo

t ≡ pt·α. Thus, the bigger αn 
is, the more units of qn it will take for purchasers of the 
N commodities to attain one unit of utility. Thus, αn can 
be interpreted as inverse indicators of the relative utility of 
each product.

As usual, there are three special cases of (128) that will 
imply that PLo

t = PL
t: (i) qT* + 1 = lq* for some λ > 0 so that the 

period T* + 1 quantity vector qT* + 1 is proportional to the 
annual average quantity vector q* for the base year; (ii) pt = 
λtp

T* + 1 for some λt > 0 and t = T* + 1, . . .,T so that prices 
vary in strict proportion over time; and (iii) the sum of terms 
Σn=1

N [αnqLo
T* + 1 – qT* + 1,n][(ptn/PLo

t) – pT* + 1,n] = 0.
If we divide both sides of equation t in equations (128) by 

PLo
t, we obtain the following system of identities for t = T* 

+ 1, . . .,T:

 PL
t/PLo

t = 1 – εLa
t, (130)

where we expect εLα
t to be a small negative number.

We turn now to developing a relationship between the 
Lowe and Paasche price indices. The difference between the 
reciprocal of the Lowe price index for period t, [PLo

t]–1, and 
the reciprocal of the Paasche price index for period t, [PP

t]–1, 
can be written as follows for t = T* + 1, . . .,T:

[PLo
t]–1 – [PP

t]–1 = [α·pT* + 1/α·pt] – [qt·pT* + 1/qt·pt]
= Σn=1

N [(αnpT* + 1,n/α·pt) – (qtnpT* + 1,n/p
t·qt)]

= Σn=1
N [(αn/α·pt) – (qtn/p

t·qt)]pT* + 1,n

= Σn=1
N [(αnp

t·qt/α·pt) – qtn][pT* + 1,n/p
t·qt]

= Σn=1
N [αnqLo

t – qtn][pT* + 1,n/p
t·qt] using (126)

= Σn=1
N [αnqLo

t – qtn][pT* + 1,n – (ptn/PLo
t)]/pt·qt115

= [PLo
t]–1 Σn=1

N [αnqLo
t – qtn][pT* + 1,nPLo

t – ptn]/p
t·qt

= [PLo
t]–1 Σn=1

N αn[qLo
t – (qtn/αn)][pT* + 1,nPLo

t – ptn]/p
t·qt  

if all αn > 0
 = [PLo

t]–1 εPa
t, (131)

where the period t error term εPa
t for t = T* + 1,  .  .  .,T is 

defined as

εPα
t ≡ Σn=1

N αn[qLo
t – (qtn/αn)] 

 [pT* + 1,nPLo
t – ptn]/p

t·qt.116 (132)

115 This step follows from the following counterpart to (106): Σn=1
N 

[αnqLo
t – qtn]ptn = 0.

116 This error term is homogeneous of degree 0 in the components of qt, 
pT* + 1, and pt. Hence, it is invariant to proportional changes in the com-
ponents of these vectors. Definition (132) is only valid if all αn > 0. If this 



171

THE CHAIN DRIFT PROBLEM AND MULTILATERAL ALTERNATIVE APPROACH FISHER INDICES

If the products are substitutable, it is likely that ePα
t is nega-

tive, since if ptn is unusually low, then it is likely that it will be 
less than the inflation-adjusted nth component of the period 
T* + 1 price, pT* + 1,nPLO

t. If ptn is unusually low, then it is also 
likely that the period t quality-adjusted quantity for prod-
uct n, qtn/αn, is above the weighted average of the quality-
adjusted quantities for period t, which is qLo

t. Thus, the sum 
of the N terms on the right-hand side of (132) is likely to be 
negative. Moreover, our expectation is that the error term 
εPα

t < 0 and hence [PLo
t]–1 < [PP

t]–1 for T* + 2, . . .,T. Assuming 
that εLa

t is also negative, we have PP
t < PLo

t < PL
t for t = T* + 

2,T* + 3, . . .,T as inequalities that are likely to hold.
As usual, there are three special cases of (131) that will 

imply that PLo
t = PP

t: (i) qt = λq* for some λ > 0 so that the 
period t quantity vector qt is proportional to the annual 
average quantity vector q* for the reference year prior to the 
reference month; (ii) pt = λt p

T* + 1 for t = T* + 2,T* + 3, . . .,T so 
that prices vary in strict proportion over time; and (iii) the 
sum of terms Σn=1

N [αnqLo
t – qtn][pT* + 1,nPLo

t – ptn] = 0.
If we divide both sides of equation t in equations (131) by 

[PLo
t]–1, we obtain the following system of identities for t = 

T* + 1, . . .,T:

 PP
t/PLo

t = [1 – εPa
t]–1, (133)

where we expect εPα
t to be a negative number.

Equations (130) and (133) develop exact relationships for 
the Lowe price index PLo

t with the corresponding fixed-base 
Laspeyres and Paasche price indices, PL

t and PP
t. Taking 

the square root of the product of these two sets of equations 
leads to the following exact relationships between the fixed-
base Fisher price index, PF

t, and the corresponding Lowe 
period t price index, PLo

t, for t = T* + 1, . . .,T:

 PF
t = PLo

t{(1 – εLα
t)/( 1 – εPa

t)}1/2, (134)

where εLα
t and εPa

t are defined by (129) and (132). If there are 
no strong (divergent) trends in prices and quantities, then it 
is likely that εLα

t is approximately equal to ePα
t, and hence 

under these conditions, it is likely that PLo
t ≈ PF

t; that is, the 
Lowe price index will provide an adequate approximation 
to the fixed-base Fisher price index under these conditions. 
However, if there are divergent trends in prices and quanti-
ties (in diverging directions), then it is likely that ePα

t will be 
more negative than εLα

t, and hence it is likely that PF
t < PLo

t 
for t = T* + 2, . . .,T; that is, with divergent trends in prices and 
quantities, the Lowe price index is likely to have an upward 
bias relative to its Fisher Price index counterpart. This is 
an intuitively plausible result since the Lowe index is a fixed 
basket type index and hence will be subject to some upward 
substitution bias relative to the Fisher index, which is able to 
control the substitution bias.

In the following section, we show that the GK multi-
lateral indices can be regarded as quality-adjusted unit 
value price indices, and hence the analysis in Section 10 on 

is not the case, redefine εPa
t as Σn=1

N [αnqLo
t – qtn][pT* + 1,nPLo

t – ptn]/p
t·qt, and 

with this change, the decomposition defined by the last line of (131) will 
continue to hold.

quality-adjusted unit value price indices can be applied to 
GK multilateral indices.

12. Geary–Khamis Multilateral 
Indices
The GK multilateral method was introduced by Geary 
(1958) in the context of making international comparisons 
of prices. Khamis (1970) showed that the equations that 
define the method have a positive solution under certain 
conditions. A modification of this method has been adapted 
to the time series context and is being used to construct 
some components of the Dutch CPI; see Chessa (2016). The 
GK index was the multilateral index chosen by the Dutch to 
avoid the chain drift problem for the segments of their CPI 
that use scanner data.

The GK system of equations for T time periods involves 
T price levels GK

1,  .  .  .,pGK
T and N quality adjustment factors 

α1,  .  .  .,αN.117 Let pt and qt denote the N-dimensional price 
and quantity vectors for period t (with components ptn and 
qtn as usual). Define the total consumption (or sales) vector 
q over the entire window of observations as the following 
simple sum of the period-by-period consumption vectors:

 q ≡ Σt=1
T qt, (135)

where q ≡ [q1,q2,  .  .  .,qN]. The equations that determine the 
GK price levels pGK

1, . . .,pGK
T and quality adjustment factors 

α1, . . .,αN (up to a scalar multiple) are as follows:

 αn = Σt=1
T [qtn/qn][ptn/pGK

t]; n = 1, . . .,N; (136)
pGK

t = pt·qt/α·qt = Σn=1
N [αnqtn/α·qt][ptn/αn];  

 t = 1, . . .,T, (137)

where α ≡ [α1,  .  .  .,αN] is the vector of GK quality adjust-
ment factors. The sample share of period t’s purchases of 
commodity n in total sales of commodity n over all T peri-
ods can be defined as Stn ≡ qtn/qn for n = 1,  .  .  .,N and t = 
1, . . .,T. Thus, an ≡ Σt=1

T Stn[ptn/pGK
t] is a (real) share-weighted 

average of the period t inflation-adjusted prices ptn/pGK
t for 

product n over all T periods. The period t quality-adjusted 
sum of quantities sold is defined as the period t GK quantity 
level, qGK

t ≡ α·qt = Sn=1
N αnqtn.

118 This period t quantity level is 
divided into the value of period t sales, pt·qt = Σn=1

N ptnqtn, in 
order to obtain the period t GK price level, pGK

t. Thus, the 
GK price level for period t can be interpreted as a quality-
adjusted unit value index, where αn act as the quality adjust-
ment factors.

Note that the GK price level, pGK
t, defined by (137) does 

not depend on the estimated reservation prices; that is, the 
definition of pGK

t zeros out any reservation prices that are 
applied to missing products, and thus PGK

t ≡ pGK
t/pGK

1 does 

117 In the international context, αn are interpreted as international com-
modity reference prices.
118 Khamis (1972, 101) also derived this equation in the time series context.
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not depend on reservation prices.119 A related property of 
the GK price levels is the following one: If a product n* is 
only available in a single period t*, then the GK price levels 
pGK

t do not depend on pn*t* or qn*t*.
120

It can be seen that if a solution to equations (136) and 
(137) exists, then if all of the period price levels pGK

t are 
multiplied by a positive scalar λ, say, and all of the qual-
ity adjustment factors αn are divided by the same λ, then 
another solution to (136) and (137) is obtained. Hence, αn 
and pGK

t are only determined up to a scalar multiple, and 
an additional normalization such as pGK

1 = 1 or α1 = 1 is 
required to determine a unique solution to the system of 
equations defined by (136) and (137).121 It can also be shown 
that only N + T – 1 of the N + T equations in (136) and (137) 
are independent.

Using the normalization pGK
1 = 1, it is straightforward 

to show that the GK price levels, pGK
t, are invariant to 

changes in the units of measurement. Suppose we have a 
solution pGK

t and αn for t = 1, . . .,T and n = 1, . . .,N with 
pGK

1 ≡ 1. Let λn > 0 for n = 1, .  .  .,N. Use these λn to mea-
sure prices and quantities in new units of measurement; 
that is, define ptn

* ≡ λnptn and qtn
* ≡ (λn)

–1qtn for t = 1, . . .,T 
and n = 1, . . .,N. Now substitute these transformed prices 
and quantities into equations (135)–(137). It is straightfor-
ward to show that the initial solution GK price levels, pGK

t, 
along with new αn

* ≡ λnαn also satisfy the new GK equa-
tions (135)–(137).

A traditional method for obtaining a solution to (136) and 
(137) is to iterate between these equations. Thus, set a = 1N, 
a vector of ones, and use equations (137) to obtain an ini-
tial sequence for the pGK

t. Substitute these pGK
t estimates into 

equation (136) and obtain αn estimates. Substitute these αn 
estimates into equation (137) and obtain a new sequence of 
pGK

t estimates. Continue iterating between the two systems 
until convergence is achieved.

An alternative method is more efficient. Following Diew-
ert (1999b, 26),122 substitute equations (137) into equations 
(136), and after some simplification, obtain the following 
system of equations that will determine the components of 
the α vector:

 [IN – C]α = 0N, (138)

where IN is the N by N identity matrix, 0N is a vector of zeros 
of dimension N, and the C matrix is defined as follows:

 C ≡ q−1 Σt=1
T stqtT, (139)

119 In equations (136) and (137), each price ptn always appears with the 
multiplicative factor qtn. Thus, if ptn is an imputed price, it will always be 
multiplied by qtn = 0, and thus any imputed price will have no impact on 
αn and pGK

t. Thus, this method fails Test 9 in Section 21.
120 Let product n* be available only in period t*. Using (136) for n = n*, we 
have (i) αn* = pt*n*/pGK

t*. Equations (137) can be rewritten as follows: (ii) 
pGK

t α·qt = pt·qt ; t = 1, . . .,T. Note that for t ≠ t*, these equations do not 
depend directly on αn*, pt*n* or qt*n*. For period t = t*, equation t* in (137) 
can be written as (iii) pGK

t*(Σn¹n* anqt*n + αn*qt*n*) = (Σn≠n* pt*nqt*n + pt*n*qt*n*). 
Substitute (i) into (iii) and after some simplification, we find that pGK

t* 
= Σn≠n* pt*nqt*n/Σn¹n* anqt*n. This proof was achieved by Claude Lamboray. 
Thus, this method fails Test 8 in Section 21.
121 See Diewert and Fox (2021) for various solution methods.
122 See also Diewert and Fox (2021) for additional discussion on this solu-
tion method.

where q  is an N by N diagonal matrix with the elements of 
the total window purchase vector q running down the main 
diagonal, and q−1 denotes the inverse of this matrix, st is the 
period t expenditure share column vector, qt is the column 
vector of quantities purchased during period t, and qn is the 
nth element of the sample total q defined by (135).

The matrix IN – C is singular, which implies that the N 
equations in (138) are not all independent. In particular, if 
the first N–1 equations in (138) are satisfied, then the last 
equation in (138) will also be satisfied. It can also be seen 
that the N equations in (138) are homogeneous of degree 
one in the components of the vector α. Thus, to obtain a 
unique b solution to (138), set αN equal to 1, drop the last 
equation in (138), and solve the remaining N–1 equations for 
α1,α2, . . .,αN-1. Once the αn are known, equations (137) can 
be used to determine the GK price levels, pGK

t = pt·qt/α·qt for 
t = 1, . . .,T.

Using equations (137), it can be seen that the GK price 
index for period t (relative to period 1) is equal to PGK

t ≡ 
pGK

t/pGK
1 = [pt·qt/α·qt]/[p1·q1/α·q1] for t = 1,  .  .  .,T, and thus 

these indices are quality-adjusted unit value price indices 
with a particular choice for the vector of quality adjust-
ment factors α. Thus, these indices lead to corresponding 
additive quantity levels qGK

t that correspond to the linear 
utility function, f(q) ≡ α·q.123 As we saw in Section 10, this 
type of index can approximate the corresponding fixed-
base Fisher price index provided that there are no system-
atic divergent trends in prices and quantities. However, 
if there are diverging trends in prices and quantities (in 
opposite directions), then we expect the GK price indices 
to be subject to some substitution bias with the expecta-
tion that the GK price index for period t ≥ 2 be somewhat 
below the corresponding Fisher fixed-base price index. 
Thus, we expect GK and quality-adjusted unit value price 
indices to normally have a downward bias relative to their 
Fisher and Törnqvist counterparts, provided that there 
are no missing products, the products are highly substi-
tutable, and there are divergent trends in prices and quan-
tities. However, if there are missing products in period 1, 
then it is quite possible for the GK price indices to have 
an upward bias relative to their Fisher fixed-base counter-
parts, which, in principle, use reservation prices for the 
missing products.124

In the following five sections, we will study in some detail 
another popular method for making price level comparisons 
over multiple periods: the weighted TPD multilateral indices. 
The general case with missing observations will be studied in 

123 Using the economic approach to index number theory, it can be seen 
that the GK price indices will be exactly the correct price indices to use 
if purchasers maximize utility using a common linear utility function. 
Diewert (1999b, 27) and Diewert and Fox (2021) show that the GK price 
indices will also be exactly correct if purchasers maximize a Leontief 
no substitution utility function. These extreme cases are empirically 
unlikely. As was noted earlier in Section 10, Leontief preferences are not 
consistent with new and disappearing products.
124 New products appear with some degree of regularity, and so it is 
likely that there will be missing products in period 1, and this may 
reverse the “normal” inequality, PGK

t < PF
t, as was the case for Diewert’s 

(2018) scanner data set. This data set is used in the Annex to this chap-
ter. The GK index, like all indices based on quality-adjusted unit val-
ues, zeros out the effects of reservation prices for the missing products, 
whereas Fisher indices can include the effects of reservation prices.
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Section 17. It proves to be useful to consider simpler special 
cases of the method in Sections 13–16.

13. Time Product Dummy 
Regressions: The Case of 
No Missing Observations
In this section, it is assumed that price and quantity data 
for N products are available for T periods. As usual, let pt ≡ 
[pt1, . . .,ptN] and qt ≡ [qt1, . . .,qtN] denote the price and quan-
tity vectors for time periods t = 1, . . .,T. In this section, it is 
assumed that there are no missing prices or quantities, so 
that all NT prices and quantities are positive. We assume 
initially that purchasers of the N products maximize the lin-
ear utility function f(q) defined as follows:

 f(q) = f(q1,q2, . . .,qN) ≡ Σn=1
N αnqn = α·q, (140)

where αn are the positive parameters, which can be inter-
preted as quality adjustment parameters. Under the assump-
tion of maximizing behavior on the part of purchasers of 
the N commodities, Wold’s Identity125 applied to a linearly 
homogeneous utility function tells us that the purchasers’ 
system of inverse demand functions should satisfy the follow-
ing equations:

pt = vt∇f(qt)/f(qt); t = 1, . . .,T
= [vt/f(qt)]∇f(qt)

 = Pt∇f(qt), (141)

where vt ≡ pt·qt is period t expenditure on the N commodi-
ties, Pt is the period t aggregate price level defined as vt/f(qt) 
= vt/Qt, and Qt ≡ f(qt) is the corresponding period t aggregate 
quantity level for t = 1, . . .,T.

Since f(q) is defined by (140), ∇f(qt) = α ≡ [α1, . . .,αN] for 
t = 1, . . .,T. By substituting these equations into equations 
(141), we obtain the following equations, which should hold 
exactly under our assumptions:

 ptn = πtαn; n = 1, . . .,N; t = 1, . . .,T, (142)

where we have redefined the period t price levels Pt in equa-
tions (141) as the parameters πt for t = 1, . . .,T.

Note that equation (142) forms the basis for the time 
dummy hedonic regression model, which was developed by 
Court (1939).126

At this point, it is necessary to point out that our con-
sumer theory derivation of equation (142) is not accepted 
by all economists. Rosen (1974), Triplett (1987, 2004), and 
Pakes (2001)127 have argued for a more general approach to 

125 See Section 4 in Diewert (2022a).
126 This was Court’s (1939, 109–11) hedonic suggestion number two. He 
transformed the underlying equations (142) by taking logarithms of both 
sides of these equations (which will be done below). He chose to trans-
form the prices by the log transformation because the resulting regression 
model fit his data on automobiles better. Diewert (2003b) also recom-
mended the log transformation on the grounds that multiplicative errors 
were more plausible than additive errors.
127 “The derivatives of a hedonic price function should not be inter-
preted as either willingness to pay derivatives or cost derivatives; 

the derivation of hedonic regression models that is based 
on supply conditions as well as on demand conditions. The 
present approach is obviously based on consumer demands 
and preferences only. This consumer-oriented approach 
was endorsed by Griliches (1971, 14–15), Muellbauer (1974, 
988), and Diewert (2003a, 2003b).128 Of course, the assump-
tion that purchasers have the same linear utility function 
is quite restrictive but nevertheless, it is useful to imbed 
hedonic regression models in a traditional consumer 
demand setting.

Empirically, equation (142) is unlikely to hold exactly. 
Thus, we assume that the exact model defined by (142) holds 
only to some degree of approximation and so error terms, 
etn, are added to the right-hand sides of equation (142). The 
unknown price level parameters, π ≡ [π1, . . .,πT], and quality 
adjustment parameters, α ≡ [α1, . . .,αN], can be estimated as 
solutions to the following (nonlinear) least squares minimi-
zation problem:

 minα,π {Σn=1
N Σt=1

T [ptn –πtαn]
2}. (143)

Our approach to the specification of the error terms will 
not be very precise. Throughout this chapter, we will obtain 
estimators for the aggregate price levels πt and the quality 
adjustment parameters αn as solutions to least squares mini-
mization problems like those defined by (143) or as solutions 
to weighted least squares minimization problems that will 
be considered in subsequent sections. Our focus will not 
be on the distributional aspects of our estimators; rather, 
our focus will be on the axiomatic or test properties of the 
price levels that are solutions to the various least squares 
minimization problems.129 Basically, the approach taken 
here is a descriptive statistics approach: We consider simple 
models that aggregate price and quantity information for a 
given period over a set of specified commodities into scalar 
measures of aggregate price and quantity that summarize 

rather they are formed from a complex equilibrium process” (Ariel 
Pakes, 2001, 14).
128 Diewert (2003b, 97) justified the consumer demand approach as fol-
lows: “After all, the purpose of the hedonic exercise is to find how 
demanders (and not suppliers) of the product value alternative models 
in a given period. Thus for the present purpose, it is the preferences of 
consumers that should be decisive, and not the technology and market 
power of producers. The situation is similar to ordinary general equilib-
rium theory where an equilibrium price and quantity for each commodity 
is determined by the interaction of consumer preferences and producer’s 
technology sets and market power. However, there is a big branch of 
applied econometrics that ignores this complex interaction and simply 
uses information on the prices that consumers face, the quantities that 
they demand and perhaps demographic information in order to estimate 
systems of consumer demand functions. Then these estimated demand 
functions are used to form estimated consumer utility functions and 
these functions are often used in applied welfare economics. What pro-
ducers are doing is entirely irrelevant to these exercises in applied econo-
metrics with the exception of the prices that they are offering to sell at. In 
other words, we do not need information on producer marginal costs and 
markups in order to estimate consumer preferences: all we need are sell-
ing prices.” Footnote 25 on page 82 of Diewert (2003b) explained how the 
present hedonic model can be derived from Diewert’s (2003a) consumer-
based model by strengthening the assumptions in the 2003a paper.
129 For rigorous econometric approaches to the stochastic approach to 
index number theory, see Rao and Hajargasht (2016) and Gorajek (2018). 
These papers consider many transformations of the fundamental hedonic 
equations (143) and many methods for constructing averages of prices.
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the detailed price and quantity information in a “sensible” 
way.130

The first-order necessary (and sufficient) conditions for 
π ≡ [π1,  .  .  .,πT] and α ≡ [α1,  .  .  .,αN] to solve the minimiza-
tion problem defined by (143) are equivalent to the following  
N + T equations:

αn = Σt=1
T πtptn/Σt=1

T πt
2 n = 1, . . .,N

 = Σt=1
T πt

2 (ptn/πt)/Σt=1
T πt

2; (144)

πt = Σn=1
N αnptn/Σn=1

N αn
2 t = 1, . . .,T

 = Σn=1
N αn

2(ptn/αn)/Σn=1
N αn

2. (145)

Solutions to the two sets of equations can readily be 
obtained by iterating between the two sets of equations. 
Thus, set α(1) = 1N (a vector of ones of dimension N) in equa-
tions (145) and calculate the resulting π(1) = [π1

(1),  .  .  .,pT
(1)]. 

Then substitute π(1) into the right-hand sides of equations 
(144) to calculate α(2) ≡ [α1

(2),  .  .  .,αN
(2)]. This is continued 

until convergence is achieved.
If p* ≡ [π1

*, . . .,πT
*] and α* ≡ [α1

*, . . .,αN
*] is a solution to (144) 

and (145), then λπ* and λ–1α* is also a solution for any λ > 0. 
Thus to obtain a unique solution we impose the normaliza-
tion π1

* = 1. Then, 1,π2
*, . . .,πT

* is the sequence of fixed-base 
aggregate price levels that is generated by the least squares 
minimization problem defined by (143).

If quantity data are available, then aggregate quantity 
levels for the t periods can be obtained as Qt* ≡ α*·qt = Σn=1

N 
αn

*qtn for t = 1, . . .,T. Estimated aggregate price levels can be 
obtained directly from the solution to (143); that is, set Pt* = 
πt

* for t = 1, . . .,T. Alternative price levels can be indirectly 
obtained as Pt** ≡ pt·qt/Qt* = pt·qt/α*·qt for t = 1, . . .,T. If the 
optimized objective function in (143) is 0 (so that all errors 
etn

* ≡ ptn – πt
*αn

* equal 0 for t = 1, . . .,T and n = 1, . . .,N), then 
Pt* will equal Pt** for all t. However, usually nonzero errors 
will occur and so a choice between the two sets of estimators 
must be made.131

From (144), it can be seen that αn
*, the quality adjust-

ment parameter for product n, is a weighted average of the T 
inflation-adjusted prices for product n, the ptn/πt

*, where the 
weight for ptn/πt

* is πt
*2 /Στ=1

T πt
*2. This means that the weight 

for ptn/πt
* will be very high for periods t where general infla-

tion is high, which seems rather arbitrary. From (145), it can 
be seen that πt

*, the period t price level (and fixed-base price 
index), is weighted average of the N quality-adjusted prices 
for period t, the ptn/αn

*, where the weight for ptn/αn
* is αn

*2 /
Σi=1

N αi
*2. It is a positive feature of the method that πt

* is a 
weighted average of the quality-adjusted prices for period t 
but the quadratic nature of the weights is not an attractive 
feature.

In addition to having unattractive weighting proper-
ties, the estimates generated by solving the least squares 

130 Our approach here is broadly similar to Theil’s (1967, 136–37) descrip-
tive statistics approach to index number theory.
131 Usually, the direct estimates for the price levels will be used in 
hedonic regression studies or in applications of the TPD method; that 
is, the Pt* = πt

* estimates will be used. For statistical agencies, an advan-
tage of the direct estimates is that they can be calculated without the 
use of quantity information. However, later in this chapter, we will 
note some advantages of the indirect method if quantity information 
is available.

minimization problem (143) suffer from a fatal flaw: the 
estimates are not invariant to changes in the units of mea-
surement. In order to remedy this defect, we turn to an alter-
native error specification.

Instead of adding approximation errors to the exact 
equations (142), we could append multiplicative approxima-
tion errors. Thus the exact equations become ptn = πtαnetn for  
n = 1, . . .,N and t = 1, . . .,T. By taking logarithms of both 
sides of these equations, we obtain the following system of 
estimating equations:

lnptn = lnπt + lnαn + lnetn; n = 1, . . .,N; t = 1, . . .,T
 = ρt + βn + εtn, (146)

where ρt ≡ lnπt for t = 1, . . .,T and βn ≡ lnαn for n = 1, . . .,N. 
The model defined by (146) is the basic TPD regression 
model with no missing observations.132 Now choose the 
ρt and βn to minimize the sum of squared residuals, Σn=1

N 
Σt=1

T εtn
2. Thus let ρ ≡ [ρ1,  .  .  .,rT] and β ≡ [β1,  .  .  .,bN] be 

a solution to the following least squares minimization 
problem:

 minρ, β {Σn=1
N Σt=1

T [lnptn – ρt – βn]
2}. (147)

The first-order necessary conditions for ρ1, . . .,ρT and β1, . . .,βN 
to solve (147) are given by the following T + N equations:

 Nρt + Σn=1
N βn = Σn=1

N lnptn; t = 1, . . .,T; (148)
 Σt=1

T ρt + Tβn = Σt=1
T lnptn; n = 1, . . .,N. (149)

Replace ρt and βn in equations (148) and (149) by lnπt and 
lnαn, respectively, for t = 1, . . .,T and n = 1, . . .,N. After some 
rearrangement, the resulting equations become

 πt = Πn=1
N (ptn/αn)

1/N; t = 1, . . .,T; (150)
 αn = Πt=1

T (ptn/πt)
1/T; n = 1, . . .,N. (151)

Thus, the period t aggregate price level, πt, is equal to the 
geometric average of the N quality-adjusted prices for 
period t, pt1/α1, . . . , ptN/αN, while the quality adjustment fac-
tor for product n, αn, is equal to the geometric average of the 
T inflation-adjusted prices for product n, p1n/π1, . . . , pTn/πT. 
These estimators look very reasonable (if quantity weights 
are not available).

Solutions to (150) and (151) can readily be obtained by 
iterating between the two sets of equations. Thus set α(1) = 
1N (a vector of ones of dimension N) in equations (150) and 
calculate the resulting π(1) = [π1

(1), . . .,pT
(1)]. Then substitute π(1) 

into the right-hand side of equation (151) to calculate α(2) ≡ 
[α1

(2), . . .,αN
(2)]. This is continued until convergence is achieved. 

Alternatively, equations (148) and (149) are linear in the  

132 In the statistics literature, this type of model is known as a fixed effects 
model. A generalized version of this model (with missing observations) 
was proposed by Summers (1973) in the international comparison context 
where it is known as the country product dummy regression model. A 
weighted version of this model (with missing observations) was proposed 
by Aizcorbe, Corrado, and Doms (2000).
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unknown parameters and can be solved (after normalizing 
one parameter) by a simple matrix inversion. A final method 
of obtaining a solution to (148) and (149) is to apply a simple 
linear regression model to equations (146).133

If π* ≡ [π1
*,  .  .  .,πT

*] and α* ≡ [α1
*,  .  .  .,αN

*] is a solution to 
(148) and (149), then λπ* and λ–1α* is also a solution for any 
λ > 0. Thus, to obtain a unique solution we impose the 
normalization π1

* = 1 (which corresponds to ρ1 = 0). Then 
1,π2

*,  .  .  .,πT
* is the sequence of fixed-base index numbers 

that is generated by the least squares minimization problem 
defined by (147).

Once we have the unique solution 1,π2
*,  .  .  .,πT

* for the T 
price levels that are generated by solving (147) along with 
the normalization π1 = 1, the price index between period t 
relative to period s can be defined as pt

*/πs
*. Using equations 

(150) for πt
* and πs

*, we have the following equation for these 
price indices:

πt
*/πs

* = Πn=1
N (ptn/αn

*)1/N/ Πn=1
N (psn/αn

*)1/N

 = Πn=1
N (ptn /psn)

1/N. (152)

Thus, if there are no missing observations, the TPD price 
indices between any two periods in the window of T 
period under consideration is equal to the Jevons index 
between the two periods (the simple geometric mean of 
the price ratios, ptn/psn).

134 This is a somewhat disappoint-
ing result since an equally weighted average of the price 
ratios is not necessarily a representative average of the 
prices; that is, unimportant products to purchasers (in 
the sense that they spend very little on these products) are 
given the same weight in the Jevons measure of inflation 
between the two periods as is given to high expenditure 
products.135

Since there are no missing observations, then it can be 
seen using equations (151) that the ratio of the quality adjust-
ment factor for product n relative to product m is equal to 
the following sensible expression:

αn
*/αm

* = Πt=1
T (ptn/πt

*)1/T / Πt=1
T (ptm/πt

*)1/T

 = Πt=1
T (ptn/ptm)1/T. (153)

If quantity data are available, then aggregate quantity 
levels for the t periods can be obtained as Qt* ≡ α*·qt = 
Σn=1

N αn
*qtn for t = 1, . . .,T. Estimated aggregate price levels 

can be obtained directly from the solution to (147); that 
is, set Pt* = πt

* for t = 1, . . .,T. Alternative price levels can 
be obtained indirectly as Pt** ≡ pt·qt/Qt* = pt·qt/α*·qt for t 
= 1,  .  .  .,T.136 If the optimized objective function in (147) 
is 0 (so that all errors etn

* ≡ ln ptn – ρt
* – βn

* equal 0 for  
t = 1, . . .,T and n = 1, . . .,N), then Pt* will equal Pt** for all 
t. If the estimated residuals are not all equal to 0, then the 

133 Again we require one normalization on the parameters such as ρ1 = 0.
134 This result is a special case of a more general result obtained by 
Triplett and McDonald (1977, 150).
135 However, if quantity data are not available, the Jevons index has the 
strongest axiomatic properties; see Diewert (2021b).
136 The fact that a time dummy hedonic regression model generates two 
alternative decompositions of the value aggregate into price and quantity 
aggregates was first noted by de Haan and Krsinich (2018).

two estimates for the period t price level Pt will differ in 
general. The two alternative estimates for Pt will generate 
different estimates for the companion aggregate quantity 
levels.

Note that the underlying exact model (ptn = πtαn for all 
t and n) is the same for both least squares minimization 
problems, (143) and (147). However, different error specifi-
cations and different transformations of both sides of the 
equations ptn = πtαn can lead to very different estimators for 
πt and αn. Our strategy in this section and in the following 
sections will be to choose specifications of the least squares 
minimization problem that lead to estimators for the price 
levels pt that have good axiomatic properties.137 From this 
perspective, it is clear that (147) leads to “better” estimates 
than (143).

In the following section, we allow for missing 
observations.

14. Time Product Dummy 
Regressions: The Case of 
Missing Observations
In this section, the least squares minimization problem 
defined by (147) is generalized to allow for missing observa-
tions. In order to make this generalization, it is first neces-
sary to make some definitions. As in the previous section, 
there are N products and T time periods but not all products 
are purchased (or sold) in all time periods. For each period 
t, define the set of products n that are present in period t as 
S(t) ≡ {n: ptn > 0} for t = 1,2, . . .,T. It is assumed that these 
sets are not empty; that is, at least one product is purchased 
in each period. For each product n, define the set of periods 
t where product n is present as S*(n) ≡ {t: ptn > 0}. Again, 
assume that these sets are not empty; that is, each product is 
sold in at least one time period. Define the integers N(t) and 
T(n) as follows:

 N(t) ≡ Σn∈S(t) 1; t = 1, . . .,T; (154)
 T(n) ≡ Σt∈S*(n) 1; n = 1, . . .,N. (155)

If all N products are present in period t, then N(t) = N; if 
product n is present in all T periods, then T(n) = T.

The multilateral methods studied in previous sections 
assumed that reservation prices were available for missing 
products in any period. Thus, the methods discussed up 
until the present section assumed that there were no miss-
ing product prices: ptn was either an actual period t price 
for product n or an estimated price for the product if it was 
missing in period t. When discussing the TPD multilateral 
price levels and indices, we do not assume that reservation 
prices for missing products have been estimated. Instead, 
the method generates estimated prices for the missing 
products.

137 From the perspective of the economic approach to index number 
theory, the minimization problems (143) and (147) have exactly the same 
justification; that is, they are based on the same economic model of con-
sumer behavior.



176

CONSUMER PRICE INDEX MANUAL

Using the above notation for missing products, the coun-
terpart to (147) when there are missing products is the fol-
lowing least squares minimization problem:

minρ,β {Σt=1
T Σn∈S(t) [lnptn – ρt – βn]

2}  
 = minρ,β {Σn=1

N Σt∈S*(n) [lnptn – ρt – βn]
2}. (156)

Note that there are two equivalent ways of writing the least 
squares minimization problem.138 The first-order necessary 
conditions for ρ1, . . .,rT and β1, . . .,bN to solve (156) are the 
following counterparts to (148) and (149):

 Σn∈S(t) [ρt + βn] = Σn∈S(t) lnptn; t = 1, . . .,T; (157)
 Σt∈S*(n) [ρt + βn] = Σt∈S*(n) lnptn; n = 1, . . .,N. (158)

As in the previous section, let ρt ≡ lnπt for t = 1, . . .,T and 
let βn ≡ lnαn for n = 1, . . .,N. Substitute these definitions into 
equations (157) and (158). After some rearrangement and 
using definitions (154) and (155), equations (157) and (158) 
become the following ones:

 πt = Πn∈S(t) [ptn/αn]
1/N(t); t = 1, . . .,T; (159)

 αn = Πt∈S*(n) [ptn/πt]
1/T(n); n = 1, . . .,N. (160)

The same iterative procedure that was explained in the 
previous section will work to generate a solution to equa-
tions (159) and (160).139 As was the case in the previous sec-
tion, solutions to (159) and (160) are not unique; if π*, α* 
is a solution to (159) and (160), then λπ* and λ-1α* is also a 
solution for any λ > 0. Thus, to obtain a unique solution 
we impose the normalization π1

* = 1 (which corresponds to 
ρ1 = 0). Then 1,π2

*,  .  .  .,πT
* is the sequence of (normalized) 

price levels that is generated by the least squares minimiza-
tion problem defined by (156).140 In this case, πt

* = Πn∈S(t)[ptn/
αn

*]1/N(t) is the equally weighted geometric mean of all of the 
quality-adjusted prices for the products that are available 
in period t for t = 2,3, . . .,T and the quality adjustment fac-
tors are normalized so that π1

* = Πn∈S(1) [p1n/αn
*]1/N(1) = 1. From 

(160), we can deduce that αn
* will be larger for products 

138 The first expression is used when (156) is differentiated with respect 
to ρt, and the second expression is used when differentiating (156) with 
respect to βn.139 Of course, it is not necessary to use the iterative procedure to find a 
solution to equations (157) and (158). After setting ρ1 = 0 and dropping the 
first equation in (157), matrix algebra can be used to find a solution to the 
remaining equations. Alternatively, after setting ρ1 = 0, use the equations 
lnptn = ρt + βn + εtn for t = 1, . . .,T and n∈S(t) to set up a linear regression 
model with time and product dummy variables and use a standard ordi-
nary least squares econometric software package to obtain the solution 
ρ2

*, . . .,ρT
*, β1

*, . . .,βN
* to the linear regression model lnptn = ρt + βn + εtn for 

t = 1, . . .,T and n∈S(t). We need to assume that the X matrix for this linear 
regression model has full column rank.
140 We need enough observations on products that are present so that a 
full rank condition is satisfied for equations (157) and (158) after drop-
ping one equation and setting r1 = 0. If there is a rapid proliferation of 
new and disappearing products, then it may not be possible to invert the 
coefficient matrix that is associated with the modified equations (157) and 
(158). In subsequent models with missing observations, we will assume 
that a similar full rank condition is satisfied.

that are relatively expensive and will be smaller for cheaper 
products.

Once we have the unique solution 1,π2
*,  .  .  .,πT

* for the T 
price levels that are generated by solving (156), the price 
index between period t relative to period r can be defined as 
πt

*/πr
*. Using equations (159) and (160), we have the following 

expressions for pt
*/πr

* and αn
*/αm

*:

πt
*/πr

* = Πn∈S(t)[ptn/αn
*]1/N(t) / Πn∈S(r)[prn/αn

*]1/N(r); 
 1 ≤ t, r ≤ T; (161)

αn
*/αm

* = Πt∈S*(n)[ptn/πt
*]1/T(n) / Πt∈S*(m)[ptm/πt

*]1/T(m); 
 1 ≤ n, m ≤ N. (162)

Note that, in general, the quality adjustment factors αn
* do 

not cancel out for the indices πt
*/πr

* defined by (161) as they 
did in the previous section. However, these price indices do 
have some good axiomatic properties.141 If the set of avail-
able products is the same in periods r and t, then the quality 
adjustment factors do cancel and the price index for period 
t relative to period r is πt

*/πr
* = Πn∈S(t)[ptn/prn]

1/N(t), which is the 
Jevons index between periods r and t. Again, while this index 
is an excellent one if quantity information is not available, 
it is not satisfactory when quantity information is available 
due to its equal weighting of economically important and 
unimportant price ratios.142

There is another problematic property of the estimated 
price levels that are generated by solving the TPD hedonic 
model that is defined by (156): A product that is available 
only in one period out of the T periods has no influence on 
the aggregate price levels πt

*.143 To see this, consider equa-
tions (157) and (158) and suppose that product n* was avail-
able only in period t*.144 Equation n* in the N equations in 
(158) becomes the equation [ρt* + βn*] = lnpt*n*. Thus, once ρt* 
has been determined, bn* can be defined as βn* ≡ lnpt*n* – ρt*. 
Subtract the equation [ρt* + βn*] = lnpt*n* from equation t* and 
the resulting equations in (157) can be written as equations 
(163). Dropping equation n* in equations (158) leads to equa-
tions (164):

 Σn∈S(t), n≠n*[ρt + βn] = Σn∈S(t), n ≠n* lnptn; t = 1, . . .,T; (163)
Σt∈S*(n) [ρt + βn] = Σt∈S*(n) lnptn; 

 n = 1, . . .,n*–1,n* + 1, . . .,N. (164)

Equations (163) and (164) are T + N – 1 equations that do 
not involve pt*n*. After making the normalization ρ1

* = 0, 

141 The index πt
*/πr

* satisfies the identity test (if prices are the same in peri-
ods r and t, then the index is equal to 1), and it is invariant to changes in 
the units of measurement. It is also homogeneous of degree one in the 
prices of period t and homogeneous of degree minus one in the prices of 
period r.
142 However, if the estimated squared residuals are small in magnitude for 
periods τ and t, then the index pt

*/πr
* defined by (161) will be satisfactory, 

since in this case pτ ≈ πτ
*α* and pt » pt

*α* so that prices are approximately 
proportional for these two periods and πt

*/πr
* defined by (161) will be 

approximately correct. Any missing prices for any period t and product n 
are defined as ptn

* ≡ πt
*αn

*.
143 This property of the TPD model was first noticed by Diewert (2004) (in 
the context of the country product dummy model).
144 We assume that products other than product n* are available in 
period t*.
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these equations can be solved for ρ2
*, . . ., ρT

*, β1
*, . . ., βn*–1

*, 
βn* + 1

*, . . ., bN
*. Now define βn*

* ≡ lnpt*n* – ρt*, and we have the 
(normalized) solution for (156). Since ρt

* do not involve pt*n*, 
the resulting πt

* ≡ exp[ρt
*] for t = 1, . . .,T also do not depend 

on the isolated price pt*n*. This proof can be repeated for 
any number of isolated prices. This property of the TPD 
model is unfortunate because it means that when a new 
product enters the marketplace in period T, it has no influ-
ence on the price levels 1,π2

*, . . .,πT
* that are generated by 

solving the least squares minimization problem defined by 
(156). In other words, an expansion in the choice of prod-
ucts available to consumers will have no effect on price 
levels.

If quantity data are available, then aggregate quantity 
levels for the t periods can be obtained as Qt* ≡ Σn∈S(t) αn

*qtn 
for t = 1,  .  .  .,T.145 Estimated aggregate price levels can be 
obtained directly from the solution to (42); that is, set Pt* = 
πt

* for t = 1, . . .,T. Alternative price levels can be obtained 
indirectly as Pt** ≡ Σn∈S(t) pnqtn/Q

t* = Σn∈S(t) pnqtn/Σn∈S(t) αn
*qtn for 

t = 1, . . .,T.146 If the optimized objective function in (156) is 0, 
so that all errors εtn

* ≡ ln ptn – ρt
* – βn

* equal 0 for t = 1, . . .,T 
and n∈S(t), then Pt* will equal Pt** for all t. If the estimated 
residuals are not all equal to 0, then the two estimates for 
the period t price level Pt will differ. The two estimates for 
Pt will generate different estimates for the companion aggre-
gate quantity levels.

15. Weighted Time Product Dummy 
Regressions: The Bilateral Case
A major problem with the indices discussed in the previous 
two sections is the fact that they do not weight the individ-
ual product prices by their economic importance. The first 
serious index number economist to stress the importance of 
weighting was Walsh (1901).147 Keynes was quick to follow 

145 Note that each an
* > 0 since αn

* ≡ exp[βn
*] for n = 1, . . .,N.

146 Note that Pt** ≡ Σn∈S(t) ptnqtn/Σn∈S(t) αn
*qtn is a period t quality-adjusted 

unit value price level; see Section 10. The corresponding quantity level is 
Qt** ≡ Σn∈S(t) ptnqtn/P

t** = Σn∈S(t) αn
*qtn, which is the level generated by a linear 

aggregator function. By looking at (156), it can be seen that if prices are 
identical in periods t and r so that pt = pr, then Pt* = Pr*; that is, an identity 
test for the direct hedonic price levels will be satisfied. However, the cor-
responding Qt* will not satisfy the identity test for quantity levels; that is, 
if quantities qtn and qrn are equal in periods t and r for all n, it is not the 
case that Qt* ≡ Σn=1

N ptnqtn/pt
* will equal Qr* ≡ Σn=1

N prnqrn/pr
* for r ≠ t unless 

prices are also equal for the two periods. On the other hand, it can be seen 
that Qt** = Σn∈S(t) αn

*qtn = Σn∈S(t) αn
*qrn = Qr* if qtn = qrn for all n even if prices 

are not identical for the two periods. Thus, the choice between using Pt* 
and Pt** could be made on the basis of choosing which identity test is 
more important to satisfy. The analysis here follows that of de Haan and 
Krsinich (2018, 763–64).
147 See Walsh (1901). This book laid the groundwork for the test or axi-
omatic approach to index number theory that was further developed by 
Fisher (1922). In his second book on index number theory, Walsh made 
the case for weighting by economic importance as follows: “It might seem 
at first sight as if simply every price quotation were a single item, and 
since every commodity (any kind of commodity) has one price-quota-
tion attached to it, it would seem as if price-variations of every kind of 
commodity were the single item in question. This is the way the ques-
tion struck the first inquirers into price-variations, wherefore they used 
simple averaging with even weighting. But a price-quotation is the quota-
tion of the price of a generic name for many articles; and one such generic 
name covers a few articles, and another covers many. . . . A single price-
quotation, therefore, may be the quotation of the price of a hundred, a 
thousand, or a million dollar’s worth, of the articles that make up the 

up on the importance of weighting,148 and Fisher emphati-
cally endorsed weighting.149 Griliches also endorsed weight-
ing in the hedonic regression context.150

In this section, we will discuss some alternative meth-
ods for weighting by economic importance in the context 
of a bilateral time product dummy regression model.151 We 
also assume that there are no missing observations in this 
section.

Recall the least squares minimization problem defined 
by (147) in Section 13. The squared residuals, [lnptn – ρt – 
βn]

2, appear in this problem without any weighting. Thus, 
products, which have a high volume of sales in any period, 
are given the same weight in the least squares minimization 
problem as products that have very few sales. In order to 
take economic importance into account, for the case of two 
time periods, replace (147) by the following weighted least 
squares minimization problem:

minρ, β {Σn=1
N q1n[lnp1n – βn]

2  
  + Σn=1

N q2n[lnp2n – ρ2 – βn]
2}, (165)

where we have set ρ1 = 0. The squared error for product n 
in period t is repeated qtn times to reflect the sales of the 
product in period t. Thus, the new problem (165) takes into 
account the popularity of each product.152

The first-order necessary conditions for the minimization 
problem defined by (165) are the following N + 1 equations:

(q1n + q2n)βn = q1nlnp1n + q2n(lnp2n – ρ2); 
 n = 1, . . .,N; (166)
 (Σn=1

N q2n)ρ2 = Σn=1
N q2n(lnp2n – βn). (167)

commodity named. Its weight in the averaging, therefore, ought to be 
according to these money-unit’s worth” (Correa Moylan Walsh, 1921a, 
82–83).
148 “It is also clear that the so-called unweighted index numbers, usually 
employed by practical statisticians, are the worst of all and are liable to 
large errors which could have been easily avoided” (J.M. Keynes, 1909, 
79). This paper won the Cambridge University Adam Smith Prize for that 
year. Keynes (1930, 76–77) again stressed the importance of weighting in 
a later paper which drew heavily on his 1909 paper.
149 “It has already been observed that the purpose of any index number 
is to strike a fair average of the price movements or movements of other 
groups of magnitudes. At first a simple average seemed fair, just because 
it treated all terms alike. And, in the absence of any knowledge of the rel-
ative importance of the various commodities included in the average, the 
simple average is fair. But it was early recognized that there are enormous 
differences in importance. Everyone knows that pork is more important 
than coffee and wheat than quinine. Thus the quest for fairness led to the 
introduction of weighting” (Irving Fisher, 1922, 43).
150 “But even here, we should use a weighted regression approach, since 
we are interested in an estimate of a weighted average of the pure price 
change, rather than just an unweighted average over all possible models, 
no matter how peculiar or rare” (Zvi Griliches, 1971, 8).
151 The approach taken in this section is based on Rao (1995, 2004, 2005) 
and Diewert (2003b, 2005a, 2005b). Diewert (2005a) considered all four 
forms of weighting that will be discussed in this section, while Rao (1995, 
2005) discussed mainly the third form of weighting.
152 One can think of repeating the term [lnp1n – βn]

2 for each unit of prod-
uct n sold in period 1. The result is the term q1n[lnp1n – βn]

2 . A similar 
justification based on repeating the price according to its sales can also 
be made. This repetition methodology makes the stochastic specification 
of the error terms somewhat complicated. However, as indicated in the 
Introduction section, we leave these difficult distributional problems to 
other more capable econometricians.
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The solution to (166) and (167) is the following one:153

ρ2
* ≡ Sn=1

N q1nq2n(q1n + q2n)
–1 ln(p2n/p1n)/ 

 Σi=1
N q1iq2i(q1i + q2i)

–1; (168)
βn

* ≡ q1n(q1n + q2n)
–1 ln(p1n) + q2n(q1n + q2n)

–1 ln(p2n/π2
*); 

 n = 1, . . .,N, (169)

where π2
* ≡ exp[ρ2

*]. Note that the weight for the term ln(p2n/
p1n) in (168) can be written as follows:

qn
* ≡ Σn=1

N q1nq2n(q1n + q2n)
–1 /Σi=1

N q1iq2i(q1i + q2i)
–1;  

n = 1, . . .,N
 = h(q1n,q2n)/Σi=1

N h(q1i,q2i), (170)

where h(a,b) ≡ 2ab/(a + b) = [½ a–1 + ½ b–1]–1 is the harmonic 
mean of a and b.154

Note that qn
* sum to 1 and thus ρ2

* is a weighted average 
of the logarithmic price ratios ln(p2n/p1n). Using π2

* = exp[ρ2
*] 

and π1
* = exp[ρ1

*] = exp[0] = 1, the bilateral price index that is 
generated by the solution to (165) is

 π2
*/π1

* = exp[ρ2
*] = exp[Σn=1

N qn
* ln(p2n/p1n)]. (171)

Thus, π2
*/π1

* is a weighted geometric mean of the price ratios 
p2n/p1n with weights qn

* defined by (170). Although this seems 
to be a reasonable bilateral index number formula, it must 
be rejected for practical use on the grounds that the index is 
not invariant to changes in the units of measurement.

Since values are invariant to changes in the units of mea-
surement, the lack of invariance problem can be solved if 
we replace the quantity weights in (165) with expenditure or 
sales weights.155 This leads to the following weighted least 
squares minimization problem where the weights vtn are 
defined as ptnqtn for t = 1,2 and n = 1, . . .,N:

minρ, β {Σn=1
N v1n[lnp1n – βn]

2  
  + Σn=1

N v2n[lnp2n – ρ2 – βn]
2}. (172)

It can be seen that problem (172) has exactly the same math-
ematical form as problem (165) except that vtn has replaced 
qtn, and so the solutions (168) and (169) will be valid in the 
present context if vtn replaces qtn in these formulae. Thus, the 
solution to (172) is

153 See Diewert (2005a).
154 h(a,b) is well defined by ab/(a + b) if a and b are nonnegative and at 
least one of these numbers is positive. In order to write h(a,b) as [½ a–1 + 
½ b–1]–1, we require a > 0 and b > 0.
155 “But on what principle shall we weight the terms? Arthur Young’s guess 
and other guesses at weighting represent, consciously or unconsciously, 
the idea that relative money values of the various commodities should 
determine their weights. A value is, of course, the product of a price per 
unit, multiplied by the number of units taken. Such values afford the only 
common measure for comparing the streams of commodities produced, 
exchanged, or consumed, and afford almost the only basis of weighting 
which has ever been seriously proposed” (Irving Fisher, 1922, 45).

ρ2
* ≡ Σn=1

N v1nv2n(v1n + v2n)
–1 ln(p2n/p1n)/ 

 Σi=1
N v1iv2i(v1i + v2i)

–1; (173)
βn

* ≡ v1n(v1n + v2n)
–1 ln(p1n) + v2n(v1n + v2n)

–1 ln(p2n/π2
*); 

 n = 1, . . .,N, (174)

where π2
* ≡ exp[ρ2

*].
The resulting price index, π2

*/π1
* = π2

* = exp[ρ2
*], is indeed 

invariant to changes in the units of measurement. How-
ever, if we regard π2

* as a function of the price and quantity 
vectors for the two periods, say P(p1,p2,q1,q2), then another 
problem emerges for the price index defined by the solu-
tion to (172): P(p1,p2,q1,q2) is not homogeneous of degree 0 
in the components of q1 or in the components of q2. These 
properties are important because it is desirable that the 
companion implicit quantity index defined as Q(p1,p2,q1,q2) 
≡ [p2·q2/p1·q1]/P(p1,p2,q1,q2) be homogeneous of degree 1 in 
the components of q2 and homogeneous of degree minus 
1 in the components of q1.156 We also want P(p1,p2,q1,q2) to 
be homogeneous of degree 1 in the components of p2 and 
homogeneous of degree minus 1 in the components of p1 
and these properties are also not satisfied. Thus, we con-
clude that the solution to the weighted least squares prob-
lem defined by (172) does not generate a satisfactory price 
index formula.

These deficiencies can be remedied if the expenditure 
amounts vtn in (172) are replaced by expenditure shares, stn, 
where vt ≡ Σn=1

N vtn for t = 1,2 and stn ≡ vtn/vt for t = 1,2 and n 
= 1, . . .,N. This replacement leads to the following weighted 
least squares minimization problem:157

minρ, β {Σn=1
N s1n[lnp1n – βn]

2 + Σn=1
N s2n[lnp2n  

 – ρ2 – βn]
2}. (175)

Again, it can be seen that problem (175) has exactly the 
same mathematical form as problem (165) except that stn has 
replaced qtn, and so the solutions (168) and (169) will be valid 
in the present context if stn replaces qtn in these formulae. 
Thus, the solution to (175) is

ρ2
* ≡ Σn=1

N s1ns2n(s1n + s2n)
–1 ln(p2n/p1n)/ 

 Σi=1
N s1is2i(s1i + s2i)

–1; (176)
βn

* ≡ s1n(s1n + s2n)
–1 ln(p1n) + s2n(s1n + s2n)

–1 ln(p2n/π2
*); 

 n = 1, . . .,N, (177)

156 Thus, we want Q to have the following properties: Q(p1,p2,q1,λq2) =  
λQ(p1,p2,q1,q2) and Q(p1,p2,λq1,q2) = λ–1Q(p1,p2,q1,q2) for all λ > 0.
157 Note that the minimization problem defined by (175) is equivalent to 
the problem of minimizing Σn=1

N e1n
2 + Σn=1

N e2n
2 with respect to ρ2, β1, . . . , 

βN, where the error terms etn are defined by the equations s1n
1/2lnp1n = s1n

1/2βn 
+ e1n for n = 1, . . .,N and s2n

1/2lnp2n = s2n
1/2ρ2 + s2n

1/2βn + e2n for n = 1, . . .,N. 
Thus, the solution to (175) can be found by running a linear regression 
using the above two sets of estimating equations. The numerical equiva-
lence of the least squares estimates obtained by repeating multiple obser-
vations or by using the square root of the weight transformation was 
noticed long ago as the following quotation indicates: “It is evident that 
an observation of weight w enters into the equations exactly as if it were 
w separate observations each of weight unity. The best practical method 
of accounting for the weight is, however, to prepare the equations of con-
dition by multiplying each equation throughout by the square root of its 
weight” (E. T. Whittaker and G. Robinson, 1940, 224).
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where π2
* ≡ exp[ρ2

*]. Define the normalized harmonic mean 
share weights as sn

* ≡ h(s1n,s2n)/Σi=1
N h(s1i,s2i) for n = 1, . . .,N. 

Then the weighted time product dummy bilateral price 
index, PWTPD(p1,p2,q1,q2) ≡ π2

*/π1
* = π2

*, has the following 
logarithm:

 ln PWTPD(p1,p2,q1,q2) ≡ Σn=1
N sn

* ln(p2n/p1n). (178)

Thus, PWTPD(p1,p2,q1,q2) is equal to a share-weighted geomet-
ric mean of the price ratios, p2n/p1n.

158 This index is a satisfac-
tory one from the viewpoint of the test approach to index 
number theory. It can be shown that PWTPD(p1,p2,q1,q2) satis-
fies the following tests:

(i) the identity test; that is, PWTPD(p1,p2,q1,q2) = 1 if p1 = p2;
(ii) the time reversal test; that is, PWTPD(p2,p1,q2,q1) =1/

PWTPD(p1,p2,q1,q2);159

(iii) homogeneity of degree 1 in period 2 prices; that is,  
PWTPD(p1,λp2,q1,q2) = λPWTPD(p1,p2,q1,q2); (iv)  homogeneity 
of degree –1 in period 1 prices; that is, PWTPD(λp1,p2,q1,q2) 
= λ–1PWTPD(p1,p2,q1,q2); (v) homogeneity of degree 0 in 
period 1 quantities; that is, PWTPD(p1,p2,λq1,q2) = PWTPD 
(p1,p2,q1,q2); (vi) homogeneity of degree 0 in  period 
2 quantities; that is, PWTPD(p1,p2,q1,λq2) = PWTPD(p1, 
p2,q1,q2); (vii) invariance to changes in the units of 
measurement;

(viii) the min-max test; that is,

minn{p2n/p1n : n = 1, . . .,N} ≤ PWTPD(p1,p2,q1,q2) ≤ max 

n{p2n/p1n : n = 1, . . .,N}; and

(ix) the invariance to the ordering of the products test.

Moreover, it can be shown that PWTPD(p1,p2,q1,q2) approxi-
mates the superlative Törnqvist–Theil index to the second 
order around an equal price and quantity point where p1 = p2 
and q1 = q2.160 Thus, if changes in prices and quantities going 
from one period to the next are not too large and there are 
no missing products, PWTPD should be close to the superla-
tive Fisher (1922) and Törnqvist–Theil indices.161

Recall the results from Section 13 above for the 
unweighted time product dummy model. From equation 
(152), it can be seen that the unweighted bilateral time 
product dummy regression model generated the Jevons 
index as the solution to the unweighted least squares min-
imization problem that is a counterpart to the weighted 
problem defined by (175). Thus, appropriate weighting of 
the squared errors has changed the solution index dra-
matically: The index defined by (178) weights products 
by their economic importance and has good test prop-
erties, whereas the Jevons index can generate very prob-
lematic results due to its lack of weighting according to 

158 See Diewert (2002, 2005a).
159 See Diewert (2003b, 2005b).
160 Diewert (2005a, 564) noted this result. Thus, PWTPD is a pseudo-super-
lative index. For the definition of a superlative index, see Diewert (1976, 
2021a). A pseudo-superlative index approximates a superlative index to 
the second order around any point where p1 = p2 and q1 = q2; see Diewert 
(1978).
161 However, with large changes in price and quantities going from period 
1 to 2, PWTPD will tend to lie below its superlative counterparts; see Diew-
ert (2018, 53) and an example provided by Diewert and Fox (2021).

economic importance. Note that both models have the 
same underlying structure; that is, they assume that ptn is 
approximately equal to πtαn for t = 1,2 and n = 1, .  .  .,N. 
Thus, weighting by economic importance has converted a 
least squares minimization problem that generates a rather 
poor price index into a problem that generates a rather good 
index.

There is one more weighting scheme that generates an even 
better index in the bilateral context where we are running a 
TPD hedonic regression using the price and quantity data 
for only two periods. Consider the following weighted least 
squares minimization problem:

minρ, β {Σn=1
N (½)(s1n + s2n)[lnp1n – βn]

2  
  + Σn=1

N (½)(s1n + s2n)[lnp2n – ρ2 – βn]
2}. (179)

As usual, it can be seen that problem (179) has exactly 
the same mathematical form as problem (165) except that  
(½)(s1n + s2n) has replaced qtn, and so the solutions (168) 
and (169) will be valid in the present context if (½)(s1n + s2n) 
replaces qtn in these formulae. Thus, the solution to (179) 
simplifies to the following solution:

 ρ2
* ≡ Σn=1

N (½)(s1n + s2n)ln(p2n/p1n); (180)
 βn

* ≡ (½)ln(p1n) + (½)ln(p2n/π2
*); n = 1, . . .,N, (181)

where π2
* ≡ exp[ρ2

*] and π1
* ≡ exp[ρ1

*] = exp[0] = 1 since we 
have set ρ1

* = 0. Thus, the bilateral index number formula 
that emerges from the solution to (179) is π2

*/π1
* = exp[Σn=1

N 
(½)(s1n + s2n)ln(p2n/p1n)] ≡ PT(p1,p2,q1,q2), which is the Törn-
qvist–Theil (1967, 137–38) bilateral index number formula. 
Thus, the use of the weights in (179) has generated an even 
better bilateral index number formula than the formula 
that resulted from the use of the weights in (175). This result 
reinforces the case for using appropriately weighted ver-
sions of the basic TPD hedonic regression model.162 How-
ever, if the implied residuals in the original unweighted 
minimization problem (147) are small (or equivalently, if 
the fit in the linear regression model that can be associated 
with (147) is high so that predicted values for log prices are 
close to actual log prices), then weighting will not matter 
very much, and the unweighted model (147) will give results 
that are similar to the results generated by the weighted 
model defined by (179). This comment applies to all of the 
weighted hedonic regression models that are considered in 
this paper.163

The aggregate quantity levels for the t periods can be 
obtained as Qt* ≡ α*·qt = Σn=1

N αn
*qtn for t = 1,2, where αn

* 
are defined as the exponentials of βn

* defined by (181). 
Estimated aggregate price levels can be obtained directly  

162 Note that the bilateral regression model defined by the minimization 
problem (175) is readily generalized to the case of T periods, whereas the 
bilateral regression model defined by the minimization problem (179) 
cannot be generalized to the case of T periods. These facts were noted by 
de Haan and Krsinich (2014).
163 If the residuals are small for (147), then prices will vary almost propor-
tionally over time, and all reasonable index number formulae will register 
price levels that are close to the estimated πt

*; that is, we will have pt ≈ πt
*p1 

for t = 2,3, . . .,T if the residuals are small for (147).
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from the solution to (179); that is, set Pt* = πt
* for t = 1,2.164 

Alternative price levels can be obtained indirectly as Pt** ≡ 
pt·qt/Qt* = pt·qt/α*·qt for t = 1,2. If the optimized objective 
function in (179) is 0, so that all errors equal 0, then Pt* will 
equal Pt** for t = 1,2. If the estimated residuals are not all 
equal to 0, then the two estimates for the period t price level 
Pt will differ, and the alternative estimates for Pt will gener-
ate different estimates for the companion aggregate quantity 
levels.

It should be noted that we have not made any bias correc-
tions due to the fact that our model estimates the logarithm 
of πt instead of πt itself. This is due to our perspective that 
simply tries to fit an exact model by transforming it in a way 
that leads to solutions πt

* to a least squares minimization 
problem, where πt

* have good axiomatic properties.165 There 
is more work to be done in working out the distributional 
properties of the above estimators for the price levels.

16. Weighted Time Product Dummy 
Regressions: The Bilateral Case with 
Missing Observations
In this section, we will generalize the last two models in the 
previous section to cover the case where there are missing 
observations.166 Thus, we assume that there are products 
that are missing in period 2 that were present in period 1 and 
some new products that appear in period 2. As in Section 14, 
S(t) denotes the set of products n that are present in period 
t for t = 1,2. It is assumed that S(1)∩S(2) is not the empty 
set; that is, there are one or more products that are present 
in both periods. We need some new notation to deal with 
missing prices and quantities. For the present, if product n 
is not present in period t, define ptn and qtn to equal 0. This 
enables us to define the N-dimensional period t price and 
quantity vectors as pt ≡ [pt1, . . .,ptN] and qt ≡ [qt1, . . .,qtN] for t 
= 1,2. Thus, the missing prices and quantities are simply set 
equal to 0. The period t share of sales or expenditures for 
product n is defined in the usual case as stn ≡ ptnqtn/p

t·qt for 
n = 1, . . .,N and t = 1,2. With these notational conventions, 

164 In this case, alternative period t quantity levels are defined as Q1** ≡ 
p1·q1 and Q2** ≡ p2·q2/π2

* = [v2/v1]/PT(p1,p2,q1,q2). If the squared errors in (179) 
are all 0, then the alternative quantity estimates are equal to each other 
and the model lnptn = ρt + βn holds exactly for each t and n, which means 
that prices are proportional across the two periods; that is, we have pt = 
πt

*α* for t = 1,2 and α* ≡ [α1
*, . . .,αN

*]. In the case where the squared errors 
are nonzero, the πt

*,Qt** aggregates are preferred since PT(p1,p2,q1,q2) is a 
superlative index and thus has a strong economic justification.
165 We note that de Haan and Krsinich (2018, 769–70) make the following 
comments on possible biases that result from the use of a weighted least 
squares model to generate price indices: “Finally, we will elaborate on 
a few econometric issues. The estimated quality adjusted prices . . . are 
biased as taking exponentials is a nonlinear transformation. The time 
dummy index is similarly biased. It is questionable whether bias adjust-
ments would be appropriate, though, at least from an index number point 
of view. For instance, recall the two-period case with only matched items, 
where Diewert’s (2004) choice of regression weights ensures that the time 
dummy index is equal to the superlative Törnqvist price index. Correct-
ing for the ‘bias’ would mean that this useful property does no longer 
hold, and so there is a tension between econometrics and index number 
theory.”
166 The results in this section are closely related to the results derived by 
de Haan (2004a), Silver and Heravi (2005), and de Haan and Krsinich 
(2014, 2018). However, our method of derivation is somewhat different.

the new weighted least squares minimization problem that 
generalizes (175) is the following minimization problem:167

minρ, β {Σn∈S(1) s1n[lnp1n – βn]
2 + Σn∈S(2) s2n[lnp2n  

 – ρ2 – βn]
2}. (182)

The first-order conditions for ρ2
*, β1

*, . . ., βN
* to solve (182) 

are equivalent to the following equations:

 Σn∈S(2) s2nρ2
* + Σn∈S(2) s2nβn

* = Σn∈S(2) s2nlnp2n; (183)
s2nρ2

* + (s1n + s2n)βn
* = s1nlnp1n + s2nlnp1n; 

 n∈S(1)∩S(2); (184)

 βn
* = lnp1n; n∈S(1), n∉S(2); (185)

 ρ2
* + βn

* = lnp2n; n∈S(2), n∉S(1). (186)

Define the intersection set of products S* as follows:

 S* ≡ S(1)∩S(2). (187)

Substituting equations (186) into equation (183) leads to the 
following equation:

 Σn∈S* s2n[lnp2n – ρ2
* – βn

*] = 0. (188)

Consider the following least squares minimization problem 
that is defined over the set of products that are present in 
both periods:

minρ, β {Σn∈S* s1n[lnp1n – βn]
2  

  + Σn∈S* s2n[lnp2n – ρ2 – βn]
2}. (189)

The first-order conditions for this problem are (188) and 
(184). Once we find the solution to this problem, define βn

* 
for the products that are not present in both periods by 
equations (185) and (186). This augmented solution will 
solve problem (182). The solution to (189) can be found by 
adapting the solution to (175) to the current situation. Recall 
equations (176) and (177) from the previous section. Replac-
ing the entire set of product indices n = 1, . . .,N by the inter-
section set S* defined by (187) leads to the following solution 
to (189):

ρ2
* ≡ [Σn∈S* s1ns2n(s1n + s2n)

–1 ln(p2n/p1n)]/ 
 [Σi∈S* s1is2i(s1i + s2i)

–1]; (190)
βn

* ≡ s1n(s1n + s2n)
–1 ln(p1n) + s2n(s1n + s2n)

–1 ln(p2n/π2
*); 

 n∈S*, (191)

where π2
* ≡ exp[ρ2

*]. Define the normalized harmonic mean 
share weights for the always present products as sn

* ≡ 
h(s1n,s2n)/Σi∈S* h(s1i,s2i) for n∈S*. Using these definitions for 
the shares sn

*, the weighted TPD bilateral price index with 
missing observations, PWTPD(p1,p2,q1,q2) ≡ π2

*/π1
* = π2

*, has the 
following logarithm:

167 This form of weighting was suggested by Rao (1995, 2004, 2005), Diew-
ert (2002, 2004, 2005a), and de Haan (2004a).
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 lnPWTPD(p1,p2,q1,q2) ≡ Σn∈S* sn
*ln(p2n/p1n). (192)

Note that PWTPD ≡ π2
*/π1

* depends directly on the price ratios 
for the products that are present in both periods. However, it 
also depends on the shares stn, which in turn depend on all 
of the price and quantity information for both periods. It 
can be seen that PWTPD(p1,p2,q1,q2) is a weighted geometric 
mean of the matched prices p2n/p1n for products n that are 
present in both periods. Thus, if matched product prices are 
equal in the two periods, then PWTPD(p1,p2,q1,q2) will equal 
unity even if there is an expanding or contracting choice set 
over the two periods; that is, alternative reservation prices 
for any missing products will not affect the estimated price 
levels and price indices.

However, the hedonic regression model that is generated 
by solving (189) can be used to impute (neutral) reservation 
prices for missing observations. Thus, define αn

* ≡ exp[βn
*] 

for n = 1, . . .,N. Then the missing prices ptn
* can be defined 

as follows:

 p2n
* ≡ π2

*αn
* = π2

*p1n n∈S(1), n∉S(2); (193)
 p1n

* ≡ π1
*αn

* = p2n/π2
* n∈S(2), n∉S(1). (194)

Thus, the missing prices for period 2, p2n
*, are the corre-

sponding inflation-adjusted carry-forward prices from period 
1, p1n times π2

*, and the missing prices for period 1, p1n
*, are 

the corresponding inflation-adjusted carry-backward prices 
from period 2, p2n, deflated by π2

*, where π2
* is the weighted 

TPD price index PWTPDM(p1,p2,q1,q2) defined as π2
* ≡ exp[ρ2

*], 
where ρ2

* is defined by (190).168 As noted earlier, these reser-
vation prices are neutral in the sense that they do not affect 
the definition of ρ2

*, and hence they do not affect the defini-
tion of PWTPDM(p1,p2,q1,q2).

Estimated aggregate price levels can be obtained directly 
from the solution to (189); that is, set P1* = 1 and P2* = π2

*. 
The corresponding quantity levels are defined as Q1* ≡ p1·q1 
and Q2* ≡ p2·q2/π2

*. Alternative price and quantity levels can 
be obtained as Qt** ≡ α*·qt and Pt** ≡ pt·qt/Qt** for t = 1,2. If the 
optimized objective function in (189) is 0, so that all errors 
equal 0, then Pt* will equal Pt** for all t. If the estimated 
residuals are not all equal to 0, then the two estimates for 
the period 2 price level P2 will differ, and, as usual, the alter-
native estimates for P2 will generate different estimates for 
the companion aggregate quantity levels.

This analysis is not quite the end of the story. The expen-
diture shares s1n and s2n that appear in (182) are not the 
expenditure shares that characterize the always present 
products; they are the original expenditure shares defined 
over all N products. It is of interest to compare PWTPD(p1, 
p2,q1,q2) defined implicitly by (192) with the weighted TPD 
index, PWTPDM(p1*,p2*,q1*,q2*), that is defined over the com-
mon set of products, S*;169 that is, PWTPDM is the weighted 
TPD regression model that is defined over the set of matched 
products for the two periods under consideration.

168 The corresponding imputed values for the missing quantities in each 
period are set equal to 0.
169 Define pt* and qt* as the period t price and quantity vectors that include 
only products that are present in both periods.

Define vt
* ≡ Σn∈S* vtn as the total expenditure on always 

present products for t = 1,2 and define the corresponding 
restricted expenditure shares as170

 stn
* ≡ vtn/vt

*; t = 1,2; n∈S*. (195)

The matched model version of (189) is the following weighted 
least squares minimization problem:

minρ, β {Σn∈S* s1n
*[lnp1n – βn]

2  
  + Σn∈S* s2n

*[lnp2n – ρ2 – βn]
2}. (196) 

The ρ2 solution to (196) is the following one:

ρ2
** ≡ [Σn∈S* s1n

*s2n
* (s1n

* + s2n
*)–1 ln(p2n/p1n)]/ 

[Σi∈S* s1i
*s2i

* (s1i
* + s2i

*)–1]
 = [Σn∈S* h(s1n

*,s2n
*) ln(p2n/p1n)]/[Σi∈S* h(s1i

*,s2i
*)], (197)

where h(s1n
*,s2n

*) is the harmonic mean of the restricted shares 
s1n

* and s2n
*. Thus, PWTPDM(p1*,p2*,q1*,q2*) ≡ exp[ρ2

**], where ρ2
** 

is defined by (197).
The relationship between the true shares, stn, and the 

restricted shares, stn
*, for the always present products is given 

by the following equations:

 stn ≡ vtn/vt = [vtn/vt
*][vt

*/vt] = stn
*ft; t = 1,2; n∈S*, (198)

where the fraction of expenditures on always available com-
modities compared to expenditures on all commodities dur-
ing period t is ft ≡ vt

*/vt for t = 1,2. Using definitions (190) and 
(198), it can be seen that the logarithm of PWTPD(p1,p2,q1,q2) 
defined by (192) is given by

ρ2
* ≡ [Σn∈S* h(s1n,s2n) ln(p2n/p1n)]/[Σi∈S* h(s1i,s2i)]

= [Σn∈S* h( f1s1n
*,f2s2n

*) ln(p2n/p1n)]/ 
 [Σi∈S* h( f1s1i

*,f2s2i
*)]. (199)

Now compare (197) and (199). If either (i) p2n = λp1n for all 
n∈S* so that we have price proportionality for the always 
present products or (ii) f1 = f2 so that the ratio of expen-
ditures on always present products to total expenditure 
in each period is constant across the two periods, then 
ρ2

** = ρ2
*. However, if these conditions are not satisfied 

and there is considerable variation in prices and quan-
tities across periods, then ρ2

** could differ substantially 
from ρ2

*. Since neither index is superlative, it is difficult 
to recommend one of these indices over the other as the 
“optimal” carry-forward and carry-backward inflation 
rate that could be used to construct the inflation-adjusted 
carry-forward and carry-backward estimates for the 
missing prices.171

170 The matched product expenditure shares defined by (195), stn
* ≡ vtn/vt

*, 
differ from the original “true” expenditure shares defined as stn ≡ vtn/vt 
because the true period t expenditures vt include expenditures on “iso-
lated” products that are present in only one of the two periods under 
consideration. Thus, if there are isolated products in both periods, vt will 
be greater than vt* for t = 1,2, and thus the two sets of shares will be different.
171 For another alternative weighting scheme for a bilateral TPD model in 
the case of two periods that generalizes the model defined by (179) to the 
case of missing observations, see de Haan (2004a).
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In the following section, we define weighted time dummy 
regression models for the general case of T periods and 
missing observations.

17. Weighted Time Product Dummy 
Regressions: The General Case
We first consider the case of T periods and no missing obser-
vations. The generalization of the two-period weighted least 
squares minimization problem that was defined by (175) in 
Section 15 to the case of T > 2 periods is (200):172

 minρ, β {Σn=1
N Σt =1

T stn[lnptn – ρt – βn]
2}. (200)

The first-order necessary conditions for ρ* ≡ [ρ1
*, . . .,ρT

*] and 
β* ≡ [β1

*, . . .,βN
*] to solve (200) are the following T equations 

(201) and N equations (202):

 ρt
* = Σn=1

N stn[lnptn
* – βn

*]; t = 1, . . .,T; (201)
 βn

* = Σt=1
T stn[lnptn

* – ρt
*]/(Σt=1

T stn); n = 1, . . .,N. (202)

As usual, the solution to (200) given by (201) and (202) is not 
unique: If ρ* ≡ [ρ1

*, . . .,ρT
*] and β* ≡ [β1

*, . . .,βN
*] solve (201) and 

(202), then so do [ρ1
* + λ, . . .,ρT

* + λ] and [β1
*–λ, . . .,βN

*–λ] for 
all λ. Thus, we can set ρ1

* = 0 in equations (201) and drop the 
first equation in (201) and use linear algebra to find a unique 
solution for the resulting equations.173 Once the solution is 
found, define the estimated price levels πt

* and quality adjust-
ment factors αn

* as follows:

πt
* ≡ exp[ρt

*]; t = 2,3, . . .,T; αn
* ≡ exp[βn

*];  
 n = 1, . . .,N. (203)

Note that the resulting price index between periods t and τ is 
equal to the following expression:

πt
*/πt

* = Πn=1
N exp[stnln(ptn/αn

*)]/Πn=1
N exp[stnln(pτn/αn

*)]; 
 1 ≤ t, τ ≤ T. (204)

If stn = sτn for n = 1, . . .,N, then πt
*/πr

* will equal a weighted 
geometric mean of the price ratios ptn/pτn, where the weight 
for ptn/pτn is the common expenditure share stn = sτn. Thus, πt

*/
πτ

* will not depend on an
* in this case.174

The price levels πt
* defined by (203) are functions of the T 

price vectors, p1, . . .,pT, and the T quantity vectors, q1, . . .,qT. 
These price level functions have some good axiomatic prop-
erties: (i) πt

* are invariant to changes in the units of mea-
surement; (ii) πt

* regarded as a function of the period t price 
vector pt is linearly homogeneous in the components of pt; 
that is, πt

*(λpt) = lπt
*(pt) for all pt >> 0N and λ > 0; (iii) πt

* 
regarded as a function of the period t quantity vector qt is 

172 Rao (1995, 2004, 2005, 574) was the first to consider this model using 
expenditure share weights. However, Balk (1980, 70) suggested this class 
of models much earlier using somewhat different weights.
173 Alternatively, one can set up the linear regression model defined by 
(stn)

1/2lnptn = (stn)
1/2ρt + (stn)

1/2βn + etn for t = 1, . . .,T and n = 1, . . .,N, where 
we set ρ1 = 0 to avoid exact multicollinearity. Iterating between equations 
(201) and (202) will also generate a solution to these equations and the 
solution can be normalized so that ρ1 = 0.
174 This case is consistent with utility-maximizing purchasers having 
common Cobb Douglas preferences.

homogeneous of degree 0 in the components of qt; that is, 
πt

*(λqt) = πt
*(qt) for all qt >> 0N and λ > 0;175 (iv) πt

* satisfy a 
version of Walsh’s (1901, 389; 1921b, 540) multiperiod identity 
test; that is, if pt = pt and qt = qτ, then πt

* = πt
*.176

Once the estimates for πt and αn have been computed, 
we have the usual two methods for constructing period-by-
period price and quantity levels, Pt and Qt for t = 1, . . .,T. 
The πt

* estimates can be used to form the aggregates using 
equations (205), or the αn

* estimates can be used to form the 
aggregates using equations (206):177

 Pt* ≡ πt
*; Qt* ≡ pt·qt/πt

*; t = 1, . . .,T; (205)
 Qt** ≡ α*·qt; Pt** ≡ pt·qt/α*·qt; t =1, . . .,T. (206)

Define the error terms etn ≡ lnptn – lnπt
* – lnαn

* for t = 1, . . .,T 
and n = 1, . . .,N. If all etn = 0, then Pt* will equal Pt** and Qt* 
will equal Qt** for t = 1, .  .  .,T. However, if the error terms 
are not all equal to zero, then the statistical agency will have 
to decide on pragmatic grounds on which option to choose.

It is straightforward to generalize the weighted least 
squares minimization problem (200) to the case where 
there are missing prices and quantities. As in Section 14 
we assume that there are N products and T time periods, 
but not all products are purchased (or sold) in all time peri-
ods. For each period t, define the set of products n that are 
present in period t as S(t) ≡ {n: ptn > 0} for t = 1,2, . . .,T. It 
is assumed that these sets are not empty; that is, at least 
one product is purchased in each period. For each prod-
uct n, define the set of periods t where product n is pres-
ent as S*(n) ≡ {t: ptn > 0}. Again, assume that these sets are 
not empty; that is, each product is sold in at least one time 
period. The generalization of (200) to the case of missing 
products is the following weighted least squares minimiza-
tion problem:

minρ,β Σt=1
T Σn∈S(t) stn[lnptn – ρt – βn]

2 = minρ,β  
 Σn=1

N Σt∈S*(n) stn[lnptn – ρt – βn]
2. (207)

Note that there are two equivalent ways of writing the least 
squares minimization problem. The first-order necessary 
conditions for ρ1, . . .,ρT and β1, . . .,βN to solve (207) are the 
following counterparts to (201) and (202):178

 Σn∈S(t) stn[ρt
* + βn

*] = Σn∈S(t) stnlnptn; t = 1, . . .,T; (208)
Σt∈S*(n) stn[ρt

* + βn
*] = Σt∈S*(n) stnlnptn;  

 n = 1, . . .,N. (209)

175 By looking at the minimization problem defined by (200), it is also 
straightforward to show that πt

*(λqτ) = πt
*(qτ) for all qt >> 0N and λ > 0 for 

τ = 1, . . . .,T.
176 We would like the πt

* to satisfy the usual (strong) identity test, which 
is: if pt = pτ, then πt

* = πτ
*. However, if the share weights for the two peri-

ods are different, then this test no longer holds. However, if we define the 
period t price and quantity levels using definitions (206), it can be seen 
that the resulting Qt** will satisfy the usual (strong) identity test for quan-
tities. If our perspective is one of measuring economic welfare, then we 
may want to choose (206) over (205).
177 Note that the price level Pt** defined in (206) is a quality-adjusted unit 
value index of the type studied by de Haan (2004b).
178 Equations (208) and (209) show that the solution to (207) does not 
depend on any independently determined reservation prices ptn for prod-
ucts n that are missing in period t.



183

THE CHAIN DRIFT PROBLEM AND MULTILATERAL ALTERNATIVE APPROACH FISHER INDICES

As usual, the solution to (208) and (209) is not unique: if ρ* ≡ 
[ρ1

*, . . .,ρT
*] and β* ≡ [β1

*, . . .,βN
*] solve (208) and (209), then so 

do [ρ1
* + λ, . . .,ρT

* + λ] and [β1
*–λ, . . .,βN

*–λ] for all λ. Thus, 
we can set ρ1

* = 0 in equations (208) and drop the first equa-
tion in (208) and use linear algebra to find a unique solution 
for the resulting equations.

Define the estimated price levels πt
* and quality adjustment 

factors αn
* by definitions (203). The weighted TPD price level 

for period t is defined as pWTPD
t ≡ πt

* for t = 1, . . .,T. Substi-
tute these definitions into equations (208) and (209). After 
some rearrangement, equations (208) and (209) become the 
following ones:

πt
* = exp[Σn∈S(t) stnln(ptn/αn

*)] ≡ pWTPD
t; 

 t = 1, . . .,T; (210)
αn

* = exp[Σt∈S*(n) stnln(ptn/πt
*)/Σt∈S*(n) stn]; 

 n = 1, . . .,N. (211)

Once the estimates for πt and αn have been computed, we 
have the usual two methods for constructing period-by-
period price and quantity levels, Pt and Qt for t = 1, . . .,T; 
see (205) and (206).179

The new price levels πt
* defined by (210) are functions of 

the T price vectors, p1,  .  .  .,pT, and the T quantity vectors 
q1, . . .,qT. If there are missing products, the corresponding 
prices and quantities, ptn and qtn, are temporarily set equal 
to 0. The new price level functions defined by (210) have the 
same axiomatic properties (i)–(iv), which were noted earlier 
in this section.180 The present price level functions take the 
economic importance of the products into account and thus 
are a clear improvement over their unweighted counter-
parts, which were discussed in Section 14. If the estimated 
errors etn

* ≡ lnptn – ρt
* – βn

* that implicitly appear in the 
weighted least squares minimization problem (207) turn out 
to be small, then the underlying exact model, ptn = πtαn for t 
= 1, . . .,T, n∈S(t), provides a good approximation to reality, 

179 The counterparts to definitions (205) are now: Pt* ≡ πt
* = Πn∈S(t) 

exp[stnln(ptn/αn
*)], a share-weighted geometric mean of the quality-

adjusted prices present in period t, and Qt* ≡ Σn∈S(t)ptnqtn/P
t* for t = 1, . . .,T. 

The counterparts to equations (206) are now: Qt** ≡ Σn∈S(t) αn
*qtn and Pt** ≡ 

Σn∈S(t)ptnqtn/Q
t** = Σn∈S(t)ptnqtn/Σn∈S(t) αn

*qtn = Σn∈S(t)ptnqtn/Σn∈S(t) αn
* (ptn)

–1ptnqtn 
= [Σn∈S(t) stn(ptn/αn

*)–1]–1, a share-weighted harmonic mean of the quality-
adjusted prices present in period t. Thus, using Schlömilch’s inequality 
(see Hardy, Littlewood, and Polyá (1934, 26)), we see that Pt** ≤ Pt*, which 
in turn implies that Qt** ≥ Qt* for t = 1, . . .,T. This algebra is was devel-
oped by de Haan (2004b, 2010) and de Haan and Krsinich (2018, 763). 
If the variance of prices increases over time, it is likely that Pt**/P1** will 
be less than Pt*/P1*, and vice versa, if the variance of prices decreases; 
see de Haan and Krsinich (2018, 771) and Diewert (2018, 10) on this last 
point. Note that the work of de Haan and Krsinich provides us with a 
concrete formula for the difference between Pt* and Pt**. The model used 
by de Haan and Krsinich is a more general hedonic regression model 
which includes the time dummy model used in the present section as a 
special case.
180 However, we would like the Pt* to satisfy a strong identity test as noted 
above; that is, we would like Pt* to equal Pr* if the prices in periods t and r 
are identical. The Pt* equal to the πt

* where πt
* are defined by (210) do not 

satisfy this strong identity test for price levels. However, the Qt** defined 
as Σn∈S(t) αn

*qtn do satisfy the strong identity test for quantities and this 
suggests that the Pt**, Qt** decomposition of period t sales may be a better 
choice than the Pt*, Qt* decomposition.

and thus this weighted TPD regression model can be used 
with some confidence.

The solution to the weighted least squares minimization 
problem defined by (207), πt

* for t = 1, . . .,T and αn
* for n = 

1, . . .,N can be used to define (neutral) reservation prices for 
missing observations. For any missing price for product n in 
period t, define ptn

* as follows:

 ptn
* ≡ πt

*αn
*; n∉S*(t). (212)

In what follows, we will use the prices defined by (212) to 
replace the 0 prices in the vectors pt for t = 1, . . .,T, so with 
the use of these imputed prices, all price vectors pt have posi-
tive components. Of course, the quantities qtn and the shares 
stn that correspond to the imputed prices defined by (212) are 
still equal to 0.

The weighted TPD price level functions pWTPD
t defined 

by (210) have the same unsatisfactory property that their 
unweighted counterparts had in previous sections: a 
product that is available only in one period out of the 
T periods has no inf luence on the aggregate price levels 
pWTPD

t ≡ πt
*.181 This means that the price of a new product 

that appears in period T has no inf luence on the price 
levels, and thus the benefits of an expanding consump-
tion set are not measured by this multilateral method. 
This is a significant shortcoming of this method. How-
ever, on the positive side of the ledger, this method does 
satisfy the strong identity test for the companion quan-
tity index, a property that it shares with the GK multilat-
eral method.182

Once the WTPD price levels pWTPD
t have been defined,183 

the weighted TPD price index for period t (relative to period 
1) is defined as PWTPD

t ≡ pWTPD
t/pWTPD

1 and the logarithm of 
PWTPD

t is equal to the following expression:

lnPWTPD
t = Σn=1

N stn(lnptn – βn
*) – Σn=1

N s1n(lnp1n – βn
*); 

 t = 1, . . .,T. (213)

With this expression for lnPWTPD
t in hand, we can compare 

lnPWTPD
t to lnPT

t. Using (213) and definition (40),184 we can 
derive the following expressions for t = 1,2, . . .,T:

lnPWTPD
t – lnPT

t = ½Σn=1
N (stn – s1n)(lnptn – βn

*)  
  + ½Σn=1

N (stn – s1n)(lnp1n – βn
*). (214)

181 See Diewert (2004) for a proof or modify the proof in Section 16.
182 Both methods are basically quality-adjusted unit value methods. 
Thus, if the products under consideration are highly substitutable, then 
both methods may give satisfactory results. From the viewpoint of the 
economic approach to index number theory, the GK method is consis-
tent with utility-maximizing behavior if purchasers have either Leontief 
(no substitution) preferences or linear preferences (perfect substitution 
preferences after quality adjustment). The weighted TPD method is con-
sistent with utility-maximizing behavior if purchasers have either Cobb–
Douglas preferences or linear preferences. Note that Cobb–Douglas 
preferences are not consistent with situations where there are new and 
disappearing products.
183 See (210).
184 If product n in period t is missing, we use the imputed price ptn

* defined 
by (212) as the positive reservation price for this observation in the defini-
tions for both PWTPD

t and PT
t, which appear in equations (213) and (214). 

Thus, the summations in (213) and (214) are over all N products.
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Since Σn=1
N (stn – s1n) = 0 for each t, the two sets of terms on 

the right-hand side of equation t in (214) can be interpreted 
as normalizations of the covariances between the vectors  
st – s1 and lnpt – β* for the first set of terms and between  
st – s1 and lnp1 – β* for the second set of terms. If the products 
are highly substitutable with each other, then a low ptn will 
usually imply that lnptn is less than the average log price for 
product n, βn

*, and it is also likely that stn is greater than s1n 
so that (stn – s1n)(lnptn – βn

*) is likely to be negative. Hence, the 
covariance between st – s1 and lnpt – β* will tend to be nega-
tive. On the other hand, if p1n is unusually low, then lnp1n will 
be less than the average log price βn

*, and it is likely that s1n is 
greater than stn so that (stn – s1n)(lnp1n – βn

*) is likely to be posi-
tive. Hence, the covariance between st – s1 and lnp1 – β* will 
tend to be positive. Thus, the first set of terms on the right-
hand side of (214) will tend to be negative, while the second 
set will tend to be positive. If there are no divergent trends 
in log prices and sales shares, then it is likely that these two 
terms will largely offset each other and under these condi-
tions PWTPD

t is likely to approximate PT
t reasonably well. 

However, with divergent trends and highly substitutable 
products, it is likely that the first set of negative terms will 
be larger in magnitude than the second set of terms, and 
thus PWTPD

t is likely to be below PT
t under these conditions.185 

But if some product n is not available in period 1 so that s1n = 
0 and if the logarithm of the imputed price for this product 
p1n

* defined by (212) is greater than βn
*, then it can happen 

that the second covariance term on the right-hand side of 
(214) becomes very large and positive so that it overwhelms 
the first negative covariance term, and thus PWTPD

t ends up 
above PT

t rather than below it.
To sum up, the weighted time product indices can be 

problematic in the elementary index context when price 
and quantity data are available as compared to a fixed-base 
superlative index (that uses reservation prices):

• If there are no missing products and the products are 
strong substitutes, the WTPD indices will tend to have a 
downward bias.

• If there are no missing products and the products are 
weak substitutes, the WTPD indices will tend to have an 
upward bias.

• If there are missing products in period 1, the relationship 
between the WTPD indices and the corresponding Törn-
qvist–Theil indices is uncertain.

• If there are missing products, the weighted TPD price lev-
els and price indices do not depend on reservation prices 
(which could be regarded as an advantage of the WTPD 
indices for price statisticians who want to avoid making 
imputations).

185 If the products are not highly substitutable so that when a price goes up, 
the quantity purchased goes down but the expenditure share also goes up, 
then the inequalities are reversed; that is, if there are no missing products 
and long-term trends in prices and quantities, then PWTPD

t is likely to be 
above PT

t. If preferences of purchasers are Cobb and Douglas, then expen-
diture shares will remain constant over time, and PWTPD

t will equal PT
t for  

t = 1, . . .,T.

18. Linking Based on Relative Price 
Similarity
The GEKS multilateral method treats each set of price 
indices using the prices of one period as the base period as 
being equally valid, and hence an averaging of the result-
ing parities seems to be appropriate under this hypothesis. 
Thus, the method is “democratic” in that each bilateral 
index number comparison between any two periods gets 
the same weight in the overall method. However, it is not 
the case that all bilateral comparisons of price between 
two periods are equally accurate: If the relative prices in 
periods r and t are very similar, then the Laspeyres and 
Paasche price indices will be very close to each other, 
and hence it is likely that the “true” price comparison 
between these two periods (using the economic approach 
to index number theory) will be very close to the bilat-
eral Fisher index that compares prices between the two 
periods under consideration. In particular, if the two price 
vectors are exactly proportional, then we want the price 
index between these two periods to be equal to the fac-
tor of proportionality and the direct Fisher index between 
these two periods satisfies this proportionality test. On the 
other hand, the GEKS index comparison between the two 
periods would not in general satisfy this proportionality 
test.186 Also if prices are identical between two periods 
but the quantity vectors are different, then GEKS price 
index between the two periods would not equal unity in 
general.187 These considerations suggest that a more accu-
rate set of price indices could be constructed if initially a 
bilateral comparison was made between the two periods 
that have the most similar relative price structures. At the 
next stage of comparison, look for a third period that had 
the most similar relative price structure to the first two 
periods and link in this third country to the comparisons 
of volume between the first two countries, and so on. At 
the end of this procedure, a pathway through the periods 
in the window would be constructed that minimized the 
sum of the relative price dissimilarity measures. In the 
context of making comparisons of prices across countries, 
this method of linking countries with the most similar 
structure of relative prices has been pursued by Hill (1997, 
1999a, 1999b, 2009), Hill and Timmer (2006), Diewert 
(2009, 2013, 2018) and Hill et al. (2017). Hill (2001, 2004) 
also pursued this similarity of relative prices approach in 
the time series context. Our conclusion is that similarity 
linking using Fisher ideal price indices as the bilateral 
links is an attractive alternative to GEKS.

A key aspect of this methodology is the choice of the 
measure of similarity (or dissimilarity) of the relative price 
structures of two countries. various measures of the simi-
larity or dissimilarity of relative price structures have been 
proposed by Allen and Diewert (1981), Kravis, Heston, and 

186 If both prices and quantities are proportional to each other for the two 
periods being compared, then the GEKS price index between the two 
 periods will satisfy this (weak) proportionality test. However, we would 
like the GEKS price index between the two periods to satisfy the strong 
proportionality test; that is, if the two price vectors are proportional (and 
the two quantity vectors are not necessarily proportional to each other), 
then we would like the GEKS price index between the two periods to 
equal the factor of proportionality.
187 See Zhang, Johansen, and Nygaard (2019, 689) on this point.
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Summers (1982, 104–6), Hill (1997, 2009), Sergeev (2001, 
2009), Hill and Timmer (2006), Aten and Heston (2009), and 
Diewert (2009, 2021a).

In this section, we will discuss the following weighted 
asymptotic linear index of relative price dissimilarity, ΔAL, 
suggested by Diewert (2009):188

ΔAL(pr,pt,qr,qt) ≡ Σn=1
N ½(srn + stn){(ptn/PF(pr,pt,qr,qt)prn)  

  + (PF(pr,pt,qr,qt)prn/ptn) – 2}, (215)

where PF(pr,pt,qr,qt) ≡ [pt·qrpt·qt/pr·qr pr·qt]1/2 is the bilateral 
Fisher price index linking period t to period r, and pr, qr, 
sr, and pt, qt, st are the price, quantity, and share vectors 
for periods r and t, respectively. This measure turns out to 
be nonnegative, and the bigger ΔAL(pr,pt,qr,qt) is, the more 
dissimilar are the relative prices for periods r and t. Note 
that if pt = λpr for some positive scalar so that if prices are 
proportional for the two periods, then ΔAL(pr,pt,qr,qt) = 
0. Note also that all prices need to be positive in order for 
ΔAL(pr,pt,qr,qt) to be well defined. Thus, if there are missing 
products in one of the two periods being compared, reser-
vation prices need to be estimated for the missing product 
prices in each period.189 Alternatively, inflation-adjusted 
carry-forward or carry-backward prices can be used to fill 
in the missing prices.190

The method for constructing similarity-linked Fisher 
price indices in real time using the above measure of rela-
tive price similarity proceeds as follows. Set the similarity-
linked price index for period 1, PAL

1 ≡ 1. The period 2 index 
is set equal to PF(p1,p2,q1,q2), and the Fisher index linking 
the period 2 prices to the period 1 prices. Thus, PAL

2 ≡ PF(p1,
p2,q1,q2)PAL

1. For period 3, evaluate the dissimilarity indices 
ΔAL(p1,p3,q1,q3) and ΔAL(p2,p3,q2,q3) defined by (215). If ΔAL 
(p1,p3,q1,q3) is the minimum of the two numbers, ΔAL(p1,p3, 
q1,q3) and ΔAL(p2,p3,q2,q3), define PAL

3 ≡ PF(p1,p3,q1,q3)PAL
1. 

If ΔAL(p2,p3,q2,q3) is the minimum of these two numbers, 
define PAL

3 ≡ PF(p2,p3,q2,q3)PAL
2. For period 4, evaluate the 

dissimilarity indices ΔAL(pr,p4,qr,q4) for r = 1,2,3. Let r* 
be such that ΔAL(pr*,p4,qr*,q4) = minr {ΔAL(pr,p4,qr,q4); r = 
1,2,3}.191 Then, define PAL

4 ≡ PF(pr*,p4,qr*,q4)PAL
r*. Continue 

this process in the same manner; that is, for period t, let 
r* be such that ΔAL(pr*,pt,qr*,qt) = minr {ΔAL(pr,pt,qr,qt); r 
= 1,2,  .  .  .,t–1}, and define PAL

t ≡ PF(pr*,pt,qr*,qt)PAL
r*. This 

procedure allows for the construction of similarity-linked 
indices in real time.

Diewert (2018) implemented the above procedure with a 
retail outlet scanner data set and compared the resulting 
similarity-linked index, PAL

t, to other indices that are based 
on the use of superlative indices and the economic approach 
to index number theory. The data set he used is listed in 
Section A.7.1 of the annex, and his results are listed in the 
annex along with some additional results. The comparison 

188 The discussion paper version of Diewert (2009) appeared in (2002).
189 See Section 14 of Diewert (2022a) for additional information on res-
ervation prices.
190 See the discussion in the following section. Section A.7.6 of the annex 
compares PAL

t computed using reservation prices and PALC
t which uses 

inflation-adjusted carry-forward/backward prices for the missing prod-
ucts. For our particular empirical example, there were small differences 
in the resulting indices.
191 If the minimum occurs at more than one r, choose r* to be the earliest 
of these minimizing periods.

indices in his study were the fixed-base Fisher and Törnqvist 
indices, PF

t and PT
t, and the multilateral indices, PGEKS

t and 
PCCDI

t. The sample means for these five indices, PAL
t, PF

t, PT
t, 

PGEKS
t, and PCCDI

t, were 0.97069, 0.97434, 0.97607, 0.97417, 
and 0.97602. Thus, on average, PAL

t was about 0.5 percent-
age points below PT

t and PCCDI
t and about 0.35 percentage 

points below PF
t and PGEKS

t. These are fairly significant 
differences.192

What are some of the advantages and disadvantages of 
using PAL

t, PF
t, PT

t, PGEKS
t, or PCCDI

t as target indices for an ele-
mentary index in a CPI? All of these indices are equally con-
sistent with the economic approach to index number theory. 
The problem with the fixed-base Fisher and Törnqvist indices 
is that they depend too heavily on the base period. Moreover, 
sample attrition means that the base must be changed fairly 
frequently, leading to a potential chain drift problem. The 
GEKS and CCDI indices also suffer from problems associ-
ated with the existence of seasonal products: It makes little 
sense to include bilateral indices between all possible periods 
in a window of periods in the context of seasonal commodi-
ties. The similarity-linked indices address both the problem 
of sample attrition and the problem of seasonal commodi-
ties. Moreover, Walsh’s multiperiod identity test is always 
satisfied using this methodology. Finally, there is no need to 
choose a window length and use a rolling window approach 
to construct the time series of indices if the price similarity 
linking method is used: The window length simply grows 
by one period as the data for an additional period becomes 
available.193

The procedure for constructing the time series of similarity- 
linked Fisher price indices, PAL

t, is a real-time procedure; 
that is, there is no preliminary time period that is required 
in order to produce the final time series of aggregate price 
levels. However, the resulting pattern of bilateral links may 
not be “optimal” in the sense that the most similar sets of 
relative prices are linked to one another in the first year or 
so. This is apparent when the price level PAL

2 is constructed: 
It is simply equal to the Fisher index linking period 2 to 
1; there are no other choices for a linking partner. A “bet-
ter” set of bilateral links could potentially be obtained if a 
final set of bilateral links for the index could be obtained by 
forming a spanning tree of comparisons, say, for the first year 
of data.194 Thus, a year of data on prices and quantities is 
used to form a set of bilateral links that minimizes the 
sum of the associated dissimilarity measures that link the 
observations for the first year. This leads to a modified set of 
price levels for the first year, say PALM

t for t in the first year. 
For months t that follow after the first “training” year, the 
bilateral links are the same as indicated earlier, but because 
the levels in the first year may have changed, the modified 
price levels PALM

t for months t that follow after the first year 
may differ from the real-time price levels PAL

t described ear-
lier. However, the trends in the two series will be similar. 

192 The final values for the five indices (PAL
t, PF

t, PT
t, PGEKS

t, and PCCDI
t) 

were as follows: 0.92575, 0.95071, 0.95482, 0.94591, and 0.94834. Thus PAL
t 

ended up significantly below the other indices. PT
t is listed in Table 1.4 and 

the remaining indices are listed in Table 1.6 of the annex.
193 In practice, as the number of periods grows and the structure of the econ-
omy evolves, it will become increasingly unlikely that a current observation 
will be linked to a distant observation. Thus eventually, it becomes practical 
to move to a rolling window framework with a large window length.
194 See Hill (2001, 2004) for explanations of how this can be done.
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In Section A.7.5 of the Annex, we calculate both PAL
t and 

PALM
t for the data set listed in Section A1 of the Annex. 

There is little difference in these two series for our example 
data set, and in fact, both series end up at the same point.195 
Normally, we do not expect much difference between the 
original real-time method and the modified method, but 
the modified method is useful in the context of constructing 
price indices for strongly seasonal commodities because it 
will tend to reduce the magnitude of seasonal fluctuations.

Similarity-linked price indices suffer from at least two 
problems:

• A measure of relative price dissimilarity must be chosen, 
and there may be many “reasonable” choices for the mea-
sure of dissimilarity. These different choices can lead to 
different indices, which in turn can lead users to question 
the usefulness of the method.

• The measures of weighted price dissimilarity suggested 
by Diewert (2009) require that all prices in the compari-
son of prices between two periods be positive.

These problems will be addressed in Section 20, where an 
alternative measure of price dissimilarity that does not 
require strictly positive prices will be defined. Using the 
scanner data set listed in Section A1 of the Annex, this new 
measure of price (and quantity) dissimilarity generates indi-
ces PSP

t that are very similar to the PAL
t indices discussed in 

the present section.
It is a difficult econometric exercise to estimate reser-

vation prices, and so a simpler method may be required 
in order to construct imputed prices for missing products 
in a scanner data set. In the following section, a standard 
method used by price statisticians is explained.

19. Inflation-Adjusted Carry-
Forward and Carry-Backward 
Imputed Prices
When constructing elementary indices, statistical agencies 
often encounter situations where a product in an elemen-
tary index disappears. At the time of disappearance, it is 
unknown whether the product is temporarily unavailable, 
so the missing price could be set equal to the last available 
price; that is, the missing price could be replaced by a carry-
forward price. Thus, carry-forward prices could be used in 
place of reservation prices, which are much more difficult to 
construct. This procedure is, in general, not a recommended 
one. A much better alternative to the use of a carry-forward 
price is an inflation-adjusted carry-forward price; that is, the 
last available price is escalated using the maximum overlap 
index between the period when the product was last avail-
able and the current period where an appropriate index 

195 See Table 1.7 and Figure A7.9 in the Annex. Although PAL
t and PALM

t 
end up at the same level, the mean of the PAL

t was 0.97069 and the mean of 
the PALM

t was 0.96437. The fluctuations in the PALM
t series were somewhat 

smaller. This tendency for the modified series to be a bit smoother than 
the corresponding real-time series becomes important in the context of 
constructing indices for strongly seasonal commodities. In this context, 
the use of the modified similarity linking method is recommended in 
order to reduce seasonal fluctuations.

number formula is used.196 In this section, we use inflation-
adjusted carry-forward and carry-backward prices in place 
of the reservation prices for our scanner data set and com-
pare the resulting indices with our earlier indices that used 
the econometrically estimated reservation prices that were 
constructed by Diewert and Feenstra (2017) for the scanner 
data set listed in the annex.

Suppose we have price and quantity data for N prod-
ucts for T periods as usual. Let pt ≡ [pt1,  .  .  .,ptN] and qt ≡ 
[qt1, . . .,qtN] denote the period t price and quantity vectors. 
If product n is not present in period t, define (for now) the 
corresponding ptn and qtn to be 0. Define S(t) to be the set of 
products that are present in period t; that is, S(t) ≡ {n: ptn > 
0}.197 Suppose that we want to make a Fisher index number 
comparison between periods r and t where r < t. The maxi-
mum overlap set of products that are present in periods r and 
t is the intersection set, S(r)∩S(t). We assume that this set is 
nonempty. Define the vectors pr*, pt*, qr*, qt* as the vectors 
that have only the products that are present in periods r and 
t. Define the maximum overlap Fisher price index for period t 
relative to period r as PFM(pr*,pt*,qr*,qt*). If there are products 
present in period r that are not present in period t, define 
the inflation-adjusted carry-forward price for such products 
as follows:

 ptn ≡ prnPFM(pr*,pt*,qr*,qt*); n∈S(r); n∉S(t). (216)

The corresponding quantities qtn remains at their initially 
defined 0 levels. If there are products present in period t 
that are not present in period r, define the inflation-adjusted 
carry-backward price for such products as follows:

 prn ≡ ptn/PFM(pr*,pt*,qr*,qt*); n∈S(t); n∉S(r). (217)

The corresponding quantities qrn remain at their initial 0 
levels.

Using these definitions, we will have new price and quan-
tity vectors that have well-defined price and quantity vec-
tors pr**, pt**, qr**, qt** that have positive prices for products 
that belong to the union set of products that are present in 
both periods r and t, S(r)∪S(t). Denote the Fisher index for 
period t relative to period r over this union set of products 
as PF

*(pr**,pt**,qr**,qt**). This index can be used as the Fisher 
index linking periods r and t. Thus, the carry-forward 
and carry-backward prices defined by (216) and (217) can 
replace econometrically estimated reservation prices, and 
the similarity-linked price indices defined in the previous 
section can be calculated using the Fisher linking indices 
PF

*(pr**,pt**,qr**,qt**) in place of the PF(pr,pt,qr,qt) used in the 
previous section. Note that the components of the period t 
price vector pt** will be equal to the components of the origi-
nal period t price vector pt except for components that cor-
respond to missing products.

196 Triplett (2004, 21–29) calls these two methods for replacing missing 
prices the link to show no change method and the deletion method. See 
section 14 in Diewert (2022a) and Diewert, Fox and Schreyer (2017) for 
a more extensive discussion on the problems associated with finding 
replacements for missing prices.
197 Recall that this notation was used in previous sections.
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It should be emphasized that, usually, it is important to 
make the index number adjustments to the carry-forward 
and carry-backward prices defined by (216) and (217) 
instead of simply carrying existing prices from one period to 
another period. Failure to make these index number adjust-
ments could lead to substantial biases if substantial general 
inflation (or deflation) is present. From the perspective of 
the economic approach to index number theory, it is likely 
that the use of inflation-adjusted carry-backward prices in 
place of estimated reservation prices will generally lead to 
an upward bias in the linking index since the “true” reserva-
tion prices are likely to be higher than the adjusted prices 
in order to induce consumers to purchase zero units of the 
unavailable products in the prior period. Of course, the bias 
in using carry-forward prices for disappearing products 
works in the opposite direction.

In Section A.7.6 of the annex, we used our scanner data to 
compute the GEKS, Fisher, chained Fisher and the real-time 
similarity-linked index explained in the previous section 
which used the ΔAL dissimilarity measure defined by (215). 
We also calculated the real-time predicted share similarity-
linked indices that use the ΔSP dissimilarity measure that 
will be defined by (218) in the following section. Denote the 
resulting period t index by PSP

t. There were missing products 
in our scanner data set. As noted above, the missing prices 
were initially set equal to reservation prices calculated using 
econometrics. Denote these indices for period t (which used 
reservation prices) by PGEKS

t, PF
t, PFCH

t, PAL
t, and PSP

t. The 
same five indices were recomputed using inflation-adjusted 
carry-forward and carry-backward prices for the missing 
product prices.198 Denote the resulting period t indices by 
PGEKSC

t, PFC
t, PFCHC

t, PALC
t, and PSPC

t. As noted earlier, it turns 
out that the GK index (PGK

t) and the weighted TPD index 
(PWTPD

t) do not depend on the values of the missing prices 
and so these indices do not have to be recomputed using 
carry-forward prices in place of reservation prices. PGK

t and 
PWTPD

t are listed in Table 1.6 in Section A.7.5 of the annex. 
The series PAL

t, PALC
t, PSP

t, PSPC
t, PGEKS

t, PGEKSC
t is listed in 

Table 1.8 in Section A.7.6 of the annex along with the Fisher 
and chained Fisher indices using reservation prices, denoted 
by PF

t and PFCH
t, and using carry-forward prices, denoted by 

PFC
t and PFCHC

t.
A summary of the results using econometrically esti-

mated reservation prices versus using carry-forward and 
carry-backward prices for the missing products is as follows: 
for our example, there was very little difference between the 
resulting index pairs using reservation prices versus using 
inflation-adjusted carry-forward prices. This is likely due to 
the fact that only 20 out of 741 prices were missing; that is, 
only 2.7 percent of the sample had missing products. (0.97542) 
and PFCH

A = 1.0589 (1.0589). Our tentative conclusion here 
is that for products that are highly substitutable, the use of 
inflation-adjusted carry-forward and carry-backward prices for  
missing products will probably generate weighted indices that 
are comparable to their counterparts that use econometri-
cally estimated reservation prices. For products which are 
not highly substitutable, it is likely that reservation prices 

198 Inflation-adjusted carry-forward prices were used to compute prices 
for missing products except when a product was missing in period 1. In 
the latter case, inflation-adjusted carry backward prices were computed 
for the missing products.

will be higher than their inflation-adjusted carry-forward 
prices, and thus it is likely that the indices will differ in a 
more substantial manner. This conclusion is only tenta-
tive, and further research on the use of reservation prices 
is required.

20. Linking Based on Relative Price 
and Quantity Similarity
A problem with the measure of relative price dissimilar-
ity ΔAL(pr,pt,qr,qt) defined by (215) is that it requires that all 
prices in the two periods being compared must be positive. 
Thus, if there are missing prices for some products present 
in one of the two periods but not in the other period, then 
the ΔAL dissimilarity measure is not well defined.199

The following predicted share measure of relative price dis-
similarity, ΔSP(pr,pt,qr,qt), is well defined even if some prod-
uct prices in the two periods being compared are equal to 0:

ΔSP(pr,pt,qr,qt) ≡ Σn=1
N [stn – (prnqtn/p

r·qt)]2  
  + Σn=1

N [srn – (ptnqrn/p
t·qr)]2, (218)

where stn ≡ ptnqtn/p
t·qt is the share of product n in period 

t expenditures on the N products for t = 1,  .  .  .,T and n = 
1,  .  .  .,N. We require that pr·qt > 0 for r = 1,  .  .  .,T and t = 
1, . . .,T in order for ΔSP(pr,pt,qr,qt) to be well defined for any 
pair of periods, r and t. Since the two summations on the 
right-hand side of (218) are sums of squared terms, we see 
that ΔSP(pr,pt,qr,qt) ≥ 0.

The first set of N terms on the right-hand side of (218) is 
Σn=1

N [stn – (prnqtn/p
r·qt)]2. Note that the terms prnqtn/p

r·qt for n 
= 1, . . .,N are (hybrid) shares; that is, these terms are non-
negative and they sum to unity so that Σn=1

N (prnqtn/p
r·qt) = 1. 

These shares use the prices of period r and the quantities of 
period t. They can be regarded as predictions for the actual 
period t shares, stn, using the prices of period r but using the 
quantities of period t. A similar interpretation applies to the 
second set of N terms on the right-hand side of (218); the 
hybrid shares that use the prices of period t and the quanti-
ties of period r, ptnqrn/p

t·qr, can be regarded as predictors for 
the actual period r shares, srn. Since each share stn in the first 
set of terms is already weighted by its economic importance, 
there is no need for any further weighting of the first set of 
N squared terms in the summation to account for economic 
importance. The same analysis applies to the second set 
of N sum of squared terms; each term in the summation is 
already weighted by its economic importance.

If prices in period t are proportional to prices in period r 
(so that pt = λtp

r for some scalar λt > 0 or pr = λrp
t for some 

λr > 0), then it is easy to verify that ΔSP(pr,pt,qr,qt) defined by 
(218) is equal to 0.

199 Diewert (2009, 205–6) recommended two other measures of price dis-
similarity, but they also have the problem of not being well defined if 
some product prices are equal to 0. These alternative measures are the 
weighted log quadratic measure of relative price dissimilarity, ΔPLQ(p1,p2, 
q1,q2) ≡ Σn=1

N (1/2)(sn
1 + sn

2)[ln(pn
2/pn

1P(p1,p2,q1,q2))]2, and the weighted 
asymptotically quadratic measure of relative price dissimilarity, Σn=1

N (1/2)
(sn

1 + sn
2){[(pn

2/pn
1P(p1,p2,q1,q2) – 1]2 + [(P(p1,p2,q1,q2)pn

1/pn
2) – 1]2} ≡ ΔWAQ 

(p1,p2,q1,q2), where P(p1,p2,q1,q2) is any superlative bilateral price index for-
mula. It can be shown that ΔPLQ(p1,p2,q1,q2) approximates ΔAL(pr,pt,qr,qt) to 
the second order around any point where p1 = p2 >> 0N and q1 = q2 >> 0N.
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Now consider the implications on pt and pr if ΔSP(pr,pt,qr,qt) 
= 0. We need to consider a number of cases, depending on 
assumptions about the positivity of the prices and quantities 
in periods r and t. In all cases listed here, it is assumed that 
pr·qt > 0 for r = 1, . . .,T and t = 1, . . .,T.

Case (i): ΔSP(pr,pt,qr,qt) = 0 and qt >> 0N or qr >> 0N; that 
is, assume that all components of the period t or period r 
quantity vectors are positive. If qt >> 0N and ΔSP(pr,pt,qr,qt) 
defined by (218) is 0, then the first sum of squared terms, 
Σn=1

N [stn – (prnqtn/p
r·qt)]2 = 0, which implies that ptnqtn = (pt·qt/

pr·qt)prnqtn which in turn implies that ptn = (pt·qt/pr·qt)prn since 
qtn > 0 for n = 1, . . .,N. Thus, pt = λtrp

r, where λtr ≡ pt·qt/pr·qt > 0, 
which implies that the period t price vector is proportional 
to the period r price vector. If qr >> 0N and ΔSP(pr,pt,qr,qt) is 
0, then the second set of terms on the right-hand side of (218) 
is equal to zero. Thus, we must have prn = (pr·qr/pt·qr)ptn for  
n = 1, . . .,N. Thus, pr = λrtp

t, where λrt ≡ pr·qr/pt·qr > 0, which 
in turn implies that the period r price vector is proportional 
to the period t price vector.

Case (ii): ΔSP(pr,pt,qr,qt) = 0 and qr + qt >> 0N so that each 
product is present in at least one of the two periods, peri-
ods r and t, whose prices are being compared. We further 
assume that there is at least one product n* that is present in 
both periods being compared; that is, there exists an n* such 
that qrn* > 0 and qtn* > 0. Following the same type of argu-
ment that was pursued for Case (i), we find that our assump-
tions imply that ptn = λtrprn for n such that qtn > 0 and prn = 
λrtptn for n such that qrn > 0. For products n* that are present 
in both periods r and t, we have ptn* = λtrprn* and prn* = λrtptn*, 
and thus λtr = 1/λrt. These equalities imply that the period t 
price vector must be proportional to the period r price vec-
tor under our present assumptions.

Case (iii): Some products are not present in both periods r 
and t. This case can be reduced down to one of the previous 
cases for a new N* that just includes the products that are 
present in in at least one of periods r and t.

Using the above analysis, it can be seen that ΔSP(pr,pt,qr,qt) 
equals 0 if and only if the period r and t price vectors are 
proportional. If the price vectors are not proportional, 
then ΔSP(pr,pt,qr,qt) will be positive. A larger value for 
ΔSP(pr,pt,qr,qt) indicates a bigger deviation from price pro-
portionality. Thus, ΔSP(pr,pt,qr,qt) is a “reasonable” measure 
of bilateral relative price dissimilarity.

There are some aspects of the predicted price measure of 
relative price dissimilarity that require further discussion. 
When comparing the prices of periods r and t, suppose prod-
uct 1 is present in period t but not present in period r. More 
precisely, suppose qt1 > 0 (and pt1 > 0) but qr1 = 0. What is the 
corresponding price for the missing product in period r; that 
is, what exactly is pr1? Suppose we set pr1 = 0. For simplicity, 
suppose further that prices and quantities for products 2 to 
N are the same in periods r and t, so that prn = ptn and qrn = 
qtn for n = 2,3,  .  .  .,N. Under these conditions, we find that 
ΔSP(pr,pt,qr,qt) is equal to the following sum of squared terms:

ΔSP(pr,pt,qr,qt) ≡ Σn=1
N [stn – (prnqtn/p

r·qt)]2 + Σn=1
N [srn  

– (ptnqrn/p
t·qr)]2

= [st1 – 0]2 + Σn=2
N [stn – srn]

2 + Σn=1
N [srn – srn]

2

 = st1
2 + Σn=2

N [stn – srn]
2 > 0, (219)

where the inequality follows from our assumptions, st1 > 0. 
Thus, even if all prices and quantities are the same for prod-
ucts that are present in both periods r and t, the dissimilar-
ity measure defined by (218) will be positive as long as there 
are some products that are present in only one of the two 
periods being compared. Thus, if we set the prices for miss-
ing products equal to 0, then the predicted share measure 
of relative price dissimilarity will automatically register a 
positive measure; that is, the measure will penalize a lack of 
matching of prices if we set the prices for missing products 
equal to 0.

Hill and Timmer were the first to point out the impor-
tance of having a measure of relative price dissimilarity that 
would penalize a lack of matching of the prices in the two 
periods being compared:

In a survey of  the literature on reliability measures, 
Rao and Timmer (2003) concluded that the main 
problem of  existing measures, such as Hill’s (1999) 
Paasche-Laspeyres spread and Diewert’s (2002) 
class of  relative price dissimilarity measures, is that 
they fail to make adjustments for gaps in the data. 
Rao and Timmer drew a distinction between statis-
tical and index theoretic measures of  reliability. The 
former take a sampling perspective; bilateral com-
parisons based on a small number of  matched prod-
uct headings or a low coverage of  total expenditure 
or production (averaged across the two countries) 
are deemed less reliable. In addition to the standard 
statistical arguments regarding small samples and a 
low coverage not being representative, little overlap 
in the product headings priced by the two countries 
implies that they are very different and, by implica-
tion, inherently difficult to compare. Index theoretic 
measures, in contrast, focus on the sensitivity of  a 
bilateral comparison to the choice of  price index 
formula. Most of  the reliability measures proposed 
in the literature, including Hill’s (1999) Paasche-
Laspeyres spread and Diewert’s (2002) class of  rela-
tive price dissimilarity measures, are of  this type. 
Although these measures perform well when there 
are few gaps in the data, they can generate highly 
misleading results when there are many gaps. This is 
because they fail to penalize bilateral comparisons 
made over a small number of  matched headings.

Hill and Timmer (2006, 366)

These considerations suggest that the predicted share 
measure of relative price dissimilarity could be used under 
two different sets of circumstances when there are missing 
prices:

• Use carry-forward (or carry-backward) prices or reser-
vation prices for the missing prices and use the measure 
ΔSP(pr,pt,qr,qt) defined by (218) to link the observations. 
With a complete set of prices for each period in hand, 
the usual bilateral Fisher index could be used as the link-
ing index. This approach is consistent with the economic 
approach to index number theory.

• Do not estimate carry-forward or reservation prices for 
the missing price observations (and set the prices of the 
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missing products equal to 0) but still use ΔSP(pr,pt,qr,qt) to 
link the observations. In this case, the maximum overlap 
bilateral Fisher index is used as the linking index for each 
pair of links chosen by the similarity linking method. 
This approach is more consistent with the stochastic 
approach to index number theory used by Hill and Tim-
mer (2006).

Both strategies are illustrated for our empirical example in 
the annex.

Some additional properties of ΔSP(pr,pt,qr,qt) are as 
follows:

• Symmetry; that is, ΔSP(pr,pt,qr,qt) = ΔSP(pt,pr,qt,qr).
• Invariance to changes in the units of measurement.
• Homogeneity of degree 0 in the components of qrand qt; 

that is, ΔSP(pr,pt,λrq
r,λtq

t) = ΔSP(pr,pt,qr,qt) for all λr > 0 
and λt > 0.

• Homogeneity of degree 0 in the components of prand pt; 
that is, ΔSP(λrp

r,λtp
t,qr,qt) = ΔSP(pr,pt,qr,qt) for all λr > 0 

and λt > 0.
The relative price dissimilarity indices ΔSP(pr,pt,qr,qt) 
defined by (218) can be used in place of the dissimilarity 
indices ΔAL(pr,pt,qr,qt) defined by (215) in Section 18 in order 
to link together bilateral Fisher indices. Thus, set the new 
relative price similarity-linked Fisher price index for period 
1 equal to unity; that is, set PSP

1 ≡ 1. The period 2 index is set 
equal to PF(p1,p2,q1,q2), the Fisher index linking the period 
2 prices to the period 1 prices.200 Thus, PSP

2 ≡ PF(p1,p2,q1,q2)
PSP

1. For period 3, evaluate the dissimilarity indices ΔSP(p1, 
p3,q1,q3) and ΔSP(p2,p3,q2,q3) defined by (218). If ΔSP(p1,p3,q1, 
q3) is the minimum of these two numbers, define PSP

3 ≡ PF
(p1,p3,q1,q3)PPS

1. If ΔSP(p2,p3,q2,q3) is the minimum of these 
two numbers, define PSP

3 ≡ PF(p2,p3,q2,q3)PSP
2. For period 4, 

evaluate the dissimilarity indices ΔSP(pr,p4,qr,q4) for r = 
1,2,3. Let r* be such that ΔSP(pr*,p4,qr*,q4) = minr {ΔSP(pr,p4, 
qr,q4); r = 1,2,3}.201 Then define PSP

4 ≡ PF(pr*,p4,qr*,q4)PSP
r*. 

Continue this process in the same manner; that is, for period 
t, let r* be such that DSP(pr*,pt,qr*,qt) = minr {ΔSP(pr,pt,qr,qt);  
r = 1,2, . . .,t–1} and define PSP

t ≡ PF(pr*,pt,qr*,qt)PSP
r*. Again, 

as in Section 18, this procedure allows for the construction 
of similarity-linked indices in real time.

Using the scanner data listed in the annex, which included 
reservation prices for missing products, the new similarity-
linked price indices PSP

t were calculated and compared to 
the price similarity-linked price indices PAL

t that were defined 
in Section 18. The new measure of relative price dissimilar-
ity led to a different pattern of bilateral links: 7 of the 38 
bilateral links changed when the dissimilarity measure was 
changed from ΔAL(pr,pt,qr,qt) to ΔSP(pr,pt,qr,qt). However, the 
price indices generated by these alternative methods for link-
ing observations were very similar: The sample averages for 
PAL

t and PSP
t were 0.97069 and 0.97109, respectively, and the 

correlation coefficient between the two indices was 0.99681. 

200 In the present context, it is not necessary to have all prices positive 
in computing the Fisher indices. However, if the economic approach to 
index number theory is applied, then it is preferable to impute the miss-
ing prices. Missing quantities should be left at their 0 values using the 
economic approach.
201 If the minimum occurs at more than one r, choose r* to be the earliest 
of these minimizing periods.

Both indices ended up at 0.9275. Thus, even though the two 
measures of price dissimilarity generated a different pattern 
of bilateral links, the underlying indices PAl

t and PSP
t approxi-

mated each other very closely.
Both of the similarity-linked price indices PAL

t and PSP
t 

satisfy a strong identity test; that is, if pr = pt, then PAL
r = PAL

t 
and PSP

r = PSP
t. It is not necessary for qr to equal qt for this 

strong identity test to be satisfied. Thus, these similarity- 
linked indices have an advantage over the corresponding 
GEKS and CCDI multilateral indices in that in order to 
ensure that PGEKS

r = PGEKS
t and PCCDI

r = PCCDI
t, we require 

that pr = pt and qr = qt; that is, we require that quantities be 
equal for the two periods as well as prices.

The preceding material can be adapted to measuring the 
relative similarity of quantities in place of prices. The incen-
tive to use similarity of relative quantities is as follows: If 
the period r and t quantity vectors are proportional, then 
the Laspeyres, Paasche, and Fisher quantity indices will 
be equal to this factor of quantity proportionality. In par-
ticular, if qr = qt, then the Laspeyres, Paasche, Fisher, and 
any superlative quantity index will be equal to unity, with-
out requiring pt and pr to be equal. Thus, when the quantity 
vectors are proportional, it makes sense to define the price 
indices residually using the Product Test. Thus, define the 
following measure of relative quantity similarity between the 
quantity vectors for periods r and t as follows:202

ΔSQ(pr,pt,qr,qt) ≡ Σn=1
N [stn – (ptnqrn/p

t·qr)]2  
  + Σn=1

N [srn – (prnqtn/p
r·qt)]2. (220)

If the quantity vectors qr and qt are proportional to each 
other, then it is straightforward to verify that ΔSQ(pr,pt,qr,qt) 
= 0. On the other hand, if ΔSQ(pr,pt,qr,qt) = 0, then one 
can repeat Cases (i)–(iii), with prices and quantities inter-
changed, to show that qr and qt must be proportional to each 
other. Thus, ΔSQ(pr,pt,qr,qt) equals 0 if and only if the period 
r and t quantity vectors are proportional. If the quantity 
vectors are not proportional, then ΔSQ(pr,pt,qr,qt) will be 
positive. A larger value for ΔSQ(pr,pt,qr,qt) indicates a bigger 
deviation from quantity proportionality. An advantage of 
the measure of dissimilarity defined by (220) is that it can 
deal with qtn that are equal to 0.203

The new dissimilarity measure ΔSQ(pr,pt,qr,qt) can be used 
in place of ΔSP(pr,pt,qr,qt) in order to construct a new pat-
tern of bilateral Fisher price index links,204 leading to a new 
series of price indices, say PSQ

t for t = 1, . . .,T. The advantage 
of computing this sequence of price indices is that they will  
satisfy the following fixed basket test: if qr = qt ≡ q for r < t, 

202 It can be seen that ΔSQ(pr,pt,qr,qt) = ΔSP(qr,qt,pr,pt); that is, the role of 
prices and quantities is interchanged in the above measure of price dis-
similarity ΔSP(pr,pt,qr,qt).
203 If one takes the economic approach to index number theory and adopts 
the reservation price methodology due to Hicks (1940), then 0 prices can 
be avoided by using reservation prices or approximations to them such 
as inflation-adjusted carry-forward or carry-backward prices. However,  
0 quantities cannot be avoided, so we need measures of price and quantity 
dissimilarity that can accommodate 0 prices and quantities in a sensible way.
204 The implicit Fisher price index that is defined residually using the 
product test turns out to be equal to the usual Fisher price index that 
is defined directly as the geometric mean of the Laspeyres and Paasche 
price indices.
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then PSQ
t/PSQ

r = pt·q/pr·q. Note that this test does not require 
that pt = pr. Once the sequence of price indices PSQ

t has 
been constructed, the corresponding quantity levels can be 
defined as QSQ

t ≡ pt·qt/PSQ
t for t = 1, . . .,T. The fixed basket test 

for price indices translates into the following strong identity 
test for quantity indices: if qr = qt ≡ q for r < t, then QSQ

t/
QSQ

r = 1. Note that this test does not require that pr = pt. It 
can be seen that this is the advantage in using ΔSQ(pr,pt,qr,qt) 
as the dissimilarity measure in place of ΔSP(pr,pt,qr,qt): if 
ΔSQ(pr,pt,qr,qt) is used, then the strong identity test for quan-
tities will be satisfied by the resulting quantity indices, QSQ

t. 
On the other hand if ΔSP(pr,pt,qr,qt) is used as the measure of 
relative price dissimilarity, then the resulting price indices 
PSP

t will satisfy the strong identity test for prices.
It is possible to design a measure that combines relative 

price dissimilarity with relative quantity dissimilarity such 
that the resulting dissimilarity measure when used with 
Fisher price index bilateral links in the usual manner gives 
rise to a sequence of price indices (relative to period 1) PSPQ

t 
that will satisfy both the fixed basket test and the strong 
identity test for prices. Define the following index for rela-
tive price and quantity dissimilarity between periods r and t, 
ΔSPQ(pr,pt,qr,qt), as follows:205

ΔSPQ(pr,pt,qr,qt) ≡ min {ΔSP(pr,pt,qr,qt),  
 ΔSQ(pr,pt,qr,qt)}. (221)

Thus, if prices are equal to each other for periods r and t, then 
ΔSP(pr,pt,qr,qt) and ΔSPQ(pr,pt,qr,qt) will both equal 0, and our 
linking procedure will lead to equal price levels for periods r 
and t. On the other hand, if quantities are equal to each other 
for periods r and t, then ΔSQ(pr,pt,qr,qt) and ΔSPQ(pr,pt,qr,qt) 
will both equal 0, and our linking procedure will lead to 
equal quantity levels for periods r and t.206 Denote the price 
indices relative to period 1 generated using ΔSPQ(pr,pt,qr,qt) as 
the measure of dissimilarity by PSPQ

t for t = 1, . . .,T. Call this 
method the SPQ multilateral method. Thus, the similarity- 
linked indices that are generated using the dissimilarity mea-
sure defined by (221) will lead to index levels that satisfy both 
a strong identity test for prices and a strong identity test for 
quantities. Thus, if prices are identical in the two periods 
being compared (pr = pt), then the similarity-linked price 
levels for periods r and t are equal and if quantities are iden-
tical in the two periods being compared (qr = qt), then the 
similarity-linked quantity levels for periods r and t are equal. 
No of the other multilateral methods studied in this chapter 
have this very strong property. This property rules out chain 
drift both in the price and quantity levels.

205 This approach that combines measures of relative price dissimilar-
ity with measures of relative quantity dissimilarity was developed by 
Allen and Diewert (1981), Hill (2004), and Hill and Timmer (2006, 277). 
Hill and Timmer also noted that, usually, the relative price dissimilar-
ity measure ΔSP(pr,pt,qr,qt) will be smaller than the relative quantity dis-
similarity measure ΔSQ(pr,pt,qr,qt) in which case the combined measure 
ΔSPQ(pr,pt,qr,qt) reduces to the price measure ΔSP(pr,pt,qr,qt). Diewert and 
Allen (1981) found this to be the case with their empirical example, and 
we find the same to be true for our empirical example in the annex.
206 Thus, a strong version of Walsh’s multiperiod identity test will hold 
using this procedure; that is, if pr = pt, then the period r and t price levels 
will coincide and if qr = qt, then the period r and t quantity levels will 
coincide. Note that these tests will hold no matter how large the number 
of observations T is.

Using the scanner data listed in Annex 1, the new similarity- 
linked price indices that combine price and quantity simi-
larity linking, PSPQ

t, were calculated and compared to the 
price similarity-linked price indices PSP

t that were defined 
in the beginning of this section. For our sample data set, 
it turned out that predicted share quantity dissimilarity 
was always greater than the corresponding measure of pre-
dicted share price dissimilarity for each pair of observa-
tions in our sample. Under these conditions, it can be seen 
that ΔSPQ(pr,pt,qr,qt) will equal ΔSP(pr,pt,qr,qt) for all periods 
r and t. Thus, the same set of bilateral Fisher index links 
that were generated using ΔSP(pr,pt,qr,qt) were also gener-
ated using ΔSPQ(pr,pt,qr,qt) defined by (221) as the measure 
of dissimilarity. It turns out that it was always the case that 
ΔSQ(pr,pt,qr,qt) was much bigger than the corresponding 
ΔSP(pr,pt,qr,qt); that is, in all cases, relative quantity dissimi-
larity was much bigger than the corresponding relative price 
dissimilarity.207

In Section A.7.5 of  the annex, some variations on the 
multilateral indices PAL

t and PSP
t are considered and evalu-

ated using the price and quantity data for our empirical 
example. The indices PALM

t and PSPM
t use the same tables of 

dissimilarity measures that were used to define the bilateral  
links for the indices PAL

t and PSP
t but instead of  generating 

real-time indices, the new modified indices PALM
t and PSPM

t 
use the observations for the first year of  data in the sample 
to construct a spanning tree of  comparisons; that is, the 
Robert Hill (2001) methodology is used to construct the set 
of  bilateral comparisons for all months in the first year such 
that the resulting set of  bilateral comparisons minimizes the 
sum of  the dissimilarity measures for the chosen bilateral 
links. Once the set of  bilateral links for the first year has 
been determined, subsequent months are linked to previous 
months in real time. Thus, the bilateral links for PAL

t and 
PALM

t to the index levels of  previous months are the same for 
all months t beyond the first year. Similar comments apply 
to PSP

t and PSPM
t. It follows that the longer term trends in 

PAL
t and PALM

t will be the same as those in PSP
t and PSPM

t. 208

The indices PAL
t, PSP

t, PALM
t, and PSPM

t use reservation 
prices for the prices of missing products. These reservation 
prices were estimated econometrically in an earlier study  
by Diewert and Feenstra (2017). It is not easy to estimate 
reservation prices. Moreover, reservation prices rely on 
the applicability of the economic approach to index num-
ber theory and many assumptions are required in order to 
implement this approach. Thus, many statistical agencies 
will want to avoid the use of estimated reservation prices 
when constructing their CPIs. As was indicated in the dis-
cussion following equation (219), the predicted share mea-
sure of relative price dissimilarity ΔSP(pr,pt,qr,qt) defined by 
(218) is well defined even if the prices for missing products 
are set equal to 0.209 As was mentioned earlier in this sec-
tion, it is possible to use ΔSP(pr,pt,qr,qt) as a guide to linking 

207 Allen and Diewert (1981) and Hill and Timmer (2006) found the same 
pattern for their empirical examples using their measures of price and 
quantity dissimilarity.
208 For our empirical example, PAL

t, PSP
t, PALM

t, and PSPM
t all end up at the 

same level for the last month in our sample; see Table 1.7 and Figure A7.9 
in the annex.
209 This is not the case for the asymptotic linear measure of relative price 
dissimilarity ΔAL(pr,pt,qr,qt) defined by (215).
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the observations even if the prices of missing products are 
set equal to 0. We explain how alternative versions of PSP

t 
and PSPM

t can be produced when the price vectors pt have 0 
components for missing products in period t in the following 
paragraph.

In order to explain how the alternative version of PSP
t 

(denoted by PSP
t*), it is first necessary to calculate all pos-

sible maximum overlap bilateral Fisher indices for every 
pair of observations in the sample. Denote the maxi-
mum overlap Fisher price index for period t relative to 
the base period r as PFMO(pr,pt,qr,qt) for all observations r 
and t. When calculating PFMO(pr,pt,qr,qt), the usual inner 
products pr·qt = Σn=1

N prnqtn that are used to construct the 
Fisher index between periods r and t are replaced by sum-
mations over n, where n is restricted to products that are 
present in both periods r and t. These four restricted inner 
products can be constructed very efficiently using matrix 
operations. As noted above, the dissimilarity measure 
ΔSP(pr,pt,qr,qt) defined by (218) is well defined even if the 
prices for missing products are set equal to zero. Set the 
maximum overlap similarity-linked price index PSP

1* for 
period 1 equal to unity; that is, set PSP

1* ≡ 1. The period 
2 index PSP

2* is set equal to PFMO(p1,p2,q1,q2), the maxi-
mum overlap Fisher index linking the period 2 prices to 
the period 1 prices. Thus, PSP

2* ≡ PFMO(p1,p2,q1,q2)PSP
1*. For 

period 3, evaluate the dissimilarity indices ΔSP(p1,p3,q1, 
q3) and ΔSP(p2,p3,q2,q3) defined by (218). If ΔSP(p1,p3,q1,q3) 
is the minimum of these two numbers, define PSP

3* ≡ PFMO 
(p1,p3,q1,q3)PPS

1*. If ΔSP(p2,p3,q2,q3) is the minimum of these 
two numbers, define PSP

3* ≡ PFMO(p2,p3,q2,q3)PSP
2*. For period 

4, evaluate the dissimilarity indices ΔSP(pr,p4,qr,q4) for r = 
1,2,3. Let r* be such that ΔSP(pr*,p4,qr*,q4) = minr {ΔSP(pr,p4, 
qr,q4); r = 1,2,3}.210 Then define PSP

4* ≡ PFMO(pr*,p4,qr*,q4)
PSP

r*. Continue this process in the same manner; that 
is, for period t, let r* be such that ΔSP(pr°,pt,qr*,qt) = minr 
{ΔSP(pr,pt,qr,qt); r = 1,2, . . .,t–1} and define PSP

t* ≡ PFMO(pr*,
pt,qr*,qt)PSP

r*. The procedure for constructing PSP
t* is exactly 

the same as the procedure for constructing PSP
t except that 

maximum overlap Fisher indices are used in place of reg-
ular Fisher indices defined over all products in order to 
implement the “best” set of bilateral links that are used to 
link all of the observations in the sample up to the current 
period t.211

Recall the definition for the modified set of price levels 
PALM

t using the asypmtotic linear measure of relative price 
dissimilarity, which were similar to the PAL

t price levels 
except that a year of data on prices and quantities was used 
to form a set of bilateral links that minimizes the sum of 
the associated dissimilarity measures that link the obser-
vations for the first year. The same procedure can be used 
in the present context where PSP

t* can be replaced by the 
modified predicted share indices, PSPM

t*.212 For months t that 

210 If the minimum occurs at more than one r, choose r* to be the earliest 
of these minimizing periods.
211 In addition to using PFMO in place of PF, the other difference in the two 
procedures is the use of 0 prices for unavailable products in place of reser-
vation or carry-forward prices when evaluating the dissimilarity measures 
ΔSP(pr,pt,qr,qt). Thus, the set of optimal bilateral links can change as we move 
from the PSP

t indices to their maximum overlap counterpart PSP
t* indices.

212 Note that we cannot construct PAL
t* or PALM

t* in the present context 
where we have 0 prices for the missing products because ΔAL(pr,pt,qr,qt) is 
not well defined when some prices are equal to zero.

follow after the first “training” year, the bilateral links are 
the same as the links used to calculate the predicted share 
indices PSP

t*. 213

The maximum overlap fixed-base Fisher indices, 
PFMO(p1,pt.q1.pt) ≡ PF

t*, and the GEKS indices PGEKS
t* using 

maximum overlap Fisher indices in place of regular Fisher 
indices are listed in the annex and can be compared to their 
counterparts PF

t and PGEKS
t that used reservation prices for 

the missing products. See Table 1.7 in Section A.7.5 of the 
annex for a listing of the following indices: PAL

t, PALM
t, PSP

t, 
PSPM

t, PSP
t*, PSPM

t*, PGEKS
t, PGEKS

t*, PF
t, and PF

t*. The final level 
for these 10 indices after three years of data where the level 
in month 1 was 1.00000 was as follows: 0.92725, 0.92725, 
0.92725, 0.92725, 0.92612, 0.92612, 0.94591, 0.94987, 0.95071, 
and 0.95610. Thus, the first four similarity-linked indices 
end up at the same price level, 0.92575, while the predicted 
share and modified predicted share indices that used maxi-
mum overlap prices, PSP

t* and PSPM
t*, ended up at the same 

slightly higher price level, 0.92612. The two GEKS indices 
(PGEKS

t used reservation prices, while PGEKS
t* used maximum 

overlap Fisher links that did not depend on any imputed 
prices) ended up about 2 percentage points above the sim-
ilarity-linked indices. Finally, the fixed-base Fisher index 
that used reservation prices and the fixed-base Fisher index 
that used maximum overlap bilateral links, PF

t and PF
t*, 

ended up about 3 percentage points above the similarity-linked 
index levels. These results lead to two important (but tenta-
tive) conclusions:

• The similarity-linked indices considered in this section 
and the previous sections all generate approximately the 
same results.

• The similarity-linked indices appear to generate lower 
rates of overall price change than the fixed-base Fisher or 
the GEKS indices.

The first dot point is important if it is consistent with other 
empirical investigations. Some statistical agencies may pre-
fer to use inflation-adjusted carry-forward prices to replace 
missing prices while other agencies may not wish to use any 
form of an imputed price in their indices. The results for 
our empirical example suggest that it may not matter very 
much which strategy is chosen, provided similarity linking 
of observations is used.

21. The Axiomatic Approach to 
Multilateral Price Levels
In this section, we look at the axiomatic or test properties of 
the five major multilateral methods studied in previous sec-
tions. The multilateral methods are the GEKS, CCDI, GK, 
WTPD, and SPQ (price and quantity similarity linking) 
methods. The price levels for period t for the five methods are 

213 It is straightforward to apply the predicted share methodology when 
we have 0 prices and quantities for missing products to quantity indices. 
Apply definition (221); that is, define ΔSPQ(pr,pt,qr,qt) ≡ min {ΔSP(pr,pt,qr,qt), 
ΔSQ(pr,pt,qr,qt)}as our new measure of relative price and quantity dissimi-
larity where 0 prices and quantities are allowed to appear in the price 
and quantity vectors. Using this measure of dissimilarity and maximum 
overlap Fisher price and quantity indices leads to the price levels PSPQ

t*. 
For our empirical example, it was the case that ΔSP(pr,pt,qr,qt) was always 
less than ΔSQ(pr,pt,qr,qt) so PSPQ

t* ended up being equal to PSP
t* for all t.
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defined by (69) for pGEKS
t, (76) for pCCDI

t, (137) for pGK
t, (210) for 

pWTPD
t, and by (221) for PSPQ

t.214 We will look at the properties 
of these price level functions rather than at the correspond-
ing price indices.215 Denote the period t price level function 
for generic multilateral method M as pM

t(p1, . . .,pT;q1, . . .,qT) 
for t = 1, . . .,T. We will follow the example of Dalén (2001, 
2017) and Zhang, Johansen, and Nygaard (2019) in consider-
ing a dynamic product universe; that is, we will allow for new 
products and disappearing products in the tests that follow. 
N is the total number of products that are in the aggregate 
over all T periods. If a product n is not available in period t, 
we set qtn equal to 0. We will assume that the corresponding 
price ptn is a positive Hicksian reservation price or a positive 
inflation-adjusted carry-forward or carry-backward price. 
Thus, for each period t, the price vector pt >> 0N but the 
corresponding period t quantity vector satisfies only qt > 0N; 
that is, the missing products in period t are assigned 0 values 
for the corresponding quantities.216 It proves convenient to 
define the N by T matrices of prices and quantities as P ≡ 
[p1, . . .,pT] and Q ≡ [q1, . . .,qT]. Thus, pt and qt are to be inter-
preted as column vectors of dimension N in the definitions 
of the matrices P and Q.

Consider the following nine tests for a system of generic 
multilateral price levels, pM

t(P,Q):

Test 1: The strong identity test for prices. If pr = pt, then 
pM

r(P,Q) = pM
t(P,Q). Thus, if prices are equal in periods 

r and t, then the corresponding price levels are equal 
even if the corresponding quantity vectors qr and qt are 
not equal.

Test 2: The fixed basket test for prices or the strong identity 
test for quantities.217 If qr = qt ≡ q, then the price index 
for period t relative to period r is pM

t(P,Q)/pM
r(P,Q) 

which is equal to pt·q/pr·q.218

Test 3: Linear homogeneity test for prices. Let r ≠ t and  
λ > 0. Then pM

t(p1, . . .,pt–1,λpt,pt + 1, . . .,pT,Q)/ pM
r(p1, . . ., 

pt–1,λpt,pt + 1, . . .,pT,Q) = λpM
t(P,Q)/pM

r(P,Q). Thus, if all 
prices in period t are multiplied by a common scalar 
factor λ, then the price level of period t relative to the 
price level of any other period r will increase by the 
multiplicative factor λ.

Test 4: Homogeneity test for quantities. Let λ > 0. Then 
pM

r(P,q1,  .  .  .,qt–1,λqt,qt + 1,  .  .  .,qT) = pM
r(P,Q) for r = 

1, . . .,T. Thus, if all quantities in period t are multiplied 
by a common scalar factor λ, then the price level of any 

214 The price and quantity similarity-linked price levels PSPQ
t have been 

normalized to equal 1 in period 1. The other four sets of price levels have 
not been normalized.
215 For earlier work on the axiomatic properties of multilateral price and 
quantity indices, see Diewert (1988, 1999b) and Balk (2008). These earlier 
studies did not look at the properties of standalone price level functions.
216 It is necessary to have strictly positive prices in order to calculate the 
CCDI price levels. The remaining multilateral methods do not require 
strictly positive prices for all products and all periods to be well defined, 
but our last test involves imputed prices for missing products. Thus, we 
need to introduce these imputed prices at the outset of our axiomatic 
framework.
217 The period t quantity level that matches up with the period t price level 
is qM

t(P,Q) ≡ pt·qt/pM
t(P,Q) for t = 1, . . .,T. Test 2 translates into the strong 

identity test for quantity levels; that is, if qr = qt, then qM
r(P,Q) = qM

t(P,Q) 
even if the price vectors pr and pt for the two periods are not equal.
218 Tests 1 and 2 are essentially versions of Tests 1 and 2 suggested by 
Zhang, Johansen, and Nygaard (2019).

period r remains unchanged. This property holds for 
all t = 1, . . .,T.

Test 5: Invariance to changes in the units of measurement. 
The price level functions pM

t(P,Q) for t = 1, . . .,T remain 
unchanged if the N commodities are measured in dif-
ferent units of measurement.

Test 6: Invariance to changes in the ordering of the com-
modities. The price level functions pM

t(P,Q) for t = 
1, . . .,T remain unchanged if the ordering of the N com-
modities is changed.

Test 7: Invariance to changes in the ordering of the time 
periods. If the T time periods are reordered by some 
permutation of the first T integers, then the new price 
level functions are equal to the same permutation of 
the initial price level functions. This test is considered 
to be an important one in the context of making cross 
sectional comparisons of price levels across countries. 
In the country context, if this test is satisfied, then all 
countries are treated in a symmetric manner. It is not 
so clear whether this test is important in the time series 
context.

Test 8: Responsiveness to isolated products test: If a prod-
uct is available in only one period in the window of 
T periods, this test asks that the price level functions 
pM

t(P,Q) respond to changes in the prices of these iso-
lated products; that is, the test asks that the price level 
functions are not constant as the prices for isolated 
products change. This test is a variation of Test 5 sug-
gested by Zhang, Johansen, and Nygaard (2019), which 
was a bilateral version of this test.219

Test 9: Responsiveness to changes in imputed prices for 
missing products test: If there are missing products in 
one or more periods, then there will be imputed prices 
for these missing products according to our method-
ological framework. This test asks that the price level 
functions pM

t(P,Q) respond to changes in these imputed 
prices; that is, the test asks that the price level func-
tions are not constant as the imputed prices change. 
This test is essentially an extension of the previous Test 
8. This test allows a price level to decline if new prod-
ucts enter the market place during the period and for 
consumer utility to increase as the number of available 
products increases. If this test is not satisfied, then the 
price levels will be subject to new products bias.220 This 
is an important source of bias in a dynamic product 
universe.

It can be shown that GEKS and CCDI fail Tests 1 and 2, GK 
fails Tests 1,4, 8, and 9, WTPD fails Tests 1, 2,221 8, and 9, and 
SPQ fails Test 7. The above five multilateral methods pass 
the remaining Tests. Since Test 7 may not be so important in 
the time series context, it appears that the price and quantity 

219 This test was explicitly suggested by Claude Lamboray. Some care is 
needed in interpreting this test since the test framework assumes that 
there are imputed prices for the missing products.
220 On new goods bias, see Boskin et al. (1996), Nordhaus (1997), Diewert 
(1998), and the references in Section 14 of Diewert (2022a).
221 The weighted TPD price levels fail Test 2 if definition (205) is used to 
define the period t price levels. This is the option that statistical agencies 
are using at present. However, the WTPD price levels Pt** and the cor-
responding quantity levels Qt** defined by (206) will satisfy Test 2. If all 
errors are equal to 0, equations (205) and (206) will generate the same 
estimated price and quantity levels.
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similarity method of linking, the SPQ method, is the “best” 
for the above tests. However, other reasonable tests could 
be considered in a more systematic exploration of the test 
approach to multilateral comparisons so our endorsement of 
the SPQ method is tentative at this point. Furthermore, the 
method needs to be tested on alternative data sets to see if 
“reasonable” indices are generated by the method.

22. Summary of Results
Some of the more important results in each section of the 
chapter will be summarized here.

• If there are divergent trends in product prices, the Dutot 
index is likely to have an upward bias relative to the 
Jevons index; see Section 2.

• The Carli index has an upward bias relative to the Jevons 
index (unless all prices move proportionally over time in 
which case both indices will capture the common trend). 
The same result holds for the weighted Carli (or Young) 
index relative to the corresponding weighted Jevons 
index; see Section 3.

• The useful relationship (41) implies that the Fisher index 
PF

t will be slightly less than the corresponding fixed-base 
Törnqvist index PT

t, provided that the products in scope 
for the index are highly substitutable and there are diver-
gent trends in prices; see Section 4. Under these circum-
stances, the following inequalities between the Paasche, 
geometric Paasche, Törnqvist, geometric Laspeyres, 
and Laspeyres indices are likely to hold: PP

t < PGP
t < PT

t 
< PGL

t < PL
t.

• The covariance identity (48) provides an exact relation-
ship between the Jevons and Törnqvist indices. Some 
conditions for equality and for divergence between these 
two indices are provided at the end of Section 5.

• In Section 6, a geometric index that uses annual expendi-
ture sales of a previous year as weights, PJα

t, is defined and 
compared to the Törnqvist index, PT

t. Equation (62) pro-
vides an exact covariance decomposition of the difference 
between these two indices. If the products are highly sub-
stitutable and there are divergent trends in prices, then it 
is likely that PT

t < PJα
t.

• Section 7 derives an exact relationship (65) between the 
fixed-base Törnqvist index, PT

t, and its chained counter-
part, PTCh

t. This identity is used to show that it is likely 
that the chained index will “drift” below its fixed-base 
counterpart if the products in scope are highly substitut-
able and prices are frequently heavily discounted. How-
ever, a numerical example shows that if quantities are 
slow to adjust to the lower prices, then upward chain drift 
can occur.

• Section 8 introduces two multilateral indices PGEKS
t and 

PCCDI
t. The exact identity (78) for the difference between 

PCCDI
t and PT

t is derived. This identity and the fact that 
PF

t usually closely approximates PT
t lead to the conclusion 

(79) that typically PF
t, PT

t, PGEKS
t, and PCCDI

t will approxi-
mate each other fairly closely.

• Section 9 introduces the unit value price index PUV
t and 

shows that if there are divergent trends in prices and the 
products are highly substitutable, it is likely that PUV

t < 
PF

t. However, this conclusion does not necessarily hold if 

there are missing products in period 1. Section 10 derives 
similar results for the quality-adjusted unit value index, 
PUVα

t.
• Section 11 looks at the relationship of the Lowe index, 

PLo
t, with other indices. The Lowe index uses the quanti-

ties in a base year as weights in a fixed basket type index 
for months that follow the base year. In using annual 
weights of a previous year, this index is similar in spirit 
to the geometric index PJa

t that was analyzed in Section 6. 
The covariance type identities (128) and (131) are used to 
suggest that it is likely that the Lowe index lies between 
the fixed-base Paasche and Laspeyres indices; that is, it 
is likely that PP

t < PLo
t < PL

t. The identity (134) is used to 
suggest that the Lowe index is likely to have an upward 
bias relative to the fixed-base Fisher index; that is, it is 
likely that PF

t < PLo
t. However, if there are missing prod-

ucts in the base year, then these inequalities do not neces-
sarily hold.

• Section 12 looks at an additional multilateral index, the 
GK index, PGK

t and shows that PGK
t can be interpreted as 

a quality-adjusted unit value index and hence using the 
analysis in Section 10, it is likely that the GK price index 
has a downward bias relative to the Fisher index; that 
is, it is likely that PGK

t < PF
t. However, if there are miss-

ing products in the first month of the sample, the above 
inequality will not necessarily hold.

• Sections 13–16 look at special cases of weighted time 
product dummy indices, PWTPD

t. These sections show 
how different forms of weighting can generate very dif-
ferent indices. Section 17 finally deals with the general 
case where there are T periods and missing products. The 
exact identity (214) is used to show that it is likely that 
PWTPD

t is less than the corresponding fixed-base Törn-
qvist–Theil index, PT

t, provided that the products are 
highly substitutable and there are no missing products in 
period 1. However, if there are missing products in period 
1, the inequality can be reversed.

• It turns out that the following price indices are not affected 
by reservation prices: the unit value price indices PUV

t and 
PUVα

t, the GK indices PGK
t, and the weighted TPD indices 

PWTPD
t. Thus, these indices are not consistent with the eco-

nomic approach due to Hicks (1941) to dealing with the 
problems associated with new and disappearing products 
and services.

• The final multilateral indices were introduced in Sections 
18–20. These indices use bilateral Fisher price indices to 
link the price and quantity data of the current period to a 
prior period. The prior period that is chosen minimizes a 
measure of relative price (or quantity) dissimilarity. Two 
main measures of relative price dissimilarity were stud-
ied: the AL or asymptotic linear measure ΔAL(pr,pt,qr,qt) 
defined by (215) and the SP or predicted share measure 
ΔSP(pr,pt,qr,qt) defined by (218). The role of prices and 
quantities can be interchanged in order to define the pre-
dicted share measure ΔSQ(pr,pt,qr,qt) of relative quantity 
dissimilarity which can also be used to generate a set of 
bilateral Fisher price index links. Finally, the minimum 
of the ΔSP(pr,pt,qr,qt) and ΔSQ(pr,pt,qr,qt) measures can 
be taken to define the ΔSPQ(pr,pt,qr,qt) measure of rela-
tive price and quantity dissimilarity; see definition (221). 
When observations are linked using this dissimilarity 
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measure, the resulting price indices satisfy both the iden-
tity test for prices and the corresponding identity price for 
quantities. Thus, the SPQ method explained in Section 
20 has attractive axiomatic properties as is explained in 
Section 21. For our empirical example, relative quantity 
dissimilarity was always greater than relative price dis-
similarity so the SP and SPQ price indices were always 
identical.

• For our empirical example, the similarity-linked price 
indices PAL

t and PSP
t = PSPQ

t ended up about 2 percent-
age points below PGEKS

t and PCCDI
t which in turn finished 

about 1 percentage point below PF
t and PT

t and finally 
PGK

t and PWTPD
t finished about 1 percentage point above 

PF
t and PT

t; see Table 1.6 and Figure A7.8 in the annex. 
All of these indices captured the trend in product prices 
quite well. More research is required in order to deter-
mine whether these differences are significant and occur 
in other examples.

• It is difficult to calculate reservation prices using econo-
metric techniques. Thus, Section 19 looked at methods 
for replacing reservation prices by inflation-adjusted 
carry-forward and carry-backward prices which are 
much easier to calculate.

• For our empirical example, the replacement of the res-
ervation prices by inflation-adjusted carry-forward or 
carry-backward prices did not make much difference to 
the multilateral indices.222 If the products in scope are 
highly substitutable for each other, then we expect that 
this invariance result will hold (approximately). How-
ever, if products with new characteristics are introduced, 
then we expect that the replacement of econometrically 
estimated reservation prices by carry-forward and carry-
backward prices would probably lead to an index that has 
an upward bias.

• Finally, in Section 20, we introduced some similarity-
linked Fisher price indices that did not require imputa-
tions for missing prices. These indices used the predicted 
share measure of relative price dissimilarity which is well 
defined even if the prices of missing products are set equal 
to 0. The Fisher indices that link pairs of observations 
that have the lowest measures of dissimilarity are maxi-
mum overlap Fisher indices. For our empirical example, 
it turned out that these indices were very close to their 
counterparts that used reservation prices for the missing 
prices. These no imputation indices (denoted by PSP

t* and 
PSPM

t*) were calculated for our data set and listed in Table 
1.7 and are plotted in Figure A7.9 in the annex.

Conceptually, the price and quantity similarity-linked indi-
ces PSPQ

t seem to be the most attractive solution for solv-
ing the chain drift problem since the strong identity tests for 
both prices and quantities will always be satisfied using this 
multilateral method.

The data used for the empirically constructed indices are 
listed in the annex so that the listed indices can be repli-
cated and alternative solutions to the chain drift problem 
can be tested out by other statisticians and economists.

222 See Table 1.8 in the annex.

23. Conclusion
It is evident that there is no easy solution to the chain drift 
problem. The previous Consumer Price Index Manual 
tended to use the economic approach to index number the-
ory as a guide to choosing between alternative index num-
ber formulae; that is, the Manual tended to recommend the 
use of a superlative index number formula as a target index. 
However, the existence of deeply discounted prices and the 
appearance and disappearance of products often lead to a 
substantial chain drift problem. Some of the difficulties stem 
from the fact that the economic approach to index number 
theory that dates back to Konüs (1924), Konüs and Byush-
gens (1926), and Diewert (1976) suffers from the following 
problems:

• The theory assumes that all purchased goods and services 
are consumed in the period under consideration. But in 
reality, when a good goes on sale at a deeply discounted 
price, the quantity purchased will not necessarily be con-
sumed in the current period. If the good can be stored, it 
will decrease demand for the product in the subsequent 
period. The traditional economic approach to index 
number theory does not take the storage problem into 
account.

• Preferences over goods and services are assumed to be 
complete. In reality, consumers may not be aware of 
many new (and old) products; that is, knowledge about 
products may be subject to a diffusion process.

• Our approach to the treatment of new and disappearing 
products uses the reservation price methodology due to 
Hicks (1940), which simply assumes that latent prefer-
ences for new products exist in the period before their 
introduction to the marketplace. Thus, the consumer is 
assumed to have unchanging preferences over all periods. 
Before a new product appears, the quantity of the prod-
uct is set equal to 0 in the consumer’s utility function. In 
reality, a new product may change the consumer’s utility 
function. This makes the estimation of reservation prices 
very difficult if not impossible.

• Preferences are assumed to be the same across consumers 
so that they can be represented by a common linearly homo-
geneous utility function. Moreover, the preferences do not 
change over time. All of these assumptions are suspect.

In view of the fact that the assumptions of the economic 
approach to index number theory will not be satisfied 
precisely in the real world, we cannot rely entirely on this 
approach to guide advice to statistical agencies on how to 
deal with the chain drift problem. Thus, it would be useful 
to develop the test approach to multilateral index number 
theory in more detail.

So what exactly should statistical agencies do to deal with 
the chain drift problem when price and quantity are avail-
able for a stratum of the CPI? At our current state of knowl-
edge, it seems that the following methods are acceptable:

• Rolling window GEKS and CCDI. Probably the “safest” 
method of linking the results of one window to the previ-
ous window is to use the mean method suggested by Ivan-
cic, Diewert, and Fox (2009) and Diewert and Fox (2017). 
This is the method used by the Australian Bureau of Sta-
tistics (2016). However, in the case of seasonal products 
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that are not present in all periods of the year, rolling win-
dow GEKS and CCDI can be problematic and similarity 
linking is preferred.

• Bilateral linking based on price (and quantity) similar-
ity. This method seems to be very promising. It can be 
adapted to work in situations where there are imputed 
prices for missing products or in situations where imputed 
prices are not allowed. The resulting indices are guaran-
teed to be free of chain drift.

If only price information is available and there are no miss-
ing prices, then the Jevons index is the best alternative to use 
(at least from the perspective of the test approach to index 
number theory).

If only price information is available and there are miss-
ing prices for some products for some periods, then the 
TPD method is probably the best index to use. This method 
reduces to the Jevons index if there are no missing prices.223

We conclude this section by noting some priorities for 
future research:

• We need more studies on price similarity linking, particu-
larly in the context of strongly seasonal commodities.

• What is the “optimal” length of the time period for a CPI? 
Should statistical agencies produce weekly or daily CPIs 
in addition to monthly CPIs?224

• There is a conceptual problem in using retail outlet prices 
to construct a CPI, since tourists and governments also 
purchase consumer goods. It would be preferable to use 
the purchase data of domestic households in order to 
construct a CPI for residents of the country so that the 
welfare of residents in the country could be calculated. 
However, if we focus on individual households, the 
matching problems are substantial due to the infrequency 
of purchases of storable commodities. Thus, it will be 

223 However, in situations where there are many missing prices, it may be 
preferable to adapt the predicted share similarity linking methodology 
to the case where only price information is available. We will explore this 
possibility in another chapter that deals with strongly seasonal products.
224 The problem with making the time period shorter is that the number 
of price matches will decline, leading to the need for more imputations. 
Also, the shorter the period, the more variance there will be in the unit 
value prices and the associated quantities, leading to indices that will 
also have high variances. Thus, the shorter the period, the less accurate 
the resulting indices will be.

necessary to aggregate over demographically and loca-
tionally similar households in order to calculate indices 
that minimize the number of imputations. In the perhaps 
distant future, it will become possible in a cashless society 
to utilize the data of banks and credit card companies to 
track the universe of purchases of individual households 
and thus to construct more accurate CPIs. However, this 
development will depend on whether credit and debit 
card consumer transactions are also coded for the type of 
purchase.

• A final problem that may require some research is how 
to combine elementary indices that are constructed using 
scanner data with elementary indices that use web scraped 
data on prices or data on prices collected by employees 
of the statistical agency. This does not seem to be a big 
conceptual problem: for strata that use scanner data, we 
end up with an aggregate price and quantity level for each 
stratum. For strata that use web-scraped data or collector 
data, we end up with a stratum elementary price level for 
each period and consumer expenditure survey informa-
tion will generate an estimated value of consumer expen-
ditures for the stratum in question so the corresponding 
stratum quantity can be defined as expenditure divided 
by the elementary price level. Thus, the resulting CPI will 
be of uneven quality (because the expenditure estimates 
will not be current for the web scraped categories) but it 
will probably be of better quality than a traditional price 
collector generated CPI. However, as mentioned above, 
another problem is that the scanner data will apply not 
only to expenditures of domestic households but also to 
tourists and governments. Thus, there is a need for more 
research on this topic of combining methods of price 
collection.
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Annex: Data Listing and Index 
Number Tables and Charts
A.7.1 Listing of Data
Here is a listing of the “monthly” quantities sold of 19 vari-
eties of frozen juice (mostly orange juice) from Dominick’s 
Store 5 in the Greater Chicago area, where a “month” con-
sists of sales for four consecutive weeks. These data are 
available from the Booth School of Business at the Univer-
sity of Chicago (2013).225 The weekly unit value price and 
quantity sold data were converted into “monthly” unit value 
prices and quantities.226 Finally, the original data came in 

225 The Office for National Statistics (2020) also used the Dominick’s data 
in order to compare many of the same indices that are compared in this 
annex.
226 In practice, statistical agencies will not be able to produce indices for 
13 months in a year. There are at least two possible solutions to the prob-
lem of aggregating weekly data into monthly data: (i) aggregate the data 

units where the package size was not standardized. We 
rescaled the price and quantity data into prices per ounce. 
Thus, the quantity data are equal to the “monthly” ounces 
sold for each product.

The actual prices p2
t and p4

t are not available for  
t = 1,2,  .  .  .,8 since products 2 and 4 were not sold during 
these months. However, in Table 1.1, we filled in these miss-
ing prices with the imputed reservation prices that were 
estimated by Diewert and Feenstra (2017). Similarly, p12

t 
was missing for months t = 12, 20, 21, and 22, and again, we 
replaced these missing prices with the corresponding esti-
mated imputed reservation prices in Table 1.1. The imputed 
prices appear in italics in Table 1.1.

for the first three weeks in a month or (ii) split the weekly data that spans 
two consecutive months into imputed data for each month.

Table 1.1 “Monthly” Unit Value Prices for 19 Frozen Juice Products
t p1

t p2
t p3

t p4
t p5

t p6
t p7

t p8
t p9

t

1 0.122500 0.145108 0.147652 0.148593 0.146818 0.146875 0.147623 0.080199 0.062944
2 0.118682 0.127820 0.116391 0.128153 0.117901 0.146875 0.128833 0.090833 0.069167
3 0.120521 0.128608 0.129345 0.148180 0.131117 0.143750 0.136775 0.090833 0.048803
4 0.126667 0.128968 0.114604 0.115604 0.116703 0.143750 0.114942 0.088523 0.055842
5 0.126667 0.130737 0.140833 0.141108 0.140833 0.143304 0.140833 0.090833 0.051730
6 0.120473 0.113822 0.157119 0.151296 0.156845 0.161844 0.156342 0.090833 0.049167
7 0.164607 0.144385 0.154551 0.158485 0.156607 0.171875 0.152769 0.084503 0.069167
8 0.142004 0.160519 0.174167 0.179951 0.174167 0.171341 0.163333 0.089813 0.069167
9 0.135828 0.165833 0.154795 0.159043 0.151628 0.171483 0.160960 0.089970 0.067406

10 0.129208 0.130126 0.153415 0.158167 0.152108 0.171875 0.158225 0.078906 0.067897
11 0.165833 0.165833 0.139690 0.136830 0.134743 0.171875 0.136685 0.079573 0.058841
12 0.165833 0.165833 0.174167 0.174167 0.174167 0.171875 0.174167 0.081902 0.079241
13 0.113739 0.116474 0.155685 0.149942 0.145633 0.171875 0.146875 0.074167 0.048880
14 0.120882 0.125608 0.141602 0.147428 0.142664 0.163750 0.144911 0.090833 0.080000
15 0.165833 0.165833 0.147067 0.143214 0.144306 0.155625 0.147546 0.088410 0.080000
16 0.122603 0.118536 0.135878 0.137359 0.137480 0.155625 0.138146 0.084489 0.080000
17 0.104991 0.104659 0.112497 0.113487 0.110532 0.141250 0.113552 0.082500 0.067104
18 0.088056 0.091133 0.118440 0.120331 0.117468 0.141250 0.124687 0.085000 0.065664
19 0.096637 0.097358 0.141667 0.141667 0.141667 0.141250 0.141667 0.082500 0.080000
20 0.085845 0.090193 0.120354 0.122168 0.113110 0.136250 0.124418 0.085874 0.051003
21 0.094009 0.100208 0.121135 0.122500 0.121497 0.125652 0.121955 0.090833 0.085282
22 0.084371 0.087263 0.120310 0.123833 0.118067 0.125492 0.124167 0.085898 0.063411
23 0.123333 0.123333 0.116412 0.118860 0.113085 0.126250 0.118237 0.085891 0.049167
24 0.078747 0.081153 0.125833 0.125833 0.125833 0.126250 0.125833 0.090833 0.049167
25 0.088284 0.092363 0.098703 0.098279 0.088839 0.126250 0.100640 0.090833 0.049167
26 0.123333 0.123333 0.092725 0.096323 0.095115 0.126250 0.095030 0.090833 0.049167
27 0.101331 0.102442 0.125833 0.125833 0.125833 0.126250 0.125833 0.090833 0.049167
28 0.101450 0.108416 0.092500 0.097740 0.091025 0.126250 0.096140 0.054115 0.049167
29 0.123333 0.123333 0.118986 0.119509 0.115603 0.126250 0.118343 0.096922 0.049167
30 0.094038 0.095444 0.109096 0.113827 0.106760 0.126250 0.113163 0.089697 0.049167
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t p10
t p11

t p12
t p13

t p14
t p15

t p16
t p17

t p18
t p19

t

1 0.062944 0.075795 0.080625 0.087684 0.109375 0.113333 0.149167 0.122097 0.149167 0.124492
2 0.069167 0.082500 0.080625 0.112500 0.109375 0.113333 0.119996 0.109861 0.130311 0.117645
3 0.043997 0.082500 0.078546 0.106468 0.100703 0.110264 0.134380 0.109551 0.131890 0.114933
4 0.055705 0.082500 0.080625 0.099167 0.099375 0.111667 0.109005 0.106843 0.108611 0.118333
5 0.051687 0.071670 0.080625 0.094517 0.099375 0.111667 0.105168 0.106839 0.105055 0.076942
6 0.049167 0.078215 0.080625 0.115352 0.114909 0.130149 0.099128 0.134309 0.118647 0.088949
7 0.069167 0.069945 0.080625 0.124167 0.118125 0.131667 0.102524 0.128471 0.102073 0.160833
8 0.069167 0.082500 0.080625 0.107381 0.121513 0.138184 0.164245 0.141978 0.164162 0.136105
9 0.067401 0.082500 0.074375 0.112463 0.128125 0.141667 0.163333 0.153258 0.163333 0.118979

10 0.067688 0.082500 0.100545 0.132500 0.128125 0.141667 0.133711 0.152461 0.133806 0.118439
11 0.060008 0.082500 0.080625 0.120362 0.134151 0.144890 0.163333 0.151033 0.163333 0.120424
12 0.079325 0.071867 0.080625 0.093144 0.136875 0.148333 0.144032 0.148107 0.146491 0.160833
13 0.064028 0.069934 0.067280 0.118009 0.136875 0.148333 0.163333 0.143125 0.163333 0.131144
14 0.080000 0.078491 0.075211 0.131851 0.130342 0.143013 0.123414 0.152937 0.130223 0.122899
15 0.080000 0.082500 0.080625 0.093389 0.128125 0.141667 0.117955 0.147024 0.119786 0.128929
16 0.080000 0.086689 0.080625 0.100592 0.128125 0.141667 0.114940 0.143125 0.126599 0.124620
17 0.065670 0.088333 0.072941 0.115559 0.110426 0.139379 0.107709 0.143125 0.109987 0.145556
18 0.064111 0.091286 0.069866 0.088224 0.105625 0.105529 0.089141 0.130110 0.095463 0.140000
19 0.080000 0.094167 0.088125 0.080392 0.105625 0.131667 0.086086 0.118125 0.091020 0.109424
20 0.048613 0.094167 0.096177 0.080643 0.105625 0.131667 0.125000 0.114706 0.125000 0.110921
21 0.085114 0.080262 0.064774 0.080245 0.099375 0.125000 0.104513 0.114795 0.104228 0.134014
22 0.062852 0.086115 0.083132 0.087551 0.101493 0.127366 0.086484 0.118125 0.088325 0.126667
23 0.049167 0.095833 0.090625 0.089110 0.099375 0.125000 0.086263 0.118125 0.095750 0.100780
24 0.049167 0.095833 0.090625 0.090167 0.099375 0.125000 0.111859 0.114330 0.112296 0.118333
25 0.049167 0.095833 0.090625 0.072861 0.099375 0.125000 0.125000 0.113823 0.125000 0.084817
26 0.049167 0.095833 0.090625 0.086226 0.099375 0.125000 0.086088 0.114190 0.091864 0.118333
27 0.049167 0.077500 0.076875 0.081764 0.099375 0.125000 0.113412 0.114231 0.113241 0.110346
28 0.049167 0.077500 0.076875 0.104167 0.099375 0.125000 0.085803 0.118125 0.086154 0.084604
29 0.049167 0.077500 0.076875 0.086713 0.099375 0.125000 0.087410 0.118125 0.086196 0.085034
30 0.049167 0.077500 0.076875 0.104167 0.099375 0.125000 0.084953 0.114826 0.085156 0.083921
31 0.049167 0.077500 0.076875 0.095613 0.099375 0.125000 0.087372 0.125809 0.087775 0.088304
32 0.049167 0.077500 0.076875 0.112500 0.099375 0.067046 0.091827 0.143125 0.088937 0.103519
33 0.049167 0.077500 0.076875 0.104721 0.099375 0.125000 0.131399 0.143125 0.130253 0.127588
34 0.049167 0.077500 0.076875 0.088935 0.099375 0.125000 0.123037 0.143125 0.123573 0.132500
35 0.049167 0.077500 0.076875 0.112500 0.099375 0.125000 0.125832 0.137837 0.125681 0.112286
36 0.049167 0.077500 0.076875 0.089456 0.099375 0.125000 0.139240 0.141242 0.144390 0.127323

t p1
t p2

t p3
t p4

t p5
t p6

t p7
t p8

t p9
t

31 0.130179 0.130000 0.110257 0.115028 0.112113 0.134106 0.110579 0.093702 0.049167
32 0.103027 0.103299 0.149167 0.149167 0.149167 0.149375 0.149167 0.098333 0.049167
33 0.148333 0.148333 0.089746 0.097110 0.091357 0.149375 0.094347 0.098333 0.049167
34 0.115247 0.114789 0.123151 0.123892 0.127177 0.149375 0.125362 0.094394 0.049167
35 0.118090 0.120981 0.121191 0.129477 0.128180 0.149375 0.132934 0.096927 0.049167
36 0.132585 0.131547 0.129430 0.128314 0.121833 0.134375 0.128874 0.070481 0.049167
37 0.114056 0.115491 0.138214 0.140090 0.139116 0.146822 0.142770 0.077785 0.053864
38 0.142500 0.142500 0.134677 0.133351 0.133216 0.148125 0.132873 0.108333 0.054167
39 0.121692 0.123274 0.095236 0.102652 0.093365 0.148125 0.101343 0.090180 0.054167

(Continued )
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Table 1.2 “Monthly” Quantities Sold for 19 Frozen Juice Products
t q1

t q2
t q3

t q4
t q5

t q6
t q7

t q8
t q9

t

1 1704 0.000 792 0.000 4428 1360 1296 1956 1080
2 3960 0.000 3588 0.000 19344 3568 3600 2532 2052
3 5436 0.000 1680 0.000 8100 3296 2760 3000 1896
4 1584 0.000 5532 0.000 21744 3360 5160 3420 2328
5 1044 0.000 1284 0.000 5880 3360 1896 3072 1908
6 8148 0.000 1260 0.000 7860 2608 2184 3000 2040
7 636 0.000 3120 0.000 9516 2848 2784 3444 1620
8 1692 0.000 1200 0.000 4116 1872 1380 2088 1848
9 5304 1476.000 2292 1295.999 7596 2448 1740 2016 3180

10 6288 2867.993 2448 1500.000 6528 2064 2208 3840 4680
11 408 228.000 2448 2147.994 9852 2096 2700 5124 12168
12 624 384.000 948 1020.000 2916 1872 1068 2508 4032
13 6732 2964.005 1488 2064.003 8376 2224 2400 4080 8928
14 6180 3192.007 2472 2244.006 7920 1920 2256 1728 1836
15 1044 672.000 1572 1932.002 2880 1744 1728 1692 1116
16 3900 1332.002 1560 2339.997 4464 2416 2028 2112 1260
17 5328 1847.999 3528 3972.008 13524 2336 3252 2628 1524
18 7056 2100.000 2436 2748.007 6828 2544 1980 3000 1596
19 5712 3167.988 1464 1872.000 2100 2080 1572 3384 1020
20 9960 3311.996 2376 2172.003 8028 2112 1788 2460 3708
21 7368 2496.000 1992 1872.000 3708 1840 1980 1692 2232
22 9168 4835.983 2064 1980.000 10476 1504 2880 2472 7020
23 7068 660.000 1728 1955.999 6972 1888 2172 2448 12120
24 11856 5604.017 972 1464.000 2136 1296 1536 3780 7584
25 7116 2831.994 2760 2207.996 12468 1776 2580 2880 11220
26 660 504.000 3552 3755.995 17808 1296 5580 4956 7428
27 4824 3276.011 1356 1452.000 2388 1824 1524 1548 10188
28 3684 971.998 4680 2832.003 11712 1712 4308 4284 1140
29 684 1152.000 1884 2015.996 9252 1680 3144 1020 1392
30 5112 3467.996 2256 2291.994 9060 1936 2172 1452 2532
31 672 840.000 4788 2951.990 9396 1856 4644 1764 1260
32 7344 5843.997 1320 1128.000 2664 1744 1560 1548 1416
33 480 504.000 6624 5639.996 13368 1824 6888 1800 1440
34 4104 3036.001 2124 3180.009 5088 1568 2820 1668 1884
35 2688 1583.997 2220 2760.008 5244 1344 2532 1920 4956
36 936 612.001 1824 2567.994 6684 1552 2772 4740 7644
37 4140 2268.001 1932 1559.997 4740 1520 2076 1752 6336
38 912 264.000 1860 2844.002 4260 1808 2064 1452 2952
39 1068 960.001 4356 2903.996 11052 1776 4356 2220 2772

t p10
t p11

t p12
t p13

t p14
t p15

t p16
t p17

t p18
t p19

t

37 0.053865 0.084549 0.083343 0.107198 0.119368 0.151719 0.146126 0.154886 0.146332 0.120616
38 0.054167 0.085000 0.084375 0.127500 0.123125 0.156667 0.129577 0.138823 0.130850 0.114177
39 0.054167 0.085000 0.084375 0.102403 0.123125 0.156667 0.115965 0.149219 0.114947 0.136667

Table 1.1 (Continued)
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t q10
t q11

t q12
t q13

t q14
t q15

t q16
t q17

t q18
t q19

t

1 540 2088 1744.000 30972 3728 792 1512 1712 600 2460
2 1308 4212 3824.000 11796 6480 2712 12720 3312 2376 1788
3 1416 3900 4848.010 18708 10064 2652 4116 3184 1476 3756
4 1716 3156 5152.000 19656 10352 2472 15420 3120 3888 900
5 1452 6168 3360.000 42624 7360 1590 9228 2800 5652 13560
6 1068 5088 3296.000 10380 7712 1884 12012 1808 3348 7824
7 1116 6372 3712.000 11772 7920 1680 29592 3296 11712 708
8 1296 3684 3216.000 21024 5856 1206 11184 1744 4344 6036
9 2220 4512 3024.000 24420 5856 1398 2040 1648 1176 7896

10 4152 4572 0.000 8328 6384 1740 9168 1296 2832 9120
11 9732 3432 3360.000 18372 5808 1638 2412 1568 972 7176
12 3024 6132 1792.000 48648 4672 1770 7512 2208 2052 3564
13 2160 6828 6271.998 15960 4736 1662 1740 2896 1176 3216
14 1356 5088 2991.997 9432 5872 1902 4968 1488 2064 6420
15 1188 4656 2976.000 33936 3872 1452 9060 1744 2712 3876
16 816 3108 4784.000 23772 6272 1578 8496 2832 1488 4128
17 696 3252 4879.997 10656 7648 1836 9000 2704 2292 648
18 720 2940 4848.021 26604 6448 4086 14592 1552 3108 732
19 624 4320 2480.000 27192 4944 1140 19056 1808 5088 5676
20 3288 2784 0.000 23796 5120 1284 2196 2896 1260 3876
21 1848 12324 0.000 25824 5248 1140 8640 1952 2940 588
22 4824 6468 0.000 18168 3872 930 15360 1520 4728 276
23 10092 3708 1744.000 14592 4336 870 14232 1504 2040 1128
24 6372 3264 2016.000 16548 4608 858 6696 1792 2496 792
25 7284 3480 2032.000 38880 4064 750 1836 1232 636 7608
26 6588 3768 2208.000 14724 3760 768 9096 1296 4248 480
27 2832 4692 2592.000 31512 5344 930 5796 2080 5244 1416
28 900 3180 2624.000 8172 5776 810 13896 1328 7536 6744
29 1128 3948 2608.000 19440 5792 954 12360 1552 5796 7296
30 1284 5232 2960.000 6552 6320 924 13932 2304 8064 14520
31 864 5928 3280.000 16896 5888 852 14340 2064 8412 3768
32 948 5784 2496.000 5880 5088 15132 14496 1600 10440 4044
33 708 5232 2704.000 15180 4800 618 4812 976 3204 1812
34 1152 4692 2736.000 25344 5648 600 6552 1360 3876 1344
35 4248 4668 2800.000 8580 5488 498 28104 1872 11292 4152
36 6492 4872 2256.000 30276 5504 510 4080 1328 3768 1860
37 5976 3396 1743.995 8208 2832 384 1092 528 1284 2028
38 1812 3660 2416.000 4392 4144 534 4752 1504 2436 4980
39 2844 3852 1888.000 16704 3488 708 6180 1600 4236 804

It can be seen that there were no sales of products 2 and 
4 for months 1–8, and there were no sales of product 12 in 
month 10 and in months 20–22.

Charts that plot the data in the above tables are presented next.
It can be seen that there is a considerable amount 

of variability in these per ounce monthly unit value 

prices for frozen juice products. There are also differ-
ences in the average level of the prices of these 19 prod-
ucts. These differences can be interpreted as quality 
differences.

It can be seen that the volatility in quantity of the prod-
ucts is much higher than the volatility in their prices.
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Figure A7.1 Monthly Prices for Products 1–9
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Figure A7.2 Monthly Prices for Products 10–19
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Figure A7.3 Quantities Sold for Products 1–9
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Figure A7.4 Quantities Sold for Products 10–19
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A.7.2 Unweighted Price Indices
In this section, we list the unweighted indices227 that were 
defined in Sections 2 and 3 in the main text. We used the data 
that is listed in Annex 1 in order to construct the indices. We 

227 It would be more accurate to call these indices equally weighted 
indices.

list the Jevons, Dutot, Carli, chained Carli, and CES with r 
= –1 and r = –9 which we denote by PJ

t, PD
t, PC

t, PCCh
t, PCES,–1

t, 
and PCES,–9

t, respectively, for month t.228

The chained Carli index, PCCh
t, is well above the other 

indices as is expected. The fixed-base Carli index PC
t is  

228 All of these indices were defined in Section 2 except the Carli and 
chained Carli indices that were defined in Section 3.

Table 1.3 Jevons, Dutot, Fixed-Base and Chained Carli and CES Price Indices
t PJ

t PD
t PC

t PCCh
t PCES,–1 PCES,–9

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.96040 0.94016 0.96846 0.96846 0.98439 1.09067
3 0.93661 0.94070 0.94340 0.95336 0.92229 0.74456
4 0.90240 0.88954 0.91068 0.92488 0.91540 0.90219
5 0.90207 0.90438 0.91172 0.93347 0.89823 0.83603
6 0.96315 0.97490 0.97869 1.00142 0.94497 0.79833
7 1.05097 1.05468 1.06692 1.11301 1.04802 1.06093
8 1.13202 1.13825 1.13337 1.21622 1.12388 1.09382
9 1.10373 1.10769 1.10739 1.18820 1.09706 1.06198

10 1.08176 1.07574 1.09119 1.17299 1.08685 1.07704
11 1.07545 1.08438 1.08516 1.17758 1.06038 0.95660
12 1.14864 1.15654 1.15517 1.27479 1.13881 1.13589
13 1.02772 1.04754 1.03943 1.15786 0.99848 0.84113
14 1.06109 1.04636 1.07433 1.21248 1.07853 1.16587
15 1.07130 1.06066 1.08164 1.23459 1.08565 1.19072
16 1.02572 1.00635 1.03655 1.18788 1.04979 1.19448
17 0.93668 0.92185 0.95548 1.09129 0.95529 1.04194
18 0.88243 0.86882 0.89940 1.03405 0.90087 1.01058
19 0.93855 0.92175 0.96016 1.10908 0.96244 1.15748
20 0.88855 0.88248 0.90225 1.07164 0.89126 0.80633

(Continued )
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t PJ
t PD

t PC
t PCCh

t PCES,–1 PCES,–9

21 0.91044 0.88862 0.92930 1.12593 0.93740 1.07775
22 0.87080 0.85512 0.88891 1.08595 0.89107 1.00076
23 0.87476 0.86577 0.89065 1.10508 0.88042 0.79864
24 0.87714 0.87111 0.89384 1.12219 0.87980 0.79810
25 0.82562 0.81640 0.84467 1.06793 0.83434 0.79708
26 0.84210 0.83168 0.86532 1.10572 0.85123 0.79827
27 0.87538 0.87012 0.88197 1.16687 0.87714 0.79760
28 0.78149 0.77534 0.80014 1.05919 0.78770 0.78068
29 0.85227 0.84699 0.86721 1.17131 0.85568 0.79718
30 0.81870 0.80899 0.83656 1.13006 0.82799 0.79688
31 0.85842 0.85377 0.87514 1.19113 0.86118 0.79741
32 0.89203 0.90407 0.91440 1.26420 0.87884 0.79524
33 0.90818 0.91368 0.93127 1.35047 0.89955 0.79775
34 0.92659 0.92742 0.93489 1.39685 0.91949 0.79804
35 0.93981 0.93944 0.94941 1.42023 0.93256 0.79825
36 0.93542 0.94295 0.94087 1.42210 0.92057 0.79654
37 1.00182 1.00595 1.01060 1.52914 0.99139 0.87270
38 1.02591 1.02295 1.04068 1.57788 1.02072 0.87939
39 0.92689 0.92334 0.95090 1.44006 0.93017 0.87789

Table 1.3 (Continued)

Figure A7.5 Unweighted Price Indices
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The Jevons, Dutot, and fixed-base Carli indices, PJ
t, PD

t, 
and PC

t, are quite close to each other. They turn out to end 
up about 3 percentage points below the fixed-base Fisher 
indices, PF

t, at the end of the sample period. However, in 
the Office for National Statistics (2020) study that also com-
pares unweighted with weighted indices, they find larger 
differences between these unweighted indices and their 
superlative index counterparts.230 The problem with the 

230 The ONS makes the following important point about differences 
between their GEKS-J unweighted index (essentially our PJ

t index) and an 

slightly above the corresponding Jevons index PJ
t, which in 

turn is slightly above the corresponding Dutot index PD
t. 

The CES index with r = –1 (this corresponds to s = 2) is 
on average between the Jevons and fixed-base Carli indices, 
while the CES index with r = –9 (this corresponds to Σ = 
10) is well below all of the other indices on average (and is 
extremely volatile).229

229 The sample means of the PJ
t, PD

t, PC
t, PCCh

t, PCES,–1
t, and PCES,–9

t are 
0.9496, 0.9458, 0.9628, 1.1732, 0.9520, and 0.9237, respectively.
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unweighted indices is that they do not weight price changes 
by their economic importance so if weights change dramat-
ically along with dramatic price changes, the unweighted 
indices can differ significantly from their symmetrically 
weighted counterpart indices like the Fisher index. For 
another example of this phenomenon, see the annex to 
Chapter 6, where it is shown that there are large differences 
between PJ

t, PD
t, PC

t, and PF
t.

We turn now to a listing of standard bilateral indices 
using the three years of data and the econometrically esti-
mated reservation prices.

A.7.3 Commonly Used Weighted 
Price Indices
We list the fixed-base and chained Laspeyres, Paasche, 
Fisher, and Törnqvist indices in Table 1.4. The geometric 
Laspeyres and geometric Paasche and unit value indices are 
also listed in this table.

It can be seen that all nine of the weighted indices that 
appear in Figure A7.6 capture an underlying general trend 

appropriately weighted index: “Two main observations can be made from the observations of these case studies. . . . Secondly, there is an apparent 
upward bias from the GEKS-J methods in comparison to the weighted methods; this is likely because consumers substitute toward products that are 
on sale and this is not accounted for when using unweighted methods. This again highlights that having information on sales values, or approximates 
thereof, is arguably more important than the choice between weighted index number methods themselves” (ONS, 2020, 43).

in prices. However, there is a considerable dispersion 
between the indices. Our preferred indices for this group 
of indices are the fixed-base Fisher and Törnqvist indi-
ces, PF

t and PT
t. These two indices approximate each other 

very closely and can barely be distinguished in the chart. 
The Paasche and geometric Paasche indices, PP

t and PGP
t, 

lie below our preferred indices, while the remaining indi-
ces generally lie above our preferred indices. The chained 
Fisher and Törnqvist indices, PFCh

t and PTCh
t, approximate 

each other very closely, but both indices lie well above their 
fixed-base counterparts; that is, they exhibit a considerable 
amount of chain drift. Thus, chained superlative indices 
are not recommended for use with scanner data, where 
the products are subject to large fluctuations in prices 
and quantities. The fixed-base Laspeyres and geometric 
Laspeyres indices, PL

t and PGL
t, are fairly close to each 

other and are well above PF
t and PT

t. The unit value price 
index, PUV

t, is subject to large fluctuations and generally 
lies above our preferred indices.

We turn now to weighted indices that use annual weights 
from a base year.

Table 1.4 Fixed-Base and Chained Laspeyres, Paasche, Fisher, and Törnqvist Indices and geometric Laspeyres, 
geometric Paasche, and Unit Value Indices
t PL

t PP
t PF

t PT
t PLCh

t PPCh
t PFCh

t PTCh
t PGL

t PGP
t PUV

t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.08991 0.92151 1.00218 1.00036 1.08991 0.92151 1.00218 1.00036 0.98194 1.07214 1.10724
3 1.06187 0.98637 1.02342 1.02220 1.12136 0.91193 1.01124 1.00905 0.97979 1.05116 1.07205
4 1.00174 0.87061 0.93388 0.93445 1.06798 0.83203 0.94265 0.94077 0.91520 0.99062 1.03463
5 0.98198 0.89913 0.93964 0.94387 1.11998 0.78417 0.93715 0.93753 0.91048 0.97176 0.95620
6 1.13639 0.95159 1.03989 1.04311 1.27664 0.84845 1.04075 1.04165 0.99679 1.11657 1.10159
7 1.22555 0.91097 1.05662 1.06555 1.42086 0.85482 1.10208 1.09531 1.07355 1.20485 1.12167
8 1.17447 1.14057 1.15740 1.15743 1.75897 0.91677 1.26987 1.26340 1.14865 1.17300 1.25911
9 1.17750 1.12636 1.15164 1.15169 1.73986 0.89414 1.24727 1.24135 1.12700 1.17162 1.19939

10 1.27247 1.05895 1.16081 1.15735 1.80210 0.86050 1.24528 1.23902 1.12514 1.25074 1.20900
11 1.20770 1.07376 1.13876 1.13875 1.86610 0.81117 1.23034 1.22114 1.12189 1.19276 1.06812
12 1.12229 1.09688 1.10951 1.10976 2.01810 0.73863 1.22091 1.20993 1.12209 1.11767 1.07795
13 1.18583 1.04861 1.11511 1.11677 2.17862 0.66995 1.20813 1.19943 1.09272 1.17231 1.08595
14 1.25239 1.05236 1.14803 1.14485 2.30844 0.66552 1.23948 1.22942 1.09463 1.22682 1.21698
15 1.06527 1.01701 1.04086 1.04292 2.32124 0.58025 1.16056 1.15215 1.03397 1.06020 1.07438
16 1.07893 1.01866 1.04836 1.05073 2.34342 0.56876 1.15449 1.14720 1.01310 1.07256 1.11895
17 1.10767 0.89217 0.99410 0.99352 2.28924 0.51559 1.08642 1.07832 0.95895 1.08127 1.06696
18 0.95021 0.83559 0.89105 0.89584 2.14196 0.45252 0.98452 0.97741 0.86911 0.94010 0.94589
19 0.93250 0.81744 0.87308 0.88137 2.21416 0.44435 0.99189 0.98454 0.88768 0.92447 0.93364
20 0.91010 0.85188 0.88051 0.88230 2.37598 0.41411 0.99193 0.98133 0.88109 0.90423 0.92812
21 0.90831 0.87050 0.88920 0.89209 2.48204 0.40411 1.00150 0.99069 0.87548 0.90221 0.92800
22 0.93448 0.79545 0.86217 0.86876 2.44050 0.37816 0.96068 0.95081 0.85191 0.92460 0.90448
23 0.93852 0.82477 0.87981 0.88494 2.54428 0.37672 0.97902 0.96923 0.85916 0.92722 0.86752
24 0.95955 0.83212 0.89357 0.90008 2.61768 0.35461 0.96347 0.95725 0.88900 0.95127 0.87176

(Continued )
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t PL
t PP

t PF
t PT

t PLCh
t PPCh

t PFCh
t PTCh

t PGL
t PGP

t PUV
t

25 0.82659 0.77523 0.80050 0.80120 2.54432 0.30555 0.88172 0.87662 0.80638 0.81529 0.78713
26 0.90933 0.75806 0.83026 0.83456 2.84192 0.29847 0.92100 0.91714 0.82419 0.89313 0.85607
27 0.90913 0.86638 0.88749 0.88866 3.22816 0.29960 0.98344 0.97818 0.87350 0.90653 0.87957
28 0.95748 0.71369 0.82665 0.82378 3.27769 0.25120 0.90739 0.90090 0.80609 0.92446 0.88558
29 0.91434 0.79178 0.85086 0.85489 3.58621 0.25612 0.95839 0.95091 0.83824 0.90372 0.92881
30 0.98306 0.74159 0.85383 0.85285 3.63285 0.24640 0.94612 0.93848 0.83636 0.95691 0.90674
31 0.96148 0.79467 0.87411 0.87827 3.82999 0.24849 0.97557 0.96637 0.85604 0.94519 0.95259
32 1.09219 0.77559 0.92038 0.92577 4.36079 0.23020 1.00192 1.00563 0.93404 1.06859 0.93739
33 1.03387 0.82587 0.92403 0.92835 5.45066 0.19325 1.02632 1.03039 0.92860 1.00783 0.98847
34 0.97819 0.92286 0.95012 0.95072 5.95659 0.18655 1.05412 1.05647 0.93004 0.97390 1.01750
35 1.09532 0.90246 0.99422 0.99086 6.44252 0.19130 1.11015 1.11105 0.97904 1.07872 1.09820
36 0.97574 0.93603 0.95568 0.95607 6.69005 0.17668 1.08720 1.08989 0.94745 0.97198 0.93645
37 1.10952 0.99004 1.04808 1.04846 7.50373 0.18937 1.19204 1.19665 1.03628 1.10176 1.02142
38 1.21684 0.99944 1.10280 1.09863 7.90093 0.18768 1.21774 1.22145 1.06914 1.19166 1.14490
39 1.04027 0.86886 0.95071 0.95482 7.16398 0.15715 1.06105 1.06219 0.93030 1.01682 0.99999

Note that the chained Laspeyres index ends up at 7.164, while the chained Paasche index ends up at 0.157. The corresponding fixed-base indices end up 
at 1.040 and 0.869, so it is clear that these chained indices are subject to tremendous chain drift. The chain drift carries over to the Fisher and Törnqvist 
indices; that is, the fixed-base Fisher index ends up at 0.9548, while its chained counterpart ends up at 1.061. Chart 1.6 plots these indices with the excep-
tions of the chained Laspeyres and Paasche indices (these indices exhibit too much chain drift to be considered further).

Table 1.4 (Continued)

Figure A7.6 Weighted Price Indices
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weighted geometric index for subsequent months in the sam-
ple. The Lowe index, PLo

t, was defined by (124) in Section 
11. This index is a fixed basket index that uses the average 
quantities in the base year as the vector of quantity weights. 
We calculated both of these indices for the months in years 
2 and 3 for our sample using the weights from year 1 of our 

A.7.4 Indices That Use Annual 
Weights
The weighted Jevons or geometric Young index, PJα

t or PGY
t, 

was defined by (54) in Section 6. This index uses the arith-
metic average of the monthly shares in year 1 as weights in a 



205

THE CHAIN DRIFT PROBLEM AND MULTILATERAL ALTERNATIVE APPROACH FISHER INDICES

Table 1.5 geometric Young, Lowe, Laspeyres, Paasche, Fisher, Törnqvist, Jevons, Dutot, and Unit Value Indices 
for Years 2 and 3
t PGY

t PLo
t PL

t PP
t PF

t PT
t PJ

t PD
t PUV

t

14 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
15 0.93263 0.93494 1.00555 0.87189 0.93634 0.93715 1.00962 1.01366 0.88282
16 0.92082 0.92031 0.95041 0.90755 0.92873 0.92986 0.96667 0.96175 0.91945
17 0.87997 0.88507 0.89085 0.85384 0.87215 0.87032 0.88275 0.88100 0.87673
18 0.79503 0.80022 0.82733 0.76386 0.79496 0.79283 0.83163 0.83032 0.77724
19 0.80573 0.81468 0.85664 0.76193 0.80790 0.80865 0.88451 0.88091 0.76718
20 0.79981 0.80700 0.82757 0.74904 0.78733 0.78635 0.83739 0.84337 0.76264
21 0.79437 0.80164 0.83126 0.77659 0.80346 0.80489 0.85802 0.84924 0.76254
22 0.77921 0.78355 0.80911 0.75762 0.78294 0.78149 0.82067 0.81723 0.74322
23 0.77876 0.78087 0.82688 0.76468 0.79517 0.79606 0.82440 0.82741 0.71285
24 0.81228 0.81680 0.83070 0.75908 0.79408 0.79472 0.82664 0.83251 0.71633
25 0.72801 0.74112 0.75452 0.66120 0.70632 0.70498 0.77809 0.78023 0.64679
26 0.75011 0.75684 0.80141 0.71350 0.75618 0.75377 0.79362 0.79483 0.70344
27 0.79254 0.79375 0.82527 0.74559 0.78442 0.78661 0.82498 0.83156 0.72275
28 0.73664 0.74226 0.74893 0.71223 0.73035 0.72970 0.73650 0.74098 0.72769
29 0.75964 0.76031 0.80135 0.74576 0.77306 0.77165 0.80321 0.80946 0.76321
30 0.76531 0.76828 0.77149 0.74410 0.75767 0.75781 0.77157 0.77315 0.74507
31 0.77786 0.77867 0.81448 0.76635 0.79005 0.78811 0.80900 0.81594 0.78275
32 0.85506 0.86201 0.87512 0.76018 0.81563 0.82138 0.84067 0.86401 0.77026
33 0.84365 0.85499 0.88099 0.77811 0.82795 0.82554 0.85589 0.87320 0.81223
34 0.84601 0.84804 0.88159 0.82588 0.85328 0.85422 0.87325 0.88632 0.83608
35 0.89199 0.89177 0.90170 0.92254 0.91206 0.91320 0.88570 0.89782 0.90240
36 0.85506 0.85983 0.90132 0.79811 0.84815 0.84966 0.88156 0.90117 0.76948
37 0.94264 0.94402 0.95898 0.90084 0.92946 0.93135 0.94414 0.96137 0.83931
38 0.97419 0.97462 0.99009 0.95811 0.97397 0.97413 0.96684 0.97762 0.94077
39 0.85043 0.85908 0.88213 0.80516 0.84277 0.84144 0.87353 0.88242 0.82170
Mean 0.83338 0.83772 0.86329 0.80014 0.83094 0.83100 0.86080 0.86644 0.79634

sample. For comparison purposes, we also list the fixed-base 
Laspeyres, Paasche, Fisher, and Törnqvist indices, PL

t, PP
t, 

PF
t, and PT

t for the “months” in years 2 and 3 of our sample. 
It is also of interest to list the Jevons, Dutot, and unit value 
indices, PJ

t, PD
t, and PUV

t for years 2 and 3 in order to see 
how unweighted indices compare to the weighted indices. 
The sample averages for these indices are listed in the last 
row of Table 1.5.

As usual, PF
t and PT

t approximate each other very 
closely. Indices with substantial upward biases relative to 
these two indices are the Laspeyres, Jevons, and Dutot 
indices, PL

t, PJ
t, and PD

t. The geometric Young index and 
the Lowe index, PGY

t and PLo
t, were about 0.25 and 0.67 

percentage points above the superlative indices on aver-
age. The Paasche and unit value indices, PP

t and PUV
t, 

had substantial downward biases relative to the super-
lative indices. These inequalities agree with our a priori 

expectations about biases. The nine indices are plotted in 
Figure A7.7.

It can be seen that all nine indices capture the trend in the 
product prices with PF

t and PT
t in the middle of the indices 

(and barely distinguishable from each other in the chart). 
The unit value index PUV

t is the lowest index followed by the 
Paasche index PP

t. The geometric Young and Lowe indices, 
PGY

t and PLo
t, are quite close to each other and close to the 

superlative indices in the first part of the sample, but then 
they drift above the superlative indices in the latter half of 
the sample. We expect the Lowe index to have some upward 
substitution bias, and with highly substitutable products, we 
expect the geometric Young index to also have an upward 
substitution bias. Finally, the Laspeyres, Jevons, and Dutot 
indices are all substantially above the superlative indices, 
with PJ

t and PD
t approximating each other quite closely.

We turn our attention to multilateral indices.
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A.7.5 Multilateral Indices
We considered seven main multilateral indices in the main 
text:231

• PGEKS
t (see definition (70) in Section 8);

• PCCDI
t (see definition (77) in Section 8);

• PGK
t (see definition (137) in Section 12);

• PWTPD
t (see definition (149) in Section 13);

• PAL
t, the price similarity-linked indices defined following 

definition (215), which defined the asymptotic linear mea-
sures of relative price dissimilarity ΔAL(pr,pt,qr,qt);

• PSP
t, the price similarity-linked indices defined following 

definition (218), which defined the predicted share mea-
sures of relative price dissimilarity ΔSP(pr,pt,qr,qt); and

• PSPQ
t, the price and quantity similarity-linked indices 

defined following definition (221), which defined the pre-
dicted share measures of relative price and quantity dissimi-
larity ΔSPQ(pr,pt,qr,qt).

It turned out that the similarity-linked price indices PSP
t 

were equal to their counterparts PSPQ
t for each time period 

t, so we list only the PSP
t indices in Table 1.6.232 The above 

six multilateral indices are listed in Table 1.6 along with the 
fixed-base Fisher and Törnqvist indices PF

t and PT
t. All of 

these indices were evaluated using estimated reservation 
prices for the missing products. The sample mean for each 
index is listed in the last row of Table 1.6.

If the eight indices are evaluated according to their sam-
ple means, the two similarity-linked indices PAL

t and PSP
t = 

231 We also defined the quantity similarity-linked price indices PSQ
t follow-

ing definition (219), which were constructed using the predicted share mea-
sures of relative quantity dissimilarity ΔSQ(pr,pt,qr,qt). However, the indices 
PSQ

t are absorbed into the definition of the superior indices PSPQ
t, and so 

we did not list PSQ
t here. We also considered some variants of PAL

t and PSP
t, 

which will be considered later in this section and in Section A6.
232 For every pair of observations, the measure of predicted share relative 
price dissimilarity was always smaller than the corresponding measure of 
predicted share relative quantity dissimilarity.

PSPQ
t generated the lowest indices on average. The PGEKS

t, 
PCCDI

t, PF
t, and PT

t indices are tightly clustered in the mid-
dle and the PGK

t and PWTPD
t indices are about 2 percentage 

points above the middle indices on average. Looking at the 
index levels at the final sample observation, the two indices 
that use similarity linking end up at 0.9275, which is about  
2 percentage points below where the GEKS, CCDI, fixed-
base Fisher, and Törnqvist–Theil indices ended up. The 
GK and weighted TPD indices ended up approximately 
4 percentage points above the two similarity-linked indi-
ces. These differences are substantial. Figure A7.8 plots the 
eight indices.

All eight indices capture the trend in product prices 
reasonably well. It is clear that the GK and weighted TPD 
indices have some upward bias relative to the remaining 
six indices. The two similarity-linked indices, PAL

t and PSP
t, 

both end up at the same index level, and in general, they are 
very close.

The following table lists the real-time PAL
t and PSP

t again 
and compares them with their modified counterparts, PALM

t 
and PSPM

t. These latter indices use the first 13 “months” as 
a “training” year where a spanning tree of observations is 
linked simultaneously. Here is the spanning tree or path of 
bilateral links that minimizes the sum of the dissimilarity 
measures associated with the links for PALM

t:

12   13
 |    |

1 – 8 – 9 – 11

   |

   3 – 4 – 2 – 10 – 6 – 5

   |
   7

Here is the corresponding set of optimal links for PSPM
t for 

“months” 1–13:

Figure A7.7 geometric Young, Lowe, and Other Indices for Years 2 and 3
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Table 1.6 Six Multilateral Indices and the Fixed-Base Fisher and Törnqvist Indices
t PGEKS

t PCCDI
t PGK

t PWTPD
t PAL

t PSP
t PF

t PT
t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00233 1.00395 1.03138 1.02468 1.00218 1.00218 1.00218 1.00036
3 1.00575 1.00681 1.03801 1.03322 1.01124 1.01124 1.02342 1.02220
4 0.93922 0.94020 0.97021 0.96241 0.94262 0.94262 0.93388 0.93445
5 0.92448 0.92712 0.94754 0.94505 0.92812 0.92812 0.93964 0.94387
6 1.02249 1.02595 1.06097 1.05893 1.03073 1.03073 1.03989 1.04311
7 1.06833 1.06995 1.06459 1.06390 1.07314 1.09146 1.05662 1.06555
8 1.19023 1.19269 1.24385 1.24192 1.15740 1.15740 1.15740 1.15743
9 1.15115 1.15206 1.18818 1.18231 1.13680 1.13680 1.15164 1.15169

10 1.14730 1.15007 1.19184 1.18333 1.15156 1.15156 1.16081 1.15735
11 1.13270 1.13301 1.14662 1.14308 1.12574 1.12574 1.13876 1.13875
12 1.11903 1.12079 1.11332 1.12082 1.10951 1.10951 1.10951 1.10976
13 1.10247 1.10487 1.11561 1.11838 1.09229 1.09229 1.11511 1.11677
14 1.12136 1.12345 1.16579 1.15912 1.12489 1.12489 1.14803 1.14485
15 1.04827 1.04883 1.06958 1.06608 1.04237 1.04086 1.04086 1.04292
16 1.04385 1.04539 1.08842 1.08044 1.03692 1.04704 1.04836 1.05073
17 0.97470 0.97550 0.99512 0.99145 0.97013 0.97013 0.99410 0.99352
18 0.88586 0.88695 0.91319 0.90765 0.88455 0.89319 0.89105 0.89584
19 0.89497 0.89597 0.90990 0.90923 0.89118 0.89702 0.87308 0.88137
20 0.88973 0.89126 0.90822 0.90578 0.88051 0.88051 0.88051 0.88230
21 0.89904 0.89990 0.92641 0.92503 0.88482 0.89346 0.88920 0.89209
22 0.87061 0.87363 0.90145 0.89880 0.87151 0.88001 0.86217 0.86876
23 0.88592 0.88868 0.92421 0.92158 0.88280 0.88280 0.87981 0.88494
24 0.89282 0.89799 0.91127 0.91198 0.88502 0.88502 0.89357 0.90008
25 0.81132 0.81115 0.81875 0.81913 0.79966 0.79966 0.80050 0.80120
26 0.83799 0.83914 0.85168 0.85089 0.83378 0.83378 0.83026 0.83456
27 0.89063 0.89246 0.91906 0.91398 0.88481 0.88481 0.88749 0.88866
28 0.81304 0.81411 0.82600 0.82419 0.81336 0.81336 0.82665 0.82378
29 0.85763 0.85934 0.88821 0.88248 0.86271 0.86271 0.85086 0.85489
30 0.84103 0.84305 0.86121 0.85556 0.85166 0.85230 0.85383 0.85285
31 0.87495 0.87639 0.90123 0.89600 0.87568 0.87568 0.87411 0.87827
32 0.89936 0.90831 0.88553 0.89332 0.91368 0.91398 0.92038 0.92577
33 0.92670 0.92878 0.91672 0.92625 0.91517 0.91517 0.92403 0.92835
34 0.95721 0.95846 0.99507 0.98974 0.94435 0.94435 0.95012 0.95072
35 1.01848 1.02026 1.07728 1.06779 1.00422 1.00422 0.99422 0.99086
36 0.96507 0.96601 0.98339 0.98282 0.96122 0.96122 0.95568 0.95607
37 1.05250 1.05448 1.08019 1.07514 1.07953 1.03556 1.04808 1.04846
38 1.08819 1.08961 1.11648 1.10963 1.07546 1.07546 1.10280 1.09863
39 0.94591 0.94834 0.96156 0.96453 0.92575 0.92575 0.95071 0.95482
Mean 0.97417 0.97602 0.99764 0.99504 0.97069 0.97109 0.97434 0.97607

  13
   |
12 – 1 – 8 – 9 – 11

     |
10 – 2 – 4 – 3 – 5 – 6 – 7.

These spanning trees are similar but not identical. Never-
theless, the index levels generated by the two alternative 
measures of price dissimilarity end up being the same.

At the end of Section 20, the fixed-base maximum over-
lap Fisher indices PF

t* were defined along with the GEKS 
index that uses the geometric mean of the maximum over-
lap Fisher indices for each choice of a base, PGEKS

t*. We also 
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Figure A7.8 Six Multilateral and Two Superlative Indices
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All 10 of the above indices are listed in Table1.7 and are plot-
ted in Figure A7.9.

The four similarity-linked indices that used reservation 
prices, PAL

t, PALM
t, PSP

t, and PSMP
t, ended up at the same 

level for the last observation, 0.92575. The predicted share 
similarity-linked indices that did not use imputations for 
the prices of missing products, PSP

t* and PSMP
t*, ended up at 

the slightly higher level, 0.92612. Thus, all of the similarity-
linked indices behaved in a similar manner for our particu-
lar data set.

defined the counterparts to the predicted share multilateral 
indices PSP

t and PSPM
t using maximum overlap Fisher indices 

to do the linking of observations in place of regular Fisher 
indices. These maximum overlap indices (which do not use 
imputations) were denoted by PSP

t* and PSPM
t*. All of these 

indices are listed in Table 1.8. The set of optimal links for 
PSPM

t* for “months” 1–13 are as follows:

 13
 |

12 – 1 – 8 – 9 – 11 – 10

 |

Table 1.7 Six Similarity-Linked Multilateral, Two GEKS, and Two Fisher Indices
t PAL

t PALM
t PSP

t PSPM
t PSP

t* PSPM
t* PGEKS

t PGEKS
t* PF

t PF
t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00218 0.99067 1.00218 0.99067 1.00218 0.99213 1.00233 1.00546 1.00218 1.00218
3 1.01124 0.99960 1.01124 0.99960 1.01124 1.00108 1.00575 1.00673 1.02342 1.02342
4 0.94262 0.93180 0.94262 0.93180 0.94262 0.93317 0.93922 0.94156 0.93388 0.93388
5 0.92812 0.90620 0.92812 0.91744 0.92812 0.91879 0.92448 0.92384 0.93964 0.93964
6 1.03073 1.00638 1.03073 1.01886 1.03073 1.02037 1.02249 1.02505 1.03989 1.03989
7 1.07314 1.06081 1.09146 1.07890 1.09146 1.08049 1.06833 1.06965 1.05662 1.05662
8 1.15740 1.15740 1.15740 1.15740 1.15740 1.15740 1.19023 1.19015 1.15740 1.15740
9 1.13680 1.13680 1.13680 1.13680 1.13726 1.13726 1.15115 1.15502 1.15164 1.15209

10 1.15156 1.13833 1.15156 1.13833 1.13142 1.13707 1.14730 1.15094 1.16081 1.16529
11 1.12574 1.12574 1.12574 1.12574 1.12620 1.12620 1.13270 1.13707 1.13876 1.14153
12 1.10951 1.10951 1.10951 1.10951 1.10876 1.10876 1.11903 1.12242 1.10951 1.10876
13 1.09229 1.09229 1.09229 1.09229 1.09273 1.09273 1.10247 1.10798 1.11511 1.12264
14 1.12489 1.11196 1.12489 1.11196 1.10948 1.11502 1.12136 1.12651 1.14803 1.15567
15 1.04237 1.04237 1.04086 1.04086 1.04167 1.04167 1.04827 1.05159 1.04086 1.04105
16 1.03692 1.03692 1.04704 1.03502 1.03622 1.03622 1.04385 1.04814 1.04836 1.05283
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t PAL
t PALM

t PSP
t PSPM

t PSP
t* PSPM

t* PGEKS
t PGEKS

t* PF
t PF

t*

17 0.97013 0.95899 0.97013 0.95899 0.96764 0.97246 0.97470 0.97951 0.99410 1.00156
18 0.88455 0.88455 0.89319 0.88293 0.88396 0.88396 0.88586 0.88943 0.89105 0.89486
19 0.89118 0.89118 0.89702 0.88672 0.88775 0.88775 0.89497 0.89780 0.87308 0.87462
20 0.88051 0.88051 0.88051 0.88051 0.86666 0.86666 0.88973 0.89037 0.88051 0.88462
21 0.88482 0.88482 0.89346 0.88319 0.87503 0.87503 0.89904 0.90403 0.88920 0.89505
22 0.87151 0.87151 0.88001 0.86991 0.86764 0.86764 0.87061 0.87296 0.86217 0.86759
23 0.88280 0.87265 0.88280 0.87265 0.87100 0.87100 0.88592 0.88869 0.87981 0.88008
24 0.88502 0.88502 0.88502 0.88502 0.87164 0.87164 0.89282 0.89785 0.89357 0.90877
25 0.79966 0.79966 0.79966 0.79966 0.78672 0.78672 0.81132 0.81419 0.80050 0.80492
26 0.83378 0.82421 0.83378 0.82421 0.82264 0.82264 0.83799 0.84106 0.83026 0.83325
27 0.88481 0.88481 0.88481 0.88481 0.87500 0.87500 0.89063 0.89395 0.88749 0.89223
28 0.81336 0.80401 0.81336 0.80401 0.81126 0.81531 0.81304 0.81584 0.82665 0.82771
29 0.86271 0.85280 0.86271 0.85280 0.85118 0.85118 0.85763 0.86015 0.85086 0.85009
30 0.85166 0.84188 0.85230 0.84250 0.84063 0.84482 0.84103 0.84407 0.85383 0.85566
31 0.87568 0.86562 0.87568 0.86562 0.86398 0.86398 0.87495 0.87775 0.87411 0.87393
32 0.91368 0.89210 0.91398 0.90346 0.88825 0.89268 0.89936 0.90222 0.92038 0.92131
33 0.91517 0.91517 0.91517 0.91517 0.91554 0.91554 0.92670 0.93126 0.92403 0.93241
34 0.94435 0.94435 0.94435 0.94435 0.93388 0.93388 0.95721 0.96113 0.95012 0.95662
35 1.00422 0.99266 1.00422 0.99266 1.00461 1.00963 1.01848 1.02253 0.99422 0.99561
36 0.96122 0.96122 0.96122 0.96122 0.95057 0.95057 0.96507 0.96835 0.95568 0.95746
37 1.07953 1.06710 1.03556 1.03556 1.03597 1.03597 1.05250 1.05702 1.04808 1.05585
38 1.07546 1.06308 1.07546 1.06308 1.07588 1.08124 1.08819 1.09293 1.10280 1.10739
39 0.92575 0.92575 0.92575 0.92575 0.92612 0.92612 0.94591 0.94987 0.95071 0.95610
Mean 0.97069 0.96437 0.97109 0.96461 0.96464 0.96410 0.97417 0.97731 0.97434 0.97745

Figure A7.9 Similarity-Linked, GEKS, and Fisher Price Indices
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Table 1.8 Six Multilateral Indices and Four Fisher Indices Using Reservation Prices and Inflation-Adjusted Carry-
Forward or Carry-Backward Prices
t PAL

t PALC
t PSP

t PSPC
t PGEKS

t PGEKSC
t PF

t PFC
t PFCH

t PFCHC
t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00218 1.00218 1.00218 1.00218 1.00233 1.00600 1.00218 1.00218 1.00218 1.00218
3 1.01124 1.01124 1.01124 1.01124 1.00575 1.00765 1.02342 1.02342 1.01124 1.01124
4 0.94262 0.94262 0.94262 0.94262 0.93922 0.94238 0.93388 0.93388 0.94265 0.94265
5 0.92812 0.92812 0.92812 0.92812 0.92448 0.92458 0.93964 0.93964 0.93715 0.93715
6 1.03073 1.03073 1.03073 1.03073 1.02249 1.02595 1.03989 1.03989 1.04075 1.04075
7 1.07314 1.07314 1.09146 1.09146 1.06833 1.06926 1.05662 1.05662 1.10208 1.10208
8 1.15740 1.15740 1.15740 1.15740 1.19023 1.19049 1.15740 1.15740 1.26987 1.26987
9 1.13680 1.13743 1.13680 1.13743 1.15115 1.15235 1.15164 1.15265 1.24727 1.24796

10 1.15156 1.13117 1.15156 1.13117 1.14730 1.14432 1.16081 1.15847 1.24528 1.24110
11 1.12574 1.12637 1.12574 1.12637 1.13270 1.13413 1.13876 1.14017 1.23034 1.23142
12 1.10951 1.11015 1.10951 1.11015 1.11903 1.12033 1.10951 1.11015 1.22091 1.22199
13 1.09229 1.09290 1.09229 1.09290 1.10247 1.10348 1.11511 1.11667 1.20813 1.20919
14 1.12489 1.10982 1.12489 1.10982 1.12136 1.12230 1.14803 1.14991 1.23948 1.24057
15 1.04237 1.04298 1.04086 1.04215 1.04827 1.04951 1.04086 1.04215 1.16056 1.16159
16 1.03692 1.03752 1.04704 1.04435 1.04385 1.04502 1.04836 1.04993 1.15449 1.15551
17 0.97013 0.96643 0.97013 0.96643 0.97470 0.97582 0.99410 0.99631 1.08642 1.08738
18 0.88455 0.88507 0.89319 0.89089 0.88586 0.88680 0.89105 0.89233 0.98452 0.98539
19 0.89118 0.89169 0.89702 0.89471 0.89497 0.89577 0.87308 0.87401 0.99189 0.99277
20 0.88051 0.88066 0.88051 0.88066 0.88973 0.88931 0.88051 0.88066 0.99193 0.99178
21 0.88482 0.89189 0.89346 0.89776 0.89904 0.90338 0.88920 0.89369 1.00150 1.00135
22 0.87151 0.87235 0.88001 0.87809 0.87061 0.87144 0.86217 0.86337 0.96068 0.96053
23 0.88280 0.88115 0.88280 0.88115 0.88592 0.88697 0.87981 0.88078 0.97902 0.97871
24 0.88502 0.88616 0.88502 0.88616 0.89282 0.89324 0.89357 0.89470 0.96347 0.96316
25 0.79966 0.80045 0.79966 0.80045 0.81132 0.81211 0.80050 0.80141 0.88172 0.88144
26 0.83378 0.83223 0.83378 0.83223 0.83799 0.83906 0.83026 0.83184 0.92100 0.92071
27 0.88481 0.88608 0.88481 0.88608 0.89063 0.89137 0.88749 0.88840 0.98344 0.98313
28 0.81336 0.81025 0.81336 0.81025 0.81304 0.81400 0.82665 0.82783 0.90739 0.90710
29 0.86271 0.86110 0.86271 0.86110 0.85763 0.85859 0.85086 0.85183 0.95839 0.95809
30 0.85166 0.85007 0.85230 0.85007 0.84103 0.84177 0.85383 0.85488 0.94612 0.94582
31 0.87568 0.87405 0.87568 0.87405 0.87495 0.87600 0.87411 0.87539 0.97557 0.97526
32 0.91368 0.90516 0.91398 0.90516 0.89936 0.89984 0.92038 0.92116 1.00192 1.00161
33 0.91517 0.91568 0.91517 0.91568 0.92670 0.92799 0.92403 0.92695 1.02632 1.02600
34 0.94435 0.94571 0.94435 0.94571 0.95721 0.95811 0.95012 0.95213 1.05412 1.05379
35 1.00422 1.00400 1.00422 1.00400 1.01848 1.01961 0.99422 0.99551 1.11015 1.10980
36 0.96122 0.96261 0.96122 0.96261 0.96507 0.96626 0.95568 0.95713 1.08720 1.08686
37 1.07953 1.07929 1.03556 1.07929 1.05250 1.05337 1.04808 1.04986 1.19204 1.19167
38 1.07546 1.07522 1.07546 1.07522 1.08819 1.08970 1.10280 1.10574 1.21774 1.21735
39 0.92575 0.92626 0.92575 0.92626 0.94591 0.94704 0.95071 0.95246 1.06105 1.06071
Mean 0.97069 0.96968 0.97109 0.97082 0.97417 0.97526 0.97434 0.97542 1.0589 1.0589
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A.7.6 Multilateral and Fisher Indices 
Using Reservation Prices versus 
Carry-Forward Prices
Finally, we compare PAL

t (asymptotic linear), PSP
t (predicted 

share), PGEKS
t (GEKS), PF

t (fixed-base Fisher), and PFCH
t 

(chained Fisher) using reservation prices, with their coun-
terparts using inflation-adjusted carry-forward or carry-
backward prices, PALC

t, PSPC
t, PGEKSC

t, PFC
t, and PFCHC

t, in 
Table 1.8. The ten indices are plotted on Chart 1.10.

Basically, each index that uses reservation prices is close 
to its counterpart index that uses inflation-adjusted carry-
forward or carry-backward prices. This is to be expected 
since there are only 20 missing product prices out of a sam-
ple of 19 · 39 = 741 price and quantity observations.

The two chained Fisher indices, PFCH
t (uses reservation 

prices) and PFCHC
t (uses inflation-adjusted carry-forward or 

carry-backward prices), cannot be distinguished from each 
other in Figure A7.10. These indices are subject to substan-
tial upward chain drift. The remaining indices (which are 
not subject to chain drift) are quite close to each other.

A7. Conclusion
Conceptually, the price and quantity similarity-linked 
indices PSPQ

t based on the combined price and quantity 
dissimilarity measure ΔSPQ(pr,pt,qr,qt) seem to be the most 
attractive solution for solving the chain drift problem.233 In 
practice, ΔSPQ(pr,pt,qr,qt) will typically equal the predicted 
share price dissimilarity measure ΔSP(pr,pt,qr,qt) so that PSPQ

t 
will typically equal PSP

t. The indices PSPQ
t and PSP

t can be 
implemented using either reservation prices or some form 
of carry-forward prices, or if the statistical agency does not 
want to use explicit imputations for missing product prices, 
these indices can be calculated without using imputations.

233 They can deal with seasonal products more adequately than the other 
indices that are considered in this paper. They also satisfy the strong 
identity test (and thus are not subject to chain drift) as well as the fixed 
basket test.
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QUALITY ADJUSTMENT METHODS* 8
1. Introduction
This chapter will attempt to place most methods used by 
statistical agencies to quality adjust prices into a common 
economic framework. The economic framework is based 
on purchasers maximizing a linearly homogeneous utility 
function subject to a budget constraint on their purchases 
of a group of related products. This framework is far from 
a perfect description of reality, but it captures an important 
empirical phenomenon: When the price of a product drops 
a lot, purchasers of the product buy more of it! Moreover, 
the theory allows us to provide a welfare interpretation for 
the quantity indices that are generated by this approach. 
The very concept of comparing the relative quality of two 
related products means that we are comparing the relative 
usefulness or utility of the products to the purchaser. Thus, 
it seems to be necessary to take an economic approach to 
the problem of quality adjustment.

The theory of quality adjustment to be presented in this 
chapter is meant to be applied at the level where subindices 
are constructed at the first stage of aggregation; that is, at 
what is called the elementary level of aggregation by price 
statisticians. Furthermore, the methods for quality adjust-
ment to be discussed in this chapter are largely aimed at the 
scanner data context; that is, we will assume that the sta-
tistical agency has access to detailed price and quantity (or 
value) information at the product code level, either from 
retail outlets or from the detailed purchases of a group of 
similar households.1 Thus, our focus will be on both the 
construction of CPIs at the elementary level and the com-
panion consumer quantity indices.

The assumption of linearly homogeneous utility or valu-
ation functions is an important restriction, so one may ask: 
Why impose it? The reason is that economic models con-
structed by private and public sector economists generally 
do not make use of disaggregated information; instead, they 
use the elementary indices that are produced by national 
statistical agencies in their models. However, the price levels 
that correspond to these elementary indices are treated as 
“normal” prices by applied economists; that is, the elemen-
tary prices are not regarded as prices that are conditional 
on particular levels of the corresponding quantity levels. 

1 As cash transactions diminish in importance, credit and debit card com-
panies will have detailed price and quantity information on household 
purchases. Once this information on consumer transactions also includes 
product bar codes, statistical agencies will eventually be able to access 
this information and use it to produce high-quality CPIs .

In order to construct unconditional price levels, we need to 
assume that the underlying aggregator or utility functions 
are linearly homogeneous.2

Marshall (1887) was one of the first to introduce the 
new goods problem: How exactly should price indices be 
adjusted to account for the introduction of new and hope-
fully improved products? 3 Marshall suggested that chaining 
period-to-period indices would provide a partial solution to 
the problem. Keynes (1909) endorsed Marshall’s suggestion 
as a step in the right direction but noted that chaining alone 
will not solve the fundamental problem: Increased product 
choice will generally increase the utility of purchasers of 
products, but it is very difficult to measure this increase.4 
This is the essence of the quality adjustment problem; how 
can statistical agencies construct price and quantity indices 
over two or more periods when there are new and disappear-
ing products?

Hicks (1940, 114) suggested a general approach to this mea-
surement problem in the context of the economic approach 
to index number theory. His approach was to apply normal 
index number theory but estimate (somehow) hypothetical 
prices that would induce utility-maximizing purchasers of 
a related group of products to demand 0 units of unavail-
able products.5 With these reservation or imputed prices in 

2 The underlying index number theory using linearly homogeneous 
aggregator functions was developed by Shephard (1953), Samuelson and 
Swamy (1974), and Diewert (1976). This theory was explained in Chapter 
5 and will be summarized in Section 2.
3 “This brings us to consider the great problem of how to modify our 
unit so as to allow for the invention of new commodities. The difficulty 
is insuperable, if we compare two distant periods without access to the 
detailed statistics of intermediate times, but it can be got over fairly well 
by systematic statistics” (Alfred Marshall, 1887, 373). Lehr (1885, 45–46) 
also introduced the chain system as a way of mitigating the new goods 
problem. For more on the early history of the new goods problem, see 
Diewert (1993, 59–63).
4 “The [chaining] method has another advantage. It enables us to intro-
duce new commodities and to drop others which have fallen out of use. 
. . . For most practical purposes, therefore, this is the method to be rec-
ommended. . . . Yet we must not exaggerate its merits” (John M. Keynes, 
1909, 80). “We cannot hope to find a ratio of equivalent substitution for 
gladiators against cinemas, or for the conveniences of being able to buy 
motor cars against the conveniences of being able to buy slaves” (John M. 
Keynes, 1930, 96).
5 “The same kind of device can be used in another difficult case, that in 
which new sorts of goods are introduced in the interval between the two 
situations we are comparing. If certain goods are available in the II situ-
ation which were not available in the I situation, the p1’s corresponding to 
these goods become indeterminate. The p2’s and q2’s are given by the data 
and the q1’s are zero. Nevertheless, although the p1’s cannot be determined 
from the data, since the goods are not sold in the I situation, it is apparent 
from the preceding argument what p1’s ought to be introduced in order to 
make the index-number tests hold. They are those prices which, in the I 
situation, would just make the demands for these commodities (from the 
whole community) equal to zero” (John R. Hicks, 1940, 114). Von Hofsten 
(1952, 95–97) extended Hicks’ methodology to cover the case of disap-
pearing goods as well.

* The author thanks Jan de Haan, Kevin Fox, Adam Gorajek, Ronald 
Johnson, Mark Ruddock, Prasada Rao, Chihiro Shimizu, Alice Xu, 
and Kelsang Yangzom for their helpful comments and Jan de Haan, 
Jerry Hausman, and Mick Silver for their helpful discussions about 
quality adjustment over the years.
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period 1. Then, the first inverse demand function in period 
1 becomes p1

1* = g1(0,q2
1, . . .,qN

1,v1) + e1
1 using the notation in 

the previous paragraph. Thus, we simply drop this equation 
from the system of inverse demand estimating equations 
and use the remaining equations to estimate the unknown 
parameters in the direct utility function Q(q). Once these 
unknown parameters have been estimated, the period 
1 reservation price for product 1 can be defined as p1

1* = 
g1(0,q2

1,  .  .  .,qN
1,v1). This methodology will be described in 

Sections 9 and 10 in more detail.9

It turns out that a special case of this inverse demand 
function methodology is the case of a linear utility function; 
that is, set f(q) = Σn=1

N αnqn ≡ α·q, where αn are quality adjust-
ment factors. Thus, αn give the increase in utility of purchas-
ers due to the acquisition of an extra unit of product n. The 
case of a linear utility function will be used as an underly-
ing economic model in Sections 3 and 5–8. Furthermore, it 
turns out that the assumption of an underlying linear utility 
function provides a rationale for hedonic regression models, 
which will be studied in Sections 5–8.

In Sections 3 and 4, we apply the linear utility function 
assumption to some special situations where it is possible 
to generate missing prices without using any econometrics. 
These sections introduce inflation-adjusted carry-forward 
and carry-backward prices, which have been used for many 
years by statistical agencies to replace missing prices.10

In Section 5, we also assume an underlying linear utility 
function, but we no longer assume that the underlying eco-
nomic model holds exactly. Thus, error terms make their 
appearance in this section (and in subsequent sections). 
The resulting model is called the time product dummy 
hedonic regression model. This model is an application 
of Summer’s (1973) country product dummy model to the 
time series context. The underlying TPD hedonic regres-
sion model is ptn = πtαn for n = 1,  .  .  .,N and t = 1,  .  .  .,T, 
where αn are the quality adjustment factors that appear in 
the purchasers’ linear utility function and πt turn out to be 
period t aggregate price levels.11 However, in real-life appli-
cations, these equations will not hold exactly, and thus it 
is necessary to introduce error terms. The preceding exact 
equations can be replaced by lnptn = lnπt + lnαn + etn for  
n = 1, . . .,N and t = 1, . . .,T, where etn are error terms. This 
is a stochastic model, which was discussed in Chapter 7. It 
is also a special case of a hedonic regression model where 
prices are regressed on the characteristics of products. In 
this simple special case framework, each product has its 
own separate characteristic. Estimators for the logarithms 
of πt and an are found by minimizing the sum of squared 
errors, Σt=1

T Σn=1
N [etn]

2 = Σt=1
T Σn=1

N [lnptn – lnπt – lnαn]
2. 

However, the log prices are not weighted according to their 
economic importance, and the model does not allow for 

ity maximization problem. Then using Wold’s (1944, 69–71) identity, pn = 
[∂f(q)/∂qn]v/f(q) ≡ gn(q,v) for n = 1, . . .,N. We will derive these equations in 
more detail in Section 2. See also Section 4 in Chapter 5.
9 This methodology was first suggested by Diewert (1980, 498–503) and 
implemented by Diewert and Feenstra (2017, 2022).
10 See von Hofsten (1952), Triplett (2004), de Haan and Krsinich (2012, 
31–32), and Diewert, Fox, and Schreyer (2017). Inflation-adjusted carry-
forward and carry-backward prices were discussed in Section 19 of Chap-
ter 7; see Diewert (2021).
11 A bilateral price index between period t relative to period r is defined as 
the ratio of the relevant price levels, πt/πr.

hand, one can just apply normal index number theory using 
the augmented price data and the observed quantity data 
(which impute zero quantities to unavailable products). This 
is the economic framework we will use in this chapter.6 The 
practical problem facing statistical agencies is: How exactly 
are these reservation prices to be estimated?

The approach to the estimation of reservation prices that 
will be taken here is to use consumer demand theory to esti-
mate preferences. Suppose that purchasers maximize a util-
ity function f(q) subject to the budget constraint p·q ≡ Σn=1

N 
pnqn = v > 0, where the price and quantity of commodity n 
are pn and qn for n = 1, . . .,N. Define the price and quantity 
vectors p ≡ [p1, . . .,pN] and q ≡ [q1, . . .,qN]. Suppose that p, q, 
and v are observed, and q is a solution to the utility maxi-
mization problem max q {f(q) : p·q = v}. Then, given a func-
tional form for f, the solution q to the utility maximization 
problem will satisfy the usual consumer demand functions, 
qn = dn(p,v) for n = 1, . . .,N, where dn(p,v) is the nth consumer 
demand function. Given price and quantity for many peri-
ods, the unknown parameters for the utility function that 
are imbedded in these consumer demand functions can be 
estimated using econometric methods. Duality theory can 
be used to simplify the derivation of the consumer demand 
functions.7 This is the approach used by Hausman (1981, 
1996, 1999, 2003) to estimate reservation prices. However, 
the econometrics of this method are complex. To illustrate 
these problems, suppose that in the first sample period, 
product 1 was not available. The observed demand for prod-
uct 1 in period 1 is 0. Thus, the first estimating equation in 
the sample would take the form 0 = d1(p1

1*,p2
1,  .  .  .,pN

1,v1) + 
e1

1, where d1(p,v) is the demand function for commodity 1, 
p2

1, . . .,pN
1 are the observed prices for products 2,3, . . .,N in 

period 1, v1 is the observed period 1 expenditure on the N 
products, e1

1 is an error term, and p1
1* is the unknown period 

1 reservation price for product 1. It can be seen that p1
1* is 

now an extra parameter that must be estimated. Hence, the 
usual approach that conditions on prices (on the right-hand 
sides of the estimating equations) and treats quantities as 
random variables on the left-hand sides of the estimating 
equations does not apply due to the endogeneity of the res-
ervation price. Moreover, the variable on the left-hand side 
of the preceding equation is 0, and this is not a random vari-
able. Thus, simple econometric techniques cannot be used 
in this situation.

To deal with the preceding econometric problem, one can 
abandon the estimation of traditional consumer demand 
functions and switch to the estimation of the system of 
inverse consumer demand functions. The nth inverse demand 
function gives the observed price for product n, pn, as a func-
tion of the vector of quantities chosen by the purchasers, q, 
and total expenditure on the products v; that is, we have pn 
= gn(q,v) for n = 1, . . .,N, where gn is the nth inverse demand 
function.8 Again suppose product 1 was not available in 

6 Two major problems with this framework are (i) it does not take into 
account the fact that purchasers may stockpile goods on sale and this 
will affect demand in subsequent periods and (ii) the introduction of a 
new revolutionary product may change purchaser preferences over exist-
ing goods. However, until a better welfare-oriented model of purchaser 
behavior comes along, we are stuck with using the Hicksian approach.
7 See, for example, Diewert (1974, 120–133).
8 Suppose that the utility function f(q) is differentiable and linearly 
homogeneous, and we have an interior solution to the purchaser’s util-
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missing products as was seen in Chapter 7. In Section 17 
of Chapter 7, we found a satisfactory stochastic model that 
allowed for missing observations and weighted prices by 
their economic importance. This model is reviewed in Sec-
tion 5 of the present chapter.

It should be noted that the hedonic regression models that 
will be studied in Sections 5–8 are fairly complicated since 
they deal with expenditure weights and missing observa-
tions. For readers who are not familiar with hedonic regres-
sion models and want a simpler introduction to the topic, see 
the excellent book by Aizcorbe (2014).

The model described in Section 5 generates price levels 
that have some good axiomatic properties, but the model 
has an important drawback: A product that is available only 
in one period out of the T periods has no influence on the 
estimated aggregate price levels πt

* for all periods. Thus, 
the introduction of a new product in period T will have no 
effect on the estimated price level for period T, πT

*. This goes 
against the spirit of the Hicksian approach to the treatment 
of new goods. The hedonic regression models considered in 
Sections 6 and 7 do not suffer from this drawback.

Sections 6 and 7 deal with hedonic regression models 
that make use of information on the characteristics of the 
N products under consideration. The models in these two 
sections are more satisfactory than the weighted TPD model 
discussed in Section 5 because now-isolated prices play a 
role in the determination of the estimated price levels πt

* for 
t = 1, . . .,T. However, the hedonic regression models consid-
ered in Sections 6 and 7 do require information on product 
characteristics, information that may be difficult to collect. 
The important results obtained by de Haan and Krsinich 
(2018) using this class of hedonic regression models applied 
to electronic products are discussed in Section  7. They 
compare weighted and unweighted versions of the same 
hedonic regression models and show that weighting leads to 
improved results.

The problems raised by taste change in the two period 
cases are addressed in Section 8. The treatment of the prob-
lem in this section was suggested by Diewert, Heravi, and 
Silver (2009), and it uses the tastes of each period to con-
struct separate bilateral price indices between the two peri-
ods. The two indices, each of which hold tastes constant, are 
then averaged to form a final index.

Finally, in Sections 9 and 10, two alternative methods 
for constructing reservation prices are discussed. In these 
methods, the underlying utility function is not assumed to be 
a linear function. In Section 9, the reservation price model 
due to Feenstra (1994) is presented. This model assumes that 
the underlying preferences are Constant Elasticity of Substi-
tution (CES).12 The model presented in Section 10 assumes 
that the underlying preferences are a certain flexible func-
tional form (that is exact for the Fisher (1922) ideal quantity 
index). This model was developed by Diewert and Feenstra 
(2017, 2022).

Section 11 considers three additional methods for quality 
adjustment, and Section 12 offers some conclusions.

12 See Arrow et al. (1961) for the first use of this functional form in the eco-
nomics literature. Chapter 5 considered alternative estimation methods 
for this functional form.

2. A Framework for Evaluating 
Quality Change in the Scanner  
Data Context
In this section, we provide a framework for the construc-
tion of consumer price and quantity indices in the scanner 
data context using the economic approach to index num-
ber theory. We assume that transaction data for the sales 
or purchases of N products over T time periods are avail-
able.13 The N products will typically be a group of related 
products so that the goal is the construction of price and 
quantity indices at the first stage of aggregation. The trans-
actions data are aggregated over time within each period so 
that the prices for each period are unit value prices. Let pt ≡ 
[pt1, . . .,ptN] and qt ≡ [qt1, . . .,qtN] denote the price and quantity 
vectors for time periods t = 1, . . .,T. The period t quantity 
for product n, qtn, is equal to total purchases of product n by 
purchasers or it is equal to the sales of product n by the out-
let (or group of outlets) for period t, while the corresponding 
period t price for product n, ptn, is equal to the value of sales 
(or purchases) of product n in period t, vtn, divided by the 
corresponding total quantity sold (or purchased), qtn. Thus, 
ptn ≡ vtn/qtn is the unit value price for product n in period t for 
t = 1, . . .,T and n = 1, . . .,N. In this section, we assume that 
all prices, quantities, and values are positive; in subsequent 
sections, this assumption will be relaxed.

Let q ≡ [q1, . . .,qN] be a generic quantity vector. In order to 
compare various methods for comparing the value of alter-
native combinations of the N products, it is necessary that 
a valuation function or aggregator function or utility function 
f(q) exist. This function allows us to value alternative com-
binations of products; if f(q2) > f(q1), then purchasers of the 
products place a higher utility value on the vector of pur-
chases q2 than they place on the vector of purchases q1. The 
function f(q) can also act as an aggregate quantity level for 
the vector of purchases, q. Thus, f(qt) can be interpreted as 
an aggregate quantity level for the period t vector of pur-
chases, qt, and the ratios, f(qt)/f(q1), t = 1, . . .,T, can be inter-
preted as fixed-base quantity indices covering periods 1 to T.

In the following analysis, we assume that f(q) has the fol-
lowing properties: (i) f(q) > 0 if q >> 0N;14 (ii) f(q) is non-
decreasing in its components; (iii) f(λq) = λf(q) for q ≥ 0N 
and λ ≥ 0; (iv) f(q) is a continuous concave function over the 
nonnegative orthant. Assumption (iii), linear homogeneity 
of f(q), is a somewhat restrictive assumption. However, this 
assumption is required to ensure that the aggregate price 
level, P(p,q), that corresponds to f(q) does not depend on the 
scale of q.15 Property (iv) will ensure that the first-order nec-
essary conditions for the budget-constrained maximization 
of f(q) are also sufficient.

Let p ≡[p1,  .  .  .,pN] > 0N and q ≡[q1,  .  .  .,qN] > 0N with p·q 
≡ Σn=1

N pnqn > 0. Then the aggregate price level, P(p,q), that 

13 The data could be price and quantity (or value and quantity) on sales of 
the N products from a retail outlet (or group of outlets in the same region) 
or it could be price and quantity data for the purchases of the N products 
by a group of similar households.
14 Notation: q >> 0N means each component of q is positive, q ≥ 0N means 
each component of q is nonnegative, and q > 0N means q ≥ 0N but q ≠ 0N,
15 P(p,q) ≡ p·q/f(q), where p·q ≡ Σn=1

N pnqn. Thus, using property (iii) of f(q), 
we have P(p,λq) = p·λq/f(λq) = λp·q/λf(q) = P(p,q).
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corresponds to the aggregate quantity level f(q) is defined 
as follows:

 P(p,q) ≡ p·q/f(q). (1)

Thus, the implicit price level P(p,q), which is generated by 
the generic price and quantity vectors, p and q, is equal to 
the value of purchases, p·q, deflated by the aggregate quan-
tity level, f(q). Note that using these definitions, the product 
of the aggregate price and quantity levels equals the value 
of purchases during the period; that is, we have P(p,q)f(q) 
= p·q.

Once the functional form for the aggregator function f(q) 
is known, then the aggregate quantity level for period t, Qt, 
can be calculated as follows:

 Qt ≡ f(qt); t = 1, . . .,T. (2)

Using definition (1), the corresponding period t aggregate 
price level, Pt, can be calculated as follows:

 Pt ≡ pt·qt/f(qt); t = 1, . . .,T. (3)

Note that if f(q) turns out to be a linear aggregator func-
tion, so that f(qt) ≡ α·qt = Σn=1

N αnqtn, then the correspond-
ing period t price level Pt is equal to pt·qt/α·qt, which is a 
 quality-adjusted unit value price level.16

In order to make further progress, it is necessary to make 
some additional assumptions. The two additional assump-
tions are (v) f(q) is once differentiable with respect to the 
components of q and (vi) the observed strictly positive quan-
tity vector for period t, qt >> 0N,17 is a solution to the follow-
ing period t constrained maximization problem: 18

 maxq {f(q) : pt·q = vt; q ≥ 0N}; t = 1, . . .,T. (4)

The first-order conditions for solving (4) for period t are as 
follows:19

 ∇q f(q
t) = λt p

t; t = 1, . . .,T; (5)
 pt·qt = vt; t = 1, . . .,T. (6)

Since f(q) is assumed to be linearly homogeneous with 
respect to q, Euler’s Theorem on homogeneous functions 
implies that the following equations hold:

16 See Section 10 of Chapter 7 for the properties of quality-adjusted unit 
value indices.
17 The assumption that qt >> 0N can be replaced by the assumptions qt > 
0N and pt·qt > 0.
18 The theory that follows dates back to Konüs and Byushgens (1926). 
This approach blends standard consumer demand theory based on the 
maximization of a linearly homogeneous utility function with index num-
ber theory. It was further developed by Shephard (1953) (in the context of 
a producer cost minimization framework) and by Samuelson and Swamy 
(1974) and Diewert (1976) in the consumer context. The price indices that 
result from this theory are special cases of the Konüs (1924) true cost of 
living index. What is new in the present chapter is the application of this 
theory to hedonic regression models.
19 Using the assumption of concavity of f(q) and the assumption that qt 
>> 0N, these conditions are also sufficient to solve (4). Notation: ∇q  f(q) ≡ 
[∂f(q)/∂q1, . . ., ∂f(q)/∂qN].

 qt·∇q f(q
t) = f(qt); t = 1, . . .,T. (7)

Take the inner product of both sides of equations (5) with qt 
and use the resulting equations along with equations (7) to 
solve for the Lagrange multipliers, λt:

 λt = f(qt)/pt·qt t = 1, . . .,T (8)
=1/Pt using definitions (3).20

Thus, if we assume utility-maximizing behavior on the 
part of purchasers of the N products using the collective 
utility function f(q) that satisfies these regularity condi-
tions, then the period t quantity aggregate is Qt ≡ f(qt) and 
the companion period t price level defined as Pt ≡ pt·qt/Qt is 
equal to 1/λt, where λt is the Lagrange multiplier for prob-
lem t in the constrained utility maximization problems (4) 
and where qt and λt solve equations (5) and (6) for period 
t. Equations (8) also imply that the product of Pt and Qt is 
exactly equal to observed period t expenditure vt; that is, 
we have

 PtQt = pt·qt = vt; t = 1, . . .,T. (9)

Substitute equations (8) into equations (5), and after suit-
able rearrangement, the following fundamental equations 
are obtained:21

 pt = Pt∇q f(qt); t = 1, . . .,T. (10)

In the following section, we will assume that the aggrega-
tor function, f(q), is a linear function, and we will show how 
this assumption along with equations (9) for the case where  
T = 2 and N = 3 can lead to a simple well-known method for 
quality adjustment that does not involve any econometric 
estimation of the parameters of the linear function. In sub-
sequent sections, equation (10) will be utilized in the hedonic 
regression context. In the final sections of the chapter, the 
assumption that f(q) is a linear function will be relaxed.

3. A Nonstochastic Method for 
Quality Adjustment: A Simple 
Model
A major problem that arises when statistical agencies use 
scanner data to construct an elementary index is that some 
products are sold or purchased in one period but not in a 
subsequent period. Conversely, new products appear in the 
present period; these were not present in previous periods. 

20 Note that equations (8) imply that pt·qt = Ptf(qt). Since f is linearly homo-
geneous, we also know that pt·qt = c(pt)f(qt) where c(p) is the unit cost 
function that is dual to f(q). Hence, Pt = c(pt); that is, the period t price 
level Pt is equal to the unit cost function c that corresponds to the utility 
function f evaluated at the period t price vector pt.
21 Multiply the right-hand side of equation t in (10) by 1 = Qt/f(qt) and use 
PtQt = vt to obtain the following system of equations: pt = vt∇q  f(qt)/f(qt) 
for t = 1,  .  .  .,T. For each t, this system of equations is the consumer’s 
system of inverse demand functions that give the period t prices that are 
consistent with the observed period t demands qt as functions of pt and 
period t expenditure vt. Konüs and Byushgens (1926) obtained a system of 
equations that is equivalent to this system of inverse demand functions. 
Linear homogeneity of the utility function is required in order to obtain 
these equations and the equivalent equations defined by (9) and (10).
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How should price and quantity indices be constructed under 
these circumstances? Equation (10) in the previous section 
can be used to provide an answer to this question.

Consider the special case where the number of periods 
T is equal to 2 and the number of products in scope for the 
elementary index is N equal to 3. Product 1 is present in both 
periods, product 2 is present in period 1 but not in period 
2 (a disappearing product), and product 3 is not present in 
period 1 but is present in period 2 (a new product).22 We 
assume that purchasers of the three products behave as if 
they collectively maximized the following linear aggregator 
function:

 f(q1,q2,q3) ≡ α1q1 + α2q2 + α3q3, (11)

where αn are positive constants. Under these assumptions, 
equations (10) written out in scalar form become23

 ptn = Pt αn; n = 1,2,3; t = 1,2. (12)

Equations (12) are six equations in the five parameters P1 
and P2 which can be interpreted as aggregate price levels for 
periods 1 and 2, and α1, α2, and α3, which can be interpreted 
as quality adjustment factors for the three products; that is, 
each αn measures the relative usefulness of an additional 
unit of product n to purchasers of the three products. How-
ever, product 3 is not observed in the marketplace during 
period 1, and product 2 is not observed in the marketplace 
in period 2, and so there are only four equations in (12) to 
determine five parameters. However, Pt and αn cannot all be 
identified using observable data; that is, if P1, P2, α1, α2, and 
α3 satisfy equations (12) and λ is any positive number, then 
λP1, λP2, λ–1α1, λ

–1α2, and l–1α3 will also satisfy equations (12). 
Thus, it is necessary to place a normalization (like P1 = 1 or 
α1 = 1) on the five parameters that appear in equations (12) 
in order to obtain a unique solution. In the index number 
context, it is natural to set the price level for period 1 equal 
to unity, and so we impose the following normalization on 
the five unknown parameters that appear in equations (12):

 P1 = 1. (13)

The four equations in (12) that involve observed prices and 
the single equation (13) are five equations in five unknowns. 
The unique solution to these equations is

P1 = 1; P2 = p21/p11; α1 = p11; α2 = p12;  
 α3 = p23/(p21/p11) = p23/P

2. (14)

Note that the resulting price index, P2/P1, is equal to p21/p11, 
the price ratio for the commodity that is present in both 

22 The “new” product may not be a truly new product; it may be the 
case that product 3 was temporarily not available in period 1. Similarly, 
product 2 may not permanently disappear in period 2; it may reappear 
in a subsequent period.
23 This is a special case of the TPD regression model that was studied in 
Chapter 7 and will be summarized in Section 5. Thus, equations (12), 
which are the inverse consumer demand functions that result from the 
maximization of a linear utility function, lead directly to a particular 
hedonic regression model. It is this result that allows us to claim that our 
present approach is a way of reconciling hedonic regression models with 
classical consumer demand theory.

periods. Thus, the price index for this very simple model 
turns out to be a maximum overlap price index.24

Once the Pt and αn have been determined, equations (12) 
for the missing products can be used to define the following 
imputed prices ptn

* for commodity 3 in period 1 and product 
2 in period 2:

p13
* ≡ P1α3 = p23/(P

2/P1); p22
* ≡ P2α2  

 = (p21/p11)p12 = (P2/P1)p12. (15)

These imputed prices can be interpreted as Hicksian (1940, 
12) reservation prices;25 that is, they are the lowest possible 
prices that would still deter purchasers from purchasing the 
products during periods if the unavailable products hypo-
thetically became available.26

Note that p13
* = p23/(P

2/P1) is an inflation-adjusted carry-
backward price; that is, the observed price for product 3 
in period 2, p23, is divided by the maximum overlap price 
index P2/P1 in order to obtain a “reasonable” valuation for a 
unit of product 3 in period 1. Similarly, p22

* = (P2/P1)p12 is an 
inflation-adjusted carry-forward price for product 2 in period 
2; that is, the observed price for product 2 in period 1, p12, 
is multiplied by the maximum overlap price index P2/P1 in 
order to obtain a “reasonable” valuation for a unit of prod-
uct 2 in period 2.27

Note that the preceding algebra can be implemented with-
out a knowledge of quantities sold or purchased. Assuming 
that quantity information is available, we now consider how 
companion quantity levels, Q1 and Q2, for the price levels, P1 
and P2, can be determined. Note that q13 = 0 and q22 = 0 since 
consumers cannot purchase products that are not available. 
Use the imputed prices defined by (15) to obtain complete 
price vectors for each period; that is, define the period 1 
complete price vector by p1 ≡ [p11, p12, p13

*] and the complete 
period 2 price vector by p2 ≡ [p21, p22

*, p23]. The corresponding 
complete quantity vectors are q1 ≡ [q11, q12, 0] and q2 ≡ [q21, 0, 
q23]. The period t aggregate quantity level Qt can be calcu-
lated directly using only information on qt and the vector 
of quality adjustment factors, α ≡ [α1, α2, α3], or indirectly 
by deflating period t expenditure vt ≡ pt·qt by the estimated 
period t price level, Pt. Thus, we have the following two pos-
sible methods for constructing the Qt:

 Qt ≡ α·qt; or Qt ≡ pt·qt/Pt; t = 1,2. (16)

24 Keynes (1930, 94) was an early author who advocated this method 
for dealing with new goods by restricting attention to the goods that 
were present in both periods being compared. He called his suggested 
method the highest common factor method. Marshall (1887, 373) implic-
itly endorsed this method. Triplett (2004, 18) called it the overlapping link 
method.
25 Hicks (1940) dealt only with the case of new goods; von Hofsten (1952, 
95–97) extended his approach to cover the case of disappearing goods 
as well.
26 Strictly speaking, it would be necessary to add a tiny amount to these 
prices to deter consumers from purchasing these products if they were 
made available.
27 The use of carry-forward and carry-backward prices to estimate miss-
ing prices is widespread in statistical agencies. For additional materials 
on this method for estimating missing prices, see Triplett (2004), de Haan 
and Krsinich (2012), Diewert, Fox, and Schreyer (2017), and Section 19 
of Chapter 7.
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However, using the complete price vectors pt with imputed 
prices filling in for the missing prices, equations (12) hold 
exactly, and thus it is straightforward to show that Qt = α·qt 
= pt·qt/Pt for t = 1,2. Thus, it does not matter whether we 
use the direct or indirect method for calculating the quan-
tity levels; both methods give the same answer in this simple 
model.28

A problem with this simple model is that there is only one 
product that is present in both periods. In the following sec-
tion, we generalize the present model to allow for multiple 
overlapping products.

4. A Nonstochastic Method for 
Quality Adjustment: A More 
Complex Model
In order to generalize the very simple model for dealing 
with new and disappearing products that was presented in 
the previous section, it is first necessary to develop another 
application of the fundamental equations (10) in Section 2.

Define the aggregator function f(q) as follows:

 fKBF(q*) ≡ [q*·Aq*]1/2 ≡ [Σi=1
N Σj=1

N aijqi
*qj

*]1/2, (17)

where q* is defined as the N-dimensional quantity vector 
[q1

*, . . .,qN
*] and A ≡ [aij] is an N by N symmetric matrix of 

parameters that satisfies certain regularity conditions.29 
Suppose further that the observed price and quantity vec-
tors for periods 1 and 2 are the positive price and quantity 
vectors, pt* ≡ [pt1

*,  .  .  .,ptN
*] and qt* ≡ [qt1

*,  .  .  .,qtN
*] for t = 

1,2. We assume that qt* solves max q {fKBF(q) : pt*·q = vt*; q ≥ 
0N} for t = 1,2, where vt* ≡ pt*·qt* is the observed expenditure 
on the N products for periods t = 1,2. The inverse demand 
functions (10) that correspond to this particular aggregator 
function are the following ones:

 pt* = Pt*∇q fKBF(qt*) = Pt [qt*·Aqt*]–1/2 Aqt*; t = 1,2. (18)

Using the framework described in Section 2, the period 
t aggregate quantity level for the present model is Qt* ≡ 
[qt*·Aqt*]1/2, and the corresponding period t price level is Pt* 
≡ pt*·qt*/Qt* for t = 1,2. The Fisher (1922) ideal quantity index 
is a function of the observable price and quantity data and 
is defined as follows:

 QF(p1*,p2*,q1*,q2*) ≡ [p1*·q2* p2*·q2*/p1*·q1* p2*·q1*]1/2. (19)

Use equations (18) to eliminate p1* and p2* from the right-
hand side of (19). We find that

 (p1*·q2*p2*·q2*)/(p1*·q1*p2*·q1*) = q2*·Aq2*/q1*·Aq1*. (20)

28 In subsequent sections when we no longer assume that equations (12) 
hold exactly, then the direct and indirect methods for calculating Qt will 
in general differ.
29 Thus, A = AT and A is assumed to have one positive eigenvalue with 
a corresponding strictly positive eigenvector and N–1 negative or zero 
eigenvalues. This functional form was introduced into the economics lit-
erature by Konüs and Byushgens (1926), who showed its connection with 
the Fisher (1922) ideal index. This explains why f(q*) is labeled as fKBF(q*). 
For further discussion of the regularity conditions on fKBF(q*), see Diew-
ert (1976) and Diewert and Hill (2010) or Section 5 of Chapter 5.

Take positive square roots on both sides of (20). Using defi-
nitions (17) and (19), the resulting equation is

 fKBF(q2*)/fKBF(q1*) = QF(p1*,p2*,q1*,q2*). (21)

Thus, Q2*/Q1* = fKBF(q2*)/fKBF(q1*) is equal to the Fisher ideal 
quantity index QF(p1*,p2*,q1*,q2*), which can be calculated 
using observable price and quantity data for the two peri-
ods. We know from Section 2 that

 Pt*Qt* = pt*·qt*; t = 1,2. (22)

Now make the normalization P1* = 1. Using this normal-
ization and equations (21) and (22), the aggregate price and 
quantity levels for the two periods can be defined in terms of 
observable data as follows:

P1* ≡ 1; Q1* ≡ p1*·q1*; Q2* ≡ Q1*QF(p1*,p2*,q1*,q2*);  
 P2* ≡ p2*·q2*/Q2*. (23)

These results can be combined with the three-product 
model that was described in the previous section: relabel 
this aggregate data as a composite product 1 so that the new 
product 1 that corresponds to the first product in Section 3 
has prices and quantities defined as pt1 ≡ Pt* and qt1 ≡ Qt* for 
t = 1,2. Products 2 and 3 are a disappearing product and 
a new product, respectively, as in Section 3. The aggregate 
price levels for the two periods (which use all N + 2 prod-
ucts) are P1 and P2, and the new αn parameters are defined 
by the following counterparts to equations (14):

P1 = 1; P2 = P2*/P1* = PF(p1*,p2*,q1*,q2*);  
 α1 = 1; α2 = p12; α3 = p23/(P

2*/P1*), (24)

where P2*/P1* ≡ [v2*/v1*]/[Q2*/Q1*] ≡ PF(p1*,p2*,q1*,q2*) is the Fisher 
(1922) ideal price index that compares the prices of N prod-
ucts that are present in both periods, p1*, p2*, for the two peri-
ods under consideration. The imputed prices for the missing 
products, p13

* and p22
*, are obtained by using equations (15) 

for our present model:

p13
* ≡ p23/PF(p1*,p2*,q1*,q2*);  

 p22
* ≡ PF(p1*,p2*,q1*,q2*)p12. (25)

Comparing (24) and (25) with the corresponding equations 
(14) and (15) for the three-product model, it can be seen that 
the price ratio for product 1 that was present in both peri-
ods, p21/p11, is replaced by the Fisher index PF(p1*,p2*,q1*,q2*), 
which is now defined over the set of products that are pres-
ent in both periods. The type of inflation-adjusted carry-
backward price p13

* and the inflation-adjusted carry-forward 
price p22

* defined by (25) are widely used by statistical agen-
cies to estimate missing prices, but agencies usually use the 
Lowe, Laspeyres, or Paasche index in place of the Fisher 
price index.30

30 Note that the aggregate price index that is generated by this model is 
PF(p1*,p2*,q1*,q2*) which does not use the unmatched prices for the two 
periods.
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The aggregator function that is consistent with the new 
model with N continuing products, one disappearing prod-
uct, and one new product is defined as follows:

 Q(q1
*, . . .,qN

*,q2,q3) ≡ α1fKBF(q*) + α2q2 + α3q3, (26)

where fKBF(q*) is the KBF aggregator function defined by 
(17) and a1 is set equal to 1.31 Note that the model defined by 
(26) is restrictive from the economic perspective because the 
additive nature of definition (26) implies that the compos-
ite first commodity is perfectly substitutable with the new 
and disappearing commodities (which are also perfect sub-
stitutes for each other after quality adjustment). However, 
if the products under consideration are highly substitutable 
for each other, the implicit assumption of perfect substi-
tutes for missing products will be acceptable. Moreover, the 
advantage of this form of quality adjustment is that it is rela-
tively easy to explain to the public, and it is fairly straight-
forward to implement.

The restriction that there is only one new product and one 
disappearing product is readily relaxed. The overall price 
index will continue to be PF(p1*,p2*,q1*,q2*), and counterparts 
to equations (25) can be used to generate imputed prices 
for the missing products. To summarize how the many new 
products and many disappearing products model works, 
let V0 and V1 be the aggregate value of all transactions in 
periods 0 and 1, respectively. Then the aggregate price lev-
els generated by the above model of quality adjustment are 
given by P0 ≡ 1 and P1 ≡ PF(p1*,p2*,q1*,q2*), which is equal to 
the Fisher index defined over all continuing products. The 
corresponding aggregate quantity levels for periods 0 and 1 
are set equal to Q0 ≡ V0 and Q1 ≡ V1/P1 = V1/PF(p1*,p2*,q1*,q2*). 
This is a very simple model to implement.

We turn now to applications of the basic framework 
explained in Section 2, where conditions (10) only hold 
approximately rather than exactly.

5. Weighted Time Product Dummy 
Regressions
In this section, we consider a special case of the model of 
economic behavior explained in Section 2, where there are N 
products in the aggregate and T periods. Let pt ≡ [pt1, . . .,ptN] 
and qt ≡ [qt1, . . .,qtN] denote the price and quantity vectors for 
time periods t = 1, . . .,T. Initially, it is assumed that there are 
no missing prices or quantities so that all N times T prices 
and quantities are positive. We assume that the quantity 
aggregator function f(q) is the following linear function:

 f(q) = f(q1,q2, . . .,qN) ≡ Σn=1
N αnqn = α·q, (27)

where αn are positive parameters, which can be interpreted 
as quality adjustment factors. Under the assumption of 
maximizing behavior on the part of purchasers of N com-
modities, assumption (27) applied to equations (10) implies 
that the following NT equations should hold exactly:

31 It is not necessary to use the KBF aggregator function in the above 
model; any aggregator function that has an exact index number associ-
ated with it will work. See Diewert (1976) for examples of exact index 
number formulae.

 ptn = πtαn; n = 1, . . .,N; t = 1, . . .,T, (28)

where we have redefined the period t price levels Pt in equa-
tions (10) as the parameters πt for t = 1, . . .,T.

Note that equations (28) form the basis for the time 
dummy hedonic regression model, which was developed by 
Court (1939).32 It can be seen that these equations are a spe-
cial case of the general model of consumer behavior that was 
explained in Section 2.

At this point, it is necessary to point out that our con-
sumer theory derivation of equations (28) is not accepted 
by all economists. Rosen (1974), Triplett (1987, 2004), and 
Pakes (2001)33 have argued for a more general approach to 
the derivation of hedonic regression models that is based 
on supply conditions as well as on demand conditions. The 
present approach is obviously based on only consumer (or 
purchaser) preferences. This consumer-oriented approach 
was endorsed by Griliches (1971, 14–15), Muellbauer (1974, 
988), and Diewert (2003a, 2003b).34 Of course, the func-
tional form assumptions that justify the present consumer 
approach are quite restrictive, but, nevertheless, it is useful 
to imbed hedonic regression models in a traditional con-
sumer demand setting.

Empirically, equations (28) are unlikely to hold exactly. 
Thus, following Court (1939), we assume that the exact 
model defined by (28) holds only to some degree of approxi-
mation, and so we could add error terms etn to the right-
hand sides of equations (28). The unknown parameters, π ≡ 
[π1, . . .,πT] and α ≡ [α1, . . .,αN], could be estimated as solu-
tions to the following (nonlinear) least squares minimiza-
tion problem:

 minα, π Σn=1
N Σt=1

T [ptn –πtαn]
2. (29)

32 This was Court’s (1939, 109–111) hedonic suggestion number two. 
He transformed the underlying equations (28) by taking logarithms of 
both sides of these equations (which will be done later). He chose to 
transform the prices by the log transformation because the resulting 
regression model fit his data on automobiles better. Diewert (2003b) 
also recommended the log transformation on the grounds that multipli-
cative errors were more plausible than additive errors.
33 “The derivatives of a hedonic price function should not be interpreted 
as either willingness to pay derivatives or cost derivatives; rather they 
are formed from a complex equilibrium process” (Ariel Pakes, 2001, 14).
34 Diewert (2003b, 97) justified the consumer demand approach as fol-
lows: “After all, the purpose of the hedonic exercise is to find how 
demanders (and not suppliers) of the product value alternative models 
in a given period. Thus for the present purpose, it is the preferences of 
consumers that should be decisive, and not the technology and market 
power of producers. The situation is similar to ordinary general equilib-
rium theory where an equilibrium price and quantity for each commodity 
is determined by the interaction of consumer preferences and producer’s 
technology sets and market power. However, there is a big branch of 
applied econometrics that ignores this complex interaction and simply 
uses information on the prices that consumers face, the quantities that 
they demand and perhaps demographic information in order to estimate 
systems of consumer demand functions. Then these estimated demand 
functions are used to form estimates of consumer utility functions and 
these functions are often used in applied welfare economics. What pro-
ducers are doing is entirely irrelevant to these exercises in applied econo-
metrics with the exception of the prices that they are offering to sell at. In 
other words, we do not need information on producer marginal costs and 
markups in order to estimate consumer preferences: all we need are sell-
ing prices.” Footnote 25 on page 82 of Diewert (2003b) explains how the 
present hedonic model can be derived from Diewert’s (2003a) consumer-
based model by strengthening the assumptions in the 2003a paper.
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However, in Section 13 of Chapter 7, we showed that the 
estimated price levels πt

* that solve the minimization prob-
lem (29) had unsatisfactory axiomatic properties. Thus, we 
took logarithms of both sides of the exact equations (28) and 
added error terms to the resulting equations. This led to the 
following least squares minimization problem:35

 minρ, β Σn=1
N Σt =1

T [lnptn – ρt – βn]
2,  (30)

where the new parameters ρt and βn were defined as the loga-
rithms of πt and αn; that is, define

 ρt ≡ lnπt; t = 1, . . .,T; (31)
 βn ≡ lnαn; n = 1, . . .,N. (32)

However, the least squares minimization problem defined 
by (30) does not weight the log price terms [lnptn – ρt – βn]

2 by 
their economic importance, and so in Section 15 of Chapter 7, 
we considered the following weighted least squares minimiza-
tion problem:36

 minρ, β Σn=1
N Σt =1

T stn[lnptn – ρt – βn]
2, (33)

where stn is the expenditure share of product n in period t. 
The first-order necessary conditions for ρ* ≡ [ρ1

*, . . .,ρT
*] and 

β* ≡ [β1
*,  .  .  .,βN

*] to solve (33) simplify to the following T 
equations (34) and N equations (35):37

 ρt
* = Σn=1

N stn[lnptn – βn
*]; t = 1, . . .,T; (34)

 βn
* = Σt=1

T stn[lnptn – ρt
*]/(Σt=1

T stn); n = 1, . . .,N. (35)

The solution to (34) and (35) is not unique: If ρ* ≡ [ρ1
*, . . .,ρT

*] 
and β* ≡ [β1

*,  .  .  .,βN
*] solve (34) and (35), then so do [ρ1

* + 
λ, . . .,ρT

* + λ] and [β1
*–λ, . . .,βN

*–λ] for all λ. Thus, we can 
set ρ1

* = 0 in equations (35) and drop the first equation in 
(34) and use linear algebra to find a unique solution for the 
resulting equations.38 Once the solution is found, define the 
estimated price levels πt

* and quality adjustment factors αn
* 

as follows:

35 This model is an adaptation of Summer’s (1973) country product dummy 
model to the time series context. See Aizcorbe, Corrado, and Doms (2000) 
for an early application of this model in the time series context.
36 Rao (1995; 2004; 2005, 574) was the first to consider this model using 
expenditure share weights; see also Diewert (2004). However, Balk (1980, 
70) suggested this class of models much earlier using somewhat different 
weights. For the case of two periods, see Diewert (2004, 2005a) and de 
Haan (2004a).
37 If information on expenditures or quantities is not available, then 
the weighted least squares problem is replaced by the unweighted least 
squares problem (30). The first-order conditions for the simplified prob-
lem (30) are given by (34) and (35), where the shares stn are replaced by 
the numbers 1/N for all t and n. In this unweighted case, the price index 
defined by (37) collapses down to the Jevons index.
38 Alternatively, one can set up the linear regression model defined by 
(stn)

1/2lnptn = (stn)
1/2ρt + (stn)

1/2βn + etn for t = 1, . . .,T and n = 1, . . .,N, where 
we set ρ1 = 0 to avoid exact multicollinearity. Iterating between equations 
(34) and (35) will also generate a solution to these equations, and the solu-
tion can be normalized so that r1 = 0.

πt
* ≡ exp[ρt

*]; t = 1, . . .,T; αn
* ≡ exp[βn

*];  
 n = 1, . . .,N. (36)

The price levels πt
* defined by (36) are called the weighted 

time product dummy price levels. That the resulting price 
index between periods t and τ is given by

πt
*/πτ

* = ∏n=1
N exp[stnln(ptn/αn

*)]/∏n=1
N  

 exp[sτnln(pτn/αn
*)]; 1 ≤ t, τ ≤ T. (37)

If stn = sτn for n = 1, . . .,N, then πt
*/π!τ

* will equal a weighted 
geometric mean of the price ratios ptn/pτn, where the weight 
for ptn/pτn is the common expenditure share stn = sτn. Thus, πt

*/
πτ

* will not depend on αn
* in this case.

Once the estimates for πt and αn have been computed, we 
have two methods for constructing period-by-period price 
and quantity levels, Pt and Qt for t = 1,  .  .  .,T. The πt

* esti-
mates can be used to form the aggregates using equations 
(38) or the αn

* estimates can be used to form the aggregates 
using equations (39):39

 Pt* ≡ πt
*; Qt* ≡ pt·qt/πt

*; t = 1, . . .,T; (38)
 Qt** ≡ α*·qt; Pt** ≡ pt·qt/α*·qt; t =1, . . .,T. (39)

Define the error terms etn ≡ lnptn – lnπt
* – lnan

* for t = 1, . . .,T 
and n = 1, . . .,N. If all etn = 0, then Pt* will equal Pt** and Qt* 
will equal Qt** for t = 1, . . .,T.40 However, if the error terms 
are not all equal to zero, then the statistical agency will have 
to decide on pragmatic grounds which option to use to form 
period t price and quantity levels, (38) or (39).41

It is straightforward to generalize the weighted least 
squares minimization problem (33) to the case where there 
are missing prices and quantities. As in Section 17 of Chap-
ter 7, we assume that there are N products and T time peri-
ods but not all products are purchased (or sold) in all time 
periods. For each period t, define the set of products n that 
are present in period t as S(t) ≡ {n: ptn > 0} for t = 1,2, . . .,T. It 
is assumed that these sets are not empty; that is, at least one 
product is purchased in each period. For each product n, 
define the set of periods t where product n is present as S*(n) 
≡ {t: ptn > 0}. Again, assume that these sets are not empty; 
that is, each product is sold in at least one time period. The 

39 Note that the price level Pt** defined in (39) is a quality-adjusted unit 
value index of the type studied by de Haan (2004b).
40 If all etn = 0, then the unweighted (or more accurately, the equally 
weighted) least squares minimization problem defined by (30) will gener-
ate the same solution as that generated by the weighted least squares mini-
mization problem defined by (33). This fact gives rise to the following rule 
of thumb: If the unweighted problem (30) fits the data very well, then it is 
not necessary to work with the more complicated weighted problem (33).
41 In Section 21 of Chapter 7, the following multilateral test was consid-
ered: Test 2: The fixed basket test for prices or the strong identity test for 
quantities: If qr = qt ≡ q, then the price index for period t relative to period 
r is pM

t(P,Q)/pM
r(P,Q) = pt·q/pr·q. If the price and quantity aggregates are 

formed using equations (39) rather than (38), then this test will be satis-
fied. However, the more usual approach is to define the period t price and 
quantity aggregates using equations (38). If this is done, then in general, 
the weighted TPD price level functions, pWTPD

t(P,Q), will not satisfy the 
basket test, Test 2.
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generalization of (33) to the case of missing products is the 
following weighted least squares minimization problem:42

minρ,β Σt=1
T Σn∈S(t) stn[lnptn – ρt – βn]

2  
 = minρ,β Σn=1

N Σt∈S*(n) stn[lnptn – ρt – βn]
2. (40)

Note that there are two equivalent ways of writing the least 
squares minimization problem; the first way uses the defini-
tion for the set of products n present in period t, S(t), while 
the second way uses the definition for the set of periods t 
where product n is present, S*(n). The first-order necessary 
conditions for ρ1, . . .,ρT and b1, . . .,bN to solve (40) are the 
following counterparts to (34) and (35):43

 Σn∈S(t) stn[ρt
* + βn

*] = Σn∈S(t) stnlnptn; t = 1, . . .,T; (41)
 Σt∈S*(n) stn[ρt

* + βn
*] = Σt∈S*(n) stnlnptn; n = 1, . . .,N. (42)

As usual, the solution to (41) and (42) is not unique: If ρ* ≡ 
[ρ1

*, . . .,ρT
*] and β* ≡ [β1

*, . . .,βN
*] solve (41) and (42), then so 

do [ρ1
* + λ, . . .,ρT

* + λ] and [β1
*–λ, . . .,βN

*–λ] for all λ. Thus, 
we can set ρ1

* = 0 in equations (42), drop the first equation in 
(41), and use linear algebra to find a unique solution for the 
resulting equations.44

Define the estimated price levels πt
* and quality adjust-

ment factors αn
* by definitions (31) and (32). Substitute these 

definitions into equations (41) and (42). After some rear-
rangement, equations (41) and (42) become the following 
ones:

 πt
* = exp[Σn∈S(t) stnln(ptn/αn

*)]; t = 1, . . .,T; (43)
 αn

* = exp[Σt∈S*(n) stnln(ptn/πt
*)/Σt∈S*(n) stn];  

 n = 1, . . .,N. (44)

Once the estimates for πt and αn have been computed, we 
have the usual two methods for constructing period-by-
period price and quantity levels, Pt and Qt for t = 1, . . .,T. 
The counterparts to definitions (38) are as follows:

Pt* ≡ πt
* = exp[Σn∈S(t) stnln(ptn/αn

*)];  
 t = 1, . . .,T; (45)
 Qt* ≡ Σn∈S(t) ptnqtn/P

t*; t = 1, . . .,T. (46)

Thus, Pt* is a weighted geometric mean of the quality-
adjusted prices ptn/αn

* that are present in period t, where 
the weight for ptn/αn

* is the corresponding period t expen-
diture (or sales) share for product n in period t, stn. The 
counterparts to definitions (39) are as follows:

42 If only price information is available, then replace stn in (40) by 1/N(t), 
where N(t) is the number of products that are observed in period t.
43 The unweighted (that is, equally weighted) counterpart least squares 
minimization problem to (40) sets all stn = 1 for n∈S(t). The resulting first-
order conditions are equations (41) and (42) with the positive stn replaced 
with a 1.
44 The resulting system of T – 1 + N equations needs to be of full rank in 
order to obtain a unique solution.

 Qt** ≡ Σn∈S(t) αn
*qtn; t = 1, . . .,T; (47)

 Pt** ≡ Σn∈S(t) ptnqtn/Q
t** t = 1, . . .,T; (48)

= Σn∈S(t) ptnqtn/Σn∈S(t) αn
*qtn using (47)

= Σn∈S(t) ptnqtn/Σn∈S(t) αn
*(ptn)

–1ptnqtn

= [Σn∈S(t) stn(ptn/an
*)-1]–1

≤ exp[Σn∈S(t) stnln(ptn/αn
*)]

= Pt*,

where the inequality follows from Schlömilch’s inequality;45 
that is, a weighted harmonic mean of the quality-adjusted 
prices ptn/αn

* that are present in period t, Pt**, will always be 
less than or equal to the corresponding weighted geometric 
mean of the prices where both averages use the same share 
weights stn when forming the two weighted averages. The 
inequalities Pt** ≤ Pt* imply the inequalities Qt** ≥ Qt* for  
t = 1, . . .,T. This algebra was developed by de Haan (2004b, 
2010) and de Haan and Krsinich (2018, 763). The model used 
by de Haan and Krsinich is a more general hedonic regres-
sion model that includes the time dummy model used in the 
present section as a special case. Thus, their algebra can be 
applied to all of the subsequent hedonic regression models 
in the following two sections that use time dummies, share 
weights, and log prices.

If the estimated errors etn
* ≡ lnptn – ρt

* – βn
* that implicitly 

appear in the weighted least squares minimization problem 
turn out to equal 0, then the underlying model, ptn = πtan for 
t = 1, . . .,T, n∈S(t), holds without error and thus provides a 
good approximation to reality. Moreover, under these con-
ditions, Pt* will equal Pt** for all t. If the fit of the model is not 
good, then it may be necessary to look at other models such 
as those to be considered in subsequent sections.

The solution to the weighted least squares regression 
problem defined by (40) can be used to generate imputed 
prices for the missing products. Thus, if product n in 
period t is missing, define ptn ≡ πt

*αn
*. The correspond-

ing missing quantity is defined as qtn ≡ 0. Some statisti-
cal agencies use hedonic regression models to generate 
imputed prices for missing prices and then use these 
imputed prices in their chosen index number formula. 
This imputation procedure is an alternative to the infla-
tion-adjusted carry-forward price procedure explained 
in Sections 3 and 4. From the viewpoint of the economic 
approach to index number theory, the Section 4 proce-
dure seems to be preferable since the Fisher index used in 
Section 4 is a fully flexible functional form, whereas the 
preferences that are exact for the weighted TPD model 
must be either linear in quantities or be Cobb–Douglas 
(in which case the expenditure shares are constant over 
time and there will be no missing products). However, as 
indicated earlier, if the error terms in (40) are small, the 
missing product prices generated by the solution to (40) 
can be used with some confidence.

The axiomatic properties of the price level functions πt
* 

generated by the solution to (40) were studied in Section 21 
of Chapter 7 and will be noted in the following section. One 
unsatisfactory property of the WTPD price levels πt

* is the 

45 See Hardy, Littlewood, and Pólya (1934, 26).
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following one: A product that is available in only one period 
out of the T periods has no influence on the aggregate price 
levels pt

*. This means that the price of a new product that 
appears in period T has no influence on the price levels. The 
hedonic regression models in the next section that make 
use of information on the characteristics of the products do 
not have this unsatisfactory property of the weighted time 
dummy hedonic regression models studied in this section.

6. The Time Dummy Hedonic 
Regression Model with 
Characteristics Information
In this section, it is again assumed that there are N products 
that are available over a window of T periods. As in the pre-
vious sections, we again assume that the quantity aggrega-
tor function for the N products is the linear function, f(q) = 
a·q = En=1

N anqn, where qn is the quantity of product n pur-
chased or sold in the period under consideration and an is 
the quality adjustment factor for product n. What is new is 
the assumption that the quality adjustment factors are func-
tions of a vector of K characteristics of the products. Thus, 
it is assumed that product n has the vector of characteristics 
zn = [zn1,zn2,  .  .  .,znK] for n = 1,  .  .  .,N. We assume that this 
information on the characteristics of each product has been 
collected.46 The new assumption in this section is that the 
quality adjustment factors an are functions of the vector of 
characteristics zn for each product, and the same function, 
g(z) can be used for each quality adjustment factor; that is, 
we have the following assumptions:

 an = g(zn) = g(zn1,zn2, . . .,znK); n = 1, . . .,N. (49)

Thus, each product n has its own unique mix of character-
istics zn, but the same function g can be used to determine 
the relative utility to purchasers of the products.47 Define the 
period t quantity vector as qt = [qt1, . . .,qtN] for t = 1, . . .,T. 
If product n is missing in period t, then define qtn = 0. Using 
these assumptions, the aggregate quantity level Qt for period 
t is defined as

 Qt = f(qt) = En=1
N anqtn = En=1

N g(zn)qtn; t = 1, . . .,T. (50)

Using our assumption of (exact) utility-maximizing behav-
ior with the linear utility function defined by (50), equations 
(10) become:

 ptn = ttg(zn); t = 1, . . .,T; neS(t). (51)

The assumption of approximate utility-maximizing behav-
ior is more realistic, so error terms need to be appended to 
equations (51). We also need to choose a functional form for 
the quality adjustment function or hedonic valuation function 

46 Basically, we want to collect information on the most important price-
determining characteristics of each product; see Triplett (2004) and 
Aizcorbe (2014) for many examples of this type of hedonic regression and 
references to the applied literature on this topic.
47 In this section, we require that each of the N products possess a positive 
amount of each characteristic; that is, we require that zn >> 0K for n = 
1, . . .,N. This assumption will be relaxed in the following section.

g(z). Consider the following functional form for the hedonic 
valuation function:

 g(z) = g(z1, . . .,zK) = e Zkk

K
ky y0

1=U . (52)

Define the logarithms of the quality adjustment factors an as 
follows:

Bn = lnan = lng(zn) = y0 + Ek=1
K yklnznk;  

 n = 1, . . .,N, (53)

where we have used assumptions (50) and (53). Now take 
logarithms of both sides of equations (51) and add error 
terms etn to the resulting equations. Using equations (53), we 
obtain the following system of estimating equations:48

lnptn = pt + g0 + Ek=1
K yklnznk + etn;  

 t = 1, . . .,T; neS(t), (54)

where, as usual, we have defined pt as lntt for t = 1,  .  .  .,T. 
Equations (54) characterize the classic log linear time 
dummy hedonic regression model.49 Note that our derivation 
of this model rests on the assumption of approximate utility- 
maximizing behavior on the part of purchasers of the N 
products. Note also that our underlying economic model, 
which sets the error terms equal to zero, assumes that the N 
products are perfect substitutes once they have been qual-
ity adjusted, where the logarithms of the quality adjustment 
factors are defined by (53).50

Estimates for p = [p1, . . .,pT] and y = [y0,y1, . . .,yK] can be 
obtained by minimizing the sum of the squared errors etn 
which appear in equations (54). This leads to the following 
least squares minimization problem:

 minp,y Et=1
T EneS(t) [lnptn – pt – y0 – Ek=1

K yklnznk]
2. (55)

A solution p, y to the minimization problem (55) will satisfy 
the following first-order conditions:

EneS(t) [lnptn – pt – y0 – Ek=1
K yklnznk] = 0;  

 t = 1, . . .,T; (56)
 Et=1

T EneS(t) [lnptn – pt – y0 – Ek=1
K yklnznk] = 0; (57)

Et=1
T EneS(t) [lnptn – pt – y0 – Ek=1

K yklnznk]lnznk = 0;  
 k = 1, . . .,K. (58)

48 If both sides of equation tn in equations (54) are differentiated with 
respect to lnznk, we find that 6lnptn/6lnznk = yk for neS(t). Thus, yk is the 
percentage change in the price of a product with respect to a 1 percent 
increase in the amount of characteristic k in a product. In general, this 
(constant) elasticity will be positive; that is, a small increase in the amount 
of characteristic k that is present in a generic product will increase the 
price of the product.
49 This model was first introduced by Court (1939) as his hedonic sug-
gestion number 2. It was popularized by Griliches (1971, 7) and others. 
See Triplett (2004) and Aizcorbe (2014) for hundreds of references to the 
literature on the use of this model.
50 Thus, smaller in magnitude errors etn in the hedonic regression imply 
that the underlying economic model provides a closer approximation 
to actual behavior; that is, a higher R2 for the linear regression model 
defined by (54) means that the underlying economic model provides a 
closer approximation to actual behavior.
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Equations (56)–(58) are T + 1 + K equations in the T + 1 + K 
unknown parameters in the vectors r and γ. However, solu-
tions to these equations are not unique; if ρt for t = 1, . . .,T 
and gk for k = 0,1, . . .,K is a solution to (56)–(58), then ρt + λ 
for t = 1, . . .,T, γ0 – λ and γk for k = 1, . . .,K is also a solution 
for any number λ. Thus, a normalization on these param-
eters is required for a unique solution to (56)–(58).51 Choose 
the normalization ρ1

* = 0 which is equivalent to π1
* = 1. Thus, 

set ρ1
* = 0 in equations (56)–(58), drop the first equation in 

equations (56) and solve the remaining T + K equations for 
ρ2

*, . . ., ρT
* and γ0

*, γ1
*, . . ., γK

*.52 Once these parameters have 
been determined, the estimated βn

* ≡ lnαn
* can be defined 

using definitions (53) as follows:

βn
* ≡ lnαn

* = lng(zn) = γ0
* + Σk=1

K γk
*lnznk;  

 n = 1, . . .,N. (59)

Using equations (56) evaluated at ρ* and γ* and definitions 
(59), we see that lnπt

* ≡ ρt
* is equal to the following expression:

lnπt
* = [1/N(t)] Σn∈S(t) ln(ptn/αn

*);  
 t = 1, . . .,T, (60)

where αn
* ≡ exp[βn

*] for n = 1, . . .,N and where N(t) is equal to 
the number of products that are available in period t. Thus, 
the estimated period t price level, πt

*, is an equally weighted 
geometric average of the quality-adjusted prices ptn/αn

* for the 
products that are present in period t.53 Once the πt

* have been 
calculated, the price index between periods t and τ is defined 
as pt

*/πτ
* for 1 ≤ t, τ ≤ T. If quantity data are available, then 

we have the usual two methods for constructing period-by-
period price and quantity levels, Pt and Qt for t = 1, . . .,T; 
see (45)–(48).

It is useful to compare the present time dummy hedonic 
regression that uses characteristics information with the 
time dummy product regression in the previous section 
where the only characteristic of each product was the prod-
uct itself; that is, recall the least squares minimization 
problem defined by (30). It seems that this earlier model 
is more general than the present model. To see this, define 
βn

* by definitions (59) for n = 1, .  .  .,N. Substitute these βn
* 

into the objective function for the minimization problem 
defined by (30) in Section 5. Thus, these βn

* are feasible βn 
that could be inserted into (30) but they may not be optimal; 
that is, in general, we can expect the time dummy prod-
uct least squares minimization problem defined by (30) to 
deliver a lower sum of squared residuals than the solution 
to (55) delivers. Thus, we might ask at this point why con-
sider the least squares problem (55) when, in general, the 
least squares problem (30) will deliver a better outcome in 
terms of fitting the data? The problem with (30) is that there 
may be no unique solution to the least squares minimiza-
tion problem (even after setting ρ1 = 0) if product turnover 
is rapid; that is, if there are very few matched models in 

51 We also need the modified equations (56)–(58) to satisfy a full rank con-
dition so that the matrix of coefficients associated with these equations 
can be inverted. Thus, in particular, K, the number of characteristics, 
cannot be too big relative to N, the number of products.
52 Alternatively, set ρ1 = 0 in equations (54) and run a simple linear regres-
sion to obtain estimates for the remaining parameters.
53 An equivalent result was derived in Triplett and McDonald (1977, 150).

the window of observations, then the regression associated 
with (30) may not have enough degrees of freedom to pro-
vide a solution to the first-order condition equations that 
are associated with this model. An extreme case where 
there is no unique solution to (30) is the case where every 
product is a new one which appears in only one period.54 
In this case, there are T + N – 1 unknown ρt and βn param-
eters (after making one normalization) and only T observed 
prices. Thus, the use of hedonic regressions with character-
istics information is particularly useful in situations where 
there is rapid product turnover and there are relatively few 
matched models.

The price levels πt
* defined by (60) are not satisfactory for 

the following reason: Suppose periods τ and t have exactly 
the same set of products that are available for those two 
periods. Then the price index between those two periods is 
given by:

 πt
*/πτ

* = ∏n∈S(t) (ptn/pτn)
1/N(t). (61)

Thus, the price index between the two periods is equal to 
a simple (equally weighted) geometric average of the price 
ratios ptn/pτn for the products that are present in both peri-
ods; that is, the economic importance of the products is not 
taken into account.55

In the previous section, we noted that weighting prices 
by their economic importance was generally recommended 
(but not necessary if the fit of the corresponding unweighted 
hedonic regression was good). The same conclusion applies 
in the present context. Thus, if quantity information is avail-
able (in addition to price and product characteristic infor-
mation), then it is preferable to generate ρ and γ estimates 
by solving the following weighted least squares minimization 
problem:56

 minρ, γ Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K γklnznk]
2 (62)

where the expenditure or sales shares stn are defined as stn 
≡ ptnqtn/Si∈S(t) ptiqti for t = 1, . . .,T and n∈S(t). A solution ρ, γ 
to the minimization problem (62) will satisfy the following 
first-order conditions:

54 Housing is an example of such a unique product. Every dwelling unit 
is uniquely determined by its location and over time, the structure asso-
ciated with the housing unit depreciates in value with age (or it may 
appreciate in value due to renovations and improvements). Thus, hedonic 
regressions with housing characteristics information must be used in 
order to obtain useful price indices for housing. For applications of 
hedonic regressions to property prices, see Eurostat (2013), Diewert, de 
Haan, and Hendriks (2015), Hill (2013), Diewert and Shimizu (2015, 2016, 
2022), Diewert, Huang, and Burnett-Issacs (2017), and Silver (2018).
55 As in Section 5, we note that if the estimated squared residuals for this 
model are small, then the estimated πt

* defined by (60) will be satisfactory 
since in this case, pt ≈ πt

*α* so that prices vary (approximately) propor-
tionally over time, and thus ∏n=1

N (ptn/αn
*)1/N ≈ πt

* for t = 1, . . .,T. Any miss-
ing price for period t and product n is defined as ptn ≡ πt

*αn
* in the products 

∏n=1
N (ptn/αn

*)1/N. The idea of using R2 or the fit of a hedonic regression 
model to judge its adequacy can be traced back to Silver (2010, S220; 
2011, 561). He implicitly suggested that hedonic regressions should only 
be used when the products under consideration are highly substitutable 
and hence when the R2 value for the relevant hedonic regression is high.
56 Diewert (2003b, 2005b) considered this model for the bilateral case 
where T = 2. Silver and Heravi (2005) and de Haan and Krsinich (2014, 
2018) considered the general model.
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Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1
K γklnznk] = 0;  

 t = 1, . . .,T; (63)
 Σt=1

T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1
K γklnznk] = 0; (64)

Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K  
 γklnznk]lnznk = 0; k = 1, . . .,K. (65)

Equations (63)–(65) are T + 1 + K equations in the T + 1 + K 
unknown parameters in the vectors ρ and γ. However, solu-
tions to these equations are not unique; if ρt for t = 1, . . .,T 
and γk for k = 0,1, . . .,K is a solution to (63)–(65), then ρt + l 
for t = 1, . . .,T, γ0 – λ and γk for k = 1, . . .,K is also a solution 
for any number λ. Thus, a normalization on these param-
eters is required for a unique solution to (63)–(65).57 Choose 
the normalization ρ1

* = 0 which is equivalent to π1
* = 1. Thus, 

set ρ1
* = 0 in equations (63)–(65), drop the first equation in 

equations (63), and solve the remaining T + K equations for 
ρ2

*, . . ., ρT
* and γ0

*, γ1
*, . . ., γK

*. Once these parameters have 
been determined, the estimated bn

* can be defined as βn
* ≡ γ0

* 
+ Σk=1

K γk
*lnznk for n = 1, . . .,N. Once βn

* have been defined, 
the corresponding quality adjustment factors are defined as 
αn

* ≡ exp[βn
*] > 0 for n = 1, . . .,N.

Using equations (63) evaluated at r* and γ*, we see that πt
* 

≡ exp[ρt
*] is equal to58

 πt
* = exp[Σn∈S(t) stnln(ptn/αn

*)]; t = 1, . . .,T (66)

with π1
* ≡ 1. Thus, the period t estimated price level, πt

*, is an 
expenditure share-weighted geometric mean of the quality-
adjusted period t prices, ptn/αn

*, for the products n that are 
present in period t. Once πt

* have been calculated, the price 
index between periods t and τ is defined as pt

*/πτ
* for 1 ≤ t, τ ≤ 

T. Note that (62) depends on the availability of expenditure 
share information. If, in addition, quantity data are avail-
able, then we have the usual two methods for constructing 
period-by-period price and quantity levels, Pt and Qt for t = 
1, . . .,T; see (45)–(48).

The new price indices are a clear improvement over their 
unweighted counterparts defined earlier by equations (60). 
In the present situation, using equations (66), we see that 
πt

*/πτ
* is a share-weighted geometric mean of the quality-

adjusted period t prices, ptn/αn
*, for the products n that 

are present in period t with weights stn in the numerator 
divided by the share-weighted geometric mean of the qual-
ity-adjusted period τ prices, pτn/αn

*, for the products n that 
are present in period τ with weights sτn in the denomina-
tor. Thus, economic importance of each product counts in 
the present model, whereas it did not in the corresponding 
unweighted model.

Note that equations (66) are the same as equations (43) 
in the previous section. The new quality adjustment param-
eters αn

* are defined by the following counterparts to equa-
tions (44):

 αn
* ≡ exp[γ0

* + Σk=1
K γk

*lnznk]; n = 1, . . .,N. (67)

57 As usual, we need a full-rank condition to be satisfied so that the matrix 
of coefficients in the system of linear equations involving ρ and γ can be 
inverted.
58 These equations are equivalent to equations (8) in de Haan and 
Krsinich (2018, 760).

Now use definitions (45)–(48) to define Pt*, Qt*, Pt**, and Qt** 
where the new pt

* and αn
* are defined by (66) and (67). We can 

again deduce the inequality in (48) using these new defini-
tions; that is, the following inequalities were developed by de 
Haan (2004b, 2010) and de Haan and Krsinich (2018, 763):

Pt** ≡ Σn∈S(t) ptnqtn/Σn∈S(t) αn
*qtn ≤ πt

* ≡ Pt*;  
 t = 1, . . .,T. (68)

As in the previous section, Pt* is a weighted geometric mean 
of the quality-adjusted prices ptn/αn

* that are present in 
period t where the weight for ptn/αn

* is the period t expendi-
ture (or sales) share for product n in period t, stn, and Pt** is 
the corresponding weighted harmonic mean of the quality-
adjusted prices ptn/αn

* using the same weights.
The solution to the weighted least squares minimization 

problem defined by (62) along with the normalization ρ1 = 0 
can also be obtained by running the following linear regres-
sion with ρ1 set to zero :

(stn)
1/2lnptn = (stn)

1/2ρt + (stn)
1/2γ0 + (stn)

1/2Σk=1
K γklnznk  

  + etn; t = 1, . . .,T; n∈S(t). (69)

The solution to the weighted least squares regression prob-
lem defined by (62) can be used to generate imputed prices 
for the missing products. Thus, if product n in period t is 
missing, define ptn ≡ πt

*αn
*. The corresponding missing quan-

tity is defined as qtn ≡ 0. As was mentioned in the previous 
section, some statistical agencies use hedonic regression 
models to generate imputed prices for missing prices and 
then use these imputed prices in their chosen index number 
formula. If the weighted sum of squared errors, Σt=1

T Σn∈S(t) 
stn[lnptn – ρt – γ0 – Σk=1

K γklnznk]
2, is small or equivalently if 

the R2 value for the linear regression defined by (69) is large, 
then using the imputed prices generated by this model to fill 
in for missing prices is justified.

Using the solution functions for the price levels πt
* given 

by (66) plus the definition of the weighted least squares min-
imization problem (62), it can be shown that πt

* regarded as a 
function of P ≡ [p1, . . .,pT], Q ≡ [q1, . . .,qT], and Z ≡ [z1, . . .,zK] 
satisfies the following eight tests:59

Test 1: The weak identity test for prices. If pτ = pt and qτ = 
qt, then πt

*(P,Q,Z) = πτ
*(P,Q,Z).

Test 2: The weak fixed basket test for prices or the weak 
identity test for quantities. If qτ = qt ≡ q and pτ = pt 
then the price index for period t relative to period t is 
πt

*(P,Q,Z)/πτ
*(P,Q,Z) = pt·q/pτ·q.

Test 3: Linear homogeneity test for prices. Let λ > 0. Then 
πt

*(p1, . . .,pt–1,λpt,pt + 1, . . .,pT,Q,Z) = λπt
*(P,Q,Z) for t = 

1, . . .,T. Thus, if all prices in period t are multiplied by 
a common scalar factor λ, then the price level of period 
t relative to the price level of any other period r will 
increase by the multiplicative factor λ. 60

59 See Diewert (2004, 2005b) for materials on the test approach applied 
to time product hedonic regressions with and without characteristics 
information.
60 Furthermore, the price levels πτ

*(P,Q,Z) for τ ≠ t are homogeneous of 
degree 0 in the components of pt; that is, we have πτ

*(p1, . . .,pt–1,λpt,pt + 1, 
. . .,pT,Q,Z) = πτ

*(P,Q,Z) for all τ ≠ t.
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Test 4: Homogeneity test for quantities. Let λ > 0. Then 
πt

*(P,q1,  .  .  .,qt–1,λqt,qt + 1,  .  .  .,qT,Z) = πt
*(P,Q,Z) for t = 

1, . . .,T. Thus, if all quantities in period t are multiplied 
by a common scalar factor λ, then the price level of any 
period r remains unchanged.

Test 5: Invariance to changes in the units of measurement of 
the characteristics. The price level functions πt

*(P,Q,Z) 
for t = 1, . . .,T remain unchanged if the K characteris-
tics are measured in different units.

Test 6: Invariance to changes in the ordering of the com-
modities. The price level functions πt

*(P,Q,Z) for t = 
1, . . .,T remain unchanged if the ordering of the N com-
modities is changed.

Test 7: Invariance to changes in the ordering of the time 
periods. If the T time periods are reordered by some 
permutation of the first T integers, then the new price 
level functions are equal to the same permutation of 
the initial price level functions.

Test 8: Responsiveness to isolated products test: If a prod-
uct is available in only one period in the window of 
T periods, this test asks that the price level functions 
πt

*(P,Q,Z) respond to changes in the prices of these iso-
lated products; that is, the test asks that the price level 
functions are not constant as the prices for isolated 
products change. This test is a variation of Test 5 sug-
gested by Zhang, Johansen, and Nygaard (2019), who 
suggested a bilateral version of this test.61

The weighted hedonic regression price levels using charac-
teristics information, πt

*(P,Q.Z), that solve (62), do not sat-
isfy the following Tests 9–12.

Test 9: The strong identity test for prices. If pτ = pt, then 
πτ

*(P,Q,Z) = πt
*(P,Q,Z).

Thus, Test 9 is similar to Test 1 but Test 9 asks that the price 
levels for two periods be equal if the price vectors for the two 
periods are identical even if the quantity vectors for the two 
periods are different, whereas Test 1 asks that the price lev-
els for two periods be equal if the price and quantity vectors 
for the two periods are identical.

Test 10: The strong fixed basket test for prices or the strong 
identity test for quantities. If qτ = qt ≡ q, then the price 
index for period t relative to period τ is πt

*(P,Q,Z)/
πτ

*(P,Q,Z) = pt·q/pτ·q.62

Test 11: Invariance to changes in the units of measurement 
for the quantities. The price level functions πt

*(P,Q,Z) 
for t = 1, . . .,T remain unchanged if the N commodities 
are measured in different units of measurement.

Test 12: Responsiveness to changes in imputed prices for 
missing products test: If there are missing products 
in one or more periods, then one can define imputed 
prices for these missing products. This test asks that 
the price level functions pt

*(P,Q,Z) respond to changes 
in these imputed prices; that is, the test asks that the 

61 This test was explicitly suggested by Claude Lamboray.
62 The price levels πt

*(P,Q,Z) that are directly defined from the solution to 
(62) using equations (66) will not in general satisfy Test 10. However, if we 
use the solution to (62) to define the an

* and then use definitions (47) and 
(48) to define the period t price and quantity levels, Pt** and Qt**, then the 
Pt** will satisfy Test 2. However, the present set of tests applies to the price 
levels πt

*(P,Q,Z) that are directly defined by the solution to (62).

price level functions are not constant as the imputed 
prices change. This test allows a price level to decline if 
new products enter the marketplace during the period 
and for consumer utility to increase as the number of 
available products increases. If this test is not satisfied, 
then the price levels will be subject to new products bias. 
This is an important source of bias in a dynamic prod-
uct universe.

Many multilateral index number methods do not satisfy the 
strong identity Tests 9 and 10 and the responsiveness Test 
12, so the failure of the hedonic regression price levels to 
pass these tests is not catastrophic. At first sight, the fail-
ure of πτ

*(P,Q,Z) to pass the invariance to changes in the 
units of measurement for the N quantities qn is more worri-
some. The failure of this test suggests that the use of hedonic 
regressions to adjust for quality changes should be restricted 
to classes of products that are similar and have a dominant 
characteristic that all of the products possess. The quan-
tity qn of each product should be measured in units of this 
dominant characteristic. Thus, if the product class is candy 
bars, the quantity of each product should be measured by 
its weight. If the product class is a beverage, each product’s 
quantity should be measured by its volume. If this advice is 
followed, then the unit of measurement for all quantities in 
the aggregate will be the same. Thus, if the units of measure-
ment change, the change of units should affect all quantities 
in the same way. It can be shown that the hedonic regression 
price levels using characteristics information, πτ

*(P,Q,Z), 
satisfy the following test:

Test 13: Restricted change of units test. If the units of mea-
surement for all products are changed by the same fac-
tor, the price levels πt

*(P,Q,Z) remain invariant; that is, 
the price levels satisfy pt

*(δ–1P,δQ,Z) = pt
*(P,Q,Z) for all 

scalars δ > 0 for t = 1, . . .,T.63

Thus, the failure of the hedonic regression price levels to 
pass the unrestricted change of units test, Test 6, is not cat-
astrophic because for closely related products, these price 
levels will pass the restricted change of units test, Test 13.

Recall that the weighted TPD price levels defined in the 
previous section had the undesirable property that a prod-
uct that is available in only one period out of the T periods 
had no influence on the aggregate price levels πt

*. This meant 
that the price of a new product that appears in period T had 
no influence on the resulting price levels. The weighted time 
dummy hedonic price levels πt

*(P,Q,Z) defined in this section 
no longer have this undesirable property since they satisfy 
Test 8.

It is possible to apply the tests listed here to the weighted 
time dummy price levels defined in the previous section. 
However, in order to do this, the g(z) function defined by 
(52) needs to be replaced by the linear function g(z) ≡ α·z 
where z is now an N-dimensional vector of characteristics 
(instead of a K-dimensional vector). Assume that there are 
N models and the characteristics vector for product n is zn 
≡ en for n = 1, . . .,N, where en is the nth unit vector; that is, 
en is an N-dimensional vector which has a 1 in component 

63 Notation: δQ = [δq1,δq2, . . ., δqT]; that is, if the N by T matrix Q is multi-
plied by the scalar δ, then all NT elements in the matrix Q are multiplied 
by this scalar.
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n and zeros elsewhere. Thus, in this case, the Z matrix is 
the N by N matrix Z ≡ [z1,z2, . . .,zN] = IN where IN is the N 
by N identity matrix. With this new definition for g(z) and 
for the matrix Z, we have g(zn) = g(en) = α·en = αn for n = 
1, . . .,N, which are equations (49). Equations (51) become ptn 
= πtg(zn) = πtαn for t = 1, . . .,T and n∈S(t). From these equa-
tions, we can follow the steps in the previous section and 
the counterpart to the weighted least squares minimization 
problem (62) is (40), the final model in the previous section. 
Thus, we can apply the preceding tests to the price levels 
that result from solving (40). We find that the weighted time 
dummy hedonic price levels without characteristics satisfies 
Tests 1–7, 11, and 13; they fail Tests 8–10 and 12. Thus, the 
test performance of both methods is identical except that 
the price levels from the weighted hedonic TPD model that 
result from solving (40) pass Test 11 (invariance to changes 
in the units of measurement for quantities) and fail Test 8 
(responsiveness to isolated products test) and the weighted 
hedonic TPD model that uses characteristics information 
that result from solving (62) pass Test 8 and fail Test 11.64

It is possible to derive some approximate equalities for the 
αn

* that are counterparts to the exact equalities (44) for an
* 

that were satisfied for the weighted TPD quality adjustment 
parameters for the model defined by (40) in the previous sec-
tion. Recall that the estimated quality adjustment factors 
for the N products in the present model are αn

* defined by 
(67) for n = 1, . . .,N. The logarithms of these estimated qual-
ity adjustment factors are βn

* ≡ lnan
* = γ0

* + Σk=1
K γk

*lnznk for  
n = 1, . . .,N. Once the ρ* ≡ [ρ1

*,ρ2
*, . . .,ρT

*] and γ* ≡ [γ0
*,γ1

*, . . .,γK
*] 

solution to (62) has been determined (with ρ1
* = 1), the sam-

ple residuals etn
* can be defined by equations (70):

etn
* ≡ lnptn – ρt

* – γ0
* – Σk=1

K γk
*lnznk; t = 1, . . .,T;  

 n∈S(t) (70)
 = lnptn – ρt

* – βn
* 

 = ln(ptn/πt
*) – βn

* since ρt
* ≡ lnπt

*.

Rearranging equations (70), it can be seen that βn
* satisfy the 

following equations:

 βn
* = ln(ptn/πt

*) – etn
*; n = 1, . . .,N; t∈S*(n). (71)

For each n, multiply both sides of (71) by the share stn for 
each t∈S*(n) and sum the resulting equations over all t that 
belong to the set S*(n). The following system of N equations 
is obtained:

Σt∈S*(n) stnβn
* = Σt∈S*(n) stn[ln(ptn/πt

*) – etn
*];  

 n = 1, . . .,N (72)
 ≈ Σt∈S*(n) stnln(ptn/πt

*),

64 However, as indicated earlier, often statistical agencies have to choose 
the hedonic regression model with characteristics over the TPD model 
explained in the previous section due to frequent model changes or to 
the fact that some products are unique (like housing). In the case of 
unique products, the time dummy approach fails and the characteristics 
approach is the only viable approach.

where the approximate equalities in (72) will follow since 
the minimization problem defined by (62) will make the 
squared errors (etn

*)2 small within the constraints of the 
hedonic model. Thus, we have the following approximation 
for βn

*:65

 βn
* ≈ [Σt∈S*(n) stnln(ptn/πt

*)]/Σt∈S*(n) stn; n = 1, . . .,N. (73)

Thus, the logarithm of the product n quality adjustment fac-
tor, βn

*, is approximately equal to a share-weighted average 
of the logarithms of the inflation-adjusted prices ptn/pt

* for 
product n over the periods t when this product was sold (or 
purchased) on the marketplace. Note that the averages on 
the right-hand sides of the approximate equalities (73) are 
taken over the entire sample period.

The next few paragraphs will be devoted to addressing a 
problem that was first posed by de Haan and Krsinich (2018, 
760): Are hedonic regression models consistent with the use 
of unit values to aggregate over narrowly defined products 
at the first stage of aggregation?

Equations (70) and the definitions bn
* ≡ lnαn

* for n = 
1, . . .,N can be used to establish the following equalities:

 ptn = αn
*πt

* exp[etn
*]; t = 1, . . .,T. (74)

Suppose that the underlying hedonic model holds exactly so 
that each error term etn

* is equal to 0. Finally, suppose that 
all of the products are perfect substitutes so that all of the 
quality adjustment factors αn

* are equal. Thus, the following 
equations hold:

 α1
* = α2

* = . . . = αN
*. (75)

Thus, all of the estimated an
* will equal a1

* for n = 2, . . .,N. 
Since etn

* = 0 by assumption, exp[etn
*] = 1 for t = 1,  .  .  .,T; 

n∈S(t). Substitute these relationships into equations (74). 
Now multiply both sides of equation ptn in equations (74) by 
qtn for t = 1, . . .,T; n∈S(t). We obtain the following system of 
equations after a certain amount of summation within each 
period:

 Σn∈S(t) ptnqtn = a1
*πt

* Σn∈S(t) qtn; t = 1, . . .,T. (76)

Now take ratios of equations (76) for t = 1 and a general t. 
After suitable rearrangement, we obtain the following equa-
tion for the price index between periods 1 and t:

πt
*/π1

* = {Σn∈S(t) ptnqtn/Σn∈S(t) qtn}/{Σn∈S(1) p1nq1n/ 
 Σn∈S(1) q1n}; t = 1, . . .,T. (77)

The right-hand side of (77) for period t can be recognized as 
the unit value price index between periods 1 and t.

The preceding algebra resolves the index number discon-
tinuity problem recognized by de Haan and Krsinich (2018, 
760). These authors noted that the weighted geometric mean 
representation for πt

* = exp[Σn∈S(t) stnln(ptn/αn
*)] (recall equa-

tions (66)) did not seem to collapse down to a unit value 

65 These equations provide approximate counterparts to equations (44), 
which were exact for the weighted TPD model discussed in Section 5.
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index if all of the estimated αn
* were equal, which is dis-

concerting because if the products are perfect substitutes 
(without quality adjustment), then the appropriate index 
should collapse down to a unit value index (because each 
additional unit of any product gives the purchaser the same 
utility). However, if the products are perfect substitutes and 
markets are functioning properly, the price of every product 
in the group under consideration should be the same in each 
period. Under these conditions, the estimated αn

* will all be 
equal and equations (74) will become ptn = α1

*πt
* and equa-

tions (77) will hold. Thus, under these conditions, there is no 
discontinuity problem.

As was noted earlier, once the estimated coefficients π* 
≡ [π1

*,  .  .  .,πT
*] and α* ≡ [α1

*,  .  .  .,αN
*] have been determined, 

these estimates can be used to determine imputed prices 
for the missing observations; that is, if product n in period 
t is missing, define ptn ≡ πt

*αn
*. The corresponding missing 

quantities and shares are defined as qtn ≡ 0 and stn ≡ 0. Using 
these imputed prices and quantities, we can form complete 
price, quantity, and share vectors for all N products for each 
period t. Denote these vectors as pt, qt, and st for t = 1, . . .,T. 
Using the fact that the share for a missing product is equal 
to zero, we can rewrite equations (66) as follows:

 πt
* = ∏n=1

N (ptn/αn
*)stn; t = 1, . . .,T. (78)

Define the sequence of hedonic price indices, PH
t, as PH

t ≡ πt
*/

π1
* for t = 1, . . .,T.66 Using equations (66) and βn

* ≡ lnan
* for 

n = 1, . . .,N, we have the following expressions for the loga-
rithms of the hedonic price indices:

lnPH
t = Σn=1

N stn(lnptn – βn
*) – Σn=1

N s1n(lnp1n – βn
*);  

 t = 1, . . .,T. (79)

It is now possible to compare the sequence of price indices to 
the corresponding Törnqvist–Theil fixed-base indices that 
make use of the imputed prices generated by the present 
model for the missing products. The logarithm of the fixed-
base Törnqvist–Theil price index between periods 1 and t, 
PT

t, is defined as follows:67

 lnPT
t ≡ Σn=1

N ½(stn + s1n)(lnptn – lnp1n) t = 1, . . .,T (80)
 = Σn=1

N ½(stn + s1n)[(lnptn – βn
*) – (lnp1n – βn

*)].

Taking the difference between (79) and (80), we can derive 
the following expressions for t = 1,2, . . .,T:

lnPH
t – lnPT

t = Σn=1
N ½(stn – s1n)(lnptn – βn

*)  
  + Σn=1

N ½(stn – s1n)(lnp1n – βn
*). (81)

Since Σn=1
N (stn – s1n) = 0 for each t, the two sets of terms on 

the right-hand side of equation t in (81) can be interpreted 

66 Recall that we set ρ1
* = 0 when solving equations (63)–(65), and hence π1

* 
= 1. This fact and the first equation in (66) implies that π1

* = 1 = exp[Σn∈S(1) 
s1nln(p1n/αn

*)] = exp[Σn=1
N s1nln(p1n/αn

*)], and thus PH
t ≡ πt

*/π1
* = πt

* for  
t = 1, . . .,T. However, when we compare PH

t to the corresponding fixed-
base Törnqvist index PT

t, it proves to be more convenient to define PH
t as 

πt
*/π1

* for t = 1, . . .,T, where π1
* is defined by the first equation in (66).

67 The imputed prices and shares defined in equations (78) are used to fill 
in any missing prices and shares in the Törnqvist formula.

as normalizations of the covariances between st – s1 and lnpt 
– β* for the first set of terms and between st – s1 and lnp1 – β* 
for the second set of terms. If the products are highly sub-
stitutable with each other, then a low ptn will usually imply 
that lnptn is less than the average log price βn

* and it is also 
likely that stn is greater than s1n so that (stn – s1n)(lnptn – βn

*) is 
likely to be negative. Hence the covariance between st – s1 
and lnpt – β* will tend to be negative. On the other hand, if 
p1n is unusually low, then lnp1n will be less than the average 
log price βn

*, and it is likely that s1n is greater than stn so that 
(stn – s1n)(lnp1n – βn

*) is likely to be positive. Hence, the cova-
riance between st – s1 and lnp1 – β* will tend to be positive. 
Thus, the first set of terms on the right-hand side of (81) 
will tend to be negative, while the second set will tend to be 
positive. If there are no divergent trends in log prices and 
sales shares, then it is likely that these two terms will largely 
offset each other and under these conditions, PH

t is likely to 
approximate PT

t reasonably well. However, with divergent 
trends and highly substitutable products, it is likely that the 
first set of negative terms will be larger in magnitude than 
the second set of terms and thus PH

t is likely to be below 
PT

t under these conditions. On the other hand, if there are 
missing products in period 1, then the second set of cova-
riance terms can become very large and positive and out-
weigh the first set of generally negative terms.68 The bottom 
line is that PH

t and PT
t can diverge substantially. In such a 

case, it may be preferable to use the hedonic regression to 
simply fill in the missing prices and use a superlative index 
to generate price indices rather than use the price levels πt

* 
generated by the hedonic time dummy regression as the 
price indices.69

The hedonic valuation function g(z) defined by (49) has a 
useful property: One can impose constant returns to scale in 
the characteristics (the property g(λz) = λg(z) for all λ > 0) if 
the gk satisfy the restriction Σk=1

K γk = 1. However, if we want 
to apply equations (63)–(65) or equations (69) as estimating 
equations for the unknown parameters in g(z), we need posi-
tive amounts of all characteristics in all models so that lnznk is 
well defined; that is, we need znk > 0 for all n = 1, . . .,N and 
k = 1, . . .,K. The alternative hedonic regression model to be 
considered at the beginning of the following section relaxes 
this positivity restriction.

7. Alternative Hedonic Regression 
Models with Characteristics 
Information
As noted in the previous section, the hedonic valua-
tion function g(z) defined by (52) requires that positive 
amounts of all characteristics be present in all N models. 
It would be useful to have a hedonic regression model that 
could in principle deal with the introduction of new char-
acteristics over the sample period. This can be done if we 
replace g(z) defined by (52) by the following functional 
form for g(z):

68 See Diewert (2021, 39) for just such an example.
69 However, if the fit in the hedonic regression is good, then prices are 
close to being proportional over time, and the price levels generated by 
the hedonic regression will generate satisfactory results.
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 g(z1,z2, . . .,zK) ≡ exp[γ0 + Σk=1
K γkzk]. (82)

Using this new hedonic valuation function and making the 
same assumptions (49)–(51) as were made in the previous 
section along with the new assumption (82), we obtain a 
new weighted least squares minimization problem that is a 
counterpart to (62). The new system of estimating equations 
which are counterparts to equations (69) are the following 
ones:

(stn)
1/2lnptn = (stn)

1/2[ρt + γ0 + Σk=1
K γkznk] + etn;  

 t = 1, . . .,T; n∈S(t), (83)

where ρt ≡ lnpt for t = 1,  .  .  .,T. We can find estimators for 
the unknown parameters in equations (83) by running the 
linear regression defined by (83) (with ρ1 set equal to 0) or by 
minimizing the following sum of weighted squared residuals 
etn with respect to the components of the parameter vectors 
ρ and γ:70

 minρ, γ Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K γkznk]
2. (84)

A solution ρ, γ to the minimization problem (84) will sat-
isfy the first-order conditions (63)–(65) in the previous sec-
tion, except that znk replaces lnznk for all n and k. The rest of 
the analysis of the hedonic regression model defined by (84) 
follows along the same lines as the share-weighted model 
(62) defined in the previous section. In particular, in order 
to obtain a unique solution to the modified equations (63)–
(65), we impose the normalization ρ1 = 0 and drop the first 
equation in the modified equations (63).71 The new product 
n quality adjustment parameters bn

* and αn
* are defined by  

equations (85) and the new sample residuals are defined  
by equations (86):

βn
* ≡ lnαn

* = lng(zn) = γ0
* + Σk=1

K γk
*znk;  

 n = 1, . . .,N; (85)
etn

* ≡ lnptn – ρt
* – γ0

* – Σk=1
K γk

*znk;  
 t = 1, . . .,T; n∈S(t); (86)

 = lnptn – ρt
* – βn

*.

The new period t price levels, πt
*, are still defined by equa-

tions (66). The remaining equations (72)–(81) in Section 6 
apply to the hedonic regression model defined by (84). Once 
πt

* have been calculated, the price index between periods t 
and τ is defined as pt

*/πτ
* for 1 ≤ t, τ ≤ T.

As usual, we can use definitions (45)–(48) to define Pt*, Qt*, 
Pt**, and Qt**, where the new terms πt

* and αn
* are used in 

these definitions. We can again deduce the de Haan inequal-
ities Pt** ≤ Pt* for t = 1, . . .,T. defined by (66) and (67). The 
axiomatic properties of the new price levels πt

*(P,Q,Z) are 
the same as the properties for the weighted TPD model that 
was defined by (62) in the previous section.

70 This is precisely the model studied by de Haan and Krsinich (2018). The 
results we derive below are identical to their results.
71 As usual, we need a full-rank condition to be satisfied so that the matrix 
of coefficients in the system of linear equations involving ρ and γ can be 
inverted.

The hedonic regression models defined by (84) and its 
equally weighted counterpart which set all stn = 1 were imple-
mented by de Haan and Krsinich (2018) using monthly New 
Zealand data over three years (so that T = 36) for the follow-
ing seven classes of electronic products: desktop computers, 
laptop computers, portable media players, DVD players, 
digital cameras, camcorders, and televisions. For each prod-
uct class, they had data on approximately 40 characteristics. 
The data were aggregated across outlets and basically cov-
ered the New Zealand market. New products entered each 
of the seven markets at monthly rates that ranged from 24 
to 29 percent and old products disappeared at rates that 
ranged from 23 to 29 percent. Thus, there was a tremendous 
amount of product churn in each of the seven categories. 
Once the weighted and unweighted regressions defined by 
(84) were run for each category, the alternative price levels, 
Pt* and Pt**, were computed for each of the seven categories 
and compared.72 They found that Pt* was very close to Pt** for 
each category when the weighted regressions were used. This 
suggests that it may not matter that much which method for 
computing the Pt is used, since the direct hedonic regression 
price level estimates πt

* were always very close to the indirect 
estimates based on deflating period t values by Σn∈S(t) αn

*qtn. 
This is a very encouraging result. However, it was a differ-
ent story for the unweighted hedonic regressions: they were 
much more volatile than their weighted counterparts, and 
the direct and indirect price levels that they generated were 
frequently noticeably different. Moreover the unweighted 
regressions generated a sequence of price levels that had 
substantially different trends than the corresponding 
trends for the weighted regressions. Our conclusion is that 
the results obtained by de Haan and Krsinich support the 
use of weighted hedonic regressions over their unweighted 
counterparts.

The preceding results were for regressions that covered 
the entire sample period. Statistical agencies that produce 
CPIs need to produce monthly indices that do not revise the 
data for the previous months. In order to deal with these 
constraints, Ivancic, Diewert, and Fox (2009) suggested the 
use of a rolling window time dummy regression approach 
with a window length of 13 months (so that strongly sea-
sonal commodities could play a role in the resulting indi-
ces). De Haan and Krsinich (2018, 773) implemented this 
rolling window approach for their seven product catego-
ries with a window length of 13 consecutive months for 
each weighted hedonic regression. The month-to-month 
change in the estimated price levels (using the Pt** option) 
for the last two months in the new window was used to 
update the results of the previous regression. Thus, in the 
end, they could compare this rolling window approach to  

72 The average unadjusted R2 for the seven weighted models was 0.981. 
The corresponding R2 for the equally weighted models was 0.885. This 
suggests that the popular products were close substitutes with each other 
while the unpopular models were not as close substitutes. The fact that 
the R2

values for the seven classes of products were so high means that the 
underlying assumption of a linear aggregator function (after quality 
adjustment) is adequate to describe the data, and thus it is not neces-
sary to explore the alternative models for estimating reservation prices 
that will be explained in subsequent sections. Of course, the drawback to 
the hedonic regression models with characteristics is that it is necessary 
to collect information on characteristics, whereas the reservation price 
models that will be explained in subsequent sections do not require infor-
mation on characteristics.
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the generation of a price level series for each of the seven 
categories with the corresponding one big weighted regres-
sion approach. For three of the seven categories, they found 
that the rolling window series ended up well below the cor-
responding single regression series and for one category, 
the rolling window series ended up well above the corre-
sponding single regression series. This shows evidence of 
chain drift in these four rolling window series. For these 
four series, it may be best to lengthen the window length 
for the rolling window hedonic regressions. This will usu-
ally cure the chain drift problem.

For our next hedonic model, we introduce a discrete 
characteristic category; that is, each product n has a char-
acteristic where there are M separate states for this char-
acteristic. For example, the product may come in 3 distinct 
package sizes: small, medium, and large. In this case, M = 
3. In addition, there are K continuous price-determining 
characteristics, and each product n has varying amounts 
of these characteristics. As usual, denote the vector of con-
tinuous characteristics for product n by zn ≡ [zn1, . . .,znK] for 
n = 1,  .  .  .,N. If product n belongs to discrete category m, 
define the M-dimensional vector xn for this product as xn 
≡ [xn1,  .  .  .,xnM] = em, where em is a unit vector with a 1 in 
component m and zeros elsewhere. We assume that there is 
at least one product that belongs to each of the M discrete 
categories. We assume the existence of a hedonic product 
valuation function, g(zn,xn), that gives us the relative values 
for the N products where the logarithm of g(zn,xn) is defined 
as follows:

lng(zn,xn) ≡ γ0 + Σk=1
K γkznk + Σm=1

M δmxnm;  
 n = 1, . . .,N. (87)

As usual, the exact hedonic model for the prices is ptn = 
πtg(zn,xn) for t = 1,  .  .  .,T and n∈S(t). By taking logarithms 
of both sides of these price equations, using ρt ≡ lnπt for t = 
1, . . .,T and using definitions (87) for the N products in the 
sample, we obtain the following weighted hedonic regression 
model:

(stn)
1/2 lnptn = (stn)

1/2 [ρt + γ0 + Σk=1
K γkznk + Σm=1

M δmxnm]  
  + etn; t = 1, . . .,T; n∈S(t). (88)

Rather than running this linear regression (after imposing 
the normalizations ρ1 = 0 and δ1 = 0), we could instead mini-
mize the following weighted sum of squared residuals:

minρ, γ, δ Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K  
 γkznk – Σm=1

M δmxnm]2, (89)

where ρ ≡ [ρ1, . . .,ρT], g ≡ [γ0,γ1, . . .,γK], and δ ≡ [δ1, . . .,δM]. A 
solution ρ, γ, δ to the minimization problem (89) will satisfy 
the following first-order conditions:

Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1
K γkznk – Σm=1

M δmxnm] = 0;  
 t = 1, . . .,T; (90)

Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K  
 γkznk – Σm=1

M δmxnm] = 0; (91)

Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K γkznk – Σm=1
M  

 δmxnm]znk = 0; k = 1, . . .,K; (92)
Σt=1

T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1
K γkznk – Σm=1

M  
 δmxnm]xnm = 0; m = 1, . . .,M. (93)

Equations (90)–(93) are T + 1 + K + M equations in the T + 
1 + K + M unknown parameters in the vectors ρ, γ, and δ. 
However, solutions to these equations are not unique: The 
variables associated with the ρt, g0, and the δm parameters 
are collinear. In order to obtain a unique solution to equa-
tions (90)–(93), it is necessary to impose two normalizations 
on these parameters. Choose the normalizations ρ1

* = 0 
(which is equivalent to π1

* = 1) and δ1
* = 0. Thus, set ρ1

* = 
0 and δ1

* = 0 in equations (90)–(93), drop the first equation 
in equations (90), drop the first equation in (93), and solve 
the remaining T + K + M – 1 equations for r2

*, . . ., ρT
*, γ0

*, 
γ1

*, . . ., γK
*, δ2

*, . . ., δM
*.73 Once these parameters have been 

determined, define the estimated logarithm of the quality 
adjustment factor for product n as

βn
* ≡ γ0

* + Σk=1
K γk

*znk + Σm=1
M δm

*xnm = lnαn
*;  

 n = 1, . . .,N. (94)

Once βn
* have been defined, the corresponding quality 

adjustment factors are defined as αn
* ≡ exp[βn

*] > 0 for n = 
1, . . .,N. Evaluate equations (90)–(93) at the solution ρ*, γ*, δ*, 
where ρ1

* = 0 and δ1
* = 0.74 Using definitions (94), equations 

(90) evaluated at the preceding solution become the follow-
ing equations:

 ρt
* = Σn∈S(t) stn[lnptn – βn

*] = lnπt
*; t = 1, . . .,T. (95)

Thus, the period t estimated price level πt
* ≡ exp[ρt

*] is a 
period t share-weighted geometric average of the period t 
quality-adjusted prices, ptn/an

*, for n∈S(t).
With some new definitions, it is possible to provide fairly 

transparent interpretations for the discrete variable param-
eters, δm

*. Define the set of observations t,n that are in the 
discrete product group m as S**(m) for m = 1, . . .,M. For each 
model n, define the partial log adjustment factor μn

* for the 
continuous characteristics as follows:

 μn
* ≡ γ0

* + Σk=1
K γk

*lnznk; n = 1, . . .,N. (96)

Using these new definitions, it can be seen that equations 
(93), evaluated at the normalized solution to the weighted 
least squares minimization problem (89), can be rewritten 
as follows:

δm
* = Σt,n∈S**(m) stn[lnptn – ρt

* – μn
*]/Σt,n∈S**(m) stn;  

 m = 1, . . .,M. (97)

73 The number of observations in the window of observations must be 
equal to or greater than T + K + M – 1. More generally, the rank of the 
coefficient matrix that is associated with the T + K + M – 1 remaining 
equations in the system of equations defined by (90)–(93) is assumed to be 
full so that the coefficient matrix has an inverse.
74 All T + K + M + 1 of equations (90)–(93) will be satisfied at this solution.
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Define θn
* = exp[μn

*] for n = 1,  .  .  .,N. Then exp[δm
*] is 

equal to a share-weighted geometric average of the partially 
quality-adjusted prices ptn/πt

*θn
* for all t,n that belong to the 

set S**(m); that is, for all observations over all periods on 
products that are in group m for the discrete characteristic. 
Thus, the characteristics of dm

* given by equations (97) are 
intuitively plausible.

The analysis in the previous section can be adapted to the 
model defined by (89). Once πt

* have been calculated using 
definitions (95), the price index between periods t and τ is 
defined as πt

*/πτ
* for 1 ≤ t, τ ≤ T. Once αn

* and πt
* have been 

calculated using (94) and (95), we have the usual two alter-
native methods for constructing period-by-period price and 
quantity levels, Pt and Qt, for t = 1, . . .,T. The first uses the 
πt

* estimates as follows:

 Pt* ≡ πt
*; t = 1, . . .,T; (98)

 Qt* ≡ Σn∈S(t) ptnqtn/P
t*; t = 1, . . .,T. (99)

The second method uses the an
* estimates as follows:

 Qt** ≡ Σn∈S(t) αn
*qtn; t = 1, . . .,T; (100)

 Pt** ≡ Σn∈S(t) ptnqtn/Q
t**; t = 1, . . .,T. (101)

As usual, we have the inequalities Pt** ≤ Pt* for t = 1, . . .,T.
As was the case for the previous hedonic regression mod-

els, the present model can be used to generate estimates for 
missing prices using the equations ptn ≡ πt

*αn
* if product n is 

missing in period t. Using these estimates for missing prices, 
the analysis following equation (81) can be used to analyze 
the difference between Pt* = πt

*/π1
* and the Törnqvist–Theil 

index PT
t for period t.

We conclude this section by providing one more extension 
of the basic hedonic regression model using characteristics 
defined by (84).

In many cases, the continuous characteristics that 
describe a product or model range from very low values to 
very high values. In such cases, it is unlikely that a single 
parameter γk could provide an adequate approximation to 
the value of additional amounts of the characteristic over 
the entire range of feasible characteristic values. To deal 
with this difficulty, piecewise linear spline functions can 
be introduced into the hedonic model. Thus, let y be the 
amount of a continuous characteristic that takes on a wide 
range of values. We again assume that there are N mod-
els or products and T time periods and we can observe the 
amounts z1, . . .,zK of K continuous characteristics (where a 
single parameter γk can capture the value of an additional 
unit of zk for k = 1, . . .,K) and the highly variable character-
istic y that each product n has.

In order to obtain more flexibility with respect to the y 
characteristic, the observed products could be grouped 
into say three groups with respect to the amounts of y that 
they possess: low, medium, and high amounts of y. In order 
to parameterize this grouping, pick y* and y** such that 
approximately one-third of the sample observations have y 
≤ y*, one-third have y* < y £ y**, and one-third have y** < y. 
Define the following dummy variable functions, Di(y) for i = 
1,2,3, which depend on y:

 D1(y) ≡ 1 if y ≤ y* and is equal to 0 elsewhere; (102)
D2(y) ≡ 1 if y* < y ≤ y** and is equal  

 to 0 elsewhere; (103)
 D3(y) ≡ 1 if y** < y and is equal to 0 elsewhere. (104)

The preceding functions can be used to define the logarithm 
of the following partial hedonic valuation function h(y):

lnh(y) ≡ D1(y)ϕ1y + D2(y)[ϕ1y
* + ϕ2(y –y*)]  

  + D3(y)[ϕ1y
* + ϕ2(y** –y*) + ϕ3(y –y**)]. (105)

Note that the logarithm of h(y) is a piecewise linear function 
of y.75 If ϕ1 = ϕ2 = f3, then lnh(y) = ϕ1y; that is, under these 
conditions, lnh(y) becomes a linear function of y.

We assume the existence of an overall hedonic valuation 
function, g(zn,yn), that defines the relative utility for the N 
products where product n has characteristics defined by 
vector zn ≡ [zn1, . . .,znK] and the scalar yn. The logarithm of 
g(zn,yn) is defined as follows:

 lng(zn,yn) ≡ γ0 + Σk=1
K γkznk + lnh(yn); n = 1, . . .,N. (106)

As usual, the exact hedonic model for the sample prices is ptn 
= πtg(zn,yn) for t = 1, . . .,T and n∈S(t). By taking logarithms 
of both sides of these price equations, using ρt ≡ lnpt for t = 
1, . . .,T and using definitions (105) and (106), we obtain the 
following hedonic regression model:

lnptn = ρt + g0 + Σk=1
K γkznk + lnh(yn) + etn;  

 t = 1, . . .,T; n∈S(t), (107)

where lnh(yn) is defined by evaluating (105) at y = yn. It can 
be seen that the unknown parameters, ρ ≡ [ρ1, . . .,ρT], g ≡ 
[γ0,γ1,  .  .  .,γK], and ϕ ≡ [ϕ1,ϕ2,ϕ3], appear on the right-hand 
sides of equations (107) in a linear fashion so the unknown 
parameters can be estimated using linear regression 
techniques.

In order to take into account the economic importance 
of each model, estimates for the unknown parameters in 
equations (107) can be obtained by minimizing the follow-
ing weighted sum of squared residuals:

minρ, γ, ϕ Σt=1
T Σn∈S(t) stn[lnptn – ρt – γ0 – Σk=1

K  
 γkznk – lnh(yn)]2. (108)

We leave the further analysis of this model to the reader 
after noting that in order to obtain a unique solution to 
(108), we require a normalization on ρt and γ0 such as ρ1 = 0.

It is not necessary to restrict ourselves to hedonic regres-
sion models where the hedonic valuation function g(z,y) is 
such that lng(z,y) is linear in the unknown parameters. One 
can choose functions g(z,y) such that lng(z,y) is a nonlinear 
function of the unknown parameters and use nonlinear 

75 This function is known as a linear spline function in the literature on 
nonparametric approximations. The points y* and y** are called break 
points or knots. With a sufficient number of break points, any continuous 
function can be arbitrarily well approximated by a linear spline function. 
See Poirier (1976) for applications of regression models using splines.
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estimation techniques to estimate the parameters. How-
ever, when estimating nonlinear regression models that are 
fairly complex, it is not wise to attempt to estimate the final 
model right away. It is best if there are very simple mod-
els that can be nested in the final model so that one starts 
by estimating the simplest model and gradually, more bells 
and whistles are added until one arrives at the final model. 
The final parameter values for a simpler model should be 
used as starting parameter values in the next stage model if 
possible.76

All of the models for quality adjustment that we have con-
sidered thus far have assumed constant tastes; that is, the 
functional form for the aggregator function f(q) and for the 
hedonic valuation functions g(zn,yn,xn) have remained con-
stant over the sample period. In the following section, this 
assumption will be relaxed.

8. Hedonics and the Problem of 
Taste Change: Hedonic Imputation 
Indices
A problem with hedonic regression models that are applied 
over many periods is that consumer tastes may change over 
time. In this section, we will outline three possible methods 
for dealing with the problem of taste change.

The first method that could be used to deal with taste 
change is to restrict the time dummy hedonic regression 
models to the case of two adjacent periods. Each pair of 
periods allows for a different set of tastes.77 As each adjacent 
period time dummy regression model is run for say periods 
t–1 and t, the estimated price level ratio, say πt

*/πt-1
*, is used 

as an update factor for the price level of period t – 1. Each 
bilateral regression will generate a set of quality adjustment 
factors which can be used to fill in missing prices. Over time, 
these quality adjustment factors will change. It can be seen 
that this model of taste change is somewhat inconsistent 
over time but it does allow for taste change.

The second method for dealing with taste change is simi-
lar to the first method, except instead of holding tastes con-
stant for two consecutive periods, we hold tastes constant 
for T consecutive periods. When the data for a subsequent 
period becomes available, the data for the first period is 
dropped, the data for the new period is added to form a new 
window of T observations and a new time dummy hedonic 
regression is run. This method assumes that tastes change 
more slowly than the first method. This rolling window time 
dummy hedonic regression model 78 has a new problem that 
did not arise with the adjacent period model: How should 
the results of the new regression be linked to the results of 
the previous regression? Thus, suppose the first window 
of observations generates the sequence of price levels, π1

1, 
π2

1, . . ., πT
1 and these levels are labeled as official indices for 

76 For examples of nonlinear hedonic models that make use of this nest-
ing technique, see Chapter 10 or Diewert, de Haan, and Hendriks (2015), 
Diewert and Shimizu (2015, 2016, 2022), or Diewert, Huang, and Burnett-
Issacs (2017).
77 This method was developed by Court (1939) and popularized by Grili-
ches (1971). It is called the adjacent period time dummy hedonic regres-
sion model.
78 This rolling window time dummy hedonic model was implemented by 
Ivancic, Diewert, and Fox (2009) and Shimizu, Nishimura, and Wata-
nabe (2010).

the first T periods. Suppose the time dummy hedonic regres-
sion for the second window generates the sequence of price 
levels π2

2, π3
2, . . ., πT + 1

2. How exactly should the official index 
for period T + 1 be constructed? Ivancic, Diewert, and Fox 
(2009, 2011) suggested using period T as the linking obser-
vation. Krsinich (2016, 383) called this the movement splice 
method for linking the two windows. Krsinich (2016, 383) 
also suggested that a better choice of the linking observa-
tion in the context of her multilateral model was t = 2, and 
she called this the window splice method. De Haan (2015, 
26) suggested that the link period t should be chosen to be 
in the middle of the first window time span; that is, choose 
t = T/2 if T is an even integer or t = (T + 1)/2 if T is an odd 
integer. The Australian Bureau of Statistics (2016, 12) called 
this the half splice method for linking the results of the two 
windows. Ivancic, Diewert, and Fox (2011, 33) and Diewert 
and Fox (2021) argued that each choice of a linking period 
t running from t = 2 to t = T is an equally valid choice of a 
period to link the two sets of price levels. Thus, they sug-
gested the mean splice, defined as the geometric mean of all 
of the possible estimates for πT + 1 using each of the T – 1 
possible link periods. The first three methods of linking one 
window to the next window are easy to explain to the public, 
but the mean splice seems to be the least “risky” and follows 
standard statistical practice; that is, if one has many estima-
tors for the same thing that are equally plausible, then tak-
ing an average of these estimators is recommended. It can be 
seen that this model of taste change is again slightly incon-
sistent; the models are internally consistent within each win-
dow of observations but when we move from one window to 
another, this internal consistency is lost.

The third method for dealing with taste change is to 
simply estimate a separate hedonic regression for each 
time period. This method is called the hedonic imputation 
method. In order to explain this method and its connection 
to the adjacent period time dummy model, it is necessary 
to develop the algebra for both methods for the case of two 
time periods.

We first develop the algebra for the adjacent period time 
dummy hedonic regression model. Recall the model defined 
in the previous section by solving the weighted least squares 
minimization problem defined by (84). Consider the special 
case of this model with only two periods so that T = 2. We 
reparameterize this problem defined by (84) for the case T = 
2 and consider the following equivalent problem:

 minθ, γ Σt=1
2 Σn∈S(t) stn[lnptn – θt – Σk=1

K γkznk]
2, (109)

where θ ≡ [θ1,θ2] and g ≡ [γ1, . . .,γK]. Comparing (109) with (84) 
for T = 2, it can be seen that θ1 = ρ1 + γ0 = g0 (since we set ρ1 
= 0 when using the model defined by (84)) and θ2 = ρ2 + γ0. 
Thus, the two problems are completely equivalent once we 
impose the normalization r1 = 0 on (84) for the case where T 
= 2. The first-order conditions that determine a unique solu-
tion to (109)79 are the following 2 + K equations:

79 As usual, the coefficient matrix for the unknown parameters in equa-
tions (110) and (111) must be of full rank (which is K + 2) in order to obtain 
a unique solution. This means that the number of observations must be 
equal to or greater than K + 2.
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 Σn∈S(t) stn[lnptn – θt
* – Σk=1

K γk
*znk] = 0; t = 1,2; (110)

Σt=1
2 Σn∈S(t) stn[lnptn – θt

* – Σk=1
K γk

* znk]znk = 0;  
 k = 1, . . .,K. (111)

Denote the solution to (110) and (111) by θ* ≡ [θ1
*,θ2

*] and γ* ≡ 
[γ1

*, . . .,γK
*]. Estimates for the parameters γ0 and ρ2 that were 

used in our initial parameterization of the model defined by 
(84) for the case where T = 2 can be recovered from the solu-
tion to (110) and (111) as follows:80

 γ0
* ≡ θ1

*; ρ1
* ≡ 0; ρ2

* ≡ θ2
* – θ1

*. (112)

The estimated quality adjustment parameters, βn
* and αn

*, 
for the model defined by (84) can be recovered from the esti-
mated qt

* and γk
* by using the equations βn

* ≡ θ1
* + Σk=1

K γk
*znk; 

αn
* ≡ exp[βn

*] for n = 1, . . .,N.
However, for the remainder of this section, it will prove 

to be more convenient to define new quality adjustment 
parameters, βn

** and αn
**, as follows:

 βn
** ≡ Σk=1

K γk
*znk; αn

** ≡ exp[βn
**]; n = 1, . . .,N. (113)

Equations (110), definitions (113), and the equations Σn∈S(t) stn 
= 1 for each t imply that the estimated θ1

* and θ2
* satisfy the 

following equations:

 θt
* = Σn∈S(t) stn[lnptn – Σk=1

K γk
*znk] t = 1,2; (114)

 = Σn∈S(t) stnln(ptn/αn
**).

Using equations (112) and (113), we obtain the following 
expressions for ρ2

* which is the logarithm of the price index 
π2

*/π1
* generated by the time dummy adjacent period hedonic 

regression model:81

 ρ2
* ≡ θ2

* – θ1
* (115)

 = Σn∈S(2) s2nln(p2n/αn
**) – Σn∈S(1) s1nln(p1n/αn

**)
 = Σn∈S(2) s2n[lnp2n – Σk=1

K γk
*znk] – Σn∈S(1) s1n[lnp1n – Σk=1

K γk
*znk].

This completes the algebra for the reparameterization of 
the time dummy adjacent period hedonic regression model. 
In what follows, we will develop the algebra for entirely 
separate hedonic regression models for each period. In this 
model, the hedonic surfaces for the two periods, θ1

* + Σk=1
K 

γk
*znk and θ2

* + Σk=1
K γk

*znk, differed only in their constant 
terms. In the following model, the hedonic surfaces can shift 
in a non-parallel fashion.

80 The new γk
* are equal to the old gk

* for k = 1, . . .,K.
81 If the model defined by (109) held exactly so that all error terms were 
equal to 0, then lnp1n = θ1

* + lnαn
** for n∈S(1) and lnp2n = θ2

* + lnαn
** for 

n∈S(2). Thus, p1n/αn
** = exp[θ1

*] for each n∈S(1) and p2n/αn
** = exp[θ2

*] for 
each n∈S(2). Thus, each quality-adjusted period t price, ptn/αn

** for n∈S(t), 
is an estimator for exp[θt

*], and thus a weighted geometric mean of these 
quality-adjusted prices (where the weights sum to 1) is also an estimator 
for exp[θt

*].

Consider the following two weighted least squares mini-
mization problems:

 minθ, γ Σn∈S(1) s1n[lnp1n – θ1 – Σk=1
K γk

1znk]
2; (116)

 minθ, γ Σn∈S(2) s2n[lnp2n – θ2 – Σk=1
K γk

2znk]
2, (117)

where the unknown parameters in (116) are θ1 and γ1 ≡ 
[γ1

1, . . .,γK
1] and the unknown parameters in (117) are θ2 and 

γ2 ≡ [γ1
2,  .  .  .,γK

2]. In the previous model defined by (109), 
there was only one vector of γ parameters to model prices 
in both periods, while the new models defined by (116) and 
(117) have separate quality adjustment parameter vectors, 
γ1 and γ2.

The first-order conditions for (116) are equations (118) and 
(119), while the first-order conditions for (117) are equations 
(120) and (121) below:

 Σn∈S(1) s1n[lnp1n – θ1* – Σk=1
K γk

1*znk] = 0; (118)
Σn∈S(1) s1n[lnp1n – θ1* – Σk=1

K γk
1*znk]znk  

 = 0; k = 1, . . .,K; (119)

 Σn∈S(2) s2n[lnp2n – θ2* – Σk=1
K γk

2*znk] = 0; (120)
Σn∈S(2) s2n[lnp2n – θ2* – Σk=1

K γk
2*znk]znk = 0;  

 k = 1, . . .,K. (121)

Let θ1* and γ1
1*, . . ., γK

1* solve (118) and (119) and let θ2* and 
γ1

2*,  .  .  ., γK
2* solve (120) and (121). There are now two sets 

of quality adjustment factors: α1
1*, . . ., αN

1* for period 1 and 
α1

2*, . . ., αN
2* for period 2. The logarithms of these param-

eters are defined as follows:

lnαn
1* ≡ Σk=1

K γk
1*znk; lnαn

2* ≡ Σk=1
K γk

2*znk;  
 n = 1, . . .,N. (122)

Using (118), (120), and definitions (122), we obtain the fol-
lowing expressions for θ1* and θ2* as quality-adjusted log 
prices for periods 1 and 2:

θ1* = Σn∈S(1) s1nln(p1n/αn
1*) = Σn∈S(1) s1n[lnp1n  

 – Σk=1
K γk

1*znk]; (123)
θ2* = Σn∈S(2) s2nln(p2n/αn

2*) = Σn∈S(2) s2n[lnp2n  
 – Σk=1

K γk
2*znk]. (124)

The average measure of log price change going from period 
1 to 2 using the adjacent period time dummy hedonic model 
was ρ2

* = θ2
* – θ1

*; see (115). Note that the same quality 
adjustment factors, αn

*, were used to quality adjust prices 
in both periods. At first glance, we might think that an 
analogous measure of average constant quality log price in 
our new model could be defined as θ2* – θ1*. However, look-
ing at (123) and (124), we see that the quality adjustment 
factors are not held constant in constructing this measure. 
The underlying exact models are now p1n = exp[q1*]αn

1* for 
n∈S(1) and p2n = exp[θ2*]αn

2* for n∈S(2). Thus, the period 
1 quality-adjusted prices, p1n/αn

1*, are not comparable to 
their period 2 counterparts, p2n/αn

2*, unless αn
1* = αn

2*. 
Hence, π2

*/π1
* is not a useful price index that compares like 

with like.
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At this point, the analysis could go in at least three differ-
ent directions:

• Use the two hedonic regressions to fill in the missing 
prices; that is, if n∈S(1) but n∈S(2), define p2n ≡ exp[θ2*]
αn

2* and q2n = 0. If n∈S(2) but n∈S(1), define p1n ≡ exp[θ1*]
αn

1* and q1n = 0. Using these estimated prices, we would 
have complete overlapping price and quantity data for 
the two periods. Now use the actual data along with the 
imputed data to calculate a favorite price index and define 
the companion quantity index residually by deflating the 
value ratio by the price index. The problem with this 
strategy is that the quantity index that emerges using this 
strategy cannot be given a welfare interpretation because 
preferences are allowed to change over the two periods.

• A product or model with characteristics vector z* ≡ 
[z1

*, . . .,zK
*] should have a log price which is approximately 

equal to q1* + Σk=1
K γk

1*zk
* ≡ lnp1* in period 1 and a log price 

which is approximately equal to θ2* + Σk=1
K γk

2*zk
* ≡ lnp2* in 

period 2. Choose z* to be a characteristics vector that is 
representative for the set of products that exist in periods 
1 and 2. Then, the exponential of ln(p2*/p1*) = q2* – θ1* + 
Sk=1

K (γk
2* – γk

1*)zk
* can serve as a measure of average loga-

rithmic inflation over the period. The problem with this 
method is that there are many possible choices for the ref-
erence vector z*.82

• Use each set of quality adjustment factors to generate two 
consistent measures of inflation over the two periods and 
then take the average of the two measures.

In what follows, we will work out the algebra for the third 
alternative.83 Let δ1* be the share-weighted average of the 
quality-adjusted log prices for period 1, p1n/αn

2*, using the 
period 2 quality adjustment factors αn

2* defined in (122) and 
let δ2* be the share-weighted average of the quality-adjusted 
log prices for period 2, p2n/αn

1*, using the period 1 quality 
adjustment factors αn

1* defined in (122):

δ1* ≡ Σn∈S(1) s1nln(p1n/αn
2*); δ2*  

 ≡ Σn∈S(2) s2nln(p2n/αn
1*). (125)

It can be seen that θ2* – δ1* is a constant quality measure of 
overall log price change which uses the quality adjustment 
factors αn

2* for period 2 to deflate prices in both periods. 
Similarly, δ2* – θ1* is a constant quality measure of overall 
log price change which uses the quality adjustment factors 
αn

1* for period 1 to deflate prices in both periods. It is natu-
ral to take the arithmetic mean of these two measures of 
constant quality log price change in order to obtain the fol-
lowing counterpart, r2

**, to the adjacent period time dummy 
measure of constant quality log price change, ρ2

* defined 
by (115).

 ρ2
** ≡ ½[θ2* – δ1*] + ½[δ2* – θ1*] (126)

 = ½[Σn∈S(2) s2nln(p2n/αn
2*) – Σn∈S(1) s1nln(p1n/αn

2*)]

82 Note that if γ1* happens to equal γ2*, then ln(p2*/p1*) = θ2* – θ1*, and θ2* – θ1* 
turns out to equal ρ2

* defined by (115).
83 The analysis which follows was performed by Silver and Heravi (2007), 
Diewert, Heravi, and Silver (2009), and de Haan (2009). For additional 
materials on hedonic imputation methods, see Aizcorbe (2014).

 + ½[Σn∈S(2) s2nln(p2n/αn
1*) – Σn∈S(1) s1nln(p1n/αn

1*)] using 
(123)–(125)

 = Σn∈S(2) s2n[lnp2n – ½(lnan
1* + lnαn

2*)]

 – Σn∈S(1) s1n[lnp1n – ½(lnan
1* + lnαn

2*)]

 = Σn∈S(2) s2n[lnp2n – Σk=1
K (½γk

1* + ½γk
2*)znk]

 – Σn∈S(1) s1n[lnp1n –Σk=1
K (½γk

1* + ½γk
2*)znk] using definitions 

(122).

Using (115), ρ2
* can be expressed as follows:

ρ2
* = Σn∈S(2) s2n[lnp2n – Σk=1

K γk
*znk]  

 – Σn∈S(1) s1n[lnp1n –Σk=1
K γk

*znk]. (127)

The time dummy hedonic regression model defined by the 
minimization problem (109) uses the hedonic coefficients, γk

* 
for k = 1,  .  .  .,K to form the quality adjustment factors αn

* 
for n = 1, . . .,N. The single-period hedonic regressions are 
defined by the minimization problems defined by (116) and 
(117), which in turn generate the two sets of hedonic coef-
ficients, the gk

1* and the gk
2* for k = 1, . . .,K. But in the end, 

these two sets of hedonic coefficients are averaged when the 
overall measure of log price change defined by ρ2

** is calcu-
lated. Thus, the only difference between ρ2

* defined by (115) 
or (127) and ρ2

** defined by (126) is that the average hedonic 
coefficients ½γk

1* + ½γk
2* are used in (126) while ρ2

* uses the 
single set of coefficients γk

*. Thus, (127) lets the single regres-
sion do the job of constructing a set of hedonic coefficients 
that covers both periods while (126) averages the results of 
the two single-period regressions.

Which approach is “better”? The hedonic imputation 
approach requires the estimation of 2 + 2K parameters, 
while the adjacent period time dummy hedonic approach 
requires only 2 + K parameters. Thus, if the number of price 
observations in the two periods is plentiful, then the hedonic 
imputation approach will fit the data better and thus, in gen-
eral, will be the preferred approach. However, if the number 
of observations is small and K is relatively large, then the 
adjacent period time dummy approach may be less vulnera-
ble to multicollinearity and outlier problems and hence may 
be the preferred approach.84 In particular, if the number of 
observations for the two periods is less than 2 + 2K, then the 
hedonic imputation approach cannot be used. On the other 
hand, if the fit is very good in the two weighted least squares 
minimization problems defined by (115) and (116) (and there 
are ample degrees of freedom) and not good in the single 
weighted least squares minimization problem defined by 
(109), then it is preferable to estimate price change between 
the two periods using the hedonic imputation estimates for 
logarithmic price change defined by (126), since this differ-
ence in fit for the two models is evidence of taste change, and 

84 “In practice, while one may want to use the most recent cross section 
to derive the relevant price weights, such estimates may fluctuate too 
much for comfort as the result of multicollinearity and sampling fluc-
tuations. They should be smoothed in some way, either by choosing wi = 
(1/2)[wi(t) + wi(t + 1)], or by using adjacent year regressions in estimating 
these weights” (Zvi Griliches, 1971, 7). Thus, Griliches suggested the time 
dummy approach if the separate hedonic regressions led to substantial 
fluctuation in the parameter estimates.
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thus it will be safer to use (126) over (127) to measure price 
change.

A problem with all of the hedonic regression models that 
we have considered thus far is that the underlying economic 
model is quite restrictive; that is, the underlying exact model 
is ptn = πtαn, which implies that purchasers of the products 
have linear preferences over the N products under consider-
ation.85 Linear preferences mean that the quality-adjusted 
products are perfect substitutes for each other. In the fol-
lowing two sections, we will consider economic models that 
relax this assumption of perfect substitutes.

9. Estimating Reservation Prices: 
The Case of CES Preferences
In this section, we will explain Feenstra’s (1994) CES meth-
odology that he proposed to measure the benefits and costs 
to consumers due to the appearance of new products and the 
disappearance of existing products.86

The Feenstra methodology starts out by making the same 
assumptions as were made in Section 2; that is, it is assumed 
that purchasers of a group of N products collectively maxi-
mize the linearly homogeneous, concave, and nondecreas-
ing aggregator or utility function f(q) subject to a budget 
constraint. Given that purchasers face the positive vector of 
prices p ≡ (p1, . . .,pN), the unit cost function c(p) that is dual 
to the utility function f is defined as the minimum cost of 
attaining the utility level that is equal to one:

 c(p) ≡ minq{f(q) ≥ 1; q ≥ 0N}. (128)

If the unit cost function c(p) is known, then using duality 
theory, it is possible to recover the underlying utility func-
tion f(q).87 Feenstra assumed that the unit cost function has 
the following CES functional form:

 c(p) ≡ α0 [Σn=1
N αnpn

1–σ]1/(1–σ) if Σ ≠ 1; (129)
 ≡ α0 ∏n=1

N pn nα if Σ = 1,

where αi and Σ are nonnegative parameters with Σi=1
N αi = 1. 

The unit cost function defined by (129) is a CES utility func-
tion that was introduced into the economics literature by 
Arrow et al. (1961)88.

85 This criticism of hedonic regression models is similar to that of Haus-
man (2003, 32): “In the presence of the introduction of new goods and 
quality improvement of existing goods, both prices and quantities (or 
alternatively, prices and expenditures) must be used to calculate a cor-
rect cost of living index. Using only prices and ignoring information in 
quantity data will never allow for a correct estimate of a cost of living 
index in the presence of new goods and improvements in existing goods.” 
However, if the fit of a hedonic regression model is good, then the hedonic 
regression model is justified, and there is no need to move to a more com-
plicated consumer demand framework.
86 The exposition in this section follows that of Diewert and Feenstra 
(2017).
87 It can be shown that for q >> 0N, f(q) = 1/max p {c(p): Σn=1

N pnqn ≤ 1 ; p ≥ 
0N}; see Chapter 5 or Diewert (1974, 110–112) on the duality between lin-
early homogeneous aggregator functions f(q) and unit cost functions c(p).
88 In the mathematics literature, this aggregator function or utility func-
tion is known as a mean of order r ≡ 1 – Σ; see Hardy, Littlewood, and 
Pólya (1934, 12–13). For more on estimating CES utility functions, see 
Chapter 5.

The parameter Σ is the elasticity of substitution;89 when 
Σ = 0, the unit cost function defined by (129) becomes 
linear in prices and hence corresponds to a fixed coeffi-
cients aggregator function that exhibits 0 substitutability 
between all commodities. When Σ = 1, the corresponding 
aggregator or utility function is a Cobb–Douglas func-
tion. When Σ approaches + ∞, the corresponding aggre-
gator function f approaches a linear aggregator function 
that exhibits infinite substitutability between each pair of 
inputs. The CES unit cost function defined by (129) is of 
course not a fully flexible functional form (unless the num-
ber of commodities being aggregated is N = 2), but it is 
considerably more flexible than the zero substitutability 
aggregator function (this is the special case of (129) where 
Σ is set equal to zero) or the linear aggregator function 
(which corresponds to Σ = + ∞).

In order to simplify the notation, we set r ≡ 1 – Σ. Under 
the assumption of cost-minimizing behavior on the part 
of purchasers of the N products for periods t = 1,  .  .  .,T, 
Shephard’s (1953, 11) Lemma tells us that the observed 
period t consumption of commodity i, qi

t, will be equal to 
ut∂c(pt)/∂pi, where ∂c(pt)/∂pi is the first-order partial deriva-
tive of the unit cost function with respect to the ith com-
modity price evaluated at the period t prices, and ut = f(qt) 
is the aggregate (unobservable) level of period t utility. As 
usual, denote the share of product i in total sales of the N 
products during period t as sti ≡ ptiqti/p

t·qt for i = 1, . . .,N and 
t = 1, . . .,T, where pt·qt ≡ Σn=1

N ptnqtn. We initially assume that 
there are no missing products. Note that the assumption of 
cost-minimizing behavior during each period implies that 
the following equations will hold:

 pt·qt = utc(pt); t = 1, . . .,T, (130)

where c is the CES unit cost function defined by (129).
Using the CES functional form defined by (129) and 

assuming that Σ ≠ 1 (or r ≠ 0),90 the following equations are 
obtained using Shephard’s Lemma:

qti = utα0 [Σn=1
N αn (ptn) 

r](1/r)–1αi (pti)
r-1;  

 i = 1, . . .,N; t =1, . . .,T (131)
 = utc(pt) αi (pti)

r–1/Σn=1
N αn (ptn) 

r.

Premultiply equation i for period t in (131) by pti/p
t·qt. Using 

(129) and (131), the resulting equations can be rewritten as 
follows:

89 Let c(p) be an arbitrary unit cost function that is twice continuously 
differentiable. The Allen (1938, 504)-Uzawa (1962) elasticity of substitu-
tion Σnk(p) between products n and k is defined as c(p)cnk(p)/cn(p)ck(p) for 
n ≠ k, where the first- and second-order partial derivatives of c(p) are 
defined as cn(p) ≡ ∂c(p)/∂pn and cnk(p) ≡ ∂2c(p)/∂pn∂pk. For the CES unit 
cost function defined by (129), Σnk(p) = Σ for all pairs of products; that is, 
the elasticity of substitution between all pairs of products is a constant for 
the CES unit cost function.
90 When Σ = 1, we have the case of Cobb–Douglas preferences. In the 
remainder of this section, we will assume that Σ > 1 (or equivalently, that 
r < 0). This assumption means that the products under consideration are 
either highly substitutable (Σ is considerably greater than one) or moder-
ately substitutable (Σ is greater than one but fairly close to one).
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 sti = αi (pti)
r/Σn=1

N αn (ptn)
r; i = 1, . . .,N;  

 t = 1, . . .,T. (132)

The NT share equations defined by (132) can be used as esti-
mating equations using a nonlinear regression approach. 
Note that the positive scale parameter α0 cannot be identi-
fied using equations (132), which of course is normal: Util-
ity can only be estimated up to an arbitrary scaling factor. 
Henceforth, we will assume α0 = 1. The share equations (132) 
are homogeneous of degree one in the parameters α1, . . .,αN, 
and thus the identifying restriction on these parameters, 
Σi=1

N αi = 1 can be replaced with an equivalent restriction 
such as αN = 1.

The sequence of period t CES price indices (relative to the 
level of prices for period 1), PCES

t, can be defined as the fol-
lowing ratios of unit costs in period t relative to period 1:

PCES
t ≡ [Σn=1

N αn (ptn) 
r](1/r) / [Σn=1

N αn (p1n) 
r](1/r);  

 t = 1, . . .,T. (133)

Suppose further that the observed price and quantity 
data vectors, pt and qt for t = 1, . . .,T, satisfy equations (130), 
where c(p) is defined by (129) and the quantity data vec-
tors qt satisfy the Shephard’s Lemma equations (131). This 
means that the observed price and quantity data are con-
sistent with cost-minimizing behavior on the part of pur-
chasers, where all purchasers have CES preferences that are 
dual to the CES unit cost function defined by (129). Then, 
Sato (1976) and vartia (1976) showed that the sequence of 
CES price indices defined by (133) could be numerically cal-
culated just using the observed price and quantity data; that 
is, it is not necessary to estimate the unknown αn and Σ (or r) 
parameters in equations (132).91 The logarithm of the period 
t fixed-base Sato-vartia Index PSV

t is defined by the following 
equation:

 lnPSV
t ≡ Σn=1

N wn
t ln(ptn/p1n); t = 1, . . .,T. (134)

The weights wn
t that appear in equations (134) are calculated 

in two stages. The first stage set of weights is defined as wn
t* 

≡ (stn – s1n)/(lnstn – lns1n) for n = 1, . . .,N and t = 1, . . .,T pro-
vided that stn ≠ s1n. If stn = s1n, then define wn

t* ≡ stn = s1n. The 
second stage set of weights are defined as wn

t ≡ wn
t*/Σi=1

N wi
t* 

for n = 1, . . .,N and t = 1, . . .,T. Note that in order for lnPSV
t 

to be well defined, we require that stn > 0, s1n > 0, ptn > 0 and 
p1n > 0 for all n = 1, . . .,N and t = 1, . . .,T; that is, all prices 
and quantities must be positive for all products and for all 
periods.

With this background information in hand, we can 
explain Feenstra’s (1994) model where “new” commodi-
ties can appear and “old” commodities can disappear from 
period to period.

Feenstra (1994) assumed CES preferences with Σ > 1 
(or equivalently, r < 0). He applied the reservation price 
methodology first introduced by Hicks (1940); that is, as 
mentioned earlier, Hicks assumed that the consumer had 
preferences over all goods but for the goods which had not 
yet appeared, there was a reservation price that would be 

91 See Chapter 5 for a proof of this result.

just high enough that consumers would not want to pur-
chase the good in the period under consideration.92 This 
assumption works rather well with CES preferences because 
we do not have to estimate these reservation prices; they will 
all be equal to + ∞ when Σ > 1.

Feenstra allowed for new products to appear and for exist-
ing products to disappear from period to period.93 Feenstra 
assumed that the set of commodities that are available in 
period t is S(t) for t = 1, . . .,T. The (imputed) prices for the 
unavailable commodities in each period are set equal to + 
∞, and thus if r < 0, an infinite price ptn raised to a negative 
power generates a 0—that is, if product n is unavailable in 
period t—then (ptn)

r = (∞)r = (1/∞)–r = 0 if r is negative.
The CES period t true price level under these conditions 

when r < 0 turns out to be the following CES unit cost func-
tion that is defined over only products that are available 
during period t:

 c(pt) ≡ [Σn=1
N αn (ptn) 

r](1/r) = [Σn∈S(t) αn (ptn)
r]1/r. (135)

Using equations (131) for this new model with some missing 
products and multiplying the period t demand qti if product 
i is present in period t by the corresponding price pti leads 
to the following equations, which describe the purchasers’ 
nonzero expenditures on product i in period t:

ptiqti = ut [Σn∈S(t) αn (ptn) 
r](1/r)–1αi (pti)

r; t = 1, . . .,T; i∈S(t)
 = utc(pt) αi (pti)

r/Σn∈S(t) αn (ptn)
r. (136)

In each period t, the sum of observed expenditures, Σn∈S(t) 
ptnqtn, equals the period t utility level, ut, times the CES unit 
cost c(pt) defined by (135):

Σn∈S(t) ptn qtn = utc(pt) = ut[Σi∈S(t) αi (pti)
r]1/r;  

 t = 1, . . .,T. (137)

Recall that the ith sales share of product i in period t was 
defined as sti ≡ ptiqti/Σn∈S(t) ptnqtn for t = 1,  .  .  .,T and i∈S(t). 
Using these share definitions and equations (137), we can 
rewrite equations (136) in the following form:

sti = αi (pti)
r/Σn∈S(t) αn (ptn)

r; t = 1, . . .,T; i∈S(t)
 = αi (pti)

r/c(pt)r, (138)

where the second set of equations follows from definitions 
(135).

Now we can work out Feenstra’s (1994) model for mea-
suring the benefits and costs of new and disappearing com-
modities. Start out with the period t CES exact price level 
defined by (135), and define the CES fixed-base price index 

92 The same logic is applied to disappearing products.
93 In many cases, a “new” product is not a genuinely new product; it is 
just a product that was not in stock in the previous period. Similarly, in 
many cases, a disappearing product is not necessarily a truly disappear-
ing product; it is simple a product that was not in stock for the period 
under consideration. Many retail chains rotate products, temporarily 
discontinuing some products in favor of competing products in order to 
take advantage of manufacturer-discounted prices for selected products.
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for period t, PCES
t, as the ratio of the period t CES price level 

to the corresponding period 1 price level:94

PCES
t ≡ c(pt)/c(p1); t = 2,3, . . .,T

 = [Σi∈S(t) αi (pti)
r]1/r / [Σi∈S(1) αi (p1i) 

r]1/r

 = [ Index 1]×[Index 2]×[Index 3], (139)

where the three indices in equations (139) are defined as 
follows:95

Index 1 ≡ [Σi∈S(t)∩S(1) αi (pti)
r]1/r / [Σi∈S(1)∩S(t)  

 αi (p1i) 
r]1/r; t = 2,3, . . .,T; (140)

Index 2 ≡ [Σi∈S(t) αi (pti)
r]1/r / [Σi∈S(1)∩S(t)  

 αi (pti) 
r]1/r; t = 2,3, . . .,T; (141)

Index 3 ≡ [Σi∈S(1)∩S(t) αi (p1i)
r]1/r / [Σi∈S(1)  

 αi(p1i)
r]1/r; t = 2,3, . . .,T. (142)

Note that Index 1 defines a CES price index over the set 
of commodities that are available in both periods t and 
1. Denote the CES cost function ct* that has the same αn 
parameters as before but is now defined over only products 
that are available in periods 1 and t:

 ct*(p) ≡ [Σi∈S(t)∩S(1) αi (pi)
r]1/r; t = 1,2, . . .,T. (143)

The period t expenditure share equations defined by equa-
tions (138) using the unit cost functions defined by (143) are 
the following ones:

si
t* ≡ ptiqti/Σn∈S(t) ∩S(1) ptnqtn t = 1, . . .,T; i∈S(1)∩S(t);

 = αi (pti)
r/ån∈S(t) ∩S(1) αn (ptn) 

r;
 = αi (pti)

r/ct*(pt)r, (144)

where the third equality follows from definitions (143).
Note that Index 1 is equal to ct*(pt)/ct*(p1) and the Sato-

vartia formula (134) (restricted to commodities n that are 
present in periods 1 and t) can be used to calculate this index 
using the observed price and quantity data for the products 
that are available in both periods 1 and t.

We turn now to the evaluation of Indices 2 and 3. It turns 
out that we will need an estimate for the elasticity of substi-
tution Σ (or equivalently of r ≡ 1–Σ) in order to find empirical 
expressions for these indices.96 It is convenient to define the 
following observable expenditure or sales ratios:

 λt ≡ Σn∈S(t) ptnqtn/ån∈S(1)∩S(t) ptnqtn; t = 2,3, . . .,T; (145)
 μt ≡ Σn∈S(1)∩S(t) p1nq1n/Σn∈S(1) p1n q1n; t =2,3, . . . T. (146)

94 In the algebra which follows, the prices and quantities of period 1 can 
be replaced with the prices and quantities of any period. Feenstra (1994) 
developed his algebra for c(pt)/c(pt–1).
95 The Indices 1–3 depend on period t, but we suppressed the Index t from 
the left-hand side of definitions (140)–(142).
96 See Chapter 5 or Diewert and Feenstra (2017) for a variety of methods 
for estimating the elasticity of substitution.

We assume that there is at least one product that is present 
in periods 1 and t for each t ≥ 2. Let product i be any one 
of these common products for a given t ≥ 2. Then, the share 
equations (138) and (144) hold for this product. These share 
equations can be rearranged to give us the following two 
sets of equations:

αi(pti)
r = [Σn∈S(t) αn (ptn)

r]ptiqti/[Σn∈S(t) ptnqtn];  
 t = 2,3, . . .,T; (147)

αi(pti)
r = [Σn∈S(1)∩S(t) αn (ptn)

r]ptiqti/[Σn∈S(1)∩S(t) ptnqtn];  
 t = 2,3, . . .,T. (148)

For each t ≥ 2, equating (147) to (148) for the common prod-
uct i leads to the following equations:

Σn∈S(t) αn (ptn)
r/Σn∈S(1)∩S(t) αn (ptn)

r = Σn∈S(t) ptnqtn/Σn∈S(1)∩S(t) ptnqtn;  
 t = 2,3, . . .,T; = λt, (149)
where the second set of equalities follows from definitions 
(145). Now take the 1/r root of both sides of (149) and use 
definitions (141) in order to obtain the following equalities:

Index 2 = [λt]1/r = [Σi∈S(t) pti qti/ 
 Σi∈S(1)∩S(t) ptiqti]

1/r;97 t = 2,3, . . .,T. (150)

Again assume that product i is available in periods 1 and t 
≥ 2. Rearrange the share equations (138) and (144) for t = 1 
and product i, and we obtain the following two equations:

αi(p1i)
r = [Σn∈S(1) αn (p1n)

r] p1iq1i/[Σn∈S(1) p1nq1n];  
 t = 2,3, . . .,T; (151)

αi(p1i)
r = [Σn∈S(1)∩S(t) αn (p1n)

r] p1iq1i/ 
 [Σn∈S(1)∩S(t) p1nq1n]; t = 2,3, . . .,T. (152)

Equating (151) to (152) leads to the following equations:

Σn∈S(1)∩S(t) αn (p1n)
r/Σn∈S(1) an (p1n)

r = Σn∈S(1)∩S(t) p1nq1n/ 
 Σn∈S(1) p1nq1n; t = 2,3, . . .,T; = μt, (153)
where the last set of equalities follows from definitions (146). 
Now take the 1/r root of both sides of (153) and use defini-
tions (143) in order to obtain the following equalities:98

97 If new products become available in period t that were not available in 
period 1, then λt > 1. Recall that r = 1 – Σ and r < 0. Index 2 evaluated at 
period t prices equals (λt)1/r = (λt)1/(1–σ) and thus is an increasing function 
of s for 1 < Σ < + ∞. With λt > 1, the limit of (λt)1/(1–σ) as Σ approaches 1 
from above is 0, and the limit of (λt)1/(1-σ) as Σ approaches + ∞ is 1. Thus, 
the gains in utility from increased product variety are huge if Σ is slightly 
greater than 1 and diminish to tiny gains as Σ becomes very large. Sup-
pose that λt =1.05 and Σ = 1.01, 1.1, 1.5, 2, 3, 5, 10, and 100. Then Index 
2 will equal 0.0076, 0.614, 0.907, 0.952, 0.976, 0.988, 0.995, and 0.9995, 
respectively. Thus, the gains from increased product variety are very 
sensitive to the estimate for the elasticity of substitution. The gains are 
gigantic if Σ is close to 1.
98 If some products that were available in period 1 become unavailable 
in period t, then μt < 1. Index 3 evaluated at period 1 prices equals (μt)1/r 
= (μt)1/(1-σ) and is a decreasing function of s for 1 < Σ < + ∞. With μt < 
1, the limit of (mt)1/(1–σ) as Σ approaches 1 is + ∞, and the limit of (μt)1/

(1–σ) as Σ approaches + ∞ is 1. Thus, the losses in utility from decreased 
product variety are huge if Σ is slightly greater than 1 and diminish to 
tiny gains as Σ becomes very large. Suppose that μt =0.95 and Σ takes 
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Index 3 = [μt]1/r = [Σn∈S(1)∩S(t) p1nq1n/ 
 Σn∈S(1) p1nq1n]

1/r; t = 2,3, . . .,T. (154)

Thus, if r is known or has been estimated, then Index 2 and 
Index 3 can readily be calculated as simple ratios of sums 
of observable expenditures raised to the power 1/r. Note 
that [Σi∈S(t) ptiqti/Σi∈S(1)∩S(t) ptiqti] ≤ 1. If period t has products 
that were not available in period 1, then the strict inequal-
ity will hold, and since 1/r < 0, it can be seen that Index 2 
will be less than unity. Thus, Index 2 is a measure of how 
much the true cost of living index is reduced in period t 
due to the introduction of products that were not avail-
able in period 1. Similarly, [Σi∈S(1)∩S(t) p1iq1i/Σi∈S(1) p1iq1i] ≤ 1. 
If period 1 has products that are not available in period 
t, then the strict inequality will hold, and since 1/r < 0, it 
can be seen that Index 3 will be greater than unity, Thus, 
Index 3 is a measure of how much the true cost of living 
index has increased in period t due to the disappearance of 
products that were available in period 1 but are not avail-
able in period t.

Turning briefly to the problems associated with estimat-
ing r (and αn) when not all products are available in all peri-
ods, it can be seen that the initial estimating share equations 
(132) need to be replaced by the estimating equations (138). 
However, there are many methods that have been suggested 
in the literature to estimate r (or the elasticity of substitution 
Σ) when there are missing products; see, for example, Diewert 
and Feenstra (2017) or the extensive discussion of estimation 
issues in Chapter 5.

The Feenstra methodology is easy to implement once an 
estimate for Σ is available, and so it has been widely used 
in the macroeconomic literature. However, if the elasticity 
of substitution is low and new products outnumber disap-
pearing products, then this methodology will lead to qual-
ity-adjusted price indices that will decrease by amounts that 
are not plausible, and this point should be kept in mind.99 
The Feenstra methodology will tend to be biased for elas-
ticities of substitution that are close to one and should not be 
used in this case.100 Thus, in the next section, we will study 
a model that is similar to Feenstra’s model, but the reserva-
tion prices generated by the model are finite and a flexible 
functional form for f(q) is used in place of the CES func-
tional form.

10. Estimating Reservation Prices: 
The Case of KBF Preferences
The functional form for the aggregator function f(q) that we 
will use in this section is the KBF function form, fKBF(q) ≡ 

on the same  values as in the previous footnote. Then Index 3 will equal 
168.9, 1.670, 1.108, 1.053, 1.026, 1.013, 1.0057, and 1.00052, respectively. 
Thus, the losses are gigantic if Σ is close to 1 and negligible if Σ is very 
large.
99 Also keep in mind that the Feenstra methodology does not work at all 
if the elasticity of substitution is equal to or less than one.
100 Another feature of the Feenstra methodology is that the reservation 
prices are infinite. Typically, it does not take an infinitely high price to 
deter consumers from buying the product under consideration.

[q·Aq]1/2 defined by (17) in Section 4.101 The system of inverse 
demand functions for this functional form for our data set 
with no missing observations is given by the following sys-
tem of equations:

pt = Pt ∇q fKBF(qt) = Pt [qt·Aqt]–1/2 Aqt;  
 t = 1, . . .,T, (155)

where the N by N matrix A ≡ [ank] is symmetric (so that AT = A) 
and thus has N(N + 1)/2 unknown ank elements. As in Sec-
tion 4, we also assume that A has one positive eigenvalue 
with a corresponding strictly positive eigenvector, and the 
remaining N–1 eigenvalues are negative or zero. These con-
ditions will ensure that the aggregator function has indiffer-
ence surfaces with the correct curvature.

The period t aggregate price level is Pt, and the corre-
sponding aggregate quantity level is Qt ≡ [qt·Aqt]1/2 for t = 
1, . . .,T. Multiply the right-hand side of equation t in (155) by 
1 = Qt/[qt·Aqt]1/2 for t = 1, . . .,T, and we obtain the following 
system of estimating equations:

pt = PtQtAqt/qt·Aqt = vtAqt/qt·Aqt;  
 t = 1, . . .,T, (156)

where we have used equations (9), PtQt = pt·qt = vt for t 
= 1, . . .,T, to derive the second set of equations in (156). 
Now convert equations (156) into a set of share equations 
by taking component n in the vector pt, ptn, and multi-
plying both sides of this equation by qtn and dividing by 
vt = pt·qt. We obtain the following system of estimating 
equations:

stn = Σm=1
N qtnanmqtm/Σn=1

N Σm=1
N qtmanmqtm;  

 t = 1, . . .,T; n = 1, . . .,N. (157)

When estimating systems of consumer demand equations, 
it is common to use share equations such as equations (157) 
as the estimating equations. However, in our particular 
situation, it may be preferable to use the system of inverse 
demand functions defined by equations (156) as estimating 
equations as we shall see later.102

Now introduce missing products into the model. Let S(t) 
be the set of products n that are present in period t for t = 
1, . . .,T. If product n is missing in period t, define qtn ≡ 0 and 
stn = 0. Define qt and st as the period t vectors of quantities 
and shares, where qtn ≡ 0 and stn ≡ 0 if product n is missing in 
period t. It can be seen that equations (156) and (157) are still 
valid when there are missing products, except that instead of 
t = 1, . . .,T and n = 1, . . .,N, we have t = 1, . . .,T and n∈S(t). 

101 The analysis in this section follows that of Diewert and Feenstra 
(2017). The same theoretical framework was suggested by Diewert (1980, 
498–503), but a different flexible functional form was used to illustrate 
the methodology. The Diewert and Feenstra functional form is a better 
choice since the correct curvature conditions can be imposed on the KBF 
functional form without destroying its flexibility.
102 When there are missing prices, estimating systems of inverse demand 
functions with prices as the dependent variables is econometrically con-
venient. The advantages and disadvantages of alternative methods for 
estimating consumer preferences are discussed at some length in Section 
10 of Chapter 5.
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Thus, we use equation t,n in (157) as an estimating equation 
only if the corresponding product n is present in period t.

The N(N + 1)/2 unknown parameters anm in the symmetric 
A ≡ [anm] matrix can be determined by solving the following 
nonlinear least squares minimization problem:103

minA St=1
T Σn∈S(t) [stn – {Σm=1

N qtnanmqtm/Σi=1
N  

 Σj=1
N qtiaijqtj}]2. (158)

Note that the minimization problem defined by (158) is run 
as a single nonlinear regression rather than as a system of 
N share equations, which is the more traditional approach 
when estimating systems of consumer demand functions. 
The unusual specification is due to the fact that there are 
missing products in the T time periods, and so the tradi-
tional systems approach cannot be applied. A second point 
to note is that not all of the parameters anm can be identified: 
If anm

* solves (158), then so does λanm
* for 1 ≤ n ≤ m ≤ N for 

all λ ≠ 0. Thus, a normalization on the matrix of parameters 
is required for a unique solution to (158). A final point to 
note is that the error terms in (158) are not weighted by their 
economic importance. There is no need to do this because 
the dependent variables in (158), the shares, are already 
weighted by their economic importance, and so there is no 
need for further weighting. Put another way, each share is 
equally important (and is measured in comparable units), 
and hence it makes sense to fit the observed shares by model-
predicted shares using a least squares approach.

Once the parameters anm
* have been determined, we can 

use the price equations defined by (156) to determine the 
Hicksian reservation prices ptn

* for the missing products for t 
= 1, . . .,T and n does not belong to S(t):

ptn
* ≡ vtΣm=1

N anm
*qtm/{Σi=1

N Σj=1
N qtiaij

*qtj};  
 t = 1, . . .,T; n∈S(t). (159)

Note that the reservation prices defined by (159) will be 
finite. Using the observed prices and quantities for each 
period t along with the imputed prices ptn

*, complete price 
and quantity vectors for each period can be formed. These 
complete price and quantity vectors can be used to form 
price and quantity levels for each period using a pre-
ferred index number formula. Alternatively, the estimated 
parameters anm

* can be used to form the matrix of param-
eters, A* ≡ [anm

*]. Use the estimated A* matrix to form the 
period t quantity levels, Qt* ≡ [qt·A*qt]1/2 for t = 1, . . .,T and 
the corresponding period t price levels, Pt* ≡ vt/Qt* for t = 
1, . . .,T.

There are two problems with the preceding methodol-
ogy that need to be addressed: (i) how can we be sure that 
the estimated A matrix satisfies the eigenvalue restrictions 
listed earlier and (ii) how can we estimate the parameters of 
the A matrix when N is large?

103 Alternative estimating equations are considered in Diewert and Feen-
stra (2017), which has a worked example. Diewert and Feenstra found that 
it was preferable to use the system of estimating equations (156) rather 
than (157) since the goal of the regressions was to find the best-fitting 
system of inverse demand functions rather than to find the best-fitting 
system of share equations. More research on the econometrics associated 
with estimating reservation prices is necessary.

The number of unknown parameters in the A matrix is 
N(N + 1)/2 if there are N products in the window of obser-
vations. If N = 10, N(N + 1)/2 = 55; if N = 100, N(N + 1)/2 
= 5050. Thus, it will be impossible to estimate all of the 
parameters in the A matrix if N is large.

These two difficulties with this methodology can be 
addressed if we make use of the following reparameteriza-
tion of the A matrix. Thus, we set A equal to the following 
expression:104

A = bbT + B; b >> 0N; B = BT; B is negative  
 semidefinite; Bq* = 0N. (160)

The vector bT ≡ [b1,  .  .  .,bN] is a row vector of positive con-
stants, and so bbT is a rank one positive semidefinite N by 
N matrix. The symmetric matrix B has N(N + 1)/2 indepen-
dent elements bnk, but the N constraints Bq* = 0N reduce this 
number by N. Thus, there are N independent parameters in 
the b vector and N(N–1)/2 independent parameters in the B 
matrix so that bbT + B has the same number of independent 
parameters as the A matrix.

The reparameterization of A by bbT + B is useful in the 
present context because this reparameterization can be used 
to estimate the unknown parameters in stages. Thus, ini-
tially set B = ON×N, a matrix of 0s. The resulting aggregator 
function becomes f(q) = (qTbbTq)1/2 = (bTqbTq)1/2 = bTq, a linear 
utility function. Thus, this special case of (160) boils down to 
the linear utility function model that has been used repeat-
edly in this chapter.

The matrix B is required to be negative semidefinite. 
The procedure used by Wiley, Schmidt, and Bramble 
(1973) and Diewert and Wales (1987) can be used to impose 
negative semidefiniteness on B by setting B equal to –
CCT, where C is a lower triangular matrix.105 Write C as 
[c1,c2, . . .,cN], where ck is a column vector for k = 1, . . .,K. 
If C is lower triangular, then the first k–1 elements of ck are 
equal to 0 for k = 2,3, . . .,N. The following representation 
for B will hold:

 B = – CCT (161)
 = – Σn=1

N cncnT,

where the following restrictions on the vectors cn are imposed 
in order to impose the restrictions Bq* = 0N on B:106

 cn·q* = 0; n = 1, . . . .,N. (162)

As mentioned earlier, if N is not small, then usually it will 
not be possible to estimate all of the parameters in the C 
matrix. Furthermore, frequently nonlinear estimation is not 

104 Notation: b is regarded as a column vector and bT is its transpose, 
which is a row vector.
105 C = [cnk] is a lower triangular matrix if cnk = 0 for k > n; that is, there 
are 0s in the upper triangle. Wiley, Schmidt, and Bramble showed that 
setting B = – CCT, where C as a lower triangular matrix was sufficient to 
impose negative semidefiniteness, while Diewert and Wales showed that 
any negative semidefinite matrix could be represented in this fashion.
106 The restriction that C be upper triangular means that cN will have at 
most one nonzero element, namely cN

N. However, the positivity of q* and 
the restriction cNTq* = 0 will imply that cN = 0N. Thus, the maximal rank 
of B is N–1.
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successful if one attempts to estimate all of the parameters 
at once. Thus, it is necessary to estimate the parameters 
in the utility function f(q) = (qTAq)1/2 in stages. In the first 
stage, estimate the linear utility function f(q) = bTq.107 In the 
second stage, estimate f(q) = (qT[bbT – c1c1T]q)1/2, where c1T ≡ 
[c1

1,c2
1,  .  .  .,cN

1] and c1Tq* = 0. For starting coefficient values 
in the second nonlinear regression, use the final estimates 
for b from the first nonlinear regression, and set the start-
ing c1 ≡ 0N.108 In the third stage, estimate f(q) = (qT[bbT – 
c1c1T – c2c2T]q)1/2, where c1T ≡ [c1

1,c2
1,  .  .  .,cN

1], c1Tq* = 0, c2T ≡ 
[0,c2

2, . . .,cN
2], and c2Tq* = 0. The starting coefficient values 

are the final values from the second stage with c2 ≡ 0N. At 
each stage, the log likelihood will generally increase.109 Stop 
adding columns to the C matrix when the increase in the log 
likelihood becomes small (or the number of degrees of free-
dom becomes small). At stage k of this procedure, it turns 
out that a substitution matrix of rank k–1 is estimated to be 
the most negative semidefinite substitution matrix that the 
data will support.110 This is the same type of procedure that 
Diewert and Wales (1987, 1988) used in order to estimate 
normalized quadratic preferences, and they termed the final 
functional form a semiflexible functional form. The preced-
ing treatment of the KBF functional form also generates a 
semiflexible functional form.

This functional form for the aggregator function is more 
general than the linear utility function that has been used 
throughout this chapter, and it is conceptually more gen-
eral than the CES aggregator function that was used in the 
previous section. Moreover, the reservation prices that the 
method generates are finite. Finally, the present model can 
deal with situations where a new product has a low elasticity 
of substitution with all existing products; that is, it provides 
a more satisfactory solution to the new goods problem and 
the problem of adjusting for quality change. However, it has 
the drawback of being rather complex, and hence it may be 
resistant to large-scale applications of the method. More 
research is required in order to develop methods that are 
simpler to implement.

11. Other Approaches to Quality 
Adjustment
In this section, we will briefly review three approaches to 
quality adjustment that have not been discussed explicitly in 
the previous sections of this chapter. The three approaches 
are as follows:

• Clustering or grouping approaches
• The dominant characteristic approach
• Experimental economics approaches

107 In order to identify all of the parameters, set one component of the b 
vector to 1.
108 We also use the constraint c1Tq* = 0 to eliminate one of the cn

1 from the 
nonlinear regression.
109 If it does not increase, then the data do not support the estimation of 
a higher rank substitution matrix, and we stop adding columns to the C 
matrix. The log likelihood cannot decrease since the successive models 
are nested.
110 For a worked example of this methodology, see Diewert and Feenstra 
(2017).

11.1 Clustering or Grouping Approaches
Before explaining this approach, it will be useful to ask 
exactly should product prices (and quantities) that enter into 
a CPI be defined. Suppose that scanner data on products are 
available for time periods that correspond to the frequency 
of the CPI; that is, price and quantity data on household pur-
chases or by retailers are available to the Statistical Office. 
The period t product prices that are used in a bilateral or 
multilateral index number formula should be representative 
of household purchases of the class of products under con-
sideration. Walsh (1901, 96) and Fisher (1922, 318) suggested 
that the representative quantity should be equal to the total 
quantity of each product (in scope) that the households (in 
scope) purchased during the period, and the correspond-
ing product price should be equal to total expenditures on 
the product during the period divided by the total quantity 
purchased; that is, the corresponding price should be a unit 
value price. This formation of a unit value price for a nar-
rowly defined product is the first stage of aggregation in the 
construction of a CPI.

A second stage of aggregation might be the formation of a 
broader unit value price by aggregating transactions in the 
same product over time periods111 or over space (geographi-
cal location of households or of retail outlets).

A third stage of aggregation is to form broader unit value 
prices by aggregating over closely related products.

A fourth stage of aggregation is to use the unit value prices 
and total quantities that have been formed in the prior stages 
of aggregation for a number of product groups as inputs into 
an index number formula that constructs aggregate prices 
(and quantities or volumes) for the group of commodities 
under consideration.112

The second and third stages of aggregation listed ear-
lier may seem to be unnecessary. Since the first stage of 
aggregation leads to product prices and quantities for each 
period that can be inserted into a bilateral or multilateral 
index number formula, why should we undertake further 
unit value aggregation in stages 2 and 3 which could lead 
to considerable amounts of unit value bias?113 The reason 
for unit value aggregation of products over time, location, 
and product type is to improve the matching of product prices 
across different time periods. To give an extreme example, 
suppose we choose the length of the accounting period to be 
1 minute. In this case, as we go from 1 minute to the next, 
there will be very few or no product matches, and hence, it 
becomes impossible to construct a price index based on the 
existence of matched products! Using a broader unit value 
pricing concept will lead to more product matches across 
time and hence improve index accuracy. But the broader 
unit value may lead to more unit value bias.114

National Statistical Offices will not face much criticism 
if they aggregate the same product over time and space, 
but they may face criticism over their decisions if they use 

111 See Diewert, de Haan, and Fox (2016) on possible unit value aggrega-
tion that could result from aggregating over time.
112 For additional material on stages of aggregation, see Lamboray (2022) 
and Dalmaans (2022).
113 For materials on unit value bias, see Silver (2010), Diewert and von der 
Lippe (2010), and Diewert (2022).
114 Chessa (2021) brought this tradeoff to the attention of price statisti-
cians. He also provides an extensive discussion on grouping methods.
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unit value aggregation over products.115 Aggregation over 
products is riskier than aggregating the same product over 
time and space because in the former case, the resulting unit 
value prices and quantities are not invariant to changes in 
the units of measurement for the products. Moreover, it will 
be difficult to choose between alternative aggregations over 
products, so it will become difficult to explain to the public 
exactly how the final aggregates were determined.116

In some cases, it does make sense to broaden the scope of 
unit value aggregation. Chessa (2021) noted the importance 
of the product relaunch problem. This problem arises when 
a product that is present in a prior period is discontinued 
and replaced with a new product label (and sold usually at 
a higher price) in the present period, but it is essentially the 
same as the discontinued product. Using normal matched 
model index numbers, this increase in price would not be 
picked up. In this case, it is reasonable to treat the “new” 
product as being the same as the “old” product. The prac-
tical problem that the price statistician faces is “How can 
these more or less fake product relaunches be detected when 
there are hundreds or thousands of products in scope?”117 
The answer lies in having information on the characteristics 
of the products, but collecting information on product char-
acteristics is costly and somewhat subjective. The solution 
probably lies in using the services of market specialists who 
can detect these “fake” product relaunches.

In his empirical work, Chessa (2021, 5) found that his 
broadly aggregated unit value price indices for four classes 
of product showed a higher inflation rate than his GK and 
TPD indices using the same data. The GK and TPD indices 
are both examples of quality-adjusted unit value indices.118 
A quality-adjusted unit value index is consistent with the 
aggregate period t quantity or volume index being propor-
tional to f(qt) = α·qt ≡ Σn=1

N αnqtn, where qt ≡ [qt1,  .  .  .,qtN] is 
the period t quantity vector for the N products in scope and 
α ≡ [α1,  .  .  .,αN] is a vector of positive quality adjustment 
parameters. Here, we derive a simple relationship between 
a unit value price index and a quality-adjusted unit value 

115 This comment is consistent with the following advice: “For instance, it 
can be necessary to cluster daily data into weekly or monthly data (aggre-
gation in time), or to cluster individual stores into a chain store level. 
If  the first level of  aggregation is done on narrowly defined products, 
unit value bias should not be too much of  an issue. The risks of  product 
clustering are the highest for the second step in which price indices are 
compiled from a set of  essentially different products” (Jacco Dalmaans, 
2022, 21).
116 Chessa (2021) attempted to derive a scientific method for determining 
how to aggregate unit values over related products. His MARS measure 
of product matching is not invariant to the units of measurement, but 
more importantly, his measure of product homogeneity focuses only on 
the variance of current period prices rather than focusing on how propor-
tional the prices in the current period are relative to the corresponding 
base period prices. However, Chessa deserves credit for attempting to 
solve a very difficult problem in a systematic way.
117 Amazing progress has been made in recent years in the ability of sta-
tistical agencies to compute various bilateral and multilateral indices 
when there are hundreds or thousands of products in a product class. For 
R software that can compute many standard indices at scale, see Bialek 
(2021, 2022) and Graham White’s IndexNumR, which is available for 
download from CRAN and Github as well as the MAP software pack-
age of Stansfield and Krsinich (2022), which draws on IndexNumR. For 
information on IndexNumR, visit https://cran.r-project.org/web/pack-
ages/IndexNumR/vignettes/indexnumr.html.
118 See Section 5 for this consistency result for TPD price indices.

price index. This relationship could explain Chessa’s empiri-
cal results.

Define pt ≡ [pt1, . . .,ptN] and qt ≡ [qt1, . . .,qtN] as the period t 
price and quantity vectors for the products in scope for the 
index for t = 1, . . .,T. If a product n is not present in period 
t, define ptn ≡ 0 and qtn ≡ 0. The period t unit value price level, 
pUV

t, and the period t quality-adjusted unit value price level, 
pUVα

t, are defined as follows:

 pUV
t ≡ pt·qt/1N·qt; pUVα

t ≡ pt·qt/α·qt; t = 1, . . .,T, (163)

where 1N is a vector of ones of dimension N. The aggregate 
quantity levels that correspond to the period t price levels 
defined by (163) are defined as qUV

t ≡ 1N·qt and qUVα
t ≡ α·qt for 

t = 1, . . .,T. We normalize the quality adjustment parameters 
so that the period 1 price levels defined by (163) for t = 1 are 
equal so that pUVa

1 = pUV
1. Thus, the vector of quality adjust-

ment parameters a satisfies the following linear restriction:

 α·q1 = 1N·q1. (164)

The period t unit value price index PUV
t and the period t 

quality-adjusted unit value price index PUVα
t are defined as 

follows:

 PUV
t ≡ pUV

t/ pUV
1; PUVα

t ≡ pUVα
t/ pUVα

1;  
 t = 1, . . .,T. (165)

Using definitions (163) and (165), it can be seen that the fol-
lowing equalities hold:

PUVα
t = (pt·qt/p1·q1)(1N·q1/1N·qt)(1N·qt/1N·q1)(α·q1/α·qt)

 = PUV
t(1N·qt/1N·q1)(α·q1/α·qt) (166)

 = PUV
t(1N·qt/α·qt) using (164).

In general, if the new products entering the aggregate in 
period t are of higher quality than continuing or disap-
pearing products, then the corresponding αn for the new 
products will be higher than the average an for the continu-
ing products, and thus 1N·q1/α·qt will tend to decrease as t 
increases, which in turn implies that the unit value price 
index PUV

t will tend to be higher than the corresponding 
quality-adjusted unit value price index PUVα

t. This upward 
bias of the unit value index will tend to also apply to the cor-
responding GK and TPD price indices since these indices 
are equal to quality-adjusted unit value indices.119 On the 
other hand, if poorer quality product relaunches are preva-
lent, then the entering αn will tend to be below average, and 
thus 1N·q1/α·qt will tend to increase as t increases, which in 
turn implies that the unit value price index PUV

t will tend to 
be lower than the corresponding quality-adjusted unit value 
price index PUVα

t.

119 If the fit in the TPD or weighted TPD indices is perfect, then these indi-
ces will be exactly equal to a quality-adjusted unit value index. The GK 
indices are exactly equal to a quality-adjusted unit value index.

https://cran.r-project.org/web/packages/IndexNumR/vignettes/indexnumr.html
https://cran.r-project.org/web/packages/IndexNumR/vignettes/indexnumr.html
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11.2 Dominant Characteristic Quality 
Adjustment
This method of quality adjustment involves the use of quality-
adjusted unit values and is also related to the use of hedonic 
regressions. The method assumes that the related products 
in scope have a single dominant utility determining charac-
teristic which can be measured. For example, suppose the 
index product category is chocolate bars. The dominant util-
ity determining characteristic might be the volume or weight 
of chocolate in each bar of chocolate. Suppose that there are 
N chocolate bars in scope, product n is sold at unit value price 
ptn in period t, and the amount of chocolate in bar n is αn > 0 
for n = 1, . . .,N. As in Section 11.1, let pt ≡ [pt1, . . .,ptN] and qt ≡ 
[qt1, . . .,qtN] as the period t price and quantity vectors for the 
chocolate bars in scope for the index for t = 1, . . .,T. If a bar 
n is not present in period t, define ptn ≡ 0 and qtn ≡ 0. The next 
step is to simply assume that consumers only care about the 
amount of chocolate in each bar so that consumer utility or 
aggregate quantity of chocolate bars in period t is set equal to

 qUVα
t ≡ α·qt; t = 1, . . .,T. (167)

Now use the measurement methodology explained in Sec-
tion 2, and simply define the chocolate bar price level in 
period t, pUVα

t, as the period t expenditure on chocolate 
bars, pt·qt, divided by the period t aggregate quantity 
defined by (167):

 pUVα
t ≡ pt·qt/qUVα

t = pt·qt/α·qt; t = 1, . . .,T. (168)

Thus, the assumption of a single measurable dominant 
product characteristic leads to the period t price level for 
chocolate bars being equal to a quality-adjusted unit value.

The assumption of a single dominant characteristic of 
the product group can be modeled as a hedonic regression 
with a single characteristic. The hedonic regression model 
explained in Section 7 with only one characteristic boils 
down to the model ptn = πtan + ent for t = 1, . . .,T and n∈S(t), 
where S(t) is the set of products available in period t, πt is the 
period t price level, αn are the quality adjustment param-
eters, and etn are error terms. But in the present case, we 
know αn, so we can divide each ptn by the corresponding αn 
and obtain an estimator for πt. Thus, the hedonic regression 
model becomes the following regression model:

 ptn/αn = pt + etn; t = 1, . . .,T; n∈S(t). (169)

But the hedonic regression model defined by (169) does not 
take into account the economic importance of each chocolate 
bar to households. Thus, if we weight each quality-adjusted 
price ptn/αn by the market share amount of product n choco-
late consumed by households during period t, we obtain the 
following share-weighted estimator for the period t price level:

πt
* ≡ Σn∈S(t) (ptn/αn)[(αnqtn)/Σi∈S(t) (αiqti)];  

 t = 1, . . .,T (170)
 = Σn=1

N (ptn/αn)[(αnqtn)/Σi=1
N (αiqti)] since qtn = 0 if n∈S(t)

 = pt·qt/α·qt

 = pUVα
t.

Thus, the period t quality-adjusted price level, pUVα
t, can be 

viewed as an estimator for a very simple hedonic regression 
model.

The use of dominant characteristic quality adjustment 
is widespread. Some examples of this method of quality 
adjustment are listed here.

• Package size. Adjusting prices for the package size (or vol-
ume or weight of the product) is routinely applied by most 
Statistical Offices.120

• Generic drugs. When the patent on a new drug expires, 
usually a generic version of the drug comes on the mar-
ketplace at a lower price than the price for the branded 
product. The chemical composition of the branded and 
generic drug is the same (but the packaging can be dif-
ferent), and so rather than treating the generic drug as a 
new product, it makes sense to do a unit value aggrega-
tion in this situation where the dominant characteristic is 
the quantity of the drug.121

• Lumens. Nordhaus (1997) argued that what consumers 
valued was a measure of the amount of light that a device 
could deliver, and this assumption allowed him to make 
comparisons of the price of light over very long periods of 
time.

• Minutes communicating. Instead of following the price of 
a telecom plan, use the number of minutes spent using a 
telecommunications device (volume of calls) as the domi-
nant characteristic.122

• Bytes downloaded. Instead of following the cost of a 
monthly subscription to access the internet, use the num-
ber of bytes downloaded (a volume measure) as the domi-
nant characteristic.123

• Floor space area. In constructing price indices for rental 
properties, it is common to quality adjust the rental price 
by dividing it by the floor space of the unit.

Even though the dominant characteristic method of quality 
adjustment is widely used, Statistical Offices should be cau-
tious in using this method. In many cases where it is used, 
there will be more than one price-determining character-
istic of the product class. Thus, while it may be sensible to 
regard the amount of lumens emitted by a light bulb as a 
good indicator of quality, it may not be sensible to com-
pare a modern light bulb with a kerosene oil burning lamp 
by looking at lumens emitted. Thus, in this case, it may be 
preferable to treat kerosene lamps as a separate product. 
Similarly, using only the floor space of a rental property 
as the only price-determining characteristic ignores other 
important price-determining characteristics such as the 
location of the property, the age of the structure, and the 
area of the land plot area associated with the structure. In 
this case, since each rental property is a unique product, the 
use of a hedonic regression with multiple price-determining 

120 Usually, the per volume price of a small package is greater than the per 
volume price of a large package. This fact can be modeled by using a more 
complicated hedonic regression model; see Diewert (2003a, 328).
121 See Griliches and Cockburn (1994) for an example of this type of qual-
ity adjustment.
122 See Abdirahman et al. (2022).
123 See Byrne and Corrado (2021).
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characteristics is recommended.124 Unfortunately, any 
method of quality adjustment will have some subjective ele-
ments associated with it. National Statistical Offices will 
have to use their judgment on what is an appropriate method 
of quality adjustment to use in each specific application.

11.3 Experimental Economics Approaches 
and the Valuation of Free Products
It is particularly difficult to measure the welfare contribu-
tion of new digital services (such as Facebook) that are 
provided to households at prices that are close to zero. 
Brynjolfsson et al. (2019, 2020) (BCDEF in what follows) 
worked out a methodology for measuring the welfare effects 
of new free products using a blend of the Hicksian reserva-
tion price methodology for measuring the welfare benefits 
of new goods and services and an experimental economics 
approach involving estimating the willingness to pay for 
new products.125

Schreyer (2022) took the BCDEF approach one step 
further. He made use of a household production frame-
work that took into account the fact that households face 
not only a budget constraint but also a time constraint.126 
Thus, spending time on Facebook is not completely free: 
The household’s time constraints add an implicit cost to the 
household’s consumption of Facebook services. Schreyer’s 
analysis extended the BCDEF approach to include network 
effects. He also discussed the problems associated with 
including household production as part of GDP.

The BCDEF and Schreyer approach to the valuation of 
new free digital services requires many assumptions in order 
to generate concrete estimates of the benefits of these ser-
vices. Thus, this approach is not ready to be implemented 
by National Statistical Offices at this stage of our knowl-
edge. But the benefit estimates made by BCDEF are signifi-
cant, and thus more research on this methodology should be 
undertaken. Moreover, the analysis of Schreyer highlights 
the importance of obtaining more accurate information on 
the household allocation of time.

12. Conclusion
This chapter has taken a consumer demand perspective 
to addressing the problem of adjusting price and quantity 
indices to take into account the benefits and costs of the 
introduction of new goods and services and the disappear-
ance of existing commodities. This perspective allows all of 
the major methods that address the new and disappearing 
goods problem to be compared in a common framework.

There are three main methods that have been suggested 
in the literature to address the new goods problem: (i) 
the use of inflation-adjusted carry-forward and carry-
backward prices; (ii) hedonic regression methods; and 
(iii) the estimation of consumer preferences and Hicksian 

124 For examples of price-determining characteristics of property price 
indices, see Diewert, de Haan, and Hendriks (2015) and Diewert and Shi-
mizu (2015, 2022).
125 See also Diewert, Fox, and Schreyer (2020) for a simplified explanation 
of the BCDEF approach.
126 This is a classic paper on integrating the time constraint with the 
budget constraint is Becker (1965). For extensions of his approach, see 
Schreyer and Diewert (2014) and Diewert, Fox, and Schreyer (2018).

reservation prices using both price and quantity data. 
The first two methods will work well if the new and dis-
appearing products are highly substitutable with continu-
ing products. However, if substitution is low, then the use 
of the first two methods can lead to substantial biases in 
price and quantity indices for the class of products under 
consideration. In the low elasticity of substitution case, 
the third class of methods should be used; that is, one 
should use either the cost or expenditure function meth-
ods suggested by Hausman127 or the direct utility function 
estimation methods suggested by Diewert and Feenstra 
in Section 10. Unfortunately, these methods are not easy 
to implement. Thus, more research on these methods is 
required before statistical agencies can implement these 
methods on a large scale.

Some of the more important points made in the chapter 
are summarized here.

• Using the theoretical framework explained in Section 2 
and applying it to hedonic regressions in Section 5 (when 
price and quantity data are available) shows that the 
hedonic regression approach generates two distinct esti-
mates for the resulting price and quantity levels generated 
by the regression (unless the regression fits the data per-
fectly, in which case the two methods generate identical 
estimates). Thus, statistical agencies will have to choose 
between these two alternative index number estimates.

• The use of weights that reflect economic importance is 
recommended when running hedonic regressions; see the 
summary of the work by de Haan and Krsinich (2018) in 
Section 7.

• Weighted time dummy hedonic regression models that 
use characteristics information are recommended for 
dealing with quality adjustment problems provided that 
the products are moderately or highly substitutable; see 
Sections 6 and 7.

• Section 7 developed a test approach for evaluating the 
properties of hedonic regressions.

• Section 8 dealt with hedonic regressions in the context 
of taste change. Two useful methods for estimating price 
levels when there is considerable product churn were sug-
gested: adjacent period time product hedonic regressions 
and the hedonic imputation method. The latter method 
runs separate hedonic regressions for each period and 

127 “Ultimately, data on price and product attributes alone will not 
allow correct estimation of the compensating variation adjustment to a 
cost of living index. Quantity data are also needed so that estimates of 
the demand functions (or equivalently, the expenditure or utility func-
tions) can occur. For this reason, I disagree with the panel’s conclusion 
that hedonic methods are ‘probably the best hope’ for improving qual-
ity adjustments (Schultze and Mackie 2002, 64 and 122) since hedonic 
methods do not use quantity data to estimate consumer valuation of 
a product, and consumer demand must be the basis of a cost of living 
index” (Jerry Hausman, 2003, 37). We agree with Hausman’s criticisms 
of hedonic regression techniques to deal with the quality change problem 
except that we note that hedonic regressions can work well if the class of 
products under consideration are close substitutes for each other. Also, 
in some situations, we have no choice but to work with hedonic regres-
sions rather than estimate consumer demand systems. For example, when 
constructing property price indices, each property is a unique good, both 
over time and space. A property has a unique location and over time the 
structure on the property changes due to renovations and depreciation. 
Thus, as noted earlier, hedonic regressions with characteristics informa-
tion must be used in this situation.
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averages the results of these separate regressions to 
obtain estimated price levels. If degrees of freedom are 
ample, the hedonic imputation method is recommended.

• Hedonic regression models viewed from the Hicksian 
approach to the treatment of new products have a funda-
mental problem: The underlying economic model assumes 
that the products are perfect substitutes after the implied 
quality adjustment. This is not a problem if, in fact, the 
quality-adjusted products are close to being perfect sub-
stitutes, but it can be a problem if this is not the case.

• The CES methodology for accounting for the benefits 
of new products due to Feenstra explained in Section 9 
can work well if the elasticity of substitution between the 
products under consideration is high. If it is not high, 
the method will tend to lead to price indices that have a 
downward bias.

• The econometric method explained in Section 10 for deal-
ing with new and disappearing products in the context of 
the Hicksian reservation price methodology avoids the 
problems associated with the Feenstra methodology but at 
the cost of a great deal of econometric complexity. A robust 
simplified version of this methodology is required before it 
can be applied by statistical agencies on a routine basis.

• Section 11 reviewed three additional methods that have 
been suggested to deal with the problems of quality 
adjustment and the introduction of new goods and ser-
vices: (i) product clustering, (ii) dominant characteristic 
quality adjustment, and (iii) an experimental economics 
approach. Method (i) should be used with caution, but 
it can be justified in certain cases. Method (ii) is widely 
used, but again, this method should be used with caution 
if there is more than one important price-determining 
characteristic. Method (iii) is not yet ready for applica-
tion by National Statistical Offices, but it does suggest 
that NSOs collect more information on the household 
allocation of time.

This chapter has taken an economic approach to the prob-
lem of quality adjustment that is based on the basic model of 
household behavior explained in Section 2. This economic 
model is not without its problems, but it does lead to a uni-
fied approach to the treatment of quality change from an 
economic perspective.
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SEASONAL PRODUCTS 9
1. The Problem of Seasonal 
Products
The existence of seasonal products (goods or services) poses 
some significant challenges for price statisticians. Seasonal 
products are products or services that are either (a) not avail-
able in the marketplace during certain seasons of the year or 
(b) available throughout the year but there are regular fluc-
tuations in prices or quantities that are synchronized with 
the season or the time of the year.1 A product that satisfies 
(a) is termed a strongly seasonal product, whereas a product 
that satisfies (b) is termed a weakly seasonal product. It is 
strongly seasonal products that create the biggest problems 
for price statisticians in the context of producing a monthly 
or quarterly CPI because if a product price is available in 
only one of the two months (or quarters) being compared, 
then obviously it is not possible to calculate a relative price 
for the product, and traditional bilateral index number the-
ory breaks down. In other words, if a product is present in 
one month but not in the next, how can the month-to-month 
amount of price change for that product be computed?2 
There is no easy solution to this lack of  comparability prob-
lem. This chapter will present various attempts at finding 
solutions to this problem.

There are two main sources of seasonal fluctuations in 
prices and quantities: (a) climate and (b) custom.3 In the 
first category, fluctuations in temperature, precipitation, 
and hours of daylight cause fluctuations in the demand for 
or supply of many products; for example, think of summer 
versus winter clothing, the demand for light and heat, and 
vacations. With respect to custom and convention as a cause 
of seasonal fluctuations, consider the following quotation:

Conventional seasons have many origins—ancient 
religious observances, folk customs, fashions, busi-
ness practices, statute law. . . . Many of the conven-
tional seasons have considerable effects on economic 
behaviour. We can count on active retail buying 
before Christmas, on the Thanksgiving demand for 

1 This classification of seasonal products corresponds to Balk’s narrow 
and wide sense seasonal products; see Balk (1980a; 7) (1980b; 110) (1980c; 
68). Diewert (1998; 457) used the terms type 1 and type 2 seasonality.
2 Zarnowitz (1961; 238) was perhaps the first to note the importance of 
this problem: “But the main problem introduced by the seasonal change 
is precisely that the market basket is different in the consecutive months 
( seasons), not only in weights but presumably often also in its very com-
position by products. This is a general and complex problem which will 
have to be dealt with separately at later stages of our analysis.”
3 This classification dates back to Mitchell (1927; 236) at least: “Two types 
of seasons produce annually recurring variations in economic activity—
those which are due to climates and those which are due to conventions.”

turkeys, on the first of July demand for fireworks, on 
the preparations for June weddings, on heavy divi-
dend and interest payments at the beginning of each 
quarter, on an increase in bankruptcies in January, 
and so on.

Wesley C. Mitchell (1927; 237)

Examples of important seasonal products are many food 
items, alcoholic beverages, many clothing and footwear 
items, water, heating oil, electricity, flowers and garden 
supplies, vehicle purchases, vehicle operation, many enter-
tainment and recreation expenditures, books, insurance 
expenditures, wedding expenditures, recreational equip-
ment, and air travel and tourism expenditures. For a “typi-
cal” country, seasonal expenditures will often amount to 
one-fifth to one-third of all consumer expenditures.4

In the context of producing a monthly or quarterly CPI, 
it must be recognized that there is no completely satisfac-
tory way for dealing with strongly seasonal products. If a 
product is present in one month but missing from the mar-
ketplace in the next month, then many of the index number 
theories that were considered in earlier chapters cannot be 
applied because these theories assumed that the dimension-
ality of the product space was constant for the two periods 
being compared. However, if seasonal products are present 
in the market for certain months of the year on a regular 
basis, then traditional index number theory can be applied 
in order to construct year-over-year indices for the same 
month. This approach is discussed in Sections 2 and 3. In the 
initial sections of this chapter, it will be assumed that price 
and quantity information for the seasonal products is avail-
able. The various indices that are considered in this chapter 
will be illustrated using actual data on fresh fruit consump-
tion for Israel for the six years 2012–2017. The underlying 
data are listed in the annex along with tables using these 
data that list the various indices that are considered in the 
main text.

The methods that are suggested in Sections 2–6 of this 
chapter to deal with seasonal products assume that the statis-
tical agency is able to collect price and expenditure informa-
tion on these seasonal products by month.5 In Sections 7 and  

4 Alterman, Diewert, and Feenstra (1999; 151) found that over the 40 
months between September 1993 and December 1996, somewhere 
between 23 and 40 percent of US imports and exports exhibited seasonal 
variations in quantities, whereas only about 5 percent of US export and 
import prices exhibited seasonal fluctuations.
5 Hardly any statistical agencies have comprehensive monthly expen-
diture surveys, and so many of the methods suggested in this chapter 
are not feasible at present. However, an increasing number of agencies 
are collecting weekly scanner data from retailers, which have detailed 
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Sections 8 and 9 construct indices using only information 
on prices. Section 8 uses carry-forward prices for the miss-
ing prices, while Section 9 uses multilateral methods with 
no imputations for any missing prices. A new multilateral 
method of linking price observations based on relative price 
similarity (when quantity or expenditure information is not 
available) is suggested in Section 9.

Section 10 assumes that some expenditure or quantity 
information is available in addition to price information. 
The additional expenditure information that is assumed 
available is annual expenditure information by product for 
a base year. With this extra information (and the use of 
carry-forward prices for any missing prices), a Lowe (1823) 
or Young (1812) index can be calculated and compared to 
some of the alternative indices that were calculated in ear-
lier sections.

Section 11 returns to the problems associated with form-
ing annual indices. The annual indices studied in Sections 
4 and 5 are annual indices for calendar years. In Section 11, 
these annual indices are generalized to form Rolling Year 
annual indices; that is, the prices of 12 consecutive months 
are compared with the prices of a base period run of 12 con-
secutive months, and the price comparisons are such that 
the January prices in the current rolling year are compared 
with the January prices in the base year; the February prices 
in the current rolling year are compared with the February 
prices in the base year, and so on. It turns out that these Roll-
ing Year indices are related to measures of trend inflation.

Section 12 concludes by summarizing the more important 
results in the light of the calculations using the Israeli data 
set. Before proceeding to the technical definitions of the var-
ious indices, it is useful to discuss the notation that will be 
used and the interpretation of the variables. The following 
algebra assumes that the statistical agency has information 
on the monthly prices and quantities for the N products that 
enter the scope of the index. However, not all products will 
be present in each month. Denote the set of products n that 
are present in the marketplace during month m of year y 
as S(y,m). Data on prices and quantities are available for Y 
years and say M = 12 months.7 Denote the price of product n 
in month m of year y as py,m,n, the corresponding quantity as 
qy,m,n, and the corresponding expenditure share as

sy,m,n ≡ py,m,nqy,m,n/Σk∈S(y,m) py,m,kqy,m,k; y = 1,. . .,Y;  
 m = 1,2,. . .,M; n∈S(y,m).8 (1)

It is assumed that qy,m,n is the total quantity of product n sold 
to households in scope for the index in month m of year y, 
and py,m,n is the corresponding monthly unit value price. In 
the following four sections, various index number formulae 
will be defined using this notation. However, the resulting 
indices could refer to several situations:

7 It is possible to construct “monthly” indices that consist of 13 “months” 
that consist of four consecutive weeks. Thus, when we define various indi-
ces, we will generally assume that there are data for M “months” in the 
year. This also allows M to equal 4 for cases where quarterly price indices 
are constructed. However, for our empirical example, M = 12.
8 The summation Σk∈S(y,m) py,m,kqy,m,k means that we sum expenditures in 
month m of year y over products k that are actually present in month m of 
year y; that is, strongly seasonal products that are not present in month m 
of year y are excluded in this sum.

8, the construction of month-to-month indices using only 
price information will be considered.

The indices discussed in the various sections of this chap-
ter are different depending on the following differences that 
characterize the method used to deal with the seasonality 
problem and the availability of data:

• Price and quantity (or expenditure) data are available ver-
sus only price information is available.

• Carry-forward prices6 are used as imputations for missing 
prices versus methods that do not use imputations.

• A year-over-year index for the same month is constructed 
versus a month-to-month index. Annual indices that mea-
sure all prices in one year relative to another year provide 
another source of difference.

• A traditional fixed-base or chained bilateral Laspeyres, 
Paasche, Fisher, or Törnqvist index is constructed versus 
a multilateral index.

• The index uses monthly weights or annual weights.

With these five main sources of differences in index concept 
in mind, an overview of the various sections of this chapter 
follows.

Sections 2–7 deal with methods that make use of monthly 
price and quantity information. Section 2 constructs tradi-
tional fixed-base and chained year-over-year monthly indices 
using year-over-year carry-forward prices for any missing 
prices. Section 3 constructs year-over-year monthly indices 
using fixed-base or chained or multilateral indices without 
using imputations for missing prices and quantities. Sections 
4 and 5 consider the production of annual indices. These 
annual indices treat each monthly product as a separate 
product in a yearly index. Section 4 indices use carry-for-
ward prices for missing prices, while Section 5 indices do 
not use any imputed prices. It turns out that some of the 
Laspeyres and Paasche annual indices that use carry-for-
ward prices can be related to the year-over-year Laspeyres 
and Paasche monthly indices studied in Sections 2 and 3.

Section 6 constructs traditional month-to-month indices 
using carry-forward prices for the missing prices. Section 7 
constructs month-to-month fixed-base and chained Laspey-
res, Paasche, and Fisher indices as well as some multilateral 
indices (with no imputations for missing prices).

price and quantity information on sales by individual product, includ-
ing seasonal products. Thus, at the first stage of aggregation for these 
categories of consumer expenditures, it is possible to utilize current price 
and quantity information to construct an elementary index. In addition, 
in the future, it may become possible to collect electronic data on con-
sumer products directly from households. In general, it will be possible 
to implement the methods suggested in this chapter for at least parts of 
a country’s CPI.
6 Most statistical agencies do not use simple carry-forward prices for miss-
ing prices. Instead, they use inflation-adjusted carry-forward prices; that 
is, the price movement of a closely related product or group of products is 
used to update the last available price for a missing product. For example, 
the Eurostat 2020 regulation for computing an inflation-adjusted price 
for a missing seasonal price specifies that it should be set “equal to the 
previous month’s price adjusted by the average change in observed prices 
over all individual products in the same ECOICOP group, class, subclass 
or same aggregate at any level below the subclass”; see Article 2 (25) (b) 
in the European Commission (2020; 15). See Diewert, Fox, and Schreyer 
(2018) for examples of how this method for price imputation works in the 
context of particular index number formulae. Due to the large number of 
ways inflation-adjusted carry-forward prices could be calculated, we will 
just discuss carry-forward prices in this chapter.
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• N is the total number of separate items that are to be 
distinguished in the overall CPI; that is, the underlying 
assumption here is that we have complete price and quan-
tity information on the universe of expenditures for the 
reference population.

• N refers to the number of items in one particular stratum 
of the overall CPI. Standard index number theory is also 
applicable in this situation.

• The various methodologies to deal with seasonal prod-
ucts could be applied at higher levels of aggregation. 
Data on expenditures by category could be available 
along with elementary price indices for the categories in 
scope. Implicit quantities (or volumes) by category could 
be constructed by deflating the expenditure categories by 
the respective elementary price indices. These deflated 
expenditures are treated as the quantities qy,m,n, and the 
corresponding elementary price indices py,m,n are treated 
as the corresponding prices.

Obviously, application of the first interpretation of the indi-
ces is unrealistic; the statistical agency will typically not 
have access to true microeconomic data at the finest level of 
aggregation. However, application of the second interpreta-
tion of the indices is quite possible; the existence of scan-
ner data sets has led to the possibility of computing say true 
Fisher indices for some strata of the CPI.9

2. Year-over-Year Monthly Indices 
Using Carry-Forward Prices
For over a century,10 it has been recognized that making 
year-over-year comparisons11 of prices in the same month 
provides the simplest method for making comparisons that 
are (mostly) free from the contaminating effects of sea-
sonal fluctuations. For example, the economist Flux and 
the statistician Yule endorsed the idea of making year-
over-year comparisons to minimize the effects of seasonal 
fluctuations:

Each month the average price change compared with 
the corresponding month of the previous year is to 
be computed. .  .  . The determination of the proper 
seasonal variations of weights, especially in view of 
the liability of seasons to vary from year to year, is 
a task from which, I imagine, most of us would be 
tempted to recoil.

A. W. Flux (1921; 184–185)

9 See Ivancic, Diewert, and Fox (2011), de Haan and van der Grient (2011), 
and the Australian Bureau of Statistics (2016) for early applications of 
this type.
10 “In the daily market reports, and other statistical publications, we 
continually find comparisons between numbers referring to the week, 
month, or other parts of the year, and those for the corresponding parts 
of a previous year. The comparison is given in this way in order to avoid 
any variation due to the time of the year. And it is obvious to everyone 
that this precaution is necessary. Every branch of industry and commerce 
must be affected more or less by the revolution of the seasons, and we 
must allow for what is due to this cause before we can learn what is due to 
other causes” (W. Stanley Jevons (1884; 3)).
11 In the seasonal price index literature, this type of index corresponds to 
Bean and Stine’s (1924; 31) Type D index.

My own inclination would be to form the index 
number for any month by taking ratios to the cor-
responding month of  the year being used for ref-
erence, the year before presumably, as this would 
avoid any difficulties with seasonal products. I 
should then form the annual average by the geomet-
ric mean of  the monthly figures.

G. Udny Yule (1921; 199)

Zarnowitz also endorsed the use of year-over-year monthly 
indices:

There is of course no difficulty in measuring the av-
erage price change between the same months of suc-
cessive years, if  a month is our unit season, and if  
a constant seasonal market basket can be used, for 
traditional methods of price index construction can 
be applied in such comparisons.

Victor Zarnowitz (1961; 266)

However, using year-over-year monthly indices does not 
completely solve the seasonality problem. Diewert, Finkel, 
and Artsev found that strongly seasonal fresh fruits in Israel 
did not always appear in the same months:12

Seasonal fluctuations are not completely synchro-
nized with the calendar months for products with 
strong seasonality. Thus a product may appear/dis-
appear a month before/later than in the previous 
year.

W. Erwin Diewert, Yoel Finkel, and  
Yevgeny Artsev (2011; 63)

In this section, we will deal with the possibility that the 
strongly seasonal products do not always appear in the 
same month of each year by using carry-forward prices 
from the previous year (for the same month)13 for any miss-
ing prices. The corresponding missing quantities are set to 
0. With these conventions, the set of available products for 
month m in year y, S(y,m), is defined to include any tem-
porarily missing products so that for any month m, the set 
of available products for month m in year y will always be 
the same. Thus, the set of “available” products for month m 
in year y, S(y,m), will be constant over the years y.14 Thus, 
we can denote the common set of “available” products for 
month m in any year y as S(m). With this new notation that 
accommodates the carry-forward prices for missing prod-
ucts in a given month, the fixed-base Laspeyres, Paasche,  

12 A similar lack of matching problem can occur if national holidays do 
not always appear in the same month of the year.
13 If the missing product is missing in the previous year (for the same 
month), go backward in time to the last year (for the same month) when 
the product was present. If the product was not present (for the same 
month) in any previous year, go to the year when the product first appears 
in the month under consideration and use this price as a carry-backward 
price for the years that the product was missing.
14 Thus for this section where we use year-over-year carry-forward (or 
carry-backward) prices for any strongly seasonal products that happen to 
be missing in one or more years, the set of “available” products in month 
m for any year in our sample is the set of products that appeared in at least 
one month m over all month m’s in the sample of years.
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Fisher, and Törnqvist–Theil indices15 for month m in year y 
are defined as follows:

PLFB
y,m ≡ Σn∈S(m) (py,m,n/p1,m,n)s1,m,n; 

 m = 1,. . .,M; y = 1,. . .,Y; (2)
PPFB

y,m ≡ [Σn∈S(m) (py,m,n/p1,m,n)
–1sy,m,n]

–1;  
 m = 1,. . .,M; y = 1,. . .,Y; (3)

PFFB
y,m ≡ [PLFB

y,m PPFB
y,m]1/2; m = 1,. . .,M;  

 y = 1,. . .,Y; (4)
PTFB

y,m ≡ exp[Σn∈S(m) (½)(s1,m,n + sy,m,n)ln(py,m,n/p1,m,n)];  
 m = 1,. . .,M; y = 1,. . .,Y. (5)

The expenditure shares, sy,m,n, that appear in definitions (2)–
(5) are defined by (1).

The chained versions of these four indices are defined in 
two stages. For the first stage, define the chain link for each 
of the aforementioned indices going from month m in year 
y–1 to month m in year y as follows:

PLLINK
y,m ≡ Σn∈S(m) (py,m,n/py–1,m,n)sy–1,m,n;  

 m = 1,. . .,M; y = 2,. . .,Y; (6)
PPLINK

y,m ≡ [Σn∈S(m) (py,m,n/py–1,m,n)
–1sy,m,n]

–1;  
 m = 1,. . .,M; y = 2,. . .,Y; (7)

PFLINK
y,m ≡ [PLLINK

y,m PPLINK
y,m]1/2;  

 m = 1,. . .,M; y = 2,. . .,Y; (8)
PTLINK

y,m ≡ exp[Σn∈S(m) (½)(sy–1,m,n + sy,m,n)ln(py,m,n/py–1,m,n)];  
 m = 1,. . .,M; y = 2,. . .,Y. (9)

Define the chained Laspeyres, Paasche, Fisher, and Törn-
qvist–Theil indices for month m in year 1 as unity:

PLCH
1,m ≡ 1; PPCH

1,m ≡ 1; PFCH
1,m ≡ 1; PTCH

1,m ≡ 1; 
 m = 1,. . .,M. (10)

For years following year 1, these indices are defined by 
cumulating the corresponding chain links; that is, we have 
the following definitions:

PLCH
y,m ≡ PLCH

y–1,m PLLINK
y,m; m = 1,. . .,M;  

 y = 2,. . .,Y; (11)
PPCH

y,m ≡ PPCH
y–1,m PPLINK

y,m; m = 1,. . .,M;  
 y = 2,. . .,Y; (12)

PFCH
y,m ≡ PFCH

y–1,m PFLINK
y,m; m = 1,. . .,M;  

 y = 2,. . .,Y; (13)
PTCH

y,m ≡ PTCH
y–1,m PTLINK

y,m; m = 1,. . .,M;  
 y = 2,. . .,Y. (14)

15 See Laspeyres (1871), Paasche (1874), Fisher (1922), Törnqvist (1936), 
Törnqvist and Törnqvist (1937), and Theil (1967).

For each month m, there are eight commonly used indices to 
choose from. From the viewpoint of the economic approach 
to index number theory, the two Laspeyres indices are 
subject to some upward substitution bias relative to a cost 
of living index, while the two Paasche indices are subject 
to some downward substitution bias. If there are smooth 
trends in prices and quantities, these substitution biases will 
be lower in magnitude if chained indices are used in place 
of their fixed-base counterparts; the opposite will be true 
if there is price bouncing behavior16—that is, if prices and 
quantities fluctuate erratically over time. Harvests of fresh 
fruits vary considerably for the same month of the year on 
a year-over-year basis, which leads to considerable fluctua-
tions in prices and hence to price bouncing behavior. Thus, 
for our empirical example, we found that the year-over-year 
monthly Laspeyres fixed-base indices exhibited a consider-
able amount of upward substitution bias, and the chained 
Laspeyres indices exhibited even more upward bias. On the 
other hand, the year-over-year monthly Paasche fixed-base 
indices exhibited a considerable amount of downward sub-
stitution bias, and the chained Paasche indices exhibited 
even more downward bias. Thus, from the viewpoint of the 
economic approach to index number theory, the use of the 
Laspeyres and Paasche formulae is not recommended in the 
context of forming year-over-year monthly indices.

From the viewpoint of the economic approach to index 
number theory, the bilateral Fisher and Törnqvist–Theil 
indices have equally good properties; they are examples of 
superlative index number formulae and can deal adequately 
with substitution bias.17 Moreover, they approximate each 
other numerically to the second order around any point 
that has equal price and quantity vectors in the two peri-
ods being compared.18 Finally, the Fisher index has excel-
lent properties from the viewpoint of the test approach to 
index number theory,19 and the Törnqvist–Theil index has 
excellent properties from the viewpoint of the stochastic 
approach to index number theory.20 Thus, these two indi-
ces have very desirable properties from the perspective of 
a variety of approaches to index number theory. For the 
year-over-year monthly indices listed in the annex, the fixed-
base Fisher and Törnqvist–Theil indices approximated each 
other quite well for our empirical example.

From the viewpoint of the test approach to index number 
theory, the two fixed-base superlative indices have an advan-
tage over their chained counterparts. They satisfy the fol-
lowing multiperiod identity test: If prices and quantities are 
the same in any two periods, the two fixed-base indices will 
register the same price level for these two periods. The two 
chained superlative indices do not satisfy this identity test if 
there are four or more periods in the set of comparisons.21

16 This term was used by Szulc (1983) (1987) who also demonstrated 
empirically the chain drift problem for the Laspeyres index when prices 
bounce.
17 See Diewert (1976), who defined a superlative index number formula as 
one which was consistent with a wide variety of consumer substitution 
responses to changes in relative prices.
18 See Diewert (1978).
19 See Diewert (1992).
20 See Theil (1967).
21 The corresponding strong identity test is as follows: If prices are the 
same in any two periods, the multilateral index will register the same 
price level for these two periods. For materials on the test approach to 
multilateral index number theory, see Diewert (1988) (1999b) (2021b), 
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These considerations suggest that the two fixed-base 
superlative indices are preferred indices in the previous 
menu of eight possible indices. However, there are two prob-
lems with the use of a fixed-base index:

• The prices and quantities of the base period may not 
be representative of prices and quantities in subsequent 
periods.

• New products may appear, and products present in the 
base period may disappear in subsequent periods, mak-
ing comparisons between distant periods difficult.

The second set of difficulties could be regarded as a special 
case of the first set of difficulties. In the context of our fresh 
fruit empirical example, the problem of new and disappear-
ing products is not present. However, fluctuations in harvests 
certainly occurred, and so there is the danger that the base 
period may not represent “typical” conditions, and thus the 
choice of a different base period could lead to very different 
indices. Indeed, for our empirical example, different choices 
of the base period do lead to very different indices.

In order to deal with the aforementioned first difficulty, 
we will turn to the use of multilateral indices. Fisher was 
the first index number theorist to suggest a solution to the 
problem of fixed-base price indices defined over three or 
more periods being dependent on the choice of the base 
period. He suggested taking the arithmetic average of the 
T fixed-base Fisher indices that used each observation as 
the base period, if there are T periods in the comparison.22 
The resulting index is independent of the choice of a base 
period, or put differently, it treats all possible choices of a 
base period in a symmetric manner.23

Gini (1924) (1931) soon picked up on Fisher’s idea and 
applied it to calculating relative price levels for several Ital-
ian cities, but instead of taking an arithmetic average of the 
city-specific fixed-base Fisher indices, he suggested taking 
the geometric average of the individual fixed-base Fisher 
indices. Eltetö and Köves (1964) and Szulc (1964) showed 
how Gini’s multilateral index could be derived as a solution 
to a least squares minimization problem, and so the index is 
now referred to as the GEKS index. It should be noted that 
Balk (1980a) (1980b) (1980c) (1981) was a pioneer in apply-
ing multilateral indices to seasonal data. However, he did 
not use the GEKS index in his empirical examples. Ivan-
cic, Diewert, and Fox (2011) suggested the use of the GEKS 
index in the time series context.

Balk (1996) (2008), Zhang, Johansen and Nygaard (2019), and Diewert 
and Fox (2021).
22 “There remains the practical question: if we are not going to use all 
six, what single curve is the best one to use in their place, for the general 
purpose of all comparisons over a series of years? Doubtless the very best 
as to accuracy, were it practicable, is the blend or average of all six. . . . 
This is a compromise single series of six figures that can be substituted for 
the whole table of figures, for the purpose of blending all separate exact 
comparisons into one general nearly exact comparison” (Irving Fisher 
(1922; 304–305)). Fisher’s T was equal to six.
23 However, there are two disadvantages to this multilateral approach to 
index number theory: (i) As new data become available, the multilateral 
indices have to be recomputed and the prior indices that applied to peri-
ods 1 to T are in general changed and (ii) not all bilateral comparisons 
between any two periods in the window of T observations are equally 
“good.” These difficulties with the above multilateral methods can be 
overcome by using similarity linking which will be described later.

We now set up the notation that is required to describe 
how to calculate the year-over-year monthly GEKS indices. 
Recall that the Laspeyres and Paasche indices for month m 
in year y relative to year 1 were defined by definitions (2) 
and (3). In order to formally define the sequence of GEKS 
indices for each month, we need to define the Laspeyres and 
Paasche indices for month m in year y using month m in year 
z (instead of month m in year 1) as the base. These more 
general indices, PL

m(y/z) and PP
m(y/z), are defined as follows:

PL
m(y/z) ≡ Σn∈S(m) py,m,nqz,m,n/Σn∈S(m) pz,m,nqz,m,n; 

 m = 1,. . .,M; y = 1,. . .,Y; z = 1,. . .,Z; (15)
PP

m(y/z) ≡ Σn∈S(m) py,m,nqy,m,n/Σn∈S(m) pz,m,nqy,m,n; 
 m = 1,. . .,M; y = 1,. . .,Y; z = 1,. . .,Z. (16)

Thus, for each month m, PL
m(y/z) compares the prices of 

available products in month m of year y in the numera-
tor using the corresponding available products in month 
m of year z as weights to the prices of available products 
in month m of year z in the denominator using the cor-
responding available products in month m of year z as 
weights. For each month m, PP

m(y/z) compares the prices 
of available products in month m of year y in the numera-
tor using the corresponding available products in month 
m of year y as weights to the prices of available products 
in month m of year z in the denominator again using the 
corresponding available products in month m of year y 
as weights. The corresponding Fisher index for month m 
in year y using month m in year z as the base, PF

m(y/z), is 
defined as the geometric mean of Laspeyres and Paasche 
indices for month m in year y using month m in year z as 
the base period:

PF
m(y/z) ≡ [PL

m(y/z)PP
m(y/z)]1/2; 

 m = 1,. . .,M; y = 1,. . .,Y; z = 1,. . .,Z. (17)

The Fisher fixed-base index for month m defined by (4) 
chose month m in year 1 as the base period and formed the 
following sequence of year-over-year price levels relative 
to year 1: PF

m(1/1) = 1, PF
m(2/1), PF

m(3/1), . . ., PF
m(Y/1). But 

one could also use month m in year 2 as the base period 
and the following sequence of price levels to measure year-
over-year inflation for each month m: PF

m(1/2), PF
m(2/2) = 

1, PF
m(3/2), . . ., PF

m(Y/2). Month m in each of Y years could 
be chosen as the base period, and thus we end up with 
Y alternative series of Fisher price levels for each month. 
Since each of these sequences of price levels is equally 
plausible, the GEKS price levels, pGEKS

y,m, for each month 
m for years y = 1,2,. . .,Y are defined as the geometric mean 
of the separate indices we obtain by using each year as the 
base year:

pGEKS
y,m ≡ [∏z=1

Y PF
m(y/z)]1/Y; m = 1,. . .,M;  

 y = 1,. . .,Y. (18)

Note that all time periods are treated in a symmetric man-
ner in these definitions. The GEKS price indices PGEKS

y,m are 
obtained by normalizing these price levels so that the period 
1 index is equal to 1 for each month. Thus, we have the 
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following definitions for the month m year-over-year GEKS 
index for year y, PGEKS

y,m:

PGEKS
y,m ≡ pGEKS

y,m/pGEKS
1,m; m = 1,. . .,M;  

 y = 1,. . .,Y. (19)

If prices and quantities are the same in any two periods, 
then the resulting GEKS indices will be identical for those 
two periods, which is a desirable property.

There is a problem associated with the use of the GEKS 
index in a time series context: When an additional month 
of data becomes available, the GEKS indices need to be 
recomputed, and the existing historical pattern of price lev-
els will change in general. This poses problems for nonre-
visable indices like a CPI. A solution to this problem was 
proposed by Ivancic, Diewert, and Fox (2009) (2011). Their 
method added the price and quantity data for the most 
recent time period to a window of consecutive time periods, 
and they also dropped the price and quantity data for the 
oldest period from the previous window of observations in 
order to obtain a new window. The GEKS indices for the 
new window of observations were calculated in the usual 
way, and the ratio of the index value for the last month in 
the new window to the index value for the previous month 
in the new window was used as an update factor for the value 
of the index for the last period in the existing index. The 
resulting indices are called Rolling Window GEKS indices. 
Unfortunately, the resulting indices no longer satisfy the 
multiperiod identity test, and so they are not entirely free 
of chain drift. However, empirical studies have shown that 
the method does not generate a substantial amount of chain 
drift. There is also a problem associated with exactly how 
we should link the latest data in the rolling window to the 
previously calculated indices. Krsinich (2016; 383) called 
the aforementioned method for linking the new window to 
the previous window the movement splice method. Krsinich 
(2016; 383) also suggested that a better choice to link the 
results of the new window to the previous window is to link 
the new observation to the index value in the second time 
period in the previous window of observations. She called 
this the window splice method. Let T be the length of the 
window. De Haan (2015; 26) suggested that the link period 
t should be chosen to be in the middle of the first window 
time span; that is, choose t = T/2 if T is an even integer or 
t = (T + 1)/2 if T is an odd integer. The Australian Bureau 
of Statistics (2016; 12) called this the half splice method for 
linking the results of the two windows. Diewert and Fox 
(2021) suggested linking the last observation in the cur-
rent window to all possible choices of periods that overlap 
in the two windows and taking the geometric mean of the 
resulting estimates for the price level in the final period of 
the current window. They termed this the mean splice, and 
they recommended it as perhaps being best since the result 
of choosing each of the possible linking periods is equally 
valid.24

24 This method for linking the two windows was also suggested by Ivan-
cic, Diewert, and Fox (2011; 33) in a footnote. Later in this chapter when 

For our empirical example, we simply implemented the 
GEKS method using the entire six years of data for each 
month; that is, we did not calculate rolling window GEKS 
indices. Thus, these estimated year-over-year GEKS indices 
listed in Table A.21 for each month are not practical real-
time indices, but they are of interest so that the effects of 
changing the base year can be studied. We will discuss how 
PGEKS

y,m defined by (19) performed using our Israeli data set 
on strongly seasonal fresh fruits after we have defined some 
alternative multilateral indices.

The GEKS multilateral method treats each set of price 
indices using the prices of one period as the base period as 
being equally valid, and hence an averaging of the result-
ing parities seems to be appropriate under this hypothesis. 
Thus, the method is “democratic” in that each bilateral 
index number comparison between any two periods gets 
the same weight in the overall method. However, it is not 
the case that all bilateral comparisons of price between two 
periods are equally accurate: If the relative prices in peri-
ods r and t are very similar, then the Laspeyres and Paas-
che price indices will be very close to each other, and hence 
it is likely that the “true” price comparison between these 
two periods will be very close to the bilateral Fisher index 
between these two periods. In particular, if the two price 
vectors are exactly proportional, then we want the price 
index between these two periods to be equal to the factor of 
proportionality, and the direct Fisher index between these 
two periods satisfies this proportionality test. On the other 
hand, the GEKS index comparison between the two periods 
would not in general satisfy this proportionality test.25 Fur-
thermore if prices are identical between two periods but the 
quantity vectors are different, then the GEKS price index 
between the two periods would not equal unity in general.26

Linking observations that have the most similar structure 
of relative prices addresses these difficulties with the GEKS 
method. Hill (1997) (1999a) (1999b) (2009) and Diewert 
(2009) developed this multilateral similarity linking method 
in the context of making cross-country comparisons. In the 
time series context, this linking of observations with the 
most similar price structures was pioneered by Hill (2001) 
(2004).

A key aspect of this methodology is the choice of the 
measure of similarity (or dissimilarity) of the relative price 
structures of two observations. various measures of the 
similarity or dissimilarity of relative price structures have 
been proposed by Allen and Diewert (1981), Kravis, Hes-
ton, and Summers (1982; 104–106), Hill (1997) (2009), Aten 
and Heston (2009), and Diewert (2009). However, Hill and 

we study similarity linking, we will see that all links are not necessarily 
equally good.
25 If both prices and quantities are proportional to each other for the two 
periods being compared, then the GEKS price index between the two 
periods will satisfy this (weak) proportionality test. However, we would 
like the GEKS price index between the two periods to satisfy the strong 
proportionality test; that is, if the two price vectors are proportional (and 
the two quantity vectors are not necessarily proportional to each other), 
then we would like the GEKS price index between the two periods to 
equal the factor of proportionality.
26 See Zhang, Johansen, and Nygaard (2019; 689) for details on this point.
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Timmer (2006) pointed out a problem with these measures 
of relative price dissimilarity: They do not take into account 
the lack of matching problem; that is, these measures fail to 
recognize that bilateral comparisons of prices made over a 
smaller number of products are not as reliable as compari-
sons made over a larger number of matched products.27 This 
lack of matching problem is a big one in the context of con-
structing index numbers for a product category where many 
or most products are only available in some months of the 
year. In our empirical example, only about 60 percent of the 
seasonal products are available in a typical month.

For our empirical example, we will use the predicted share 
measure of relative price dissimilarity. In situations where 
carry-forward prices are not used, this method penalizes a 
lack of price matching between two observations.28 In order 
to define this measure, it is useful to introduce some nota-
tion for the vectors of prices and quantities for month m in 
year y, py,m and qy,m. If product n in month m of year y is pres-
ent, then define the price and quantity of that product to be 
py,m,n and qy,m,n, as usual. If product n in month m of year y 
is not present, then define the quantity of that product to 
be 0 so that qy,m,n ≡ 0 and define py,m,n to be the year-over-
year carry-forward (or carry-backward) price. With these 
additional variables defined, the N dimensional price and 
quantity vectors for month m in year y are well defined as 
py,m ≡ [py,m,1,py,m,2,. . .,py,m,N] and qy,m º [qy,m,1,qy,m,2,. . .,qy,m,N] for 
y = 1,. . .,Y and m = 1,. . .,M. With this new notation, prices 
and quantities are well defined for all N products for each 
year and month. Thus, the expenditure share for product n 
in month m and year y, sy,m,n, can now be defined for all N 
products as

sy,m,n ≡ py,m,nqy,m,n/p
y,m·qy,m; y = 1,. . .,Y;  

 m = 1,2,. . .,M; n = 1,2,. . .,N, (20)

where py,m·qy,m ≡ Σn=1
N py,m,n qy,m,n is the inner product of the 

vectors py,m and qy,m. Note that even though these expendi-
ture shares use imputed prices for missing products, they 
are equal to the actual expenditure shares for all products.

Now think of using the prices of month m in year z and the 
quantities of month m in year y to predict the actual month 
m, year y, product n expenditure share sy,m,n defined by (20) 
for n = 1,. . .,N. Denote this predicted share by sz,y,m,n, which 
is defined as follows:

27 “Although these measures perform well when there are few gaps in the 
data, they can generate highly misleading results when there are many 
gaps. This is because they fail to penalize bilateral comparisons made 
over a small number of matched headings” (Robert Hill and Marcel Tim-
mer (2006; 366)). Hill and Timmer go on and propose a measure of relative 
price dissimilarity that penalizes a lack of price matching. Their measure 
is based on econometric considerations. The measure that we use also 
penalizes a lack of price matching but it has a different motivation.
28 In this section where year-over-year carry-forward prices are used, all 
prices are matched, so there is no penalty for a lack of matching. How-
ever, in the next section, we will not use any form of imputed price so 
the predicted share measure of price dissimilarity will penalize a lack of 
matching.

sz,y,m,n ≡ pz,m,nqy,m,n/p
z,m·qy,m; y = 1,. . .,Y;  

 z = 1,. . .,Z; m = 1,2,. . .,M; n = 1,2,. . .,N. (21)

If the prices in month m of year y are proportional to the 
prices of month m in year z so that pz,m = λpy,m, where λ is a 
positive number, then it can verified that the predicted shares 
defined by (21) will be equal to the actual expenditure shares 
defined by (20) for month m in year y; that is, for the two 
months defined by y,m, and z,m, we will have sy,m,n = sz,y,m,n for 
n = 1,. . .,N. The following predicted share measure of relative 
price dissimilarity between the prices of month m in year y 
and the prices of month m in year z, ΔPS(pz,m,py,m,qz,m,qy,m), is 
well defined even if some product prices and shares in the 
two months being compared are equal to zero:

ΔPS(pz,m,py,m,qz,m,qy,m) ≡ Σn=1
N [sy.m,n – sz,y,m,n]

2  
 + Σn=1

N [sz.m,n – sy,z,m,n]
2

= Σn=1
N [(py,m,nqy,m,n/p

y,m·qy,m) – (pz,m,nqy,m,n/p
z,m·qy,m)]2

  + Σn=1
N [(pz,m,nqz,m,n/p

z,m·qz,m) – (py,m,nqz,m,n/p
y,m·qz,m)]2. (22)

In general, ΔPS(pr,pt,qr,qt) takes on values between 0 and 
2. If ΔPS(pr,pt,qr,qt) = 0, then it must be the case that rela-
tive prices are the same in month m of years z and y; that 
is, we have pz,m = λpy,m for some λ > 0. A bigger value of 
ΔPS(pr,pt,qr,qt) generally indicates bigger deviations from 
price proportionality.

To see how this predicted share measure of relative price 
dissimilarity turned out for our Israeli data on 14 classes 
of fresh fruits for the month of January, see Table 9.1. The 
month m is equal to 1 (January). The years y and z range 
from 1 to 6. Fruits 1, 2, 4, 5, 6, 12, and 13 were always avail-
able in January for each of the six years in our sample; the 
other seven fruits were always missing in January. Thus, 
there are no carry-forward imputed prices that are used for 
the January data. For a listing of the nonzero price py,1,n and 
quantity qy,1,n data for January 2012–2017 (years 1–6), see 
Table A.1 in the annex.

The matrix of predicted share measures of relative price 
dissimilarity for the month of January for all pairs of years 
in our sample is nonnegative, symmetric, and has zeros 
down its main diagonal. The measure of relative price dis-
similarity between years 1 and 2 is 0.00306; between years 1 
and 3 is .00632; and so on.

This matrix is used to construct PS
y,1, the similarity-linked 

price index for January. The real-time version of this index 
is constructed as follows. Set PS

1,1 ≡ 1. The year-over-year 
index for January in year 2 is set equal to the bilateral Fisher 
index PF

m(y/z), where m = 1, y = 2, and z = 1 (see defini-
tion (17)). Using our new vector notation, this Fisher index 
is equal to [p2,1×q1,1 p2,1·q2,1/p1,1·q1,1 p1,1·q2,1]1/2. Thus, the year 2 
similarity-linked index for January is PS

2,1 ≡ PF
1(2/1). Now 

look down the y = 3 column in Table 9.1. We need to link 
year 3 to either year 1 or year 2. The dissimilarity measures 
for these two years are 0.00632 and 0.00082, respectively. 
The degree of relative price dissimilarity is far smaller for 
the link to year 2 than it is to year 1 (year 3 January prices 
are much closer to being proportional to year 2 prices than  
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to year 1 prices), so we use the Fisher link from period 2 
to period 3, PF

1(3/2). Thus, the final year 3 similarity-linked 
index for January is PS

3,1 ≡ PS
2,1 × PF

1(3/2). Now we need to 
link year 4 to either year 1, 2, or 3. Look down the y = 4 
column in Table 9.1 to find the lowest dissimilarity measure 
above the main diagonal of the matrix. The smallest of the 
three numbers 0.00062, 0.00429, and 0.00696 is 0.00062. 
Thus, we link the year 4 January data to the year 1 Janu-
ary data using the Fisher January link from year 1 to year 
4, PF

1(4/1), and the year 4 similarity-linked final index value 
is PS

4,1 ≡ PS
1,1× PF

1(4/1) = PF
1(4/1). Thus, for each year, as the 

new January data become available, we use the Fisher bilat-
eral index that links the new period to the previous period that 
has the lowest measure of relative price dissimilarity. The final 
two bilateral links are year 5 to year 2 and year 6 to year 2. 
The resulting year 5 and 6 similarity-linked index values are 
PS

5,1 ≡ PS
2,1× PF

1(5/2) and PS
6,1 ≡ PS

2,1× PF
1(6/2). The optimal 

set of bilateral links for the January year-over-year real-time 
similarity-linked indices can be summarized as follows:

  5
  |
1 – 2 – 3
|  |
4 6

Using our empirical data set, we calculated the 10 year-
over-year alternative indices for January that are defined 
earlier. These indices are the fixed-base Laspeyres, Paas-
che, Fisher, and Törnqvist–Theil indices, PLFB

y,1, PPFB
y,1, 

PFFB
y,1, and PTFB

y,1, the corresponding chained indices, 
PLCH

y,1, PPCH
y,1, PFCH

y,1, and PTCH
y,1, the GEKS index, PGEKS

y,1, 
and the predicted share similarity-linked index, PS

y,1. The 
year superscript y takes on the values 1–6. These indices are 
listed in Table 9.2.

Looking at Table 9.2, it can be seen that the fixed-base 
Laspeyres indices exceed the fixed-base Paasche indices by 
about 0.27 percentage points on average. The gap between 

the chained Laspeyres indices and the chained Paasche 
indices is much larger at 1.92 percentage points. These gaps 
indicate that the Laspeyres and Paasche indices suffer from 
some upward or downward substitution bias. The larger 
gap for the chained indices also indicates that the chained 
Laspeyres and Paasche indices are subject to a consider-
able amount of chain drift. The remaining six indices are all 
close to each other on average.

Our year-over-year data on January fresh fruit consump-
tion for Israel for the six years in our sample did not have any 
missing products that changed from year to year; fruits 1, 2, 
4, 5, 6, 12, and 13 were always available in January for each 
of the six years in our sample; the other seven fruits were 
always missing in January. Thus, no imputed prices were 
used for the January data. However, imputed carry-forward 
(or carry-backward) prices were used for other months.

For example, for our particular data set, the month 
of May has eight missing prices, which were imputed by 
six carry-forward prices and two carry-backward prices. 
Products 1, 2, 3, 5, 6, 7, and 10 were always present in May. 
Products 4, 11, 12, and 14 were always missing in May. The 
remaining products 8, 9, and 13 were sometimes present and 
sometimes absent in May. Thus, carry-forward or carry-
backward prices were used to impute the missing prices for 
products 8, 9, and 13. The data for May are listed in Tables 
A.7 and A.8 in the annex. The eight imputed prices are listed 
in these tables using italics. To see how the predicted share 
measure of relative price dissimilarity defined by (22) turned 
out for our Israeli data for the month of May, see Table 9.3. 
The month m is equal to 5 (May). As usual, the years y and 
z range from 1 to 6.

The real-time set of bilateral links that minimize the 
predicted share measure of relative price dissimilarity for 
the May data for the current year with the May data for a 
prior year are as follows: link 2 to 1; 3 to 1; 4 to 3; 5 to 3; 
and 6 to 4. The optimal set of links can be summarized as 
follows:

Table 9.1 Predicted Share Measures of Price Dissimilarity for January for Years 1–6
m = 1 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

z = 1 0.00000 0.00306 0.00632 0.00062 0.00810 0.00363
z = 2 0.00306 0.00000 0.00082 0.00429 0.00325 0.00119
z = 3 0.00632 0.00082 0.00000 0.00696 0.00375 0.00233
z = 4 0.00062 0.00429 0.00696 0.00000 0.01019 0.00421
z = 5 0.00810 0.00325 0.00375 0.01019 0.00000 0.00171
z = 6 0.00363 0.00119 0.00233 0.00421 0.00171 0.00000

Table 9.2 Year-over-Year Alternative Indices for January
Year y PLFB

y,1 P PFB
y,1 P FFB

y,1 PTFB
y,1 PLCH

y,1 PPCH
y,1 P FCH

y,1 PTCH
y,1 PGEKS

y,1 PS
y,1

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.99746 0.99881 0.99813 0.99817 0.99746 0.99881 0.99813 0.99817 0.99814 0.99813
3 1.03276 1.01894 1.02583 1.02591 1.02762 1.01799 1.02280 1.02261 1.02295 1.02280
4 1.01159 1.00992 1.01076 1.01072 1.01586 0.99872 1.00725 1.00700 1.00816 1.01076
5 1.12212 1.12896 1.12554 1.12582 1.14808 1.10989 1.12883 1.12854 1.12973 1.13415
6 1.07410 1.06543 1.06976 1.06889 1.09958 1.04827 1.07362 1.07252 1.07153 1.06944
Mean 1.03970 1.03700 1.03830 1.03830 1.04810 1.02890 1.03840 1.03810 1.03840 1.03920
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1 – 2
|
3 – 4 – 6
|
5.

Using the price and quantity data for May that is listed in 
Tables A.7 and A.8 in the annex, we calculated the May year-
over-year indices using the fixed-base Laspeyres, Paasche, 
Fisher, and Törnqvist–Theil indices, PLFB

y,5, PPFB
y,5, PFFB

y,5, 
and PTFB

y,5, the corresponding chained indices, PLCH
y,5, 

PPCH
y,5, PFCH

y,5, and PTCH
y,5, the GEKS index, PGEKS

y,5, and the 
predicted share similarity-linked index, PS

y,5, for the years 
1–6. These indices are listed in Table 9.4.

The results for the year-over-year May indices are similar 
to the results for the year-over-year January indices in some 
respects:

• The chained Laspeyres indices PLCH
y,5 ended up at 1.36519, 

which is well above the final value for the chained Paasche 
indices PPCH

y,5, which was 1.18589.
• The fixed-base Fisher and Törnqvist–Theil indices, the 

GEKS indices, and the similarity-linked indices, PFFB
y,5, 

PTFB
y,5, PGEKS

y,5, and PS
y,5, all ended up at much the same 

levels and, in general, were quite close to each other.

The big difference between the May results and the January 
results is that the chained Fisher and Törnqvist–Theil indices 

for May, PFCH
y,5, PTCH

y,5, ended up well below the other May 
superlative indices, PFFB

y,5, PTFB
y,5, PGEKS

y,5, and PS
y,5. This is 

due to the influence of the six carry-forward prices that are 
used in the May year-over-year data. There were no imputed 
prices for the January data, and hence there was no carry-
forward bias for this month. Thus, if there is general infla-
tion in the segment of the economy under consideration and 
carry-forward prices are used to replace missing prices, then 
the use of chained superlative indices will tend to lead to 
indices that are biased downward relative to their fixed-base 
counterparts.

The year-over-year indices for all 12 months are reported 
in Table A.21 in the annex. Table 9.5 reports the overall 
mean and variance of all 10 indices, where the index values 
are stacked into a single column with 72 rows for each of the 
10 indices.

On average, the cumulated year-over-year fixed-base 
Laspeyres indices PLFB

y,m exceeded their cumulated fixed-
base Paasche counterparts by 1.1365 – 1.1001 = 0.0364 
or 3.64 percentage points. The average gap between the 
chained Laspeyres and Paasche indices was 1.1560 – 1.0817 
= 0.0743 or 7.43 percentage points. These are substantial 
differences and indicate that the use of these indices should 
be avoided. The fixed-base Fisher, fixed-base Törnqvist–
Theil, chained Fisher, and predicted share similarity-
linked indices, PFFB

y,m, PTFB
y,m, PFCH

y,m, and PS
y,m, all had 

similar means and variances and performed equally well on 

Table 9.3 Predicted Share Measures of Price Dissimilarity for May for Years 1–6
m = 5 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

z = 1 0.00000 0.00617 0.00250 0.02222 0.01103 0.01324
z = 2 0.00617 0.00000 0.00578 0.02768 0.00883 0.01908
z = 3 0.00250 0.00578 0.00000 0.01226 0.00409 0.00690
z = 4 0.02222 0.02768 0.01226 0.00000 0.01060 0.00175
z = 5 0.01103 0.00883 0.00409 0.01060 0.00000 0.00810
z = 6 0.01324 0.01908 0.00690 0.00175 0.00810 0.00000

Table 9.4 Year-over-Year Alternative Indices for May
Year y PLFB

y,5 PPFB
y,5 PFFB

y,5 PTFB
y,5 PLCH

y,5 PPCH
y,5 PFCH

y,5 PTCH
y,5 PGEKS

y,5 PS
y,5

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.95731 0.91814 0.93752 0.93708 0.95731 0.91814 0.93752 0.93708 0.93879 0.93752
3 1.04955 1.02931 1.03938 1.03929 1.07750 0.99674 1.03634 1.03544 1.04223 1.03938
4 1.29576 1.26861 1.28211 1.27958 1.34446 1.21671 1.27899 1.27733 1.28376 1.28275
5 1.15686 1.15394 1.15540 1.15718 1.22628 1.06571 1.14318 1.14348 1.15227 1.14281
6 1.29885 1.29900 1.29893 1.29611 1.36519 1.18589 1.27239 1.27244 1.29548 1.29399
Mean 1.12640 1.11150 1.11890 1.11820 1.16180 1.06390 1.11140 1.11100 1.11880 1.11610

Table 9.5 Year-over-Year Index Means and variances over All Months and Years for 10 indices Using Carry-
Forward Prices
  PLFB

y,m PPFB
y,m PFFB

y,m PTFB
y,m P LCH

y,m PPCH
y,m PFCH

y,m PTCH
y,m PGEKS

y,m PS
y,m

Mean 1.1365 1.1001 1.1180 1.1170 1.1560 1.0817 1.1176 1.1154 1.1111 1.1178
variance 0.0161 0.0101 0.0125 0.0123 0.0203 0.0079 0.0121 0.0117 0.0130 0.0122
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our particular data set with means between 1.117 and 1.118. 
The mean of the chained Törnqvist–Theil indices was a bit 
lower at 1.1154, and their variance was also lower. This may 
reflect the fact that chaining indices that use carry-forward 
prices in a period of high general inflation will tend to lower 
the average inflation rate and may also lower the variance. 
The mean of the GEKS indices was 1.111, which is below 
1.117. On the other hand, the variance of the GEKS indices 
was 0.0130, which is above the range of the variances for the 
“best” indices, PFFB

y,m, PTFB
y,m, PFCH

y,m, and PS
y,m, which was 

between 0.0121 and 0.0125.
In order to illustrate the differences between the 10 dif-

ferent index number formulae, we cumulated the year-over-
year indices listed in Table A.21 in the annex and plotted 
the resulting cumulated indices in Figure 9.1. Thus, the first 
six points for the series PLFB are the January year-over-year 
fixed-base Laspeyres indices for years 1–6: PLFB

1,1, PLFB
2,1, 

.  .  ., PLFB
6,1. The next six points for the PLFB series are the 

February year-over-year fixed-base Laspeyres indices for 
years 1–6 times the final value for the January fixed-base 
Laspeyres series, PLFB

6,1. Thus, the values for the listed PLFB 
series in Figure 9.1 for observations 7–12 are the cumulated 
indices PLFB

6,1×PLFB
1,2, PLFB

6,1×PLFB
2,2, .  .  ., PLFB

6,1×PLFB
6,2. 

The next six points for the PLFB series are the March year-
over-year fixed-base Laspeyres indices for years 1–6 times 
the cumulated value for observation 12 of the cumulated 
fixed-base Laspeyres series, which is PLFB

6,1×PLFB
6,2. Thus, 

the values for the listed PLFB series in Figure 9.1 for observa-
tions 13–18 are the cumulated indices PLFB

6,1×PLFB
6,2×PLFB

1,3, 
PLFB

6,1×PLFB
6,2×PLFB

2,3, .  .  ., PLFB
6,1×PLFB

6,2×PLFB
6,3, and so on. 

The final six observations for the PLFB series are defined as 
PLFB

6,1´PLFB
6,2´PLFB

6,3´ .  .  .×PLFB
6,11 times the December year-

over-year fixed-base Laspeyres indices for years 1–6, PLFB
1,12, 

PLFB
2,12, .  .  ., PLFB

6,12. The remaining nine cumulated series 
were constructed in a similar manner.

The highest series is the cumulated chained Laspeyres 
index PLCH followed by the cumulated fixed-base Laspey-
res index, PLFB. The lowest series is the cumulated chained 
Paasche index PPCH followed by the cumulated fixed-base 
Paasche index, PPFB. The remaining six indices are all 

clustered together in the middle of these outlier series, with 
the cumulated GEKS indices PGEKS lying slightly above the 
remaining five clustered indices. The cumulated chained 
Törnqvist–Theil indices PTCH are just a bit below the other 
four clustered indices.

The aforementioned series used carry-forward or carry-
backward prices for seasonal products, which were at 
times not available in their “regular” seasonally available 
months. However, when there is general inflation (or defla-
tion) in an economy, there is a risk of introducing a signifi-
cant amount of bias when carry-forward prices are used to 
fill in for the missing prices. Hence, in the following sec-
tion, we will calculate year-over-year indices without using 
carry-forward prices.

Once the Laspeyres and Paasche indices are eliminated 
from consideration, it can be seen that the remaining six year-
over-year monthly indices are all fairly close to each other.

In the following section, we will construct the same 10 
indices, but we will not use any imputed prices. Instead, 
we will use bilateral indices that are based on the common 
set of products that are actually present in both periods for 
each bilateral comparison. The resulting indices can then be 
compared with the indices that are plotted in Figure 9.1. The 
new indices that do not use carry-forward prices are listed in 
Table A.22 in the annex.

We conclude this section with a brief discussion on the 
use of carry-forward prices by statistical agencies. In many 
cases, a simple carry-forward price for a missing price is 
not used; instead, the price of a close substitute is used or 
an inflation-adjusted carry-forward price is used. In the lat-
ter case, the last available price is multiplied by an index 
of prices for related products that are available in the two 
periods that are being compared.29 Depending on the price 
index concept that is being used, the use of inflation-adjusted 

29 Armknecht and Maitland-Smith (1999) had a good discussion on the 
various methods used by statistical agencies to construct some sort of 
inflation-adjusted carry-forward price. This discussion is very relevant 
in recent times when COVID problems substantially increased the fre-
quency of missing prices.
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Figure 9.1 Cumulated Year-over-Year Indices Using Carry Forward Prices
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carry-forward prices will be at least approximately equiv-
alent to simply using the index that is restricted to the 
products that are available in the two periods under con-
sideration. Thus, in the following section, we will look at 
the use of maximum overlap bilateral indices; that is, prod-
ucts that are not present in both periods being compared 
are simply dropped.30 The problem with using the price of a 
close substitute to fill in a missing price is that the choice of 
the substitute product is necessarily somewhat arbitrary. To 
eliminate this arbitrariness, we will focus on the construc-
tion of maximum overlap indices (or matched model indi-
ces) in the following section.

3. Maximum Overlap Year-over-
Year Monthly Indices
Recall the notation that was introduced in Section 1 where 
the set of products n which are present in the marketplace 
during month m of year y was denoted by S(y,m). Data 
on prices and quantities are available for Y years and say 
M = 12 months. Again the price of product n in month m of 
year y is denoted by py,m,n, and the corresponding quantity 
is denoted by qy,m,n. In this section, we do not use carry-for-
ward prices, so if product n is missing in month m of year 
y, we set py,m,n = 0 and qy,m,n = 0. Using these new prices and 
quantities, the expenditure share for product n in month m 
and year y, sy,m,n, can now be defined for all N products as31

sy,m,n ≡ py,m,nqy,m,n/p
y,m·qy,m; y = 1,. . .,Y;  

 m = 1,2,. . .,M; n = 1,2,. . .,N. (23)

In the previous section, the Laspeyres, Paasche, and Fisher 
indices that compared the prices of month m in year y to the 
prices of month m in year z were defined by (15)–(17). These 
definitions used carry-forward and carry-backward prices for 
prices of seasonal products which happened to be absent in 
some years. In this section, we want to avoid the use of any 
imputed prices, so these indices are redefined by definitions 
(24)–(26) for m = 1,. . .,M; y = 1,. . .,Y; z = 1,. . .,Y:

PL
m*(y/z) ≡ Σn∈S(y,m)∩S(z,m) py,m,nqz,m,n/ 

 Σn∈S(y,m)∩S(z,m) pz,m,nqz,m,n; (24)
PP

m*(y/z) ≡ Σn∈S(y,m)∩S(z,m) py,m,nqy,m,n/ 
 Σn∈S(y,m)∩S(z,m) pz,m,nqy,m,n.; (25)
 PF

m*(y/z) ≡ [PL
m*(y/z)PP

m*(y/z)]1/2. (26)

The indices defined by (24)–(26) are called bilateral maximum 
overlap Laspeyres, Paasche, and Fisher indices, respectively. 
The Laspeyres index that compares the prices of month m 
in year y to the prices of month m in year z, PL

m*(y/z), com-
pares the prices of month m products that are available in 
both year y and year z. The jointly available product prices 
of year y appear in the numerator and are compared to the 
jointly available products of year z, which appear in the 

30 This type of index dates back to Marshall (1887). Keynes (1909) (1930; 
94) called it the highest common factor method, while Triplett (2004; 18) 
called it the overlapping link method.
31 These “new” expenditure shares turn out to be identical to the expendi-
ture shares defined by (20) in the previous section.

denominator. The quantities of jointly available products 
for year z appear as weights in both the numerator and the 
denominator. Similarly, the Paasche index that compares 
the prices of month m in year y to the prices of month m 
in year z, PP

m*(y/z), compares the prices of month m prod-
ucts that are available in both year y and year z. The jointly 
available product prices of year y appear in the numerator 
and are compared to the jointly available products of year z, 
which appear in the denominator. The quantities of jointly 
available products for year y appear as weights in both  
the numerator and the denominator. As usual, the correspond-
ing Fisher index PF

m*(y/z) is the geometric mean of PL
m*(y/z) 

and PP
m*(y/z).

The sequence of maximum overlap year-over-year fixed-
base Laspeyres indices for month m will be denoted by 
PLFB

y,m* for y = 1,2,. . .,Y. For our empirical example, Y = 6 
and the year-over-year maximum overlap fixed-base Laspey-
res indices PLFB

y,m* for months m = 1,. . .,12 are defined to be 
the indices PL

m*(1/1), PL
m*(2/1), PL

m*(3/1), PL
m*(4/1), PL

m*(5/1), 
andPL

m*(6/1), where the maximum overlap Laspeyres link 
indices PL

m*(y/z) are defined by (24). Similarly, the year-
over-year maximum overlap fixed-base Paasche indices  
PPFB

y,m* for months m = 1,. . .,12 are defined to be the indi-
ces PP

m*(1/1), PP
m*(2/1), PP

m*(3/1), PP
m*(4/1), PP

m*(5/1), and 
PP

m*(6/1), where the maximum overlap Paasche link indi-
ces PP

m*(y/z) are defined by (25). Finally, the year-over-
year maximum overlap fixed-base Fisher indices PFFB

y,m* for 
months m = 1,. . .,12 are defined to be the indices PF

m*(1/1), 
PF

m*(2/1), PF
m*(3/1), PF

m*(4/1), PF
m*(5/1), and PF

m*(6/1), where 
the maximum overlap Fisher bilateral link indices PF

m*(y/z) 
are defined by (26). These fixed-base maximum overlap 
Laspeyres, Paasche, and Fisher indices for our May data 
are listed in Table 9.6.32

Define the year-over-year maximum overlap chained 
Laspeyres, Paasche, and Fisher indices for month m in year 
1, PLCH

1,m*, PPCH
1,m,* and PFCH

1,m*, as unity:

PLCH
1,m* ≡ 1; PPCH

1,m* ≡ 1; PFCH
1,m* ≡ 1;  

 m = 1,. . .,M. (27)

For years following year 1, these maximum overlap indices 
for the same month m are defined by cumulating the corre-
sponding successive annual year-over-year links defined by 
(24)–(26); that is, we have the following definitions:

PLCH
y,m* ≡ PLCH

y–1,m* PL
m*(y/(y–1));  

 m = 1,. . .,M; y = 2,. . .,Y; (28)
PPCH

y,m* ≡ PPCH
y–1,m* PP

m*(y/(y–1));  
 m = 1,. . .,M; y = 2,. . .,Y; (29)

PFCH
y,m* ≡ PFCH

y–1,m* PF
m*(y/(y–1)); 

 m = 1,. . .,M; y = 2,. . .,Y. (30)

32 If the set of available seasonal products is the same every year for a 
particular month, then the maximum overlap indices for that month will 
coincide with the corresponding indices defined in the previous section, 
since there are no imputed prices for the year-over-year indices when the 
available products are the same every year for the given month.
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The maximum overlap GEKS price levels, pGEKS
y,m*, for each 

month m for years y = 1,2,. . .,Y is defined as the geometric 
mean of the separate indices we obtain by using each year 
as the base year:

pGEKS
y,m* ≡ [∏z=1

Y PF
m*(y/z)]1/Y; m = 1,. . .,M;  

 y = 1,. . .,Y, (31)

where PF
m*(y/z) is defined by (26). The maximum overlap 

GEKS price indices PGEKS
y,m* are obtained by normalizing 

these price levels so that the period 1 index is equal to 1. 
Thus, we have the following definitions for the month m 
year-over-year maximum overlap GEKS index for year y, 
PGEKS

y,m*:

PGEKS
y,m* ≡ pGEKS

y,m*/pGEKS
1,m*; m = 1,. . .,M;  

 y = 1,. . .,Y. (32)

The maximum overlap GEKS indices along with the chained 
maximum overlap Laspeyres, Paasche, and Fisher indices 
for our May data are listed in Table 9.6.

Constructing the bilateral maximum overlap Törnqvist–
Theil index between every pair of years using the data for 
month m is more complicated. It is necessary to construct 
conditional expenditure shares, which are expenditure 
shares for product n for month m in year y that are con-
ditional on product n being purchased in both years y and 
z. First, we note that qy,m,n is well defined for all y,m, and n 
as actual expenditures on product n for month m in year 
y. If there is no expenditure on product n for month m in 
year y, qy,m,n is defined to be equal to 0. In the 0 expenditure 
case, define the corresponding price, py,m,n, to be 0 as well. 
In the case where qy,m,n > 0, the corresponding price py,m,n is 
defined to be the usual positive unit value price. With these 
conventions, py,m,n and qy,m,n are defined for all y, m, and n. 
Now define the expenditure for product n in month m of year 
y, conditional on positive month m, year z quantities, ey,z,m,n, 
as follows:33

ey,z,m,n ≡ py,m,nqy,m,n if qz,m,n > 0; y = 1,. . .,Y; z = 1,. . .,Z;  
 m = 1,. . .,M; n = 1,. . .,N; ≡ 0 if qz,m,n = 0. (33)
Thus, ey,z,m,n will be positive if and only if there are sales 
of product n in month m for years y and z. Define the total 
expenditure on products sold in month m of year y conditional 
on positive year z expenditure on products sold in month m of 
year z, ey,z,m, as the sum over n of the ey,z,m,n defined by (33):

ey,z,m ≡ Σn=1
N ey,z,m,n; y = 1,. . .,Y; z = 1,. . .,Z;  

 m = 1,. . .,M. (34)

Thus, ey,z,m is equal to total sales of products sold in month 
m of year y provided the products are also sold in month 
m of year z. Using definitions (33) and (34), the expendi-
ture share for product n in month m of year y, conditional on 

33 When defining ey,z,m,n in a statistical programming package, it is useful 
to define the dummy variables, δz,y,n = {1 if qz,y,n > 0; δz,y,n = 0 if qz,y,n = 0} 
and then define ey,z,m,n as py,m,nqy,m,nδz,y,n.

products being present in years y and z, sy,z,m,n, is defined as 
follows:

sy,z,m,n ≡ ey,z,m,n/ey,z,m; y = 1,. . .,Y; z = 1,. . .,Z;  
 m = 1,. . .,M; n = 1,. . .,N. (35)

Note that if y = z, then the conditional shares sy,y,m,n defined 
by (35) collapse down to the actual expenditure shares on 
product n in month m of year y, sy,m,n, defined by (23); that 
is, we have:

sy,y,m,n = sy,m,n ≡ py,m,nqy,m,n/Σk=1
N py,m,kqy,m,k;  

 y = 1,. . .,Y; m = 1,. . .,M; n = 1,. . .,N. (36)

The bilateral maximum overlap Törnqvist–Theil index that 
compares the prices of month m in year y to the prices of month 
m in year z, PT

m*(y/z), is defined as follows:

PT
m*(y/z) ≡ exp[Σn∈S(y,m)∩S(z,m) (½)(sy,z,m,n + sz,y,m,n)ln(py,m,n/pz,m,n)];

 y = 1,. . .,Y; z = 1,. . .,Z; m = 1,. . .,M. (37)

Thus, only the product prices that are positive in month m 
of year y and in month m of year z appear in the summations 
on the right-hand side of definitions (37). PT

m*(y/z) compares 
the prices of month m products that are available in both 
year y and year z. The bilateral indices PT

m*(y/z) defined by 
(37) can be used to construct the maximum overlap fixed-
base and chained Törnqvist–Theil indices.

The sequence of maximum overlap year-over-year fixed-
base Törnqvist–Theil indices for month m will be denoted 
by PTFB

y,m* for y = 1,2,.  .  .,Y. For our empirical example, Y 
= 6 and the year-over-year maximum overlap fixed-base 
Törnqvist–Theil indices PTFB

y,m* for months m = 1,.  .  .,12 
are defined to be the indices PT

m*(1/1), PT
m*(2/1), PT

m*(3/1), 
PT

m*(4/1), PT
m*(5/1), and PT

m*(6/1), where the maximum over-
lap link indices PT

m*(y/z) are defined by (37).
Define the year-over-year maximum overlap chained 

Törnqvist–Theil index for month m in year 1, PTCH
1,m*, as 

unity:

 PTCH
1,m* ≡ 1; m = 1,. . .,M. (38)

For years following year 1, the maximum overlap chained 
Törnqvist–Theil indices for the month m in the years y = 
2,. . .,Y, PTCH

y,m*, are defined by cumulating the correspond-
ing successive annual year-over-year links for month m 
defined by (37); that is, we have the following definitions:

PTCH
y,m* ≡ PTCH

y–1,m* PT
m*(y/(y–1)); m = 1,. . .,M;  

 y = 2,. . .,Y. (39)

The fixed-base and chained maximum overlap Törnqvist–
Theil indices for our May data are listed in Table 9.6.

In order to define the year-over-year predicted share 
similarity-linked indices for a particular month, we need to 
define the relative price dissimilarity matrix for each month. 
It turns out that we can still use definitions (21) and (22) to 
define the new dissimilarity matrix using our “new” data 
that does not use carry-forward prices. For convenience, we 
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repeat these definitions. Thus, define the predicted share for 
product n in month m of year y, sz,y,m,n, that uses the month m 
quantities of year y and the prices of month m in year z as 
follows:

sz,y,m,n ≡ pz,m,nqy,m,n/p
z,m·qy,m; y = 1,. . .,Y; z = 1,. . .,Z;  

 m = 1,2,. . .,M; n = 1,2,. . .,N. (40)

Define the predicted share measure of relative price dissimi-
larity between the prices of month m in year y and the prices 
of month m in year z, ΔPS(pz,m,py,m,qz,m,qy,m), as follows:

ΔPS(pz,m,py,m,qz,m,qy,m) ≡ Σn=1
N [sy.m,n – sz,y,m,n]

2  
 + Σn=1

N [sz.m,n – sy,z,m,n]
2

= Σn=1
N [(py,m,nqy,m,n/p

y,m·qy,m) – (pz,m,nqy,m,n/p
z,m·qy,m)]2

  + Σn=1
N [(pz,m,nqz,m,n/p

z,m·qz,m) – (py,m,nqz,m,n/p
y,m·qz,m)]2. (41)

If the products that were purchased in month m of years 
y and z were identical, then the “new” measure of relative 
price dissimilarity defined by (41) will be identical to the 
“old” measure defined by (22). However, in the case where 
prices in years y and z are not matched, The measure of price 
dissimilarity defined by (41) is larger than the corresponding 
measure defined by (22); that is, there is now a penalty for a 
lack of price matching (which can be large if the difference 
between sy.m,n and sz.m,n is large for an unmatched product n).

To see how the predicted share measure of relative price 
dissimilarity defined by (41) turned out for our Israeli data 
for the month of May when we do not use imputed prices, 
see Table 9.6. The month m is equal to 5 (May). As usual, the 
years y and z range from 1 to 6.

The predicted share measures of relative price dissimilar-
ity listed in Table 9.6 have a mean equal to 0.01601, whereas 
the measures listed in Table 9.3 in the previous section had 
a mean equal to 0.0089. Thus, excluding the use of imputed 
prices for the predicted share measures of dissimilarity for 
our May year-over-year data substantially increased the 
resulting measures of price dissimilarity. The predicted 
share measures of price dissimilarity grow in magnitude 
when imputed prices are replaced by zero prices because the 
measures impose a substantial penalty for a lack of price 
matching.34

34 See the discussion of the predicted share multilateral method in Diew-
ert (2021b).

The new real-time predicted share relative price similar-
ity-linked price indices for May (that exclude the use of imputed 
prices), PS

y,5*, are constructed as follows. Set PS
1,5* ≡ 1. The 

year-over-year index for May in year 2 is set equal to the 
maximum overlap bilateral Fisher index PF

m*(y/z), where m 
= 5, y = 2, and z = 1 (see definition (26)). Thus, the year 2 
similarity-linked index for May is PS

2,5* ≡ PF
5*(2/1). Now look 

down the y = 3 column in Table 9.6. We need to link year 
3 to either year 1 or year 2. The dissimilarity measures for 
these two years relative to year 3 are 0.02505 and 0.00988, 
respectively. The degree of relative price dissimilarity is far 
smaller for the link to year 2 than it is to year 1, so we use 
the maximum overlap Fisher link (for the month 5 data) 
from period 2 to period 3, PF

5*(3/2), to construct the year 
3  similarity-linked index for May as PS

3,5* ≡ PS
2,5*× PF

5*(3/2). 
Now we need to link year 4 to year 1, 2, or 3. Look down 
the y = 4 column in Table 9.6 to find the lowest dissimilarity 
measure above the main diagonal of the matrix. The small-
est of the three numbers 0.04297, 0.02858, and 0.01226 is 
0.01226. Thus, we link the year 4 May data to the year 3 May 
data using the maximum overlap Fisher May link from year 
3 to year 4, PF

5*(4/3), and the year 4 similarity-linked index 
value is PS

4,5* ≡ PS
3,5*× PF

5*(4/3). Thus, each year, as the new 
May data become available, we use the maximum overlap 
Fisher bilateral index that links the new period to the pre-
vious period that has the lowest measure of relative price 
dissimilarity. The final two bilateral links are year 5 to year 
3 and year 6 to year 4. The resulting year 5 and 6 similarity-
linked index values are PS

5,5* ≡ PS
3,5*× PF

5*(5/3) and PS
6,5* ≡ 

PS
4,5* × PF

5(6/4). The set of optimal real-time bilateral links 
for the May data can be summarized as follows:

1 – 2 – 3 – 4
| |
5 6.

The new set of May bilateral links is different from the set of 
bilateral links for May that used carry-forward and carry-
backward prices. To see the differences between the carry-
forward indices for May listed in Table 9.4 in the previous 
section with the corresponding maximum overlap indices 
for May that are described earlier, see Table 9.7. The indi-
ces listed in Table 9.7 do not use any imputed prices in their 
construction.

As was the case for the carry-forward indices listed in 
Table 9.4, the maximum overlap fixed-base and chained 
Laspeyres indices for May, PLFB

y,5* and PLCH
y,5*, listed in Table 

9.7 end up well above the superlative indices and the maxi-
mum overlap fixed-base and the chained Paasche indices for 
May, PPFB

y,5* and PPCH
y,5*, end up well below the superlative 

indices. The remaining six superlative indices (the fixed-
base and chained Fisher indices, PFFB

y,5* and PFCH
y,5*, the 

fixed-base and chained Törnqvist–Theil indices, PTFB
y,5* and 

PTCH
y,5*, the GEKS indices PGEKS

y,5*, and the predicted share 
similarity-linked indices PS

y,5*) ended up in year 6 at 1.3204, 
1.2729, 1.31917, 1.27122, 1.3123, and 1.2898, respectively. It 
appears that the chained Fisher and Törnqvist–Theil indices 
suffer from some downward chain drift since the other four  
superlative indices are free of chain drift and ended up (on 
average) about 3.77 percentage points above where the aver-
age of the two chained superlative indices ended. Thus, for 
our May data, it appears that the use of carry-forward prices 
for missing product prices led to a substantial downward bias. 

Table 9.6 May Predicted Share Measures of Price 
Dissimilarity Excluding Imputed Prices
m = 5 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

z = 1 0.00000 0.02471 0.02505 0.04297 0.03604 0.03227
z = 2 0.02471 0.00000 0.00988 0.02858 0.01565 0.01926
z = 3 0.02505 0.00988 0.00000 0.01226 0.00409 0.01042
z = 4 0.04297 0.02858 0.01226 0.00000 0.01060 0.00204
z = 5 0.03604 0.01565 0.00409 0.01060 0.00000 0.01445
z = 6 0.03227 0.01926 0.01042 0.00204 0.01445 0.00000
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Thus, the use of carry-forward prices to replace missing 
prices is not recommended.

The year-over-year indices for all 12 months are reported 
in Table A.22 in the annex. The following table reports 
the overall mean and variance for all eight indices, where 
the index values are stacked into a single column with 72 
rows for each of the eight indices. The averages reported in 
Table 9.8 use maximum overlap indices, whereas the corre-
sponding averages reported in Table 9.5 used carry-forward 
prices, which will tend to give lower indices given that there 
was general fruit inflation in Israel for the six years in our 
sample. The averages reported in Table 9.8 are in fact higher 
than the corresponding averages in Table 9.5 with the excep-
tions of the chained Paasche and chained Fisher indices.

As usual, the fixed-base and chained Laspeyres maxi-
mum overlap indices, PLFB

y,m* and PLCH
y,m*, and the fixed-base  

and chained Paasche maximum overlap indices, PPFB
y,m* 

and PPCH
y,m*, have some considerable amounts of upward 

and downward substitution bias relative to the remain-
ing superlative indices. The chained Fisher and chained 
Törnqvist–Theil indices, PFFB

y,m* and PTCH
y,m*, appear to 

have some amount of downward chain drift bias relative 
to the remaining four superlative indices, which are free 
of chain drift bias by construction. The fixed-base Fisher, 
fixed-base Törnqvist–Theil, GEKS, and similarity-linked 
indices, PFFB

y,m*, PTFB
y,m*, PGEKS

y,m*, and PS
y,m*, all have about 

the same mean and variance and appear to be equally sat-
isfactory for our particular empirical example. The means 
for these four maximum overlap indices over all months 
are 1.1189, 1.1177, 1.1187, and 1.1184 and the average of 
these four averages is 1.1184. The corresponding means for 
the carry-forward indices PFFB

y,m, PTFB
y,m, PGEKS

y,m, and PS
y,m 

from Table 9.5 are 1.1180, 1.1170, 1.1111, and 1.1178 and the 
average of these four averages is 1.1160. Thus, the use of 
carry-forward prices leads to an average downward bias of 
about 0.24 percentage points compared to the correspond-
ing maximum overlap indices for our best index number 

formulae for our particular empirical example. This is a 
significant downward bias.35

In order to illustrate the differences between the 10 differ-
ent index number formulae, we cumulated the 10 year-over-
year indices listed in Table A.22 in the annex and plotted the 
resulting cumulated indices on Figure 9.2. The construction 
of the cumulated series for each index formula follows the 
same as the process we used to construct Figure 9.1.

The indices plotted in Figure 9.2 are very close to their 
counterparts plotted in Figure 9.1. For the most part, the indi-
ces plotted in Figure 9.2 are a bit above their counterparts plot-
ted in Figure 9.1 due to the fact that the Figure 9.1 indices used 
carry-forward prices, which tend to lower measured inflation 
in a period of general inflation. The highest series shown in 
Figure 9.2 is the cumulated chained Laspeyres index PLCH

* 
followed by the cumulated fixed-base Laspeyres index, PLFB

*. 
The lowest series is the cumulated chained Paasche index 
PPCH

* followed by the cumulated fixed-base Paasche index, 
PPFB

*. The remaining six indices are all clustered together in 
the middle of these outlier series.

Our conclusions regarding the use of year-over-year 
monthly indices at this point are as follows:

• The use of the Laspeyres and Paasche indices should be 
avoided. The fixed-base and chained Laspeyres indices 
tend to lie well above the clustered superlative indices, 
while the fixed-base and chained Paasche indices tend to 
lie well below the clustered superlative indices.

• The chained Fisher and Törnqvist–Theil indices may suf-
fer from a small amount of chain drift.

• The fixed-base Fisher, Törnqvist–Theil, GEKS, and 
predicted share similarity-linked indices are all fairly 
close to each other in the present context where we are  

35 One-sixth of the indices listed in Tables A.21 and A.22 are equal to 1, so 
the actual bias is even larger.

Table 9.7 Year-over-Year Maximum Overlap Indices for May
Year y PLFB

y,5* PPFB
y,5* PFFB

y,5* PTFB
y,5* PLCH

y,5* PPCH
y,5* PFCH

y,5* PTCH
y,5* PGEKS

y,5* PS
y,5*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.95007 0.91814 0.93397 0.93252 0.95007 0.91814 0.93397 0.93252 0.94462 0.93397
3 1.05674 1.03102 1.04380 1.04354 1.06935 0.99802 1.03307 1.03104 1.05052 1.03307
4 1.33870 1.26554 1.30161 1.29967 1.33429 1.21827 1.27496 1.27191 1.29677 1.27496
5 1.17963 1.17093 1.17527 1.17658 1.21701 1.06707 1.13958 1.13863 1.16610 1.13587
6 1.34224 1.29900 1.32044 1.31917 1.36461 1.18740 1.27293 1.27122 1.31228 1.28980
Mean 1.14460 1.11410 1.12920 1.12860 1.15590 1.06480 1.10910 1.10760 1.12840 1.11130

Table 9.8 Year-over-Year Index Means and variances over All Months and Years for 10 Indices Using Maximum 
Overlap Bilateral Indices
  PLFB

y,m* PPFB
y,m* PFFB

y,m* PTFB
y,m* PLCH

y,m* PPCH
y,m* P FCH

y,m* PTCH
y,m* PGEKS

y,m* PS
y,m*

Mean 1.1381 1.1003 1.1189 1.1177 1.1591 1.0765 1.1163 1.1136 1.1187 1.1184
variance 0.0167 0.0101 0.0128 0.0126 0.0209 0.0076 0.0119 0.0115 0.0125 0.0123
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measuring year-over-year inflation for each month in the 
year.

• The use of carry-forward prices will tend to lead to indi-
ces that are biased downward if there is general infla-
tion; so in order to avoid this potential bias, it is best to 
use the indices that use maximum overlap superlative 
bilateral indices as their basic building blocks. Thus, 
the maximum overlap fixed-base Fisher and fixed-base 
Törnqvist–Theil, GEKS, and predicted share similar-
ity-linked indices, PFFB

y,m*, PTFB
y,m*, PGEKS

y,m*, and PS
y,m*, 

emerge as our “best” choices for year-over-year monthly 
indices.

In the following two sections, we turn our attention to 
annual price indices.

4. The Construction of Annual 
Indices Using Carry-Forward Prices
Assuming that each product in each season of the year is a 
separate “annual” product is the simplest and theoretically 
most satisfactory method for dealing with seasonal prod-
ucts when the goal is to construct annual price and quan-
tity indices. This idea can be traced back to Mudgett in the  
consumer price context and to Stone in the producer price 
context:

The basic index is a yearly index and as a price or 
quantity index is of the same sort as those about 
which books and pamphlets have been written in 
quantity over the years.

Bruce D. Mudgett (1955; 97)

The existence of a regular seasonal pattern in prices 
which more or less repeats itself  year after year sug-
gests very strongly that the varieties of a product 
available at different seasons cannot be transformed 
into one another without cost and that, accordingly, 
in all cases where seasonal variations in price are sig-
nificant, the varieties available at different times of 

the year should be treated, in principle, as separate 
products.

Richard Stone (1956; 74–75)

Using carry-forward prices for missing products and using 
the notation explained in Section 2, the N-dimensional price 
and quantity vectors for month m in year y are defined as 
py,m ≡ [py,m,1, py,m,2,. . .,py,m,N] and qy,m º [qy,m,1,qy,m,2,. . .,qy,m,N] for 
y = 1,. . .,Y and m = 1,. . .,M.36 The year y annual price and 
quantity vectors are defined as the NM-dimensional vectors 
py ≡ [py,1, py,2,. . ., py,M] and qy ≡ [qy,1, qy,2,. . ., qy,M] respectively 
for y = 1,.  .  .,Y. Using this new notation, the year y annual 
fixed-base Laspeyres price index using carry-forward prices 
is defined as follows:

PLFB
y ≡ py·q1/p1·q1; y = 1,. . .,Y;

= Σm=1
M py,m·q1,m/Σm=1

M p1,m·q1,m

= Σm=1
M [py,m×q1,m/p1,m·q1,m][p1,m·q1,m/Σm=1

M p1,m·q1,m]
 = Σm=1

M S1,m PLFB
y,m, (42)

where S1,m ≡ p1,m·q1,m/Σm=1
M p1,m·q1,m is the month m share of 

total year 1 expenditure on the seasonal products in scope, 
and PLFB

y,m ≡ py,m·q1,m/p1,m·q1,m is the Laspeyres fixed-base price  
index for month m in year y, which was defined by (2) in Sec-
tion 2.37 Thus, the annual fixed-base Laspeyres price index for 
year y, PLFB

y, is a year 1 monthly expenditure share-weighted 
arithmetic average of the M year-over-year fixed-base 

36 The quantity qy,m,n is the quantity of product n purchased in month 
m of year y; if no amount of this product was purchased in month m 
of year y, qy,m,n = 0. If product n was never purchased in any month, 
py,m,n = 0. If some amount of product n was purchased in month m of 
any year y = 1,. . .,Y, then py,m,n is the actual unit value price if product 
n was purchased in year y; otherwise py,m,n is a carry-forward or carry-
backward price. The share of product n in the monthly expenditure on 
all products in month m of year y is defined as sy,m,n ≡ py,m,nqy,m,n/Σk∈S(m) 
py,m,kqy,m,k = py,m,nqy,m,n/py,m·qy,m for y = 1,. . .,Y; m = 1,2,. . .,M; n = 1,. . .,N.
37 The new definition for PLFB

y,m is equivalent to definition (2).
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Figure 9.2 Cumulated Year-over-Year Monthly Indices Using Maximum Overlap Indices
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Laspeyres monthly indices for year y. These annual fixed-
base Laspeyres indices are listed in Table 9.10 for our Israeli 
data set.

The year y annual fixed-base Paasche index using carry-
forward prices is defined as follows:

PPFB
y ≡ py·qy/p1·qy; y = 1,. . .,Y;

= 1/[p1·qy/py·qy]

= [Σm=1
M p1,m·qy,m//Σm=1

M py,m·qy,m]–1

= [(Σm=1
M p1,m·qy,m/py,m·qy,m)/(py,m·qy,m/Σm=1

M py,m·qy,m)]–1

 = [Σm=1
M Sy,m (PPFB

y,m)–1]–1, (43)

where PPFB
y,m ≡ py,m·qy,m/p1,m·qy,m is the Paasche fixed-base 

price index for month m in year y, which was defined by (3) 
in Section 2,38 and the month m shares of annual expenditures 
on the seasonal products in scope for year y, Sy,m, is defined 
as follows:

Sy,m ≡ py,m·qy,m/Σk=1
M py,k·qy,k; m = 1,. . .,M;  

 y = 1,. . .,Y. (44)

Thus, the annual fixed-base Paasche price index for year 
y, PPFB

y, is a year y monthly expenditure share-weighted 
harmonic average of the M fixed-base year-over-year 
Paasche monthly indices for year y. These annual fixed-
base Paasche indices are listed in Table 9.10 for our Israeli  
data set.

The year y annual fixed-base Fisher index is defined as the 
geometric mean of the annual Laspeyres and Paasche indi-
ces defined by (42) and (43):

 PFFB
y = [PLFB

y PPFB
y]1/2; y = 1,. . .,Y. (45)

In Section 2, recall that the fixed-base Törnqvist–Theil indi-
ces for month m in year y were defined as PTFB

y,m ≡ exp[Σn∈S(m) 
(½)(s1,m,n + sy,m,n)ln(py,m,n/p1,m,n)] for m = 1,. . .,12; y = 1,. . .,Y. 
The fixed-base annual Törnqvist–Theil index for year y using 
carry-forward prices is defined as follows:

PTFB
y ≡ exp[Σm=1

M Σn∈S(m) (½)(S1,ms1,m,n + Sy,msy,m,n) 
 ln(py,m,n/p1,m,n)]; y = 1,. . .,Y, (46)

where the within-month expenditure shares sy,m,n are defined 
by (1) and the month m expenditure shares in year y, Sy,m, are 
defined by (44).

In order to define the annual chained Laspeyres, Paasche, 
Fisher, and Törnqvist–Theil indices as well as the annual 
GEKS indices, it is necessary to define bilateral annual 
Laspeyres, Paasche, Fisher, and Törnqvist–Theil indices for 
all pairs of years y and z. Thus, define these bilateral annual 
indices that compare the prices of year y relative to the base 
year z as follows:

 PL(y/z) ≡ py·qz/pz·qz; z = 1,. . .,Z; y = 1,. . .,Y; (47)

38 The new definition for PPFB
y,m is equivalent to definition (3).

PP(y/z) ≡ py·qy/pz·qy; z = 1,. . .,Z;  
 y = 1,. . .,Y; (48)

PF(y/z) ≡ [PL(y/z)PP(y/z)]1/2; z = 1,. . .,Z;  
 y = 1,. . .,Y; (49)

PT(y/z) ≡ exp[Σm=1
M Σn∈S(m) (½)(Sz,msz,m,n + Sy,msy,m,n) 

 ln(py,m,n/pz,m,n)]; z = 1,. . .,Z; y = 1,. . .,Z. (50)

The annual chained Laspeyres, Paasche, Fisher, and Törn-
qvist–Theil indices are defined as follows for year 1:

 PLCH
1 ≡ 1; PPCH

1 ≡ 1; PFCH
1 ≡ 1; PTCH

1 ≡ 1. (51)

For years y following year 1, the aforementioned annual 
chained indices are defined recursively using the annual 
bilateral indices defined by (47)–(50) as follows:

 PLCH
y ≡ PLCH

y–1 PL(y/(y–1); y = 2,. . .,Y; (52)
 PPCH

y ≡ PPCH
y–1 PP(y/(y–1); y = 2,. . .,Y; (53)

 PFCH
y ≡ PFCH

y–1 PF(y/(y–1); y = 2,. . .,Y; (54)

 PTCH
y ≡ PTCH

y–1 PT(y/(y–1); y = 2,. . .,Y. (55)

The Fisher fixed-base index for year y, PFFB
y, defined by 

(45) chose year 1 as the base period and formed the fol-
lowing sequence of year-over-year price levels relative to 
year 1: PF(1/1) = 1, PF(2/1), PF(3/1), .  .  ., PF(Y/1). But one 
could also use year 2 as the base period and use the follow-
ing sequence of price levels to measure annual inflation 
for each year y: PF(1/2), PF(2/2) = 1, PF(3/2), .  .  ., PF(Y/2). 
Each year could be chosen as the base period, and thus 
we end up with Y alternative series of Fisher price levels 
for each year. Since each of these sequences of price lev-
els is equally plausible, following Gini (1924) (1931), Eltetö 
and Köves (1964), and Szulc (1964), the GEKS price levels, 
pGEKS

y, for years y = 1,2,. . .,Y are defined as the geometric 
mean of the separate indices we obtain by using each year 
as the base year:

 pGEKS
y ≡ [∏z=1

Y PF(y/z)]1/Y; y = 1,. . .,Y. (56)

Note that each choice of a base year z is treated in a sym-
metric manner in these definitions. The annual GEKS price 
indices PGEKS

y are obtained by normalizing these price lev-
els so that the year 1 index is equal to 1. Thus, we have the 
following definitions for the annual GEKS index for year y 
(using carry-forward prices), PGEKS

y:

 PGEKS
y ≡ pGEKS

y/pGEKS
1; y = 1,. . .,Y. (57)

The annual GEKS price indices using carry-forward prices 
are also listed in Table 9.10 using the data from our empiri-
cal example.

The basic building blocks used to form the GEKS mul-
tilateral index are the bilateral Fisher indices PF(y/z). It is 
not necessary to use the Fisher bilateral indices as the basic 
building blocks; instead, the bilateral Törnqvist–Theil 
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indices PT(y/z) defined by (50) could be used.39 Thus, follow-
ing Caves, Christensen, and Diewert (1982) and Inklaar and 
Diewert (2016), the CCDI price levels, pCCDI

y, for years y = 
1,2,. . .,Y are defined as the geometric mean of the separate 
indices we obtain by using each year as the base year and 
PT(y/z) as the bilateral building blocks:

 pCCDI
y ≡ [∏z=1

Y PT(y/z)]1/Y; y = 1,. . .,Y. (58)

The annual CCDI index for year y, PCCDI
y, is defined as the 

following normalization of the CCDI price levels:

 PCCDI
y ≡ pCCDI

y/pCCID
1; y = 1,. . .,Y. (59)

The 10 annual indices PLFB
y, PPFB

y, PFFB
y, PTFB

y, PLCH
y, PPCH

y, 
PFCH

y, PTCH
y, PGEKS

y, and PCCDI
y that use year-over-year 

carry-forward prices for our empirical example are listed 
in Table 9.10.

Our final annual Mudgett Stone annual index that uses 
year-over-year carry-forward prices for missing prices is the 
predicted share similarity-linked index PS

y.
The year y, month m, product n actual expenditure share 

is sy,m,n ≡ py,m,n qy,m,n/p
y,m·qy,m. The prediction for this share 

using the price of product n of month m in year z, pz,m,n, and 
the actual quantity of product n for month m in year y is 
the predicted share sz,y,m,n ≡ pz,m,n qy,m,n/p

z,m·qy,m for n = 1,. . .,N,  
m = 1,. . .,M, z = 1,. . .,Y, and y = 1,. . .,Y. The new annual 
measure of Predicted Share Price Dissimilarity between the 
prices of years z and y, ΔPSA(pz,py,qz,qy), is defined as follows:

39 Caves, Christensen, and Diewert (1982) defined the quantity index 
counterpart to the price index defined by (58) using a different represen-
tation of the index. Inklaar and Diewert (2016) showed that the CCD defi-
nition was equivalent to the index defined by (58). Thus, the multilateral 
indices defined by (58) are called the CCDI indices. They are also called 
GEKS Törnqvist indices by statistical agencies.

ΔPSA(pz,py,qz,qy) ≡ Σm=1
M Σn=1

N [sy.m,n – sz,y,m,n]
2  

 + Σm=1
M Σn=1

N [sz.m,n – sy,z,m,n]
2

 = Σm=1
M ΔPS(pz,m,py,m,qz,m,qy,m), (60)

where ΔPS(pz,m,py,m,qz,m,qy,m) ≡ Σn=1
N [sy.m,n – sz,y,m,n]

2 + Σn=1
N 

[sz.m,n – sy,z,m,n]
2 is the month m measure of monthly price dis-

similarity between the product prices of month m in years 
z and y that was defined in Section 2 by (22). Thus, the new 
annual measure of price dissimilarity (using carry-forward 
prices) is equal to the sum over the M monthly product price 
dissimilarity measures for month m prices in years z and y 
using carry-forward prices.

Here is the table of the bilateral measures of annual pre-
dicted share price dissimilarity for our empirical example.

The real-time set of bilateral links that minimize the pre-
dicted share measures of relative price dissimilarity for the 
annual data are as follows: link 2 to 1; 3 to 2; 4 to 3; 5 to 3; 
and 6 to 4. The optimal set of bilateral links can be sum-
marized as follows:

1 – 2 – 3 – 4
|   |
5   6

Thus, we define PS
1 ≡ 1, PS

2 ≡ PF(2/1), PS
3 ≡ PS

2×PF(3/2), PS
4 ≡ 

PS
3×PF(4/3), PS

5 ≡ PS
3×PF(5/3), and PS

6 ≡ PS
4×PF(6/4), where 

the bilateral annual Fisher indices PF(y/z) are defined by 
(49).

The 11 annual indices PLFB
y, PPFB

y, PFFB
y, PTFB

y, PLCH
y, 

PPCH
y, PFCH

y, PTCH
y, PGEKS

y, PCCDI
y, and PS

y that use year-over-
year carry-forward prices for our empirical example are 
listed in Table 9.10 and plotted in Figure 9.3.

It can be seen that the annual fixed-base and chained 
Laspeyres indices, PLFB

y and PLCH
y, lie well above the super-

lative indices and the annual fixed-base and chained Paasche 
indices, PPFB

y and PPCH
y, lie well below the remaining indices. 

Table 9.9 Annual Predicted Share Measures of Price Dissimilarity Using Carry-Forward Prices
  y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

z = 1 0.00000 0.00196 0.00198 0.00176 0.00173 0.00225
z = 2 0.00196 0.00000 0.00107 0.00207 0.00109 0.00264
z = 3 0.00198 0.00107 0.00000 0.00104 0.00068 0.00099
z = 4 0.00176 0.00207 0.00104 0.00000 0.00129 0.00055
z = 5 0.00173 0.00109 0.00068 0.00129 0.00000 0.00102
z = 6 0.00225 0.00264 0.00099 0.00055 0.00102 0.00000

Table 9.10 Alternative Annual Mudgett Stone Indices That Use Year-over-Year Carry-Forward Prices
Year PLFB

y PPFB
y PLCH

y PPCH
y PFFB

y PFCH
y PTFB

y PTCH
y PGEKS

y PCCDI
y PS

y

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.1299 1.0611 1.1299 1.0611 1.0950 1.0950 1.0892 1.0892 1.0929 1.0900 1.0950
3 1.1224 1.0745 1.1470 1.0502 1.0982 1.0975 1.0963 1.0918 1.0966 1.0941 1.0975
4 1.1891 1.1411 1.2322 1.1083 1.1648 1.1686 1.1624 1.1626 1.1676 1.1647 1.1686
5 1.2241 1.1549 1.2729 1.1060 1.1890 1.1865 1.1871 1.1805 1.1884 1.1856 1.1903
6 1.2306 1.1752 1.3070 1.1102 1.2026 1.2046 1.2015 1.1988 1.2044 1.2020 1.2056
Mean 1.1494 1.1011 1.1815 1.0726 1.1249 1.1254 1.1227 1.1205 1.1250 1.1227 1.1262
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The remaining indices are all tightly clustered together and 
cannot be easily distinguished in a figure. The 11 indices 
listed in Table 9.10 are plotted in Fig ure 9.3.

Thus, for our particular empirical example, all of the 
annual indices that are exact for a flexible functional form 
give much the same answer when we use year-over-year 
carry-forward prices. However, looking at the averages 
listed in Table 9.10, it can be seen that the three indices that 
use bilateral Törnqvist–Theil indices as building blocks, 
PTFB

y, PTCH
y, and PCCDI

y, have slightly lower average index 
values than the indices that use bilateral Fisher indices as 
building blocks.

In Section 3, we saw that the use of year-over-year carry-
forward prices for missing prices led to indices which were 
lower than the counterpart indices that did not use any 
imputed prices. We will see if the same tendency occurs 
when we compute annual Mudgett Stone indices using 
annual bilateral maximum overlap indices.

5. The Construction of Annual 
Indices Using Maximum Overlap 
Bilateral Indices
In order to define the annual Laspeyres, Paasche, Fisher, 
and Törnqvist–Theil indices without using imputations 
for missing prices, it is necessary to define imputation-free 
bilateral annual Laspeyres, Paasche, Fisher, and Törnqvist–
Theil indices for all pairs of years y and z. Thus, define the 
following maximum overlap bilateral annual indices that 
compare the prices of year y relative to the base year z for 
products n that were available in years y and z as follows for 
z = 1,. . .,Z; y = 1,. . .,Y:

PL
*(y/z) ≡ Σm=1

M Σn∈S(y,m)∩S(z,m) py,m,nqz,m,n/ 
 Σm=1

M Σn∈S(y,m)∩S(z,m) pz,m,nqz,m,n; (61)
PP

*(y/z) ≡ Σm=1
M Σn∈S(y,m)∩S(z,m) py,m,nqy,m,n/ 

 Σm=1
M Σn∈S(y,m)∩S(z,m) pz,m,nqy,m,n; (62)

 PF
*(y/z) ≡ [PL

*(y/z)PP
*(y/z)]1/2; (63)

PT
*(y/z) ≡ exp[Σm=1

M Σn∈S(y,m)∩S(z,m) (½)(Σy,z,m,n  
  + Σz,y,m,n)ln(py,m,n/pz,m,n)] (64)

where S(y,m)∩S(z,m) is the set of products n that are avail-
able in both years y and z for month m. The price of product 
n in month m of year y, py,m,n, is the unit value price for that 
product if it is purchased in month m of year y and it is set 
equal to 0 if the product is not available or not sold.40 The 
corresponding quantity, qy,m,n, is the actual quantity of prod-
uct n that is sold in month m of year y (which will equal 0 if 
the product is not available or not sold). Thus carry-forward 
prices are not used in definitions (61)–(64). The conditional 
expenditure shares, Σy,z,m,n, which appear in definition (64), 
need some explanation, which is provided subsequently.

The actual expenditure on product n in month m of year y is 
equal to ey,m,n defined as follows:

ey,m,n ≡ py,m,nqy,m,n; y = 1,. . .,Y; m = 1,. . .,M;  
 n = 1,. . .,N. (65)

The conditional year z expenditure on product n in month m of 
year y, ey,z,m,n, is defined as the actual expenditure on product 
n in month m of year y if the same product n is also sold in 
month m of year z and is defined to be 0 if product n is not 
sold in month m of year z. Thus the formal definition for 
ey,z,m,n is as follows:

ey,z,m,n ≡ ey,m,n if ez,m,n > 0; y = 1,. . .,Y; z = 1,. . .,Z;  
 m = 1,. . .,M; n = 1,. . .,N ≡ 0 if ez,m,n = 0. (66)

Thus, ey,z,m,n will be positive only if product n is purchased 
in month m of years y and z. The total year y expenditure 
on products that are available in both years y and z, Ey,z, is 
defined as follows:

40 If a product is available in month m of year y but not purchased, we 
treat it as if it were an unavailable product for that month.
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Figure 9.3 Annual Indices Using Year-over-Year Carry-Forward Prices
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Ey,z ≡ Σm=1
M Σn=1

N ey,z,m,n; y = 1,. . .,Y;  
 z = 1,. . .,Z. (67)

The year y conditional on year z expenditure share on product 
n in month m of year y, Σy,z,m,n, is defined as follows:

Σy,z,m,n ≡ ey,z,m,n/Ey,z; y = 1,. . .,Y; z = 1,. . .,Y;  
 m = 1,. . .,M; n = 1,. . .,N. (68)

The conditional share Σy,z,m,n is positive only if product n in 
month m is sold in both years y and z. These shares appear 
in definitions (64).

The maximum overlap annual fixed-base Laspeyres, Paas-
che, Fisher, and Törnqvist–Theil indices, PLFB

y*, PPFB
y*, PFFB

y*, 
and PTFB

y*, are defined as follows:

PLFB
y* ≡ PL

*(y/1); PPFB
y* ≡ PP

*(y/1); PFFB
y* ≡ PF

*(y/1);  
 PTFB

y* ≡ PT
*(y/1); y = 1,. . .,Y. (69)

The maximum overlap annual chained Laspeyres, Paasche, 
Fisher, and Törnqvist–Theil indices are defined as follows for 
year 1:

 PLCH
1* ≡ 1; PPCH

1* ≡ 1; PFCH
1* ≡ 1; PTCH

1* ≡ 1. (70)

For years y following year 1, these indices are defined recur-
sively using the bilateral maximum overlap annual indices 
defined by (55)–(58) as follows:

 PLCH
y* ≡ PLCH

y–1* PL
*(y/(y–1); y = 2,. . .,Y; (71)

 PPCH
y* ≡ PPCH

y–1* PP
*(y/(y–1); y = 2,. . .,Y; (72)

 PFCH
y* ≡ PFCH

y–1* PF
*(y/(y–1); y = 2,. . .,Y; (73)

 PTCH
y* ≡ PTCH

y–1* PT
* (y/(y–1); y = 2,. . .,Y. (74)

The maximum overlap annual GEKS price levels, pGEKS
y*, are 

defined as follows:

 pGEKS
y* ≡ [∏z=1

Y PF
* (y/z)]1/Y; y = 1,. . .,Y. (75)

The maximum overlap annual GEKS price indices, PGEKS
y*, 

are defined as follows:

 PGEKS
y* ≡ pGEKS

y*/pGEKS
1*; y = 1,. . .,Y. (76)

The maximum overlap CCDI price levels, pCCDI
y*, for year y 

are defined as follows:

 pCCDI
y* ≡ [∏z=1

Y PT
*(y/z)]1/Y; y = 1,. . .,Y. (77)

The maximum overlap annual CCDI price indices, PCCDI
y*, are 

defined as follows:

 PCCDI
y* ≡ pCCDI

y*/pCCDI
1*; y = 1,. . .,Y. (78)

The 10 maximum overlap annual indices PLFB
y*, PPFB

y*, PFFB
y*, 

PTFB
y*, PLCH

y*, PPCH
y*, PFCH

y*, PTCH
y*, PGEKS

y*, and PCCDI
y* for our 

empirical example are listed in Table 9.12.

Our final annual Mudgett Stone annual index that uses 
year-over-year maximum overlap prices is the 0-predicted 
share similarity-linked index PS

y*.
Using our zero prices py,m,n for products n that are not 

available in month m of year y, the year y, month m, prod-
uct n actual expenditure share is sy,m,n ≡ py,m,n qy,m,n/p

y,m·qy,m. 
The prediction for this share using the price of product n of 
month m in year z, pz,m,n, and the actual quantity of product 
n for month m in year y is the predicted share sz,y,m,n ≡ pz,m,n 
qy,m,n/p

z,m·qy,m for n = 1,. . .,N, m = 1,. . .,M, z = 1,. . .,Y, and y = 
1,. . .,Y. Using these prices and shares, the new annual mea-
sure of predicted share price dissimilarity between the prices 
of years z and y, ΔPSA

*(pz,py,qz,qy), is defined as follows:

ΔPSA
*(pz,py,qz,qy) ≡ Σm=1

M Σn=1
N [sy.m,n – sz,y,m,n]

2  
  + Σm=1

M Σn=1
N [sz.m,n – sy,z,m,n]

2. (79)

Note that this measure of relative price dissimilarity does 
not use any imputed prices.41

The table of the new bilateral measures of annual pre-
dicted share price dissimilarity for our empirical example 
is Table 9.11.

A comparison of the entries in Tables 9.9 and 9.11 shows 
that the entries in Table 9.11 are always equal to or greater 
than the corresponding entries in Table 9.9. Many entries in 
Table 9.11 are substantially greater. This is due to the fact 
that the new measure of relative price dissimilarity that uses 
0 values for missing prices instead of carry-forward prices 
substantially penalizes a lack of matching.

The real-time set of bilateral links which minimize the 
new predicted share measures of relative price dissimilarity 
for the annual data are as follows: link 2 to 1; 3 to 2; 4 to 3; 
5 to 3; and 6 to 4. This is the same set of bilateral links that 
we used to construct the similarity-linked annual indices 
PS

y that used carry-forward prices. Thus, we define PS
1* ≡ 1, 

PS
2* ≡ PF

*(2/1), PS
3* ≡ PS

2*×PF
* (3/2), PS

4* ≡ PS
3*×PF

*(4/3), PS
5* 

≡ PS
3*×PF

*(5/3), and PS
6* ≡ PS

4*×PF
*(6/4) where the maximum 

41 However, one could argue that setting the price of a product that is not 
purchased in a period equal to 0 is also an imputation. Note that defi-
nition (79) is exactly the same as definition (60) in the previous section. 
But the previous definition used carry-forward (and carry-backward) 
prices for missing prices, whereas in this section, missing prices are set 
equal to 0. The actual shares of product n in month m of year y, sy,m.n, 
are the same in definitions (60) and (79), but the predicted shares sy,z,m,n = 
pz,m,nqy,m,n/p

z,m·qy,m are now, in general, different due to the replacement of 
carry-forward prices by zero prices.

Table 9.11 Imputation-Free Annual Index-Predicted 
Share Measures of Price Dissimilarity
  y = 1 y = 2 y = 3 y = 4 y = 5 y = 6

z = 1 0.00000 0.00284 0.00272 0.00198 0.00272 0.00245
z = 2 0.00284 0.00000 0.00125 0.00275 0.00122 0.00305
z = 3 0.00272 0.00125 0.00000 0.00181 0.00086 0.00148
z = 4 0.00198 0.00275 0.00181 0.00000 0.00213 0.00056
z = 5 0.00272 0.00122 0.00086 0.00213 0.00000 0.00154
z = 6 0.00245 0.00305 0.00148 0.00056 0.00154 0.00000
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overlap bilateral annual Fisher indices PF
*(y/z) are defined 

by (63).
The 11 annual indices that use maximum overlap bilat-

eral indices to link the months, PLFB
y*, PPFB

y*, PFFB
y*, PTFB

y*, 
PLCH

y*, PPCH
y*, PFCH

y*, PTCH
y*, PGEKS

y*, PCCDI
y*, and PS

y* are 
listed in Table 9.12.

As was the case for the Laspeyres and Paasche indices 
that used carry-forward prices, the new maximum overlap 
annual fixed-base and chained Laspeyres indices, PLFB

y* and 
PLCH

y*, are well above the superlative indices, and the new 
maximum overlap annual fixed-base and chained Paasche 
indices, PPFB

y* and PPCH
y*, are well below the superlative 

indices. Our five best indices are the fixed-base Fisher and 
Törnqvist–Theil indices and the multilateral GEKS, CCDI, 
and Predicted Share Price Similarity-linked indices. These 
five indices ended up at 1.2044, 1.2031, 1.2056, 1.2028, and 
1.2053. The average of these five final values is 1.2048. The 
average of the five final values for the same indices listed in 
Table 9.10 is 1.2032. Thus, the differences between our best 
maximum overlap indices listed in Table 9.12 and the coun-
terpart indices listed in Table 9.10 that used carry-forward 
prices are not large for our empirical example. The down-
ward bias resulting from the use of carry-forward prices 
over the sample period is only about 0.16 percentage points. 
However, this bias is not negligible and can be avoided by 
using bilateral maximum overlap indices.

We conclude this section on annual indices by looking at 
some approximations to the “true” Mudgett Stone indices 
PLFB

y*, PPFB
y*, PFFB

y*, PGEKS
y*, and PS

y* that are listed in Table 
9.12. In Section 3, year-over-year monthly indices were com-
puted using bilateral maximum overlap indices as building 
blocks. In particular, the fixed-base Laspeyres, Paasche, 
and Fisher indices, PLFB

y,m*, PPFB
y,m,* and PFFB

y,m*, were com-
puted along with the maximum overlap GEKS index and 

the predicted share similarity-linked indices, PGEKS
y,m* and 

PS
y,m*. Some statistical agencies form annual indices by tak-

ing equally weighted averages of their month-to-month indi-
ces. In the previous section, we saw that the true Mudgett 
Stone annual Laspeyres index (using carry-forward prices 
for missing prices) could be computed as a share-weighted 
average of the monthly year-over-year indices. It is of inter-
est to see how taking simple equally weighted averages of 
the monthly indices PLFB

y,m*, PPFB
y,m*, PFFB

y,m*, PGEKS
y,m*, and 

PS
y,m* can approximate the “true” Mudgett Stone indices 

PLFB
y*, PPFB

y*, PFFB
y*, PGEKS

y*, and PS
y*. Thus, the following 

approximate annual indices PLFBA
y*, PPFBA

y*, PFFBA
y*, PGEKSA

y*, 
and PSA

y* for y = 1,. . .,Y are defined as follows:

 PLFBA
y* ≡ (1/M)Σm=1

M PLFB
y,m*; (80)

 PPFBA
y* ≡ (1/M)Σm=1

M PPFB
y,m*; (81)

 PFFBA
y* ≡ (1/M)Σm=1

M PFFB
y,m*; (82)

 PGEKSA
y* ≡ (1/M)Σm=1

M PGEKS
y,m*; (83)

 PSA
y* ≡ (1/M)Σm=1

M PS
y,m*. (84)

The five “true” annual indices PLFB
y*, PPFB

y*, PFFB
y*, PGEKS

y*, 
and PS

y* and their five approximations PLFBA
y*, PPFBA

y*, PFF-

BA
y*, PGEKSA

y*, and PSA
y* evaluated using our Israeli data are 

listed in Table 9.13.
Figure 9.4 shows a plot of the above 10 indices.
As usual, the two fixed-base Laspeyres indices are well 

above the superlative indices and the two fixed-base Paasche  
indices are well below the superlative indices. What is inter-
esting is that the approximate Laspeyres indices PLFBA

y* lie 
well above their “true” counterparts PLFB

y*. Moreover, there 
are some substantial differences in the average values for the 

Table 9.12 Alternative Annual Mudgett Stone Indices Using Maximum Overlap Bilateral Indices
Year y PLFB

y* PPFB
y* PLCH

y* PPCH
y* PFFB

y* PFCH
y* PTFB

y* PTCH
y* PGEKS

y* PCCDI
y* PS

y*

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.1373 1.0611 1.1373 1.0611 1.0986 1.0986 1.0921 1.0921 1.0964 1.0930 1.0986
3 1.1273 1.0750 1.1545 1.0468 1.1009 1.0994 1.0986 1.0929 1.0987 1.0958 1.0994
4 1.1919 1.1407 1.2419 1.0985 1.1660 1.1680 1.1633 1.1609 1.1683 1.1650 1.1680
5 1.2253 1.1565 1.2848 1.0962 1.1904 1.1868 1.1876 1.1792 1.1916 1.1881 1.1947
6 1.2344 1.1752 1.3194 1.0973 1.2044 1.2032 1.2031 1.1961 1.2056 1.2028 1.2053
Mean 1.1527 1.1014 1.1897 1.0666 1.1267 1.1260 1.1241 1.1202 1.1268 1.1242 1.1277

Table 9.13 Annual Mudgett Stone Indices Using Maximum Overlap Bilateral Indices and Their Year-over-Year 
Simple Approximations
Year y PLFBA

y* PLFB
y* PPFBA

y* PPFB
y* PFFBA

y* PFFB
y* PGEKSA

y* PGEKS
y* PSA

y* PS
y*

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.1053 1.1373 1.0538 1.0611 1.0789 1.0986 1.0785 1.0964 1.0789 1.0986
3 1.1141 1.1273 1.0706 1.0750 1.0920 1.1009 1.0902 1.0987 1.0896 1.0994
4 1.1802 1.1919 1.1438 1.1407 1.1617 1.1660 1.1612 1.1683 1.1614 1.1680
5 1.2012 1.2253 1.1520 1.1565 1.1761 1.1904 1.1785 1.1916 1.1788 1.1947
6 1.2279 1.2344 1.1817 1.1752 1.2045 1.2044 1.2040 1.2056 1.2014 1.2053
Mean 1.1381 1.1527 1.1003 1.1014 1.1189 1.1267 1.1187 1.1268 1.1184 1.1277
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“true” superlative indices and their approximations. The 
average for the true fixed-base Fisher annual indices PFFB

y* is 
1.1267, which is well above the average for the approximate 
fixed-base Fisher indices PFFBA

y* of 1.1189. The average for 
the true similarity-linked Fisher indices PS

y* is 1.1277, which 
is well above the average for the approximate similarity-
linked Fisher indices PSA

y* of 1.1184. The average for the true 
GEKS annual indices PGEKS

y* is 1.1268, which is also above 
the average for the GEKS approximate indices PGEKSA

y* of 
1.1187.

Our conclusions regarding the construction of annual 
indices at this point are as follows:

• The use of the Laspeyres and Paasche Mudgett Stone 
indices should be avoided. The fixed-base and chained 
Laspeyres indices tend to lie well above the clustered 
superlative indices, while the fixed-base and chained 
Paasche indices tend to lie well below the clustered super-
lative indices.

• The amount of chain drift in the annual Fisher and Törn-
qvist–Theil indices was small for our empirical example. 
However, if one used the similarity-linked annual Mud-
gett Stone indices, there is no possibility of any chain 
drift.

• The Mudgett Stone fixed-base Fisher and Törnqvist–Theil 
indices and the GEKS and predicted share similarity- 
linked indices are all fairly close to each other in the present 
context where we are calculating annual indices.

• The use of carry-forward prices will tend to lead to 
annual indices which are biased downward if there is gen-
eral inflation and so in order to avoid this potential bias, 
it is better to use the indices that use maximum overlap 
superlative bilateral indices as their basic building blocks. 
Thus, the maximum overlap annual fixed-base Fisher and 
fixed-base Törnqvist–Theil, GEKS, and predicted share 
similarity-linked indices, PFFB

y,*, PTFB
y*, PGEKS

y*, and PS
y*, 

emerge as our “best” choices for Mudgett Stone annual 
indices.

• Approximating “true” Mudgett Stone indices by tak-
ing a simple average of the year-over-year monthly indi-
ces discussed in Sections 2 and 3 can lead to substantial 
approximation errors. For our empirical example, the 

approximation error using the Laspeyres formula was 
substantial.

In the following sections, we turn our attention to month-to-
month price indices.

6. Month-to-Month Indices using 
Carry-Forward Prices
Some new notation is required when constructing month-to-
month indices for seasonal goods and services. Denote the 
quantity purchased of product n in month t as qt,n, where t 
= 1,2,. . .,T, where T = MY, where M denotes the number of 
months for the data set under consideration and Y denotes 
the number of years of seasonal product data. Thus t is now 
a monthly time indicator which runs from 1 to T. As usual, 
if no units of product n are purchased in month t, qt,n = 0. 
If product n is purchased in month t, then denote the cor-
responding unit value price for this product by pt,n > 0 for n = 
1,. . .,N and t = 1,. . .,T. In this section, if product n is missing 
in month t, then pt,n is set equal to the most recent previous 
month price for product n; that is, in this section, we replace 
missing prices by month-to-month carry-forward prices. If 
product n is missing in month 1, then p1,n is set equal to the 
price of product n in the next month when the product is sold; 
that is, in this case, we use a month-to-month carry-backward 
price for p1,n. In general, these carry-forward and carry-back-
ward prices will be substantially different from the carry-for-
ward and carry-backward prices which were used in Sections 
2 and 4. The frequency of imputed prices greatly increases 
when constructing price indices for strongly seasonal prod-
ucts. For our empirical example, there were 451 month-to-
month carry-forward or carry-backward prices where the 
maximum number of available products over the months in 
our sample was 1008 = 72 months × 14 fresh fruit products. 
Tables A.23 and A.24 in the annex list the price and quantity 
data for fresh fruit purchased by households in Israel for the 
72 months in the period 2012–2017. The sample probability 
that a price listed in Table A.23 is an imputed price is 0.447 = 
451/1008. Thus, the problem of missing prices can be a very big 
problem in the seasonal product context.

In this section, we will set up the algebra for comput-
ing fixed-base and chained Laspeyres, Paasche, and Fisher 
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Figure 9.4 Annual Mudgett Stone Indices Using Maximum Overlap Bilateral Indices and Their Simple Approximations
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month-to-month indices using carry-forward/carry-back-
ward prices for unavailable products. The monthly price 
and quantity variables, pt,n and qt,n for product n in month 
t have been defined in the previous paragraph. Define the 
month t vectors of product prices and quantities, pt and qt 
as pt º [pt,1,.  .  .,pt,N] and qt ≡ [qt,1,.  .  .,qt,N]. For our empirical 
example, T = 72 and N = 14.

Denote the bilateral Laspeyres, Paasche, and Fisher price 
indices that compare the prices of month t relative to the 
prices of month r using carry-forward/carry-backward 
prices as PL(t/r), PP(t/r), and PF(t/r), respectively. These indi-
ces are defined as follows:

 PL(t/r) ≡ pt·qr/pr·qr; r = 1,. . .,T; t = 1,. . .,T; (85)
 PP(t/r) ≡ pt·qt/pr·qt; r = 1,. . .,T; t = 1,. . .,T; (86)
 PF(t/r) ≡ [PL(t/r)PP(t/r)]1/2; r = 1,. . .,T; t = 1,. . .,T. (87)

The sequence of T fixed-base Laspeyres indices using carry-
forward prices, PLFB

t, is PL(1/1), PL(2/1), .  .  ., PL(T/1). The 
sequence of T fixed-base Paasche indices using carry-for-
ward prices, PPFB

t, is PP(1/1), PP(2/1), .  .  ., PP(T/1) and the 
sequence of T fixed-base Fisher indices using carry-forward 
prices, PFFB

t, is PF(1/1), PF(2/1), . . ., PF(T/1). We use the data 
listed in Tables A.23 and A.24 in the annex to calculate these 
indices for our Israeli data set. These indices are listed in 
Table 9.15.

It should be noted that the month-to-month indices 
defined by (85)–(87) are not very reliable for our empirical 
example. Here is a list of the number of seasonal products 
that are actually available in months 1–12: 7, 8, 8, 7, 9, 10, 
8, 7, 7, 10, 9, and 7. The maximum number of products is 14. 
Thus, for 5 out of the first 12 months, only one half of the 
seasonal fruits are available. When we look at matches for 
the products that are available in both month 1 and month m 
= 1,. . .,12, we find that the number of product matches is 7, 
7, 7, 6, 5, 5, 3, 3, 4, 7, 7, and 7. We cannot expect any bilateral 
index number to be very reliable if the number of matched 
products is small.

Instead of choosing month 1 to be the fixed-base, we could 
choose any other month as the fixed-base. The resulting 
indices are called “star” indices. The 12 fixed-base Fisher 
star indices using months 1–12 as the base month are listed 
in Table A.25 of the annex and are plotted in Figure 9.5. 
These indices have been normalized to equal 1 in month 1.

A number of points emerge from the study of Figure 9.5:

• The seasonal fluctuations in prices are enormous;
• The choice of a base period matters;
• Any monthly index number is unlikely to be very reliable 

for our particular data set.

The problems associated with the reliability of month-to-
month indices of strongly seasonal products are much bigger 
than the problem of finding reliable year-over-year monthly 
indices. As was seen in the previous sections, our best year-
over-year monthly indices well behaved and approximated 
each other fairly well. This is not the case for month-to-
month indices.

The month-to-month chained Laspeyres, Paasche, and 
Fisher indices using carry-forward prices for month 1 is 
defined as unity:

 PLCH
1 ≡ 1; PPCH

1 ≡ 1; PFCH
1 ≡ 1. (88)

For months following month 1, these chained indices for 
month t are calculated by cumulating the corresponding 
successive month-to-month links using definitions (85)–(88); 
that is, we have the following definitions for PLCH

t, PPCH
t, and 

PFCH
t:

 PLCH
t ≡ PLCH

t–1 PL(t/(t–1)); t = 2,3,. . .,T; (89)
 PPCH

t ≡ PPCH
t–1 PP(t/(t–1)); t = 2,3,. . .,T; (90)

 PFCH
t ≡ PFCH

t–1 PF(t/(t–1)); t = 2,3,. . .,T. (91)

The month-to-month GEKS price levels using carry-forward 
prices, pGEKS

t, for each month t is defined as the geometric 
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Figure 9.5 Fisher Star Indices Using Months 1–12 as the Base Month Using Carry–Forward Prices
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mean of the separate indices we obtain by using each month 
as the base year:

 pGEKS
t ≡ [∏r=1

T PF(t/r)]1/T; t = 1,2,. . .,T, (92)

where PF(t/r) is defined by (87). The month-to-month GEKS 
price indices PGEKS

t are obtained by normalizing the above 
price levels so that the month 1 index is equal to 1. Thus, we 
have the following definitions for the GEKS month-to-month 
index using carry-forward prices for month t:

 PGEKS
t ≡ pGEKS

t/pGEKS
1; t = 1,2,. . .,T. (93)

The month-to-month GEKS indices using carry-forward 
prices along with the chained month-to-month Laspeyres, 
Paasche, and Fisher indices for our Israeli data are listed in 
Table 9.15.

The final month-to-month index that we define in this sec-
tion is the predicted share similarity-linked index, PS

t. The 
month t, product n actual expenditure share st,n is defined as 
follows:

 st,n ≡ pt,nqt,n/p
t·qt; t = 1,. . .,T; n = 1,. . .,N. (94)

The prediction for this share st,n using the price of product 
n in month r, pr,n, and the actual quantity of product n in 
month t is the predicted share sr,t,n ≡ pr,nqt,n/p

r·qt for n = 1,. . .,N, 
r = 1,. . .,T, and t = 1,. . .,T. The new measure of month-to-
month predicted share price dissimilarity between the prices 
of months r and t, ΔPS(pr,pt,qr,qt), is defined as follows:

ΔPS(pr,pt,qr,qt) ≡ Σn=1
N [st,n – sr,t,n]

2 + Σn=1
N [sr,n – st,r,n]

2;  
 r = 1,. . .,T; t = 1,. . .,T. (95)

The entire set of predicted share dissimilarity measures for 
our empirical example is a 72 by 72 element (symmetric) 
matrix. Table 9.14 lists the first 12 rows and columns of the 
matrix of the bilateral measures of annual predicted share 
price dissimilarity for our empirical example.

The set of real-time links which minimize the above 
dissimilarity measures for the first 12 observations are as 
follows:

11 – 12
   |
1 – 2 – 5 – 6 – 7 – 8 – 9
|   |
3 – 4 10

It can be seen that there are substantial differences in the 
measures of relative price dissimilarity across pairs of 
observations. If any measure that is not on the main diago-
nal of the matrix of dissimilarity measures is equal to zero, 
then prices are proportional for the corresponding pair of 
months. It can be seen that for months 11 and 12, the dis-
similarity measure is 0.0001 so that prices are “almost” pro-
portional to each other for that pair of months.

The real-time month-to-month predicted share indi-
ces for months 1 to 12 are defined as follows: PS

1 ≡ 1; and 
PS

2 ≡ PF(2/1), where the bilateral Fisher indices PF(t/r) 
are defined by (87). PS

3 ≡ PF(3/1)PS
1; PS

4 ≡ PF(4/3)PS
3; PS

5 ≡ 
PF(5/2)PS

2; PS
6 ≡ PF(6/5)PS

5; PS
7 ≡ PF(7/6)PS

6; PS
8 ≡ PF(8/7)PS

7; 
PS

9 ≡ PF(9/8)PS
8; PS

10 ≡ PF(10/7)PS
7; and PS

11 ≡ PF(11/1)PS
1; PS

12 
≡ PF(12/11)PS

11.42

The predicted share indices (using carry-forward prices) 
PS

t along with the other seven indices defined in this section 
are listed in Table 9.15.

Just an observation about Table 9.15: All the indices listed 
in the table are indicated with period 1 = 1, and the mean in 
the last row is simply the mean value of the index series and 
is not the average monthly rate of change. For instance, PLFB 
ends on 1.17122 in period 72 and PPFB ends on 1.17533. These 

42 The optimal real-time bilateral Fisher index links for the next 12 months 
are as follows: 13/12, 14/13, 15/5, 16/7, 17/6, 18/17, 191/8, 20/18, 21/11, 22/12, 
23/12, and 24/23. The optimal links are usually to an adjacent month or to 
the same (or almost the same) month in a previous year. Thus, the bilat-
eral links for the relative price similarity-linked indices are a mixture of 
chain links and year-over-year links (or almost year-over-year links).

Table 9.14 Month-to-Month Predicted Share Measures of Price Dissimilarity Using Carry-Forward Prices
r, t 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.0008 0.0015 0.0011 0.0020 0.0076 0.0086 0.0164 0.0181 0.0126 0.0022 0.0022
2 0.0008 0 0.0028 0.0018 0.0020 0.0070 0.0090 0.0180 0.0185 0.0110 0.0054 0.0074
3 0.0015 0.0028 0 0.0004 0.0043 0.0088 0.0122 0.0252 0.0208 0.0122 0.0057 0.0069
4 0.0011 0.0018 0.0004 0 0.0023 0.0075 0.0107 0.0215 0.0209 0.0119 0.0063 0.0073
5 0.0020 0.0020 0.0043 0.0023 0 0.0038 0.0083 0.0177 0.0241 0.0130 0.0055 0.0053
6 0.0076 0.0070 0.0088 0.0075 0.0038 0 0.0028 0.0094 0.0142 0.0076 0.0049 0.0056
7 0.0086 0.0090 0.0122 0.0107 0.0083 0.0028 0 0.0028 0.0049 0.0015 0.0028 0.0037
8 0.0164 0.0180 0.0252 0.0215 0.0177 0.0094 0.0028 0 0.0035 0.0045 0.0102 0.0122
9 0.0181 0.0185 0.0208 0.0209 0.0241 0.0142 0.0049 0.0035 0 0.0039 0.0073 0.0086

10 0.0126 0.0110 0.0122 0.0119 0.0130 0.0076 0.0015 0.0045 0.0039 0 0.0039 0.0054
11 0.0022 0.0054 0.0057 0.0063 0.0055 0.0049 0.0028 0.0102 0.0073 0.0039 0 0.0001
12 0.0022 0.0074 0.0069 0.0073 0.0053 0.0056 0.0037 0.0122 0.0086 0.0054 0.0001 0



274

CONSUMER PRICE INDEX MANUAL

Table 9.15 Alternative Month-to-Month Price Indices Using Carry-Forward Prices
t PLFB

t PLCH
t PPFB

t PPCH
t PFCH

t PFFB
t PGEKS

t PS
t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.07104 1.07104 1.04247 1.04247 1.05666 1.05666 1.04029 1.05666
3 1.12812 1.18503 1.14757 1.14754 1.16613 1.13780 1.11189 1.13780
4 1.14886 1.19038 1.14564 1.14800 1.16900 1.14725 1.11046 1.14060
5 1.18497 1.19577 1.06165 1.14848 1.17189 1.12162 1.17620 1.13804
6 1.13858 1.05378 0.88167 0.98633 1.01949 1.00192 1.01400 0.99005
7 1.21631 1.08372 0.88295 0.97245 1.02658 1.03631 1.06940 0.99693
8 1.42856 1.13888 0.88040 0.99986 1.06711 1.12148 1.17789 1.03629
9 1.30179 1.08934 0.88833 0.91995 1.00107 1.07537 1.08136 0.97215
10 1.23076 1.11710 1.00892 0.92437 1.01617 1.11433 1.10818 1.00552
11 1.03294 1.03012 1.02018 0.79126 0.90282 1.02654 0.99894 1.02654
12 0.97081 0.97490 0.98105 0.74151 0.85023 0.97592 0.94974 0.96674
13 0.99746 0.99246 0.99881 0.75995 0.86846 0.99813 0.96193 0.98747
14 1.04362 1.03468 1.11663 0.83848 0.93143 1.07951 1.04603 1.05907
15 1.08902 0.98580 1.05160 0.75233 0.86119 1.07015 1.01127 0.99942
16 1.16801 1.06661 1.12797 0.81803 0.93409 1.14781 1.07162 0.96551
17 1.22562 1.11251 0.95378 0.88975 0.99492 1.08119 1.15252 1.08213
18 1.31761 1.16525 1.06669 1.01038 1.08505 1.18553 1.25997 1.18016
19 1.42276 1.24559 1.01184 1.05267 1.14508 1.19983 1.30647 1.24545
20 1.43404 1.30259 1.02953 1.07895 1.18551 1.21507 1.31543 1.27774
21 1.25621 1.24446 1.03156 0.97653 1.10238 1.13836 1.18427 1.20512
22 1.20769 1.27816 1.20852 0.96247 1.10914 1.20811 1.17854 1.19813
23 1.07109 1.15892 1.06924 0.85334 0.99446 1.07017 1.06410 1.05901
24 1.05248 1.13311 1.04479 0.83222 0.97108 1.04863 1.04214 1.03411
25 1.03276 1.10994 1.01894 0.81540 0.95133 1.02583 1.02120 1.01308
26 1.07388 1.15260 1.19015 0.92508 1.03259 1.13052 1.13451 1.10356
27 1.14208 1.11185 1.14434 0.86585 0.98117 1.14321 1.12441 1.11025
28 1.26758 1.19400 1.21955 0.93474 1.05645 1.24333 1.18939 1.24205
29 1.34863 1.26883 1.10795 0.98096 1.11565 1.22238 1.28808 1.26070
30 1.40760 1.11401 0.99362 0.82832 0.96060 1.18263 1.19633 1.04240
31 1.58269 1.18055 0.92020 0.83100 0.99047 1.20681 1.24132 1.07482
32 1.65416 1.29680 1.02471 0.89232 1.07571 1.30193 1.33663 1.22615
33 1.41549 1.24967 1.13016 0.81043 1.00637 1.26481 1.25566 1.14710
34 1.33751 1.23520 1.26916 0.77779 0.98017 1.30289 1.22736 1.11724
35 1.08703 1.09589 1.08361 0.63866 0.83660 1.08532 1.06450 1.06552
36 1.02305 1.03395 1.01285 0.59973 0.78746 1.01793 1.00769 1.00292
37 1.01159 1.02930 1.00992 0.59594 0.78320 1.01076 1.00590 1.01076
38 1.02156 1.03700 1.12598 0.64186 0.81584 1.07250 1.08243 1.04927
39 1.10562 1.04371 1.13885 0.63579 0.81461 1.12211 1.10462 1.09715
40 1.37534 1.24541 1.35528 0.75386 0.96895 1.36527 1.28859 1.18982
41 1.62925 1.43926 1.34510 0.95365 1.17156 1.48037 1.56601 1.35919
42 1.68676 1.35068 1.14155 0.78643 1.03064 1.38763 1.43064 1.30049
43 1.86492 1.22188 0.92485 0.67190 0.90608 1.31331 1.32798 1.09659
44 1.67566 1.18164 0.87283 0.63377 0.86538 1.20937 1.25786 1.04733
45 1.45074 1.22157 1.15154 0.62550 0.87413 1.29251 1.28446 1.20540
46 1.39276 1.24584 1.23105 0.62949 0.88558 1.30941 1.29239 1.36846
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are pretty close, so the average monthly rate of change of 
these two is also very close, 0. 223 percent and 0.228 percent, 
respectively, while the means of the series are quite differ-
ent. I don’t know what this mean of the index series tells 
you other than this is the average value. It is calculated in 
the same way in many of the other tables. Maybe it tells you 
something, and not much to do about it now, so maybe just 
leave as is.

The Laspeyres, Paasche, and Fisher fixed-base indices 
end up at much the same level and the similarity-linked indi-
ces end up at a bit higher level. However, the seasonal fluctu-
ations in PS

t are much smaller. The three chained indices are 
all subject to a large amount of downward chain drift. This 
is due to the fact that the strongly seasonal products come 
into season at relatively high prices and then trend down to 
relatively low prices at the end of their seasonal availability. 
They behave in the same manner as fashion goods, which 
are also subject to tremendous downward chain drift.43 The 
first two of our three indices (PFFB

t, PGEKS
t, and PS

t) have 
roughly the same mean but the similarity-linked index PS

t 

43 Note that the year-over-year monthly indices did not suffer from this 
tremendous downward chain drift. Thus, year-over-year indices work 
well for both strongly seasonal goods and services and fashion goods.

ends up well above PFFB
t and PGEKS

t for t = 72. The above six 
series are plotted in Figure 9.6.

It can be seen that our three best indices, PFFB
t, PGEKS

t and 
PS

t, are much closer to each other than four of the other, 
five indices that suffer from substitution bias or chain drift 
bias.44

The use of carry-forward prices in the context of an ele-
mentary index category that includes many strongly sea-
sonal products can lead to a large number of imputed prices, 
which in turn can lead to indices which are very different 
from their matched product counterpart indices. None of 
the above indices can be regarded as being very reliable 
since the proportion of carry-forward prices is so large. In 
the following section, we will compute the maximum over-
lap counterpart indices to the eight indices listed above. 
This will cure any carry-forward/carry-backward bias that 
probably is present in the above eight indices.

44 The chained Laspeyres index ends up reasonably close to the three 
superlative indices. It appears that the upward substitution bias (which a 
Laspeyres index is subject to) approximately offsets the downward chain 
drift bias that the chained indices are subject to in the present context 
when beginning of season prices are generally higher than the corre-
sponding end-of-season prices.

t PLFB
t PLCH

t PPFB
t PPCH

t PFCH
t PFFB

t PGEKS
t PS

t

47 1.24213 1.17629 1.24786 0.56406 0.81455 1.24499 1.18302 1.25870
48 1.12808 1.07490 1.12696 0.50559 0.73719 1.12752 1.09100 1.12850
49 1.12212 1.07078 1.12896 0.50356 0.73431 1.12554 1.08518 1.12408
50 1.21916 1.16985 1.32416 0.58703 0.82869 1.27058 1.23697 1.24264
51 1.25881 1.09697 1.23041 0.52255 0.75712 1.24453 1.18846 0.99844
52 1.41954 1.21707 1.36379 0.58065 0.84065 1.39139 1.29862 1.10860
53 1.48016 1.26847 1.27100 0.68677 0.93335 1.37160 1.42021 1.30618
54 1.63803 1.18186 1.03243 0.58748 0.83326 1.30044 1.32237 1.09955
55 1.74314 1.30177 1.04150 0.64676 0.91757 1.34740 1.40911 1.21081
56 1.58174 1.37926 1.09335 0.65673 0.95174 1.31506 1.40016 1.33623
57 1.41498 1.40348 1.21309 0.63257 0.94223 1.31015 1.34033 1.39017
58 1.35851 1.39696 1.36991 0.61114 0.92398 1.36420 1.30895 1.36324
59 1.09904 1.14658 1.09780 0.48818 0.74815 1.09842 1.09469 1.08706
60 1.02215 1.06443 1.02087 0.45361 0.69487 1.02151 1.03615 1.00963
61 1.07410 1.12216 1.06543 0.47921 0.73331 1.06976 1.07690 1.06754
62 1.20643 1.28194 1.33332 0.57751 0.86042 1.26829 1.28266 1.24961
63 1.29331 1.23062 1.28941 0.53091 0.80830 1.29136 1.26451 1.12883
64 1.43622 1.29686 1.35392 0.55962 0.85191 1.39446 1.33515 1.17617
65 1.58284 1.41595 1.36272 0.64700 0.95714 1.46866 1.56457 1.32146
66 1.60835 1.17240 1.06355 0.51021 0.77341 1.30788 1.32005 1.11244
67 1.82150 1.18662 0.90346 0.49082 0.76316 1.28283 1.31651 1.09936
68 1.68998 1.21567 0.92494 0.49073 0.77237 1.25025 1.31291 1.10346
69 1.66533 1.22295 1.23161 0.48846 0.77289 1.43214 1.39315 1.26962
70 1.46701 1.24639 1.34549 0.47086 0.76608 1.40494 1.37485 1.46035
71 1.18124 1.09020 1.19949 0.37845 0.64233 1.19033 1.15473 1.19055
72 1.17122 1.08049 1.17533 0.37628 0.63763 1.17327 1.13682 1.18184
Mean 1.30070 1.17250 1.10940 0.74309 0.92385 1.19470 1.19600 1.13770
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7. Month-to-Month Indices Using 
Maximum Overlap Bilateral Indices 
as Building Blocks
The month-to-month maximum overlap indices that are 
defined in this section are analogues to the eight indices 
that were defined in the previous section. The difference is 
that the building block bilateral indices between periods 
r and t use only the prices and quantities that are actually 
available in periods r and t. As in the previous section, 
the price and quantity of product n purchased in month 
t is ptn and qtn, respectively. If there are no purchases of 
product n in period t, set ptn = qtn = 0. Thus any missing 
prices are set equal to zero in this section. As usual, the 
set of available products in period t is denoted by S(t) for  
t = 1,. . .,T.

Denote the maximum overlap bilateral Laspeyres, Paasche, 
and Fisher price indices that compare the prices of month t to 
the prices of month r as PL

*(t/r), PP
*(t/r), and PF

*(t/r), respec-
tively. These indices are defined as follows:

PL
*(t/r) ≡ Σn∈S(t)∩S(r) pt,nqr,n/Σn∈S(t)∩S(r) pr,nqr,n;  

 r = 1,. . .,T; t = 1,. . .,T; (96)
PP

*(t/r) ≡ Σn∈S(t)∩S(r) pt,nqt,n/Σn∈S(t)∩S(r) pr,nqt,n;  
 r = 1,. . .,T; t = 1,. . .,T; (97)

PF
*(t/r) ≡ [PL

*(t/r)PP
*(t/r)]1/2;  

 r = 1,. . .,T; t = 1,. . .,T. (98)

The sequence of T maximum overlap fixed-base Laspey-
res indices, PLFB

t*, is PL
*(1/1), PL

*(2/1), .  .  ., PL
*(T/1). The  

sequence of T maximum overlap fixed-base Paasche indi-
ces, PPFB

t*, is PP
*(1/1), PP

*(2/1), . . ., PP
*(T/1) and the sequence 

of T maximum overlap fixed-base Fisher indices, PFFB
t*, 

is PF
*(1/1), PF

*(2/1), .  .  ., PF
*(T/1). We use the data listed 

in Tables A.23 and A.24 in the annex to calculate these 
indices for our Israeli data set. These indices are listed in  
Table 9.17.

As in the previous section, instead of choosing month 
1 to be the fixed-base, we could choose any other month 
as the fixed-base. The 12 maximum overlap fixed-base 
Fisher star indices using months 1–12 as the base month 
are listed in Table A.26 of the annex and are plotted in 
Figure 9.7. These indices have been normalized to equal 
1 in month 1.

A comparison of Figures 9.5 and 9.7 shows that the use of 
maximum overlap fixed-base Fisher indices has led to alter-
native fixed-base indices which are very close to each other 
for the months of December, January, and February but 
have much larger seasonal fluctuations than their fixed-base 
Fisher index carry-forward counterparts for other months 
of the year. For these alternative fixed-base Fisher indices, 
the use of maximum overlap bilateral Fisher indices has led to 
index values in month 72 which are on average 2.68 percent-
age points above their carry-forward fixed-base Fisher index 
counterparts. Thus we have a rough estimate of the cumula-
tive amount of downward bias that the use of carry-forward 
prices induced for our empirical example over the six-year 
sample period.

The maximum overlap month-to-month chained Laspeyres, 
Paasche, and Fisher indices for month 1 is defined as unity:

 PLCH
1* ≡ 1; PPCH

1* ≡ 1; PFCH
1* ≡ 1. (99)

For months following month 1, these chained indices for 
month t are calculated by cumulating the corresponding 
successive month-to-month links using definitions (96)–(98); 
that is, we have the following definitions for PLCH

t*, PPCH
t*, 

and PFCH
t*:

 PLCH
t* ≡ PLCH

t–1* PL
*(t/(t–1)); t = 2,3,. . .,T; (100)

 PPCH
t* ≡ PPCH

t–1* PP
*(t/(t–1)); t = 2,3,. . .,T; (101)

 PFCH
t* ≡ PFCH

t–1* PF
*(t/(t–1)); t = 2,3,. . .,T. (102)

The maximum overlap month-to-month GEKS price level, 
pGEKS

t*, for each month t is defined as the geometric mean of 
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Figure 9.6 Alternative Month-to-Month Indices Using Carry-Forward Prices
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the separate maximum overlap indices we obtain by using 
each month as the base year:

 pGEKS
t* ≡ [∏r=1

T PF
*(t/r)]1/T; t = 1,2,. . .,T, (103)

where PF
*(t/r) is defined by (98). The maximum overlap 

month-to-month GEKS price indices PGEKS
t* are obtained  

by normalizing the above price levels so that the month 1 
index is equal to 1. Thus we have the following definition for 
the month t year-over-year maximum overlap GEKS index, 
PGEKS

t*:

 PGEKS
t* ≡ pGEKS

t*/pGEKS
1*; t = 1,2,. . .,T. (104)

The various month-to-month Laspeyres, Paasche, and 
Fisher fixed-base and chained indices as well as the GEKS 
index defined above in this section using maximum overlap 
bilateral indices as building blocks using our Israeli data are 
listed in Table 9.17.

The final month-to-month index that we define in this 
section is the predicted share similarity-linked index, PS

t*. 
Definitions (105) and (106) are the same as definitions (94) 

and (95) in the previous section, but in this section, the price 
of an unavailable product is set to 0. For convenience, we 
repeat these definitions. The month t, product n actual expen-
diture share, st,n, is defined as follows:

 st,n ≡ pt,nqt,n/p
t·qt; t = 1,. . .,T; n = 1,. . .,N. (105)

The prediction for this share st,n using the price of product 
n in month r, pr,n, and the actual quantity of product n in 
month t is the predicted share sr,t,n ≡ pr,nqt,n/p

r·qt for n = 1,. . .,N,  
r = 1,.  .  .,T, and t = 1,.  .  .,T. The new measure of predicted 
share price dissimilarity between the prices of months r and 
t, ΔPS(pr,pt,qr,qt), is defined as follows:

ΔPS(pr,pt,qr,qt) ≡ Σn=1
N [st,n – sr,t,n]

2 + Σn=1
N [sr,n – st,r,n]

2; 
 r = 1,. . .,T; t = 1,. . .,T. (106)

The entire set of predicted share dissimilarity measures for 
our empirical example is a 72 by 72 element (symmetric) 
matrix. Table 9.16 lists the first 12 rows and columns of the 
matrix of the bilateral measures of predicted share price dis-
similarity for our empirical example.

Table 9.16 Month-to-Month Predicted Share Measures of Price Dissimilarity Using Zeros for Missing Prices
r, t 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.1029 0.1075 0.1115 0.4470 0.5477 0.6367 0.6410 0.3713 0.1441 0.0157 0.0022
2 0.1029 0 0.0028 0.0122 0.2387 0.6201 0.6924 0.7014 0.4901 0.2498 0.1198 0.1051
3 0.1075 0.0028 0 0.0062 0.2353 0.6254 0.6967 0.7089 0.4909 0.2562 0.1261 0.1111
4 0.1115 0.0122 0.0062 0 0.2097 0.5398 0.6203 0.6285 0.4593 0.2865 0.1359 0.1073
5 0.4470 0.2387 0.2353 0.2097 0 0.0539 0.0912 0.1017 0.3485 0.2456 0.3900 0.3686
6 0.5477 0.6201 0.6254 0.5398 0.0539 0 0.0250 0.0795 0.2432 0.2248 0.3883 0.4635
7 0.6367 0.6924 0.6967 0.6203 0.0912 0.0250 0 0.0204 0.1716 0.1974 0.3854 0.5560
8 0.6410 0.7014 0.7089 0.6285 0.1017 0.0795 0.0204 0 0.1224 0.1472 0.3619 0.5584
9 0.3713 0.4901 0.4909 0.4593 0.3485 0.2432 0.1716 0.1224 0 0.0148 0.1963 0.3671
10 0.1441 0.2498 0.2562 0.2865 0.2456 0.2248 0.1974 0.1472 0.0148 0 0.0956 0.1429
11 0.0157 0.1198 0.1261 0.1359 0.3900 0.3883 0.3854 0.3619 0.1963 0.0956 0 0.0123
12 0.0022 0.1051 0.1111 0.1073 0.3686 0.4635 0.5560 0.5584 0.3671 0.1429 0.0123 0
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Figure 9.7 Maximum Overlap Fisher Star Indices Using Months 1-12 as the Base
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The set of real-time links that minimize the above dissim-
ilarity measures for the first 12 observations are as follows:

11
|
1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10
|
12

It can be seen that the new set of bilateral links is the set of 
links that generates chained Fisher indices for months 1 to 
10. However, months 11 and 12 are linked directly to month 
1. It can also be seen that the measures of price dissimilar-
ity in Table 9.16 are much larger than the corresponding 
measures in Table 9.14, which used artificial carry-forward/
carry-backward prices for the missing prices. It turns out 
that the set of bilateral links for the first 12 months basi-
cally determines the seasonal fluctuations for the similarity-
linked indices PS

t* for the remainder of the sample.45

45 The remainder of the real-time maximum overlap bilateral Fisher 
index links for the next 60 months are as follows: 13/12, 14/3, 15/2, 16/15, 
17/5, 18/6, 19/8, 20/8, 21/9, 22/11, 23/12 and 24/23, 25/24, 26/14, 27/15, 28/4, 
29/17, 30/18, 31/30, 32/19, 33/21, 34/11, 35/23, 36/23, 37/1, 38/26, 39/27, 
40/28, 41/29, 42/30, 43/31, 44/32, 45/21, 46/10, 47/11, 48/25, 49/48, 50/38, 
51/16, 52/51, 53/29, 54/30, 55/43, 56/20, 57/21, 58/35, 59/25, 60/59, 61/59, 
62/50, 63/2, 64/40, 65/41, 66/54, 67/43, 68/44, 69/9, 70/46, 71/22, and 72/49.

The predicted share indices (using maximum overlap 
bilateral Fisher indices as the basic building blocks) PS

t* 
along with the other seven indices defined in this section are 
listed in Table 9.17.

The maximum overlap fixed-base Laspeyres and Paas-
che indices, PLFB

t* and PPFB
t*, end up at much the same 

place (1.17122 and 1.17533) and have similar means (1.35950 
and 1.35160). The chained Laspeyres and Paasche indices, 
PLCH

t* and PPCH
t*, suffer from some downward chain drift 

and end up far apart at 1.11995 and 0.21988, respectively. 
The downward chain drift problem carries over to the 
maximum overlap chained Fisher index, PFCH

t*, which ends 
up at 0.49624. Our three best indices from the viewpoint 
of controlling substitution bias and chain drift bias, PFFB

t*, 
PGEKS

t*, and PS
t*, end up at 1.17327, 1.1895246, and 1.19115. 

respectively. The means of PFFB
t* and PGEKS

t* are similar at 
1.3552 and 1.3468. These means are far above the mean of 
the similarity-linked indices PS

t* which is 1.1892. It turns 

46 From Table 9.15, the carry-forward GEKS index ended up at 1.13682. 
Using maximum overlap bilateral Fisher indices, the resulting GEKS 
index ended up at 1.18952. Thus, the use of carry-forward prices led to a 
downward bias of 5.27 percentage points over the six-year sample period.

Table 9.17 Alternative Month-to-Month Price Indices Using Maximum Overlap Bilateral Indices as Building Blocks
t PLFB

t* PLCH
t* PPFB

t* PPCH
t* PFCH

t * PFFB
t* PGEKS

t* PS
t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.07104 1.07104 1.06104 1.06104 1.06603 1.06603 1.03802 1.06603
3 1.12812 1.18503 1.11303 1.16798 1.17647 1.12055 1.10386 1.17647
4 1.15044 1.19078 1.12373 1.16845 1.17956 1.13701 1.11167 1.17956
5 1.18406 1.19694 1.14104 1.16942 1.18310 1.16235 1.28331 1.18310
6 1.10502 1.03417 1.07887 0.97269 1.00296 1.09186 1.17550 1.00296
7 1.24566 1.06832 1.28386 0.95860 1.01198 1.26462 1.28536 1.01198
8 1.64472 1.13041 1.69981 0.98562 1.05554 1.67204 1.53539 1.05554
9 1.33555 1.05897 1.48835 0.90641 0.97973 1.40988 1.34806 0.97973

10 1.23076 1.08596 1.29420 0.90374 0.99067 1.26208 1.29133 0.99067
11 1.03294 0.96785 1.04925 0.77360 0.86529 1.04107 1.08720 1.04107
12 0.97081 0.90818 0.98105 0.72496 0.81141 0.97592 0.99061 0.97592
13 0.99746 0.92454 0.99881 0.74299 0.82881 0.99813 0.99017 0.99684
14 1.04362 0.96387 1.02824 0.76965 0.86130 1.03590 1.03346 1.17902
15 1.08902 0.91833 1.06632 0.69057 0.79635 1.07761 1.04121 1.08056
16 1.15867 0.99822 1.13743 0.75088 0.86576 1.14800 1.12905 1.17474
17 1.23204 1.07256 1.15330 0.78529 0.91776 1.19202 1.30850 1.10498
18 1.40150 1.12341 1.28409 0.82835 0.96466 1.34151 1.44174 1.30841
19 1.29310 1.21533 1.44276 0.86212 1.02360 1.36588 1.49357 1.18142
20 1.32299 1.27417 1.45909 0.88364 1.06109 1.38937 1.50199 1.23391
21 1.27093 1.19560 1.30112 0.81994 0.99011 1.28593 1.35277 1.09986
22 1.20769 1.24737 1.21638 0.79472 0.99564 1.21203 1.26983 1.23179
23 1.07109 1.10288 1.06924 0.70461 0.88153 1.07017 1.07993 1.06906
24 1.05248 1.07832 1.04479 0.68717 0.86081 1.04863 1.04214 1.04392
25 1.03276 1.05627 1.01894 0.67328 0.84331 1.02583 1.01037 1.02270
26 1.07388 1.09687 1.06790 0.69442 0.87275 1.07089 1.07080 1.22856
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t PLFB
t* PLCH

t* PPFB
t* PPCH

t* PFCH
t * PFFB

t* PGEKS
t* PS

t*

27 1.14208 1.05809 1.12088 0.64996 0.82929 1.13143 1.09977 1.17215
28 1.26148 1.14177 1.23415 0.70168 0.89507 1.24774 1.20934 1.25327
29 1.36612 1.26826 1.31684 0.76739 0.98654 1.34125 1.43467 1.22223
30 1.46661 1.11351 1.39075 0.63881 0.84340 1.42818 1.42150 1.15449
31 1.73296 1.18814 1.64024 0.65250 0.88049 1.68596 1.57446 1.20526
32 1.86733 1.30512 1.73601 0.70065 0.95626 1.80047 1.68844 1.16278
33 1.38675 1.24237 1.41926 0.63598 0.88889 1.40291 1.47063 1.18929
34 1.33751 1.21976 1.33703 0.61354 0.86509 1.33727 1.38167 1.31066
35 1.08703 1.06732 1.07810 0.50379 0.73329 1.08256 1.11771 1.07810
36 1.02305 1.00314 1.01285 0.47308 0.68889 1.01793 1.01873 1.01195
37 1.01159 0.99864 1.00992 0.47009 0.68516 1.01076 1.01965 1.01076
38 1.02156 1.00610 1.01478 0.47200 0.68912 1.01816 1.03899 1.16812
39 1.10562 1.01261 1.10047 0.46755 0.68807 1.10305 1.10616 1.17108
40 1.40435 1.21657 1.40366 0.55437 0.82124 1.40401 1.40571 1.39663
41 1.93372 1.52949 1.86189 0.70095 1.03542 1.89746 1.90004 1.50841
42 2.04948 1.43492 1.93935 0.57426 0.90775 1.99365 1.85555 1.37756
43 2.44964 1.26995 2.08106 0.48573 0.78540 2.25784 1.86789 1.22151
44 1.94826 1.22130 1.88870 0.45816 0.74803 1.91825 1.68235 1.05506
45 1.47755 1.27915 1.57473 0.46934 0.77483 1.52537 1.55868 1.22173
46 1.39276 1.30456 1.46928 0.47089 0.78377 1.43051 1.51589 1.19999
47 1.24213 1.18988 1.26300 0.42194 0.70856 1.25252 1.30463 1.26828
48 1.12808 1.08051 1.12696 0.37820 0.63926 1.12752 1.13747 1.13921
49 1.12212 1.07637 1.12896 0.37668 0.63675 1.12554 1.12370 1.13475
50 1.21916 1.17596 1.21377 0.40957 0.69400 1.21646 1.25767 1.38339
51 1.23969 1.09662 1.24530 0.36458 0.63230 1.24249 1.25967 1.29063
52 1.42259 1.21667 1.39905 0.40512 0.70206 1.41077 1.42183 1.43303
53 1.67018 1.29789 1.63196 0.43211 0.74889 1.65096 1.67706 1.34386
54 1.95352 1.20862 1.90595 0.36369 0.66299 1.92959 1.74172 1.25757
55 2.03052 1.35442 2.05315 0.40619 0.74173 2.04180 1.85986 1.34547
56 1.60294 1.44271 1.68914 0.41245 0.77140 1.64547 1.68088 1.30412
57 1.39502 1.47625 1.47791 0.41505 0.78276 1.43587 1.53684 1.26875
58 1.35851 1.46359 1.38700 0.39760 0.76284 1.37268 1.41013 1.34737
59 1.09904 1.17136 1.09780 0.31761 0.60994 1.09842 1.09276 1.09738
60 1.02215 1.08744 1.02087 0.29512 0.56650 1.02151 1.01005 1.01922
61 1.07410 1.14641 1.06543 0.31177 0.59784 1.06976 1.06802 1.07767
62 1.20643 1.30964 1.19934 0.34893 0.67600 1.20288 1.26692 1.39115
63 1.29331 1.25722 1.29424 0.32078 0.63505 1.29377 1.30348 1.32072
64 1.43515 1.32893 1.46351 0.33813 0.67033 1.44926 1.45723 1.39001
65 1.86123 1.52850 1.77723 0.38896 0.77106 1.81874 1.86177 1.52597
66 1.91700 1.26434 1.81516 0.30051 0.61640 1.86539 1.70997 1.25740
67 2.31683 1.28283 2.14817 0.28713 0.60691 2.23091 1.86260 1.22459
68 1.96840 1.31863 1.98236 0.28708 0.61526 1.97537 1.76427 1.11160
69 1.67463 1.32951 1.77584 0.28527 0.61585 1.72450 1.72233 1.27951
70 1.46701 1.35499 1.54608 0.27515 0.61059 1.50602 1.60516 1.27885
71 1.18124 1.13072 1.20127 0.22115 0.50006 1.19121 1.26341 1.23088
72 1.17122 1.11995 1.17533 0.21988 0.49624 1.17327 1.18952 1.19115
Mean 1.35950 1.17720 1.35160 0.59613 0.81450 1.35520 1.34680 1.18920
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out that the seasonal fluctuations in the maximum overlap 
fixed-base Fisher indices and the GEKS indices are very 
much larger than the seasonal fluctuations in the predicted 
share similarity-linked indices PS

t* as can be seen in Figure 
9.8.

The chained Paasche and Fisher indices suffer from a 
massive amount of downward chain drift. The remaining 
six indices end up in much the same place. However, the 
seasonal peaks in four of the remaining indices (the fixed-
base Laspeyres and Paasche indices, the fixed-base Fisher 
and the GEKS indices) are huge. The maximum overlap pre-
dicted share similarity-linked index PS

t* has the best axiom-
atic properties (no chain drift and little or no substitution 
bias) and it has limited seasonal fluctuations for our empiri-
cal example so it emerges as our best index. From Figure 9.8, 
it can be seen that the chained Maximum Overlap Laspeyres 
index PLCH

t* turns out to be fairly close to our similarity-
linked indices and thus for this empirical example, it pro-
vides an adequate approximation to our preferred indices. 
For our example, the downward chain drift bias in PLCH

t* 
just nicely counterbalances the upward substitution bias 
that is inherent in the Laspeyres formula.

Figure 9.8 also reveals another interesting property of our 
empirical example. For the months of December, January, 
and February, the three superlative indices, PFFB

t*, PGEKS
t,* 

and PS
t*, and the two fixed-base Laspeyres and Paasche indi-

ces, PLFB
t* and PPFB

t*, all exhibit similar values. Thus these 
five indices do capture the overall trend in the prices of the 
seasonal products in our example.

The similarity-linked indices PS
t* perform the best in 

terms of reducing the size of the month-to-month seasonal 
fluctuations and they also have the best axiomatic prop-
erties in terms of being free from chain drift. However, a 
weakness associated with the use of these indices is that our 
real-time linking methodology means that the seasonal pat-
tern in these indices for the first year will basically deter-
mine the pattern of seasonality for the entire sample. This 
weakness can be overcome by using the first year or the first 
two years of data as “training data” for the linking meth-
odology. Instead of using real-time linking for say the first 
two years of data, use Robert Hill’s symmetric method for 

linking the months in the first two years.47 Then starting at 
month 1 of year 3, real-time similarity linking of the current 
month with a prior month could be used.

In the following two sections, we turn our attention to 
indices that are based only on price information for strongly 
seasonal products. Section 8 looks at alternative price indi-
ces that use the month-to-month carry-forward prices that 
were used in Section 6 while Section 9 constructs month-to-
month maximum overlap price indices using only price data.

8. Month-to-Month Unweighted 
Price Indices Using Carry-Forward 
Prices
For many categories of consumer spending, statistical agen-
cies will not have access to price and quantity (or expenditure) 
data pertaining to the category under consideration: only 
information on prices will be available. In this section, we 
will assume that carry-forward prices are used as estimates 
for missing prices and in the subsequent section, we will con-
sider price indices that do not use carry-forward prices.

For our empirical example, we will use the monthly price 
data that are listed in Table A.23 in the annex. The price 
data in that table include month-to-month carry-forward/
carry-backward prices.

As usual, define the period t price for product n as pt,n for 
t = 1,. . .,T and n = 1,. . .,N. Define the month t price vector 
as pt ≡ [pt,1,pt,2,. . .,pt,n] for t = 1,. . .,T.

Price indices for a category of products that depend only 
on prices are called elementary price indices. The three most 
commonly used elementary indices that measure the price 
level of month t relative to month r are the Dutot (1738), 
Carli (1764), and Jevons (1865) indices defined by (107)–(109):

PD(t/r) ≡ (1/N)Σn=1
N pt,n/(1/N)Σn=1

N pr,n;  
 r = 1,. . .,T; t = 1,. . .,T; (107)

47 See Hill (1999a) (1999b) (2001) (2004).
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Figure 9.8 Alternative Maximum Overlap Month-to-Month Price Indices
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PC(t/r) ≡ (1/N)Σn=1
N pt,n/pr,n; r = 1,. . .,T;  

 t = 1,. . .,T; (108)

PJ(t/r) ≡ (∏n=1
N pt,n)

1/N/(∏n=1
N pr,n)

1/N r = 1,. . .,T; t = 1,. . .,T;
 = (∏n=1

N pt,n/pr,n)
1/N. (109)

Thus, the Dutot bilateral price index between the prices of 
month t relative to the prices of month r is equal to the arith-
metic mean of the month t prices divided by the arithmetic 
mean of the month r prices; the Carli bilateral price index 
is equal to the arithmetic mean of the month t relative to 
month r price ratios pt,n/pr,n and the Jevons bilateral index is 
equal to the geometric mean of the month t prices divided 
by the geometric mean of the month r prices, which in turn 
is equal to the geometric mean of the month t relative to 
month r price ratios pt,n/pr,n.

The sequence of T fixed-base Dutot indices using carry-
forward prices, PD

t, is PD(1/1), PD(2/1), .  .  ., PD(T/1). The 
sequence of T fixed-base Carli indices using carry-forward 
prices, PCFB

t, is PC(1/1), PC(2/1), . . ., PC(T/1), and the sequence 
of T fixed-base Jevons indices using carry-forward prices, PJ

t, 
is PJ(1/1), PJ(2/1), . . ., PJ(T/1). We use the data listed in Table 
A.23 in the annex to calculate these indices for our Israeli 
data set. These indices are listed in Table 9.18.

The month-to-month chained Carli index using carry-for-
ward prices for month 1 is defined as unity:

 PCCH
1 ≡ 1. (110)

For months following month 1, the chained Carli indices 
are calculated by cumulating the corresponding successive 
month-to-month links using definition (108); that is, we have 
the following definition for PCCH

t:

 PCCH
t ≡ PCCH

t–1PC(t/(t-1)); t = 2,3,. . .,T. (111)

It is easy to show that the chained Dutot and Jevons indi-
ces are equal to their fixed-base counterpart indices when 
there are no missing prices, as is the case in this section. This 
explains why we labeled the fixed-base Dutot and Jevons 
indices for month t as PD

t and PJ
t instead of PDFB

t and PJFB
t 

or PDCH
t and PJCH

t: When there are no missing prices, PDFB
t = 

PDCH
t ≡ PD

t and PJFB
t = PJCH

t ≡ PJ
t. The chained Carli indices 

PCCH
t are also listed in Table 9.18.

The problem with the chained Carli indices is that they 
do not satisfy the time reversal test; that is, we have the fol-
lowing inequality:

 PC(2/1)PC(1/2) ≥ 1. (112)

The inequality in (112) will be strict unless the prices in 
month 1 are proportional to the prices in month 2. Thus, 
the Carli index is subject to some upward bias whenever the 
base period is changed.

The problem with the Dutot index is that it is not invari-
ant to changes in the units of measurement. This makes use 
of the Dutot index problematic.48

48 One might try to eliminate the problem of a lack of invariance of the 
Dutot index to changes in the units of measurement by using normalized 

Table 9.18 The Jevons, Dutot, Fixed-Base, and 
Chained Carli Indices Using Carry-Forward Prices, the 
Maximum Overlap GEKS Index, and the Maximum 
Overlap Similarity-Linked Index
t PJ

t PD
t PCFB

t PCCH
t PGEKS

t * PS
t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.01888 1.01878 1.02003 1.02003 1.03802 1.06603
3 1.05599 1.06351 1.05935 1.05882 1.10386 1.17647
4 1.06514 1.06928 1.06866 1.06833 1.11167 1.17956
5 1.07792 1.07601 1.08327 1.08376 1.28331 1.18310
6 1.02557 1.03396 1.04024 1.03776 1.17550 1.00296
7 1.04735 1.05805 1.07226 1.06616 1.28536 1.01198
8 1.10182 1.11760 1.16524 1.13348 1.53539 1.05554
9 1.05621 1.05865 1.09245 1.09429 1.34806 0.97973

10 1.06156 1.06464 1.09046 1.10334 1.29133 0.99067
11 0.97955 0.98459 0.99489 1.02529 1.08720 1.04107
12 0.94967 0.96230 0.96136 0.99468 0.99061 0.97592
13 0.95821 0.97314 0.96927 1.00444 0.99017 0.99684
14 0.99804 1.04025 1.01816 1.05076 1.03346 1.17902
15 0.97844 0.98930 0.99075 1.03619 1.04121 1.08056
16 1.02347 1.03179 1.04208 1.08578 1.12905 1.17474
17 1.07370 1.08282 1.09925 1.14344 1.30850 1.10498
18 1.22714 1.35453 1.29257 1.34373 1.44174 1.30841
19 1.28602 1.46450 1.38169 1.41759 1.49357 1.18142
20 1.29322 1.46203 1.38325 1.42715 1.50199 1.23391
21 1.22418 1.38662 1.29066 1.36227 1.35277 1.09986
22 1.25629 1.42261 1.31927 1.40476 1.26983 1.23179
23 1.18656 1.36777 1.25147 1.32963 1.07993 1.06906
24 1.17082 1.36179 1.23601 1.31297 1.04214 1.04392
25 1.16260 1.36044 1.22894 1.30423 1.01037 1.02270
26 1.20522 1.43031 1.27490 1.36157 1.07080 1.22856
27 1.20074 1.39904 1.26447 1.36227 1.09977 1.17215
28 1.24473 1.43129 1.30773 1.41426 1.20934 1.25327
29 1.28659 1.39762 1.32394 1.47150 1.43467 1.22223
30 1.26504 1.38902 1.32241 1.46683 1.42150 1.15449
31 1.29298 1.44004 1.37273 1.50979 1.57446 1.20526
32 1.29515 1.36149 1.36210 1.53599 1.68844 1.16278
33 1.22631 1.28810 1.26650 1.46550 1.47063 1.18929
34 1.19160 1.21688 1.20932 1.43452 1.38167 1.31066
35 1.11357 1.15022 1.12376 1.35288 1.11771 1.07810
36 1.08118 1.12598 1.09222 1.31427 1.01873 1.01195
37 1.07156 1.12269 1.08250 1.30328 1.01965 1.01076
38 1.10322 1.17581 1.11907 1.34595 1.03899 1.16812
39 1.11574 1.16616 1.12620 1.36516 1.10616 1.17108
40 1.20195 1.23057 1.21958 1.48180 1.40571 1.39663
41 1.42570 1.63141 1.51539 1.83477 1.90004 1.50841
42 1.34350 1.42732 1.40515 1.76198 1.85555 1.37756
43 1.29980 1.39500 1.39812 1.72162 1.86789 1.22151
44 1.25314 1.34720 1.33798 1.66456 1.68235 1.05506

(Continued )



282

CONSUMER PRICE INDEX MANUAL

multilateral indices from the previous section that used 
bilateral maximum overlap Fisher indices as their basic 
building blocks, the GEKS, and predicted share similarity-
linked indices, PGEKS

t* and PS
t*.

Our “best” index from the previous section, the maxi-
mum overlap predicted share index, PS

t*, finished up at 
1.19115, which is close to where the maximum overlap 
GEKS index, PGEKS

t*, finished at 1.18952. We preferred PS
t* 

over PGEKS
t* because the similarity-linked index had better 

axiomatic properties and the seasonal fluctuations in PGEKS
t* 

were very large. The carry-forward Jevons index PJ
t per-

formed pretty well compared to PS
t*: PJ

t ended up at 1.19735 
(compared to 1.19115 for PS

72*) and the mean of PJ
t was 1.1981 

compared to the mean of PS
t*, which was 1.1892. The next 

best-performing unweighted index is the fixed-base Carli 
index which finished up at 1.23319 (mean was 1.2413), which 
is 4.2 percentage points above PS

72* = 1.19115. The Dutot 
index ended up at 1.29857, which is 10.7 percentage points 
above PS

72*. Finally, the chained Carli index, PCCH
t, exhibited 

tremendous upward chain drift, ending up at 1.85468, which 
is 66.4 percentage points above PS

72*. Figure 9.9 shows a plot 
of these indices.

It can be seen from Figure 9.9 that the Jevons index PJ
t 

approximates our “best” index PS
t* fairly well; the two 

indices end up in much the same place with PS
t*, and the 

indices are always close to each other for the months of 
December, January, and February. For mid-year months, 
PS

t* is generally below PJ
t. The Carli fixed-base and Dutot 

indices are in general close to each other and tend to lie 
above their Jevons index counterparts. The seasonal 
f luctuations in the GEKS and chained Carli indices are 
very large indeed. Finally, the substantial upward chain 
drift in the chained Carli index is evident by looking at 
Figure 9.9.

The Jevons index that is listed in Table 9.18 uses carry-
forward prices. In previous sections, we have seen that the 
use of carry-forward prices leads to a downward bias for our 
empirical example as compared to indices that do not use 
carry-forward prices. In the following section, we will com-
pute additional elementary indices that do not use quantity 
or expenditure weights, but instead of using carry-forward 
prices, we will use maximum overlap unweighted bilateral 
indices.

t PJ
t PD

t PCFB
t PCCH

t PGEKS
t * PS

t*

45 1.23276 1.31106 1.28143 1.65494 1.55868 1.22173
46 1.25742 1.32236 1.30070 1.69701 1.51589 1.19999
47 1.17922 1.24531 1.21036 1.59692 1.30463 1.26828
48 1.13279 1.21433 1.16173 1.53877 1.13747 1.13921
49 1.12548 1.21284 1.15338 1.52977 1.12370 1.13475
50 1.18213 1.29924 1.22050 1.61642 1.25767 1.38339
51 1.16087 1.24792 1.19460 1.59629 1.25967 1.29063
52 1.21285 1.30717 1.26221 1.67242 1.42183 1.43303
53 1.34489 1.45066 1.39368 1.87848 1.67706 1.34386
54 1.33983 1.45410 1.41573 1.89868 1.74172 1.25757
55 1.39688 1.50685 1.48163 1.98599 1.85986 1.34547
56 1.38893 1.48612 1.45195 1.98514 1.68088 1.30412
57 1.35399 1.44161 1.38760 1.95032 1.53684 1.26875
58 1.35824 1.44685 1.38897 1.95951 1.41013 1.34737
59 1.24006 1.34832 1.26886 1.79840 1.09276 1.09738
60 1.19193 1.30860 1.22095 1.73033 1.01005 1.01922
61 1.20749 1.32199 1.23448 1.75437 1.06802 1.07767
62 1.28133 1.42560 1.31699 1.87821 1.26692 1.39115
63 1.28275 1.38939 1.31091 1.89150 1.30348 1.32072
64 1.31298 1.40690 1.34676 1.94097 1.45723 1.39001
65 1.41872 1.50138 1.45670 2.10304 1.86177 1.52597
66 1.33997 1.43862 1.40790 2.01611 1.70997 1.25740
67 1.36710 1.49540 1.47694 2.07715 1.86260 1.22459
68 1.34716 1.46562 1.44058 2.05237 1.76427 1.11160
69 1.36463 1.47183 1.44090 2.08666 1.72233 1.27951
70 1.33366 1.42500 1.38455 2.04992 1.60516 1.27885
71 1.21783 1.31114 1.25511 1.88353 1.26341 1.23088
72 1.19735 1.29857 1.23319 1.85468 1.18952 1.19115
Mean 1.19810 1.28450 1.24130 1.51050 1.34680 1.18920

Table 9.18 (Continued)
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We cannot apply the economic approach to index number 
theory in the present context since the economic approach 
depends on the availability of price and quantity (or expen-
diture) data.

From the perspective of the test or axiomatic approach to 
index number theory when only price data are available, the 
Jevons index seems to be the best choice since it satisfies the 
most “reasonable” tests.49

Table 9.18 lists the Jevons, Dutot, fixed-base, and chained 
Carli indices using carry-forward prices along with our two 

prices; that is, prices divided by the price of each product at the beginning 
of the sample period. In this case, the normalized fixed-base Dutot index 
of prices in period t relative to prices in period 1 becomes PDN(t/1) ≡ (1/N)
Σn=1

N (ptn/p1n)/(1/N)Σn=1
N (p1n) = (1/N)Σn=1

N (ptn/p1n) = PCFB(t/1). Thus, the nor-
malized fixed-base Dutot index becomes the fixed-base Carli index.
49 For materials on the test approach to bilateral index number theory 
when only price information is available, see Eichhorn (1978; 152–160), 
Dalén (1992), and Diewert (1995; 5–17) (2021a).

Figure 9.9 Carry-Forward Jevons, Dutot, and Carli 
Indices and Maximum Overlap GEKS and Similarity-
Linked Indices
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Table 9.19 The Jevons, Dutot, Fixed-Base, and Chained Carli Indices Using Carry-Forward Prices and the 
Maximum Overlap Fixed-Base and Chained Jevons, Dutot, and Carli Indices
t PJ

t PD
t PCFB

t PCCH
t PJFB

t* PJCH
t* PDFB

t* PDCH
t* PCFB

t* PCCH
t*

1 1.00000 1.00000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.01888 1.01878 1.02003 1.02003 1.0381 1.0381 1.0484 1.0484 1.0401 1.0401
3 1.05599 1.06351 1.05935 1.05882 1.0816 1.1052 1.0944 1.1386 1.0847 1.1093
4 1.06514 1.06928 1.06866 1.06833 1.0986 1.1244 1.1131 1.1522 1.1024 1.1292
5 1.07792 1.07601 1.08327 1.08376 1.1350 1.1561 1.1655 1.1699 1.1431 1.1673
6 1.02557 1.03396 1.04024 1.03776 1.1352 1.0597 1.1666 1.0766 1.1458 1.0806
7 1.04735 1.05805 1.07226 1.06616 1.3194 1.1052 1.3589 1.1298 1.3359 1.1397
8 1.10182 1.11760 1.16524 1.13348 1.7883 1.2231 1.8620 1.2828 1.8289 1.2836
9 1.05621 1.05865 1.09245 1.09429 1.4071 1.1117 1.4128 1.1261 1.4194 1.1840
10 1.06156 1.06464 1.09046 1.10334 1.2798 1.0769 1.2758 1.0937 1.2862 1.1509
11 0.97955 0.98459 0.99489 1.02529 1.0719 0.9503 1.0493 0.9548 1.0811 1.0242
12 0.94967 0.96230 0.96136 0.99468 1.0075 0.8932 0.9919 0.9025 1.0141 0.9631
13 0.95821 0.97314 0.96927 1.00444 1.0257 0.9094 1.0199 0.9280 1.0299 0.9819
14 0.99804 1.04025 1.01816 1.05076 1.0609 0.9406 1.0653 0.9693 1.0651 1.0169

(Continued )

9. Month-to-Month Unweighted 
Price Indices Using Maximum 
Overlap Bilateral Indices
In this section, for our empirical example, we again use 
the monthly price data that are listed in Table A.23 in the 
annex. However, the carry-forward/carry-backward prices 
that are listed in italics in Table A.23 are set equal to 0 in 
this section.

The new period t price for product n (that is equal to 0 if 
the product is not available) is defined as pt,n for t = 1,. . .,T 
and n = 1,. . .,N. The month t price vector is defined as pt ≡ 
[pt,1,pt,2,. . .,pt,n] for t = 1,. . .,T. As usual, the set of prices n of 
products that are purchased in month t is defined as S(t) for 
t = 1,.  .  .,T. The number of products that are purchased in 
month t is N(t) ≤ N. The set of products that are purchased 
in both months r and t is the intersection set S(r)∩S(t) and 
the number of matched products that are purchased in both 
months r and t is N(r,t).

The bilateral maximum overlap Jevons, Dutot, and Carli 
indices that measure the level of prices in month t relative to 
the prices in month r, PJ

*(t/r), PD
*(t/r), and PC

*(t/r) are defined 
as follows:

PJ
*(t/r) ≡ [∏n∈S(r)∩S(t) (pt,n/pr,n)]

1/N(r,t); 
 r = 1,. . .,T; t = 1,. . .,T; (113)

PD
*(t/r) ≡ Σ n∈S(r)∩S(t) (pt,n/N(r,t))/ 
Σ n∈S(r)∩S(t) (pr,n/N(r,t))

= Σ n∈S(r)∩S(t) pt,n/S n∈S(r)∩S(t) pr,n; 
 r = 1,. . .,T; t = 1,. . .,T; (114)

PC
*(t/r) ≡ [1/N(r,t)] Σ n∈S(r)∩S(t) (pt,n/pr,n);  

 r = 1,. . .,T; t = 1,. . .,T. (115)

The maximum overlap Jevons index PJ
*(t/r) is equal to the 

geometric mean of the price ratios pt,n/pr,n of the products 
that are present in both months r and t. The maximum over-
lap Dutot index PD

*(t/r) is equal to the arithmetic mean of 
the month t prices pt,n divided by the arithmetic mean of 
the month r prices pr,n where both averages include only the 
products that are present in both months r and t. The maxi-
mum overlap Carli index PC

*(t/r) is equal to the arithmetic 
average of the price ratios pt,n/pr,n of the products that are 
present in both months r and t.

The sequence of monthly maximum overlap fixed-base 
Jevons indices, PJFB

t*, is PJ
*(2/1), PJ

*(2/1), . . ., PJ
*(T/1). The 

sequence of maximum overlap monthly fixed-base Dutot 
indices, PDFB

t*, is PD
*(1/1), PD

*(2/1), . . ., PD
*(T/1). Finally, the 

sequence of maximum overlap monthly fixed-base Carli 
indices, PCFB

t*, is PC
*(1/1), PC

*(2/1), . . ., PC
*(T/1). We use the 

data listed in Table A.23 in the annex (with the carry-for-
ward and carry-backward prices replaced by zeros) to cal-
culate these indices for our Israeli data set. These indices 
are listed in Table 9.19.

The maximum overlap bilateral Jevons, Dutot, and 
Carli indices, PJ

*(t/r), PD
*(t/r), and PC

*(t/r), defined by 
(113)–(115) are used to define the maximum overlap Jevons, 
Dutot, and Carli chained indices, PJCH

t*, PDCH
t*, and PCCH

t*, 
as follows:

 PJCH
1* ≡ 1; PDCH

1* ≡ 1; PCCH
1* ≡ 1. (116)

 PJCH
t* ≡ PJCH

t–1*PJ
*(t/[t–1]); t = 2,3,. . .,T; (117)

 PDCH
t* ≡ PDCH

t–1*PD
*(t/[t–1]);t = 2,3,. . .,T; (118)

 PCCH
t* ≡ PCCH

t–1*PC
*(t/[t–1]); t = 2,3,. . .,T. (119)

The maximum overlap Jevons and Dutot indices are not 
necessarily equal to the corresponding fixed-base Jevons 
and Dutot indices as was the case in the previous section 
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t PJ
t PD

t PCFB
t PCCH

t PJFB
t* PJCH

t* PDFB
t* PDCH

t* PCFB
t* PCCH

t*

15 0.97844 0.98930 0.99075 1.03619 1.0826 0.9085 1.0879 0.8853 1.0859 0.9922
16 1.02347 1.03179 1.04208 1.08578 1.1603 0.9941 1.1579 0.9690 1.1662 1.0872
17 1.07370 1.08282 1.09925 1.14344 1.2780 1.0851 1.3548 1.1026 1.3106 1.1959
18 1.22714 1.35453 1.29257 1.34373 1.4017 1.2113 1.5774 1.3043 1.4876 1.3538
19 1.28602 1.46450 1.38169 1.41759 1.4860 1.3386 1.4979 1.5260 1.5202 1.5143
20 1.29322 1.46203 1.38325 1.42715 1.4774 1.3561 1.4807 1.5167 1.4979 1.5381
21 1.22418 1.38662 1.29066 1.36227 1.3293 1.2780 1.3405 1.4379 1.3356 1.4550
22 1.25629 1.42261 1.31927 1.40476 1.2698 1.2779 1.2723 1.4526 1.2748 1.4651
23 1.18656 1.36777 1.25147 1.32963 1.1328 1.1399 1.1311 1.2913 1.1392 1.3084
24 1.17082 1.36179 1.23601 1.31297 1.1029 1.1099 1.1156 1.2737 1.1083 1.2756
25 1.16260 1.36044 1.22894 1.30423 1.0875 1.0944 1.1122 1.2697 1.0942 1.2586
26 1.20522 1.43031 1.27490 1.36157 1.1018 1.1087 1.1285 1.2884 1.1057 1.2774
27 1.20074 1.39904 1.26447 1.36227 1.1448 1.1015 1.1806 1.2241 1.1500 1.2786
28 1.24473 1.43129 1.30773 1.41426 1.2219 1.1837 1.2630 1.3027 1.2287 1.3762
29 1.28659 1.39762 1.32394 1.47150 1.3529 1.3327 1.4509 1.5089 1.3740 1.5572
30 1.26504 1.38902 1.32241 1.46683 1.4822 1.2796 1.6819 1.4740 1.5345 1.5255
31 1.29298 1.44004 1.37273 1.50979 1.6476 1.3771 1.6923 1.6285 1.6602 1.6558
32 1.29515 1.36149 1.36210 1.53599 1.8228 1.3811 1.9192 1.4708 1.8547 1.7061
33 1.22631 1.28810 1.26650 1.46550 1.3730 1.2301 1.3871 1.2818 1.3770 1.5425
34 1.19160 1.21688 1.20932 1.43452 1.3381 1.2101 1.3565 1.2633 1.3402 1.5208
35 1.11357 1.15022 1.12376 1.35288 1.1296 1.0749 1.1349 1.1227 1.1336 1.3694
36 1.08118 1.12598 1.09222 1.31427 1.0649 1.0133 1.0725 1.0609 1.0705 1.2912
37 1.07156 1.12269 1.08250 1.30328 1.0460 0.9953 1.0640 1.0525 1.0511 1.2696
38 1.10322 1.17581 1.11907 1.34595 1.0657 1.0140 1.0912 1.0794 1.0703 1.2948
39 1.11574 1.16616 1.12620 1.36516 1.1240 1.0342 1.1538 1.0620 1.1276 1.3271
40 1.20195 1.23057 1.21958 1.48180 1.3363 1.2002 1.3684 1.1969 1.3459 1.5539
41 1.42570 1.63141 1.51539 1.83477 1.5631 1.3763 1.6218 1.3930 1.6052 1.7942
42 1.34350 1.42732 1.40515 1.76198 1.9200 1.2509 1.9490 1.1476 1.9374 1.6841
43 1.29980 1.39500 1.39812 1.72162 2.1559 1.1571 2.2132 1.0877 2.1874 1.5928
44 1.25314 1.34720 1.33798 1.66456 1.8955 1.0625 1.9020 0.9740 1.8969 1.4696
45 1.23276 1.31106 1.28143 1.65494 1.5229 1.0827 1.5208 0.9938 1.5291 1.5144
46 1.25742 1.32236 1.30070 1.69701 1.4739 1.0656 1.4939 0.9823 1.4839 1.4932
47 1.17922 1.24531 1.21036 1.59692 1.2947 0.9523 1.2935 0.8687 1.3019 1.3391
48 1.13279 1.21433 1.16173 1.53877 1.1947 0.8788 1.2137 0.8152 1.2046 1.2416
49 1.12548 1.21284 1.15338 1.52977 1.1794 0.8675 1.2099 0.8126 1.1879 1.2271
50 1.18213 1.29924 1.22050 1.61642 1.2322 0.9063 1.2685 0.8519 1.2416 1.2848
51 1.16087 1.24792 1.19460 1.59629 1.2356 0.8740 1.2854 0.7784 1.2524 1.2528
52 1.21285 1.30717 1.26221 1.67242 1.3595 0.9541 1.4546 0.8633 1.4020 1.3723
53 1.34489 1.45066 1.39368 1.87848 1.5225 1.0301 1.6111 0.9237 1.5652 1.4824
54 1.33983 1.45410 1.41573 1.89868 1.9247 1.0039 1.9786 0.9129 1.9472 1.4795
55 1.39688 1.50685 1.48163 1.98599 2.0574 1.1150 2.0550 0.9991 2.0577 1.6493
56 1.38893 1.48612 1.45195 1.98514 1.7187 1.1002 1.7154 0.9544 1.7277 1.6476
57 1.35399 1.44161 1.38760 1.95032 1.4657 1.0867 1.4854 0.9566 1.4751 1.6370
58 1.35824 1.44685 1.38897 1.95951 1.4518 1.0590 1.5221 0.9389 1.4673 1.5992
59 1.24006 1.34832 1.26886 1.79840 1.2102 0.8828 1.2683 0.7824 1.2271 1.3362
60 1.19193 1.30860 1.22095 1.73033 1.1181 0.8156 1.1659 0.7192 1.1313 1.2351
61 1.20749 1.32199 1.23448 1.75437 1.1474 0.8370 1.2004 0.7405 1.1584 1.2694

Table 9.19 (Continued)
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when carry-forward prices were used as imputations for the 
missing prices. Thus, in general, PJCH

t* ≠ PJFB
t* and PDCH

t* ≠ 
PDFB

t*. The six elementary indices using bilateral maximum 
overlap price indices as basic building blocks, PJFB

t*, PJCH
t*, 

PDFB
t*, PDCH

t*, PCFB
t*, and PCCH

t*, are listed in Table 9.19 along 
with the four elementary indices that used carry-forward 
prices from the previous section, PJ

t, PD
t, PCFB

t, and PCCH
t for 

comparison purposes.
The 10 indices listed in Table 9.19 are plotted in Figure 

9.10.
The four chained indices all seem to suffer from some 

form of chain drift: The maximum overlap chained Carli 
PCCH

t* ends up high at 1.3245, while the carry-forward 
chained Carli index PCCH

t ends up much too high at 1.855. 
The chained maximum overlap Jevons and Dutot indices, 
PJCH

t* and PDCH
t*, suffer from severe downward chain drift 

and end up at 0.7914 and 0.7168, respectively. The carry-for-
ward Dutot index PD

t ended up at 1.2986, and its maximum 
overlap fixed-base counterpart PDFB

t* ended up at 1.2800. 
Our “best” index using price and expenditure informa-
tion was the maximum overlap similarity-linked index PS

t*, 
which ended up at 1.1911. Thus, the Dutot indices PD

t and 
PDFB

t* have a considerable amount of upward bias relative 
to our preferred index. In general, the fixed-base maximum 

overlap Jevons, Dutot, and Carli indices, PJFB
t*, PDFB

t*, and 
PCFB

t*, are fairly close to each other, but they end up at 
1.2509, 1.2800, and 1.2636, respectively, which is well above 
where the similarity-linked maximum overlap index ended 
(1.19115). Also, PJFB

t*, PDFB
t*, and PCFB

t* have large seasonal 
fluctuations relative to PS

t*. These three maximum overlap 
fixed-base indices cannot be readily distinguished from 
each other in Figure 9.10. The index that provides the clos-
est approximation to PS

t* is the Jevons index PJ
t, which uses 

carry-forward prices.
However, as we have seen in previous sections, the use 

of carry-forward prices can lead to significant bias as com-
pared to the same index, which uses maximum overlap 
indices. From Table 9.19, the mean of the fixed-base Jevons 
indices using carry-forward prices (the PJ

t) is 1.1981, while 
the mean of the fixed-base maximum overlap indices PJFB

t* 
is 1.3690. Thus on average, the downward bias in the use of 
the carry-forward indices using the Jevons formula is 1.3690 
– 1.1981 or 17.09 percentage points. Similarly, the down-
ward bias in the use of carry-forward prices using fixed-
base Dutot indices is 1.4049 – 1.2845 or 12.04 percentage 
points, and the downward bias in the use of carry-forward 
prices using fixed-base Carli indices is 1.3835 – 1.2413 or  
14.22 percentage points. Thus, the use of carry-forward 

t PJ
t PD

t PCFB
t PCCH

t PJFB
t* PJCH

t* PDFB
t* PDCH

t* PCFB
t* PCCH

t*

62 1.28133 1.42560 1.31699 1.87821 1.2190 0.8892 1.2850 0.7927 1.2338 1.3574
63 1.28275 1.38939 1.31091 1.89150 1.2905 0.8909 1.3652 0.7523 1.3069 1.3742
64 1.31298 1.40690 1.34676 1.94097 1.3674 0.9334 1.4596 0.7753 1.3943 1.4460
65 1.41872 1.50138 1.45670 2.10304 1.6272 1.0597 1.7302 0.8827 1.6586 1.6431
66 1.33997 1.43862 1.40790 2.01611 1.9131 0.9761 2.0145 0.8679 1.9373 1.5561
67 1.36710 1.49540 1.47694 2.07715 2.1811 1.0150 2.2012 0.9464 2.1886 1.6537
68 1.34716 1.46562 1.44058 2.05237 1.9852 0.9808 1.9837 0.8861 1.9853 1.6077
69 1.36463 1.47183 1.44090 2.08666 1.7458 0.9781 1.8014 0.8853 1.7684 1.6100
70 1.33366 1.42500 1.38455 2.04992 1.5445 0.9430 1.5974 0.8549 1.5606 1.5638
71 1.21783 1.31114 1.25511 1.88353 1.2941 0.8187 1.3124 0.7349 1.3074 1.3663
72 1.19735 1.29857 1.23319 1.85468 1.2509 0.7914 1.2800 0.7168 1.2636 1.3245
Mean 1.19810 1.28450 1.24130 1.51050 1.3690 1.0647 1.4049 1.0640 1.3835 1.3662

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

PJt PDt PCFBt PCCHt PJFBt* PJCHt*

PDFBt* PDCHt* PCFBt* PCCHt*

Figure 9.10 Jevons, Dutot, and Carli Carry-Forward and Maximum Overlap Fixed-Base and Chained Indices 
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prices for elementary indices in situations where there is gen-
eral inflation cannot be recommended due to the potentially 
large downward bias that the use of carry-forward prices can 
generate.

Instead of using maximum overlap bilateral Jevons, 
Dutot and Carli indices as basic inputs into fixed-base and 
chained indices of prices (without quantity or expenditure 
weights), it is possible to use multilateral methods to form 
elementary indices. We conclude this section by considering 
two such multilateral methods that just use price informa-
tion for many periods: the time product dummy method and 
a similarity based linking method.

The time product dummy method assumes that the price 
of product n in month t, pt,n, is approximately equal to the 
product of two factors: a time factor πt > 0 that represents 
the price level in month t and a product factor, αn > 0, that 
represents the utility of product n relative to all products in 
scope. It is convenient to take logarithms of both sides of 
the approximate equations pt,n ≈ πtαn in order to obtain the 
approximate equations lnpt,n ≈ lnπt + lnαn = ρt + βn, where 
ρt ≡ lnπt and βn ≡ lnαn. Estimates ρt

* and βn
* for the param-

eters ρt and βn can be obtained by solving the following least 
squares minimization problem:

 minρ, β {Σt=1
T Σn∈S(t) [lnpt,n – ρt – βn]

2}, (120)

where we set ρ1 ≡ 0 in order to prevent multicollinearity 
problems. Denote the solution to (120) by ρt

* for t = 2,3,. . .,T 
and βn

* for n = 1,. . .,N. Define ρ1
* ≡ 0 and define πt

* ≡ exp[ρt
*] 

for t = 1,. . .,T. The Time Product Dummy index for month 
t, PTPD

t, is defined to be πt
*; that is, we have PTPD

t ≡ πt
* for t = 

1,. . .,T.50 If there are no missing observations so that all N 

50 In the statistics literature, this model is known as the fixed effects 
model. In the economics literature, the method is due to Court (1939; 
109–111) in the hedonic regression context and to Summers (1973) in the 
international comparison context where it is known as the country prod-
uct dummy regression model. See Diewert (2021c) for more on the history 

products are present in all N periods, then the Time Prod-
uct Dummy price indices are equal to the fixed-base (and 
chained) Jevons index PJ(t/1) = PJ

t.51 Thus the Time Product 
Dummy index PTPD

t is a natural generalization of the Jevons 
index to the case of missing observations. This standard 
Time Product Dummy index PTPD

t is listed in Table 9.22 and 
plotted in Figure 9.11.

It is of interest to calculate year-over-year maximum over-
lap fixed-base and chained Jevons indices for each month. 
Denote the sequence of year-over-year fixed-base and 
chained maximum overlap Jevons indices for month m and 
year y as PJFm

y* and PJCm
y* respectively for m = 1,. . .,M and y 

= 1,. . .,Y. These month-over-month Jevons indices are listed 
in Tables 9.20 and 9.21 for our empirical example.

It can be seen that, for the most part, the fixed-base Jevons 
indices in Table 9.20 approximated their chained counter-
parts in Table 9.21 fairly well. For the months m, where 
the list of available products is the same for all years, the 
fixed-base and chained maximum overlap indices for those 
months will be the same; that is, we have PJFm

y* = PJCm
y* for 

y = 1,. . .,6 for months m, where the available products are 
always the same year-over-year.

A possible disadvantage of using the Time Product 
Dummy indices PTPD

t is that every month when there is a 
new observation, the indices have to be recomputed and 
there is the problem of linking the new index for the latest 
month with the prior indices. A possible solution to this 
problem is the following one. (i) Compute the Time Product 
Dummy indices for a historical data set that consists of 12 
consecutive months. Call the resulting indices PTPD

t for m = 
1,. . .,12. (ii) Set the Mixed TPD and Jevons index, PTPDJ

t, for 
the first 12 months equal to the corresponding Time Product 
Dummy indices so that PTPDJ

t = PTPD
t for t = 1,. . .,12. (ii) For 

of this multilateral method and its interpretation from the perspective of 
the economic approach to index number theory.
51 This result is a special case of a more general result obtained by Triplett 
and McDonald (1977; 150). See also Diewert (2021c; 51).

Table 9.20 Year-over-Year Monthly Maximum Overlap Fixed-Base Jevons Indices
y PJF1

y * PJF2
y* PJF3

y * PJF4
y * PJF5

y * PJF6
y* PJF7

y * PJF8
y * PJF9

y* PJF10
y* PJF11

y* PJF12
y*

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0257 1.0761 0.9763 1.0341 1.0051 1.3229 1.3156 1.1127 1.0596 1.0734 1.0568 1.0947
3 1.0875 1.1228 1.0478 1.0916 1.1310 1.2719 1.2127 1.1121 1.1080 1.1008 1.0698 1.0570
4 1.0460 1.0815 1.0361 1.1838 1.2999 1.4799 1.2876 1.0803 1.1763 1.1953 1.2225 1.1859
5 1.1794 1.2487 1.1236 1.2055 1.2587 1.4438 1.3801 1.2180 1.1986 1.1544 1.1290 1.1097
6 1.1474 1.2449 1.1716 1.1927 1.3593 1.4416 1.3280 1.1518 1.2860 1.2645 1.2320 1.2416

Table 9.21 Year-over-Year Monthly Maximum Overlap Chained Jevons Indices
y PJC1

y * PJC2
y * PJC3

y* PJC4
y * PJC5

y* PJC6
y* PJC7

y* PJC8
y* PJC9

y * PJC10
y * PJC11

y * PJC12
y *

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0257 1.0761 0.9763 1.0341 1.0051 1.3229 1.3156 1.1127 1.0596 1.0734 1.0568 1.0947
3 1.0875 1.1228 1.0478 1.0916 1.0909 1.2106 1.2166 1.1200 1.1080 1.1008 1.0539 1.0570
4 1.0460 1.0815 1.0361 1.1838 1.2919 1.3731 1.2876 1.0803 1.1763 1.1842 1.2079 1.1859
5 1.1794 1.2487 1.1218 1.2055 1.1940 1.3397 1.3801 1.2180 1.1986 1.1804 1.1290 1.1097
6 1.1474 1.2449 1.1563 1.1927 1.2893 1.3376 1.3280 1.1518 1.2860 1.2414 1.2073 1.2416
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subsequent months, use the year-over-year fixed-base maxi-
mum overlap Jevons indices PJFm

y* to link month m in year y 
≥ 2 to PTPDJ

m. Thus for our empirical example, for year y = 
2, we have PTPDJ

12 + m = PTPDJ
m×PJFm

2* for m = 1,. . .,12; for year 
y = 3, we have PTPDJ

24 + m = PTPDJ
m×PJFm

3* for m = 1,. . .,12; . . . 
and for year y = 6, we have PTPDJ

60 + m = PTPDJ
m×PJFm

6* for m = 
1,. . .,12. The reason for using the fixed-base monthly maxi-
mum overlap year-over-year Jevons indices listed in Table 
9.20 instead of the chained indices listed in Table 9.21 is that 
the resulting mixed TPD and Jevons indices, PTPDJ

t satisfy 
Walsh’s multiperiod identity test; that is, if prices in months 
r and t are the same, then PTPDJ

r = PTPDJ
t.52 If an index satis-

fies this test, then it is free from chain drift.
An advantage of the mixed TPD and Jevons index is that 

it can be implemented in real time without revision or link-
ing problems. However, a disadvantage of PTPDJ

t is that the 
seasonal pattern of prices that occurred in the first year of 
“training” data will persist in subsequent periods. If there 
are changing seasonal patterns, then this property of the 
method may be problematic. It could be addressed by peri-
odically changing the base year of training data and then 
starting a new set of indices. Furthermore, the seasonal 
pattern of prices could be subject to more or less random 
fluctuations. In order to address this randomness problem, 
the time period dummy method could be implemented using 
two or more years of training data rather than just using a 
single-year data. This could lead to a more representative 
set of seasonal factors. We implemented this modification 
using our empirical data set.

The final blended TPD and Jevons index, PTPDJ
t*, is defined 

as follows: (i) Compute the TPD indices for a historical data 
set that consists of 24 consecutive months. Call the resulting 
indices PTPD

t* for m = 1,. . .,24. (ii) Set PTPDJ
t* for the first 12 

months equal to the corresponding TPD indices so that PTPDJ
t*  

= PTPD
t* for t = 1,. . .,12. (ii) For subsequent months, use the 

year-over-year fixed-base maximum overlap Jevons indices 
PJFm

y* to link month m in year y ≥ 2 to PTPDJ
m. Thus repeating 

our earlier description, for our empirical example, for year 
y = 2, we have PTPDJ

12 + m* = PTPDJ
m*×PJFm

2* for m = 1,. . .,12; for 
year y = 3, we have PTPDJ

24 + m* = PTPDJ
m*×PJFm

3* for m = 1,. . .,12; 
. . . and for year y = 6, we have PTPDJ

60 + m* = PTPDJ
m*×PJFm

6* for 
m = 1,. . .,12. The blended indices PTPDJ

t* are listed in Table 
9.22 and are plotted in Figure 9.11.

The final elementary index that we consider in this section 
is an adaptation of the predicted share multilateral index PS

t* 
that was defined in the previous section. Since in the present 
section, we are considering price indices that depend solely 
on price information, in place of a maximum overlap bilat-
eral Fisher index to link the prices of two months, the maxi-
mum overlap bilateral Jevons index PJ

*(t/r) defined by (113) 
will be used to relate the prices of the current month to a 
previous month that has the lowest measure of relative price 
dissimilarity. In the previous section, the predicted share 
measure of relative price dissimilarity between the prices of 
two months was defined by (105). This definition depended 
on the availability of quantity (or expenditure) information, 
but in the present context, only price information is available. 
When quantity and expenditure information is not available, 
it is natural to assume that either quantities purchased in 

52 See Walsh (1901; 389), (1921; 540).

a month or expenditures on available products are equal. 
assumption of equal quantities depends on units of product 
measurement, which are to some extent arbitrary and so we 
will make the assumption of equal expenditures on available 
products in each month. This assumption is equivalent to an 
assumption that expenditure shares on available products in 
a month are equal.

Recall that the price of product n in month t is denoted 
by pt,n for n = 1,. . .,N and t = 1,. . .,T, where T = YM, Y is 
the number of years in the sample and M is the number of 
months in a year. If product n in month t was not available 
(that is, not purchased by the households in scope), then 
pt,n is set equal to 0. The vector of month t prices is pt ≡ 
[pt,1,.  .  .,pt,N] for t = 1,.  .  .,T. The set of available products 
in month t is S(t) and the number of available products 
in month t is N(t) for t = 1,.  .  .,T. The set of products that 
are available in both months t and r is the intersection of 
the sets S(t) and S(r), denoted by S(t)∩S(r). The number of 
matched products that are available in both months t and 
r is N(t,r). If there are no unmatched products in months t 
and r, then N(t) = N(r) = N(t,r). We assume that there is at 
least one matched product between every pair of months in 
the sample.

The imputed quantities, qt,n, that will generate equal 
expenditure shares for products n that are present in month 
t are defined as follows for t = 1,. . .,T:

qt,n ≡ 1/pt,nN(t) if n∈S(t);
 ≡ 0 if n∉S(t). (121)

The imputed expenditure share for product n in month t is 
st,n ≡ pt,nqt,n/p

t·qt for t = 1,. . .,T and n = 1,. . .,N. Using the qt,n 
defined by (121), these expenditure shares are equal to the 
following expressions for t = 1,. . .,T:

 st,n = 1/N(t) if n∈S(t); = 0 if n∉S(t). (122)

To form month t predicted shares, use the prices of month r 
and the (imputed) quantities of month t to form the follow-
ing predicted shares, st,r,n:

st,r,n ≡ pr,nqt,n/p
r·qt; t = 1,. . .,T; r = 1,. . .,T;  

 n = 1,. . .,N. (123)

If product n is not available in month t, so that n∉S(t), then 
qt,n = 0 and the following equations hold:

 st,n = st,r,n = 0; t = 1,. . .,T; r = 1,. . .,T; n∉S(t). (124)

If product n is available in month t, so that n∈S(t), then qt,n 
> 0, pt,n > 0, st,n = 1/N(t) and the predicted shares st,r,n satisfy 
the following equations:

st,r,n ≡ pr,nqt,n/p
r·qt; t = 1,. . .,T; r = 1,. . .,T; n∈S(t)

= [pr,n/pt,nN(t)]/Σk∈S(t) [pr,k/pt,kN(t)] using (121)

= [pr,n/pt,n]/Σk∈S(t) [pr,k/pt,k]
 = [pr,n/pt,n]/Σk∈S(t)∩S(r) [pr,k/pt,k], (125)
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where the last equality follows from the fact that pr,k = 0 if k 
does not belong to S(r); that is, if k∉S(r).

The predicted share error et,r,n in using st,r,n to predict st,n is 
defined as follows:

et,r,n ≡ st,n – st,r,n; t = 1,. . .,T; r = 1,. . .,T;  
 n = 1,. . .,N. (126)

Using definitions (122) and (123), it is straightforward to show 
that the sum over products n of the prediction errors et,r,n is 
equal to 0 for each pair of months, r and t; that is, we have:

 Σn=1
N et,r,n = 0; t = 1,. . .,T; r = 1,. . .,T. (127)

Note that if product n is not available in month t, then using 
(122) and (124), it can be seen that the predicted error et,r,n 
will equal 0; that is, we have the following equalities:

 et,r,n = 0; t = 1,. . .,T; r = 1,. . .,T; n∉S(t). (128)

Using (127) and (128), it can be seen that the mean of the 
predicted errors et,r,n over all products that are available in 
month t is equal to zero; that is, we have:

 [1/N(t)]Σn∈S(t) et,r,n = 0; t = 1,. . .,T; r = 1,. . .,T. (129)

Using only price information, the predicted share measure 
of relative price dissimilarity between months t and r is 
ΔPS(pt,pr) defined as follows:

 ΔPS(pt,pr) ≡ Σt,r + Σr,t; t = 1,. . .,T; r = 1,. . .,T, (130)

where Σt,r is defined as53

 Σt,r ≡ Σn=1
N et,r,n

2; t = 1,. . .,T; r = 1,. . .,T (131)
= Σn∈S(t) et,r,n

2 using (128)

= Σn∈S(t) {st,n – st,r,n}
2 using (126)

= Σn∈S(t),n∉S(r) {[1/N(t)] – 0}2 + Σn∈S(t)∩S(r) {[1/N(t)] – xt,r,n}
2 using 

(122) and (125)
= {[N(t) – N(t,r)]/N(t)2} + Σn∈S(t)∩S(r) {[1/N(t)] – xt,r,n}

2.

The xt,r,n are normalized price ratios for matched products 
present in periods t and r and are defined as follows:

xt,r,n ≡ (pr,n/pt,n)/Σk∈S(t)∩S(r) (pr,k/pt,k); t = 1,. . .,T;  
 r = 1,. . .,T; n∈S(t)∩S(r). (132)

If prices in months t and r are equal (or proportional so 
that pt = λpr for some scalar λ > 0), then N(t) = N(r) = 
N(t,r) = N(r,t) and xt,r,n = 1/N(t,r) = 1/N(t). In this case, Σt,r 
= Σr,t = 0 and thus ΔPS(pt,pr) = 0. In general, ΔPS(pt,pr) ≥ 0, 
ΔPS(pt,pr) = ΔPS(pr,pt) (symmetry property) and ΔPS(pt,pr) 
≤ 2.

Note that [N(t) – N(t,r)]/N(t)2 ≥ 0 is a penalty term that is 
positive if available products purchased in months t and r 
are not matched. If the list of available products in months 

53 Σr,t are defined by (131) and (132) by simply interchanging t and r.

t and r is identical, then N(t) = N(r) = N(t,r) = N(r,t), and 
this penalty term is equal to 0. If products are matched in 
months t and r, then S(t) = S(r) = S(t)∩S(r) and the second set 
of terms in the last equality of (131) becomes Σn∈S(t) {[1/N(t)] 
– xt,r,n}

2, which, using (129), is proportional to the variance 
of the normalized price ratios, xt,r,n. Next, we will obtain a 
decomposition of this second set of terms in the case where 
products are not matched between months t and r.

In the general case where prices in month t are not nec-
essarily proportional to prices in month r, we calculate the 
mean and variance of the xt,r,n over products n that are pres-
ent in months t and r. It turns out that the sum of the xt,r,n 
over products n that are present in both months t and r is 
always equal to 1; that is, we have the following equalities 
using definitions (132):

Σn∈S(t)∩S(r) xt,r,n = Σn∈S(t),n∉S(r) (pr,n/pt,n)/Σk∈S(t)∩S(r) (pr,k/pt,k);  
 t = 1,. . .,T; r = 1,. . .,T= 1. (133)

The number of common products that are present in months 
t and r is N(t,r). Thus the mean of xt,r,n over the common 
products n that are present in months t and r is μt,r defined 
as follows:

μt,r ≡ Σn∈S(t)∩S(r) xt,r,n/N(t,r); t = 1,. . .,T;  
 r = 1,. . .,T (134)

= 1/N(t,r) using (133).

Note that (134) implies that

 Σn∈S(t)∩S(r) [xt,r,n – μt,r] = 0; t = 1,. . .,T; r = 1,. . .,T. (135)

A measure of relative price dissimilarity between the common 
product prices of months t and r is δt,r defined as follows:

δt,r ≡ Σn∈S(t)∩S(r) [xt,r,n – μt,r]
2; t = 1,. . .,T;  

 r = 1,. . .,T. (136)

It can be seen that δt,r is proportional to the variance of the 
normalized price ratios xt,r,n over products that are present 
in both months t and r. If the prices of products that are 
present in both months t and r are identical or proportional 
to each other, it can be verified that δt,r is equal to 0.

Using equations (131), we have the following decomposi-
tion for Σt,r:

Σt,r = {[N(t) – N(t,r)]/N(t)2} + Σn∈S(t)∩S(r) {[1/N(t)] – xt,r,n}
2; 

 t = 1,. . .,T; r = 1,. . .,T (137)
= {[N(t) – N(t,r)]/N(t)2} + Σn∈S(t)∩S(r) {[1/N(t)]  

– μt,r – [xt,r,n – μt,r]}
2

= {[N(t) – N(t,r)]/N(t)2} + Σn∈S(t)∩S(r) {[1/N(t)]  
– μt,r}

2 + Σn∈S(t)∩S(r) {xt,r,n – μt,r}
2 using (135)

= {[N(t) – N(t,r)]/N(t)2} + Σn∈S(t)∩S(r) {[1/N(t)]  
– [1/N(t,r)]}2 + δt,r using (134) and (136)

= {[N(t) – N(t,r)]/N(t)2} + N(t,r){[1/N(t)] – [1/N(t,r)]}2 + δt,r

 = [1/N(t,r)] – [1/N(t)] + δt,r.
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The following decomoition for Σr,t can be derived in an anal-
ogous fashion:

Σr,t = [1/N(r,t)] – [1/N(r)] + δr,t; 
 t = 1,. . .,T; r = 1,. . .,T. (138)

Using (137), (138), and definitions (130), the predicted share 
measure of relative price dissimilarity between months t and 
r has the following decomposition:

 ΔPS(pt,pr) ≡ Σt,r + Σr,t; t = 1,. . .,T; r = 1,. . .,T
= [1/N(t,r)] – [1/N(t)] + δt,r + [1/N(r,t)] – [1/N(r)] + δr,t

 = [2/N(t,r)] – [1/N(t)] – [1/N(r)] + δt,r + δr,t, (139)

where the last equality follows from the fact that N(t,r) = 
N(r,t). It can be seen that the term [2/N(t,r)] – [1/N(t)] – [1/N(r)] 
≥ 0 is the total penalty for a possible lack of matching of the 
overlap prices in months t and r. If the products that are pres-
ent in month t are also present in month r, then N(t) = N(r) 
= N(t,r) and there is no penalty for a lack of matching. The 
term dt,r is proportional to the variance of the normalized 
matched relative prices pr,n/pt,n and the term δr,t is propor-
tional to the variance of the normalized matched reciprocal 
relative prices pt,n/pr,n. If prices in months r and t are equal 
or proportional, then the penalty for a lack of matching is 
0 and the two matched relative price dissimilarity terms δt,r 
and δr,t are also equal to 0. It should be noted that the actual 
unmatched prices in periods t and s do not play a role in the 
measure of relative price dissimilarity between the prices of 
months t and r. However, the number of unmatched prices 
does play a role.

The problem of trading off a lack of matching of prices 
between two periods and the dispersion in the matched 
prices is a difficult one.54 The modified predicted share meth-
odology explained earlier does accomplish this tradeoff, but 
further research may find more direct methods for making 

54 For additional discussions of this issue see Hill and Timmer (2006). For 
additional measures of relative price dissimilarity for matched prices, see 
Diewert (2009).

this tradeoff. What is clear is that a method for linking bilat-
eral indices needs to take into account the lack of matching 
of prices and the method should be based on some princi-
ples. The principle used in the aforementioned method was 
to use the prices of month r and the imputed quantities of 
month t to predict the imputed expenditure shares of period 
t. In the future, “better” principles may be found.55

The entire set of modi fied predicted share price dissimi-
larity measures for our empirical example is a 72 by 72 ele-
ment (symmetric) matrix. Table 9.22 lists the first 12 rows 
and columns of the matrix of the bilateral measures of 
modi fied predicted share price dissimilarity for our empiri-
cal example.

The set of real-time links which minimize these dissimi-
larity measures for the first 12 observations are as follows:56

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 11
|
12.

The maximum overlap bilateral Jevons indices PJ
*(t/r) 

defined by (113) are used to link the prices of month t to a 
prior month r. It can be seen that the new set of bilateral links 
is the set of links that generates the chained maximum over-
lap Jevons indices for months 1 to 11. Thus the similarity-
linked maximum overlap Jevons index, PSJ

t*, equals PJCH
t*, the 

maximum overlap chained Jevons index defined by (116) and 
(117), for t = 1,.  .  .,11. However, month 12 is linked directly 
to month 1. Thus, PSJ

12* = PSJ
1*×PJ

*(12/1). The remainder of 
the similarity-linked maximum overlap Jevons indices are 

55 In general, matching of product prices can be increased by increasing the 
length of the period. However, for many purposes, a monthly or quarterly 
price index is required. Another way of increasing product matches over 
two periods is to broaden the definition of a product. For example, instead 
of matching the price of a specific brand of chocolate bar purchased in a 
particular location, many types of chocolate bar purchased in a local area 
could be aggregated together to form a single unit value price over the two 
periods in scope. Thus, our monthly Israeli fruit data has aggregated over 
all locations in Israel and all types of fruit. This means that our indices may 
suffer from some unit value bias. For a discussion on the tradeoff between 
increased product matching and unit value bias, see Chessa (2019).
56 This set of bilateral links is almost the same as the set of links that were 
used to link the first 12 observations of the predicted share indices PS

t*; 
see the links listed in Table 9.16 in Section 7.

Table 9.22 Month-to-Month Modified Predicted Share Measures of Price Dissimilarity Using Zeros for Missing Prices
r, t 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0.0189 0.0195 0.0499 0.1517 0.1644 0.4155 0.4118 0.2229 0.0458 0.0366 0.0037
2 0.0189 0 0.0009 0.0186 0.1004 0.1852 0.4470 0.4488 0.2515 0.0676 0.0597 0.0263
3 0.0195 0.0009 0 0.0182 0.1026 0.1875 0.4532 0.4565 0.2537 0.0686 0.0610 0.0275
4 0.0499 0.0186 0.0182 0 0.0828 0.1666 0.4291 0.4312 0.2395 0.1019 0.0950 0.0612
5 0.1517 0.1004 0.1026 0.0828 0 0.0439 0.1845 0.2001 0.3021 0.1368 0.2001 0.1656
6 0.1644 0.1852 0.1875 0.1666 0.0439 0 0.0673 0.1246 0.1956 0.0989 0.1358 0.1716
7 0.4155 0.4470 0.4532 0.4291 0.1845 0.0673 0 0.0276 0.0739 0.1122 0.1723 0.4144
8 0.4118 0.4488 0.4565 0.4312 0.2001 0.1246 0.0276 0 0.0582 0.1033 0.1836 0.4012
9 0.2229 0.2515 0.2537 0.2395 0.3021 0.1956 0.0739 0.0582 0 0.0447 0.0871 0.2173
10 0.0458 0.0676 0.0686 0.1019 0.1368 0.0989 0.1122 0.1033 0.0447 0 0.0149 0.0451
11 0.0366 0.0597 0.0610 0.0950 0.2001 0.1358 0.1723 0.1836 0.0871 0.0149 0 0.0320
12 0.0037 0.0263 0.0275 0.0612 0.1656 0.1716 0.4144 0.4012 0.2173 0.0451 0.0320 0
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constructed in the same manner that was used to construct 
the predicted share similarity-linked indices PS

t* except that 
the new matrix of dissimilarity measures ΔPS(pt,pr) is used in 
place of the previous matrix of predicted share dissimilarity 
measures ΔPS(pr,pt,qr,qt) defined by (106) and the maximum 
overlap bilateral Fisher indices that were used to link the 
prices of months in real time to the prices of previous months 
are replaced by maximum overlap bilateral Jevons indices. 
Again, it turns out that the set of bilateral links for the first 
12 months basically determines the seasonal fluctuations for 
the similarity-linked indices PS

t* for the remainder of the 
sample.57 The similarity-linked maximum overlap Jevons 
indices, PSJ

t*, are listed in Table 9.23.

57 The remainder of the real-time maximum overlap predicted share bilat-
eral Jevons index links for the next 60 months are as follows: 13/12, 14/3, 
15/2, 16/4, 17/5, 18/6, 19/7, 20/19, 21/9, 22/11, 23/12 and 24/23, 25/24, 26/14, 
27/2, 28/4, 29/6, 30/6, 31/7, 32/7, 33/21, 34/22, 35/22, 36/24, 37/36, 38/26, 
39/27, 40/28, 41/29, 42/30, 43/31, 44/20, 45/21, 46/10, 47/22, 48/25, 49/48, 
50/26, 51/40, 52/51, 53/29, 54/42, 55/43, 56/20, 57/21, 58/35, 59/25, 60/59, 
61/59, 62/38, 63/39, 64/40, 65/41, 66/54, 67/43, 68/44, 69/9, 70/46, 71/22, and 
72/48. Most of these bilateral links link the same months as were used to 
construct PS

t*.

t PS
t* PSJ

t* PJFB
t* PJCH

t* PTPD
t PTPDJ

t*

27 1.17215 1.15798 1.14475 1.10153 1.14033 1.14606
28 1.25327 1.22744 1.22192 1.18373 1.20107 1.21042
29 1.22223 1.40403 1.35287 1.33273 1.48657 1.34725
30 1.15449 1.34776 1.48215 1.27956 1.45849 1.37485
31 1.20526 1.34029 1.64760 1.37706 1.50247 1.46191
32 1.16278 1.34423 1.82280 1.38112 1.50689 1.55295
33 1.18929 1.23171 1.37302 1.23008 1.42795 1.40500
34 1.31066 1.18542 1.33810 1.21013 1.37619 1.36957
35 1.07810 1.03496 1.12963 1.07487 1.17947 1.16308
36 1.01195 1.06487 1.06487 1.01325 1.06487 1.06487
37 1.01076 1.04600 1.04600 0.99529 1.04600 1.04600
38 1.16812 1.12268 1.06566 1.01400 1.10557 1.11112
39 1.17108 1.14508 1.12395 1.03423 1.12762 1.13329
40 1.39663 1.33105 1.33629 1.20021 1.30246 1.31258
41 1.50841 1.66272 1.56307 1.37630 1.76046 1.59547
42 1.37756 1.52866 1.92004 1.25089 1.68208 1.55939
43 1.22151 1.41849 2.15585 1.15706 1.56196 1.54720
44 1.05506 1.43013 1.89554 1.06246 1.46420 1.49802
45 1.22173 1.30768 1.52287 1.08274 1.51602 1.49165
46 1.19999 1.28729 1.47388 1.06558 1.49868 1.47337
47 1.26828 1.16789 1.29467 0.95233 1.31599 1.33300
48 1.13921 1.19473 1.19473 0.87882 1.19473 1.19473
49 1.13475 1.17935 1.17935 0.86751 1.17935 1.17935
50 1.38339 1.29628 1.23215 0.90634 1.27652 1.28293
51 1.29063 1.24180 1.23563 0.87403 1.21512 1.22698
52 1.43303 1.35551 1.35948 0.95406 1.32639 1.33670
53 1.34386 1.53671 1.52251 1.03014 1.62705 1.47457
54 1.25757 1.49143 1.92473 1.00391 1.64111 1.52141
55 1.34547 1.52037 2.05735 1.11495 1.67415 1.65834
56 1.30412 1.61240 1.71865 1.10020 1.65081 1.68895
57 1.26875 1.33240 1.46566 1.08668 1.54468 1.51985
58 1.34737 1.29692 1.45182 1.05901 1.47800 1.46867
59 1.09738 1.21017 1.21017 0.88275 1.21017 1.24599
60 1.01922 1.11805 1.11805 0.81555 1.11805 1.11804
61 1.07767 1.14744 1.14744 0.83699 1.14744 1.14744
62 1.39115 1.29232 1.21897 0.88916 1.27262 1.27901
63 1.32072 1.29483 1.29046 0.89089 1.27510 1.26479
64 1.39001 1.34113 1.36739 0.93338 1.31231 1.32252
65 1.52597 1.73864 1.62717 1.05969 1.73957 1.59232
66 1.25740 1.48917 1.91313 0.97614 1.63863 1.51910
67 1.22459 1.46295 2.18107 1.01502 1.61092 1.59570
68 1.11160 1.52475 1.98518 0.98081 1.56108 1.59714
69 1.27951 1.42959 1.74583 0.97806 1.65734 1.63071
70 1.27885 1.36176 1.54445 0.94301 1.58539 1.54454
71 1.23088 1.17084 1.29409 0.81873 1.35927 1.33240
72 1.19115 1.25093 1.25093 0.79142 1.25093 1.25093
Mean 1.18920 1.25460 1.36900 1.06470 1.32860 1.31120

Table 9.23 Similarity-Linked Indices, Maximum 
Overlap Jevons Fixed-Base and Chained Indices, and 
Time Product Dummy Indices
t PS

t* PSJ
t* PJFB

t* PJCH
t* PTPD

t PTPDJ
t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.06603 1.03812 1.03812 1.03812 1.02229 1.02743
3 1.17647 1.10519 1.08161 1.10519 1.08834 1.09381
4 1.17956 1.12441 1.09864 1.12441 1.10026 1.10881
5 1.18310 1.15614 1.13498 1.15614 1.24733 1.23499
6 1.00296 1.05968 1.13521 1.05968 1.14674 1.13568
7 1.01198 1.10518 1.31939 1.10518 1.23890 1.20161
8 1.05554 1.22312 1.78827 1.22312 1.43385 1.38662
9 0.97973 1.11168 1.40705 1.11168 1.28879 1.26808
10 0.99067 1.07692 1.27978 1.07692 1.25377 1.24421
11 1.04107 0.95033 1.07188 0.95033 1.10326 1.10361
12 0.97592 1.00749 1.00749 0.89324 1.00749 1.00749
13 0.99684 1.02568 1.02568 0.90936 1.02568 1.02568
14 1.17902 1.11710 1.06090 0.94059 1.10007 1.10560
15 1.08056 1.07900 1.08262 0.90851 1.06255 1.06789
16 1.17474 1.16270 1.16025 0.99405 1.13772 1.14657
17 1.10498 1.16209 1.27798 1.08509 1.32010 1.24134
18 1.30841 1.40187 1.40174 1.21125 1.52851 1.50241
19 1.18142 1.45397 1.48595 1.33856 1.59591 1.58084
20 1.23391 1.47303 1.47735 1.35611 1.50812 1.54295
21 1.09986 1.17793 1.32928 1.27802 1.36559 1.34364
22 1.23179 1.15592 1.26980 1.27785 1.34194 1.33548
23 1.06906 1.13275 1.13275 1.13993 1.13275 1.16629
24 1.04392 1.10289 1.10289 1.10988 1.10289 1.10289
25 1.02270 1.08747 1.08747 1.09436 1.08747 1.08747
26 1.22856 1.16556 1.10175 1.10873 1.14779 1.15355
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From Table 9.23, it can be seen that the chained Jevons 
index, PJCH

t*, that uses maximum overlap bilateral Jevons 
indices suffers from a considerable amount of downward 
chain drift so it cannot be recommended for use. The “best” 
index that uses price and quantity information, the pre-
dicted share similarity-linked index that uses maximum 
overlap bilateral Fisher indices as basic building blocks, 
PS

t*, finished about 6 percentage points below the remaining 
four indices, PSJ

t*, PJFB
t*, PTPD

t* and PTPDJ
t*. These four indi-

ces cannot control adequately for substitution bias (since 
they depend only on price information), whereas PS

t* does 
deal adequately with substitution bias. Thus, if a statistical 
agency is forced to rely on price data alone for an elemen-
tary index that has strongly seasonal products, then there 
is a strong likelihood that some substitution bias will occur 
which can be substantial.

The four indices, PSJ
t*, PJFB

t*, PTPD
t* and PTPDJ

t*, all fin-
ished at exactly the same value in month 72. However, 
their means were substantially different in some cases. 
The standard time product dummy indices, PTPD

t*, and 
the Modified TPD indices that used year-over-year maxi-
mum overlap Jevons indices as well, PTPDJ

t*, had means 
of 1.3286 and 1.3112 respectively. As can be seen in  
Figure 9.11, these two indices approximated each other 
rather well. The mean of the Jevons maximum overlap 
fixed-base indices, PJFB

t*, was the highest of the six indices 
at 1.3690. Figure 9.11 shows that this high mean is due to 
very large upward seasonal fluctuations for months in the 
middle of the year, where product matches with the products 
available in January were very low. The price index (over 
the five indices that used only price information) that best 
approximated the Predicted Share index PS

t* is the Similarity- 
Linked Maximum Overlap Jevons index, PSJ

t*.
Figure 9.11 shows that PS

t* has by far the smallest seasonal 
variations. Relative to this preferred index, the chained 
Jevons index, PJCH

t*, has a large downward bias and the fixed-
base Jevons index, PJFB

t*, has a large upward bias on average 
due to its huge seasonal fluctuations. The remaining three 
indices, PSJ

t*, PTPD
t and PTPDJ

t*, finish at the same point which 
is 6 percentage points above PS

72*. These three indices are 
fairly close to each other, but the similarity-linked Jevons 
index, PSJ

t*, tends to lie below the two Time Product Dummy 
indices, PTPD

t and PTPDJ
t*, and PSJ

t* has smaller seasonal 

fluctuations. Overall, for our particular example, PSJ
t* pro-

vides the best approximation to our preferred index, PS
t*.58

In the following section, indices which use annual baskets 
or annual expenditure shares will be studied.

10. Annual Basket Lowe Indices 
and Annual Share-Weighted Young 
Indices
For many consumer expenditure categories, national sta-
tistical agencies are not able to collect price and quantity 
information for many if not most expenditure categories. 
Instead, they collect a sample of prices in real time and col-
lect annual household expenditures by broad category on a 
delayed basis using a consumer expenditure survey. Thus for 
many expenditure categories, statistical agencies construct 
either a Lowe (1823) or Young (1812) index. These indices use 
a combination of annual expenditures on a past year and 
current month information on prices. In this section, we will 
construct versions of these indices using our seasonal prod-
ucts data for Israel.

When constructing a price index for a category of house-
hold goods and services using annual expenditure data from 
a past period, statistical agencies have to deal with missing 
prices for strongly seasonal products (products that are not 
available for all seasons of the year). Agencies solve this prob-
lem by using carry-forward prices for the missing products.59 
Thus, in this section, for our empirical example, we again 
use the monthly price data that are listed in Table A.23 in 
the annex. This table has the carry-forward/carry-backward 
prices for products that are missing in any month.

The month t price for product n is defined as pt,n for t = 
1,. . .,T and n = 1,. . .,N, where T = MY and M is the number 
of months in the year and Y is the number of years in the 
sample of prices. The notation for quantities is the same as 
was used in Section 2: qy,m,n is the quantity of product n that 

58 The correlation coefficients between PS
t* and PSJ

t*, PJFB
t*, PJCH

t*, PTPD
t*, 

PTPDJ
t* are 0.730, 0.392, 0.137, 0.620, and 0.602 respectively. The correla-

tion coefficients between PSJ
t* and PTPD

t*, PTPDJ
t* are 0.913, 0.898 respec-

tively. Thus, these three indices approximate each other reasonably well.
59 Other methods for imputing the missing prices are also used.
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Figure 9.11 Similarity-Linked Indices and Five Indices That Use Only Price Information 
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is purchased by households in month m of year y, where y 
= 1,. . .,Y; m = 1,. . .,M and n = 1,. . .,N. Annual quantities of 
product n purchased in year y, qA,y,n, are obtained by sum-
ming purchases of product n in year y over the months in the 
year; that is, we have the following definitions:

 qA,y,n ≡ Σm=1
M qy,m,n; y = 1,. . .,Y; n = 1,. . .,N. (140)

Using the annual basket weights for year 1 in our sample 
(qa,1,n defined by (140)), and the prices of month t, pt,n, the 
fixed-base Lowe index for month t using the weights of year 
1, PLO1

t, is defined as follows:60

 PLO1
t ≡ Σn=1

N pt,nqA,1,n/Σn=1
N p1,nqA,1,n; t = 1,. . .,T. (141)

Using the data listed in Tables A.23 and A.24, these fixed-
base Lowe indices are listed in Table A.24 and plotted in 
Figure 9.12.61

Some statistical agencies use the annual weights of the 
prior year and use a new Lowe index for 12 months to 
update the prior year’s indices. To approximate this type 
of index, we construct a lagged two year chained Lowe index 
for month t, PLO2

t, as follows. For t = 1,. . .,24, define PLO2
t ≡ 

PLO1
t. Thus, we use the annual quantities for year 1 for the 

first 24 months of data. For a month t = 25,.  .  .,36 in the 
third year, define a new link Lowe index using the weights 
of year 2 and the prices of year 3 relative to December of 
year 2, [Σn=1

N pt,nqA,2,n/Σn=1
N p24,nqA,2,n], and then link this 

index to the index value for PLO2
t at t = 24. Thus for t = 

25,. . .,36, define PLO2
t ≡ PLO2

24×[Σn=1
N pt,nqA,2,n/Σn=1

N p24,nqA,2,n]. 
For year 4, use the quantity weights of year 3 and the new 
Lowe link index that compares the prices of month t in year 
4 to month 12 in year 3 to extend the definition of PLO2

t. 
Thus for t = 37,.  .  .,48, define PLO2

t ≡ PLO2
36×[Σn=1

N pt,nqA,3,n/
Σn=1

N p36,nqA,3,n]. In a similar manner, for t = 49,. . .,60, define 
PLO2

t ≡ PLO2
48×[Σn=1

N pt,nqA,4,n/Σn=1
N p48,nqA,4,n] and for t = 

61,. . .,72, define PLO2
t ≡ PLO2

60×[Σn=1
N pt,nqA,5,n/Σn=1

N p60,nqA,5,n]. 
These chained Lowe indices using annual weights lagged 
one year, PLO2

t, are listed in Table A.24 and plotted in  
Figure 9.12.

Some countries use annual weights that are lagged two 
years. To approximate this type of index, we construct a 
Lagged two year chained Lowe index for month t, PLO3

t, as 
follows. For t = 1,.  .  .,36, define PLO3

t ≡ PLO1
t. Thus, we use 

the annual quantities for year 1 for the first 36 months of 
data to construct this alternative Lowe index which will be 
equal to the fixed-base Lowe index, PLO1

t, for the first three 
years of data. For the fourth year of data, define a new link 
Lowe index using the weights of year 2 and the prices of 
year 4 relative to December of year 3, [Σn=1

N pt,nqA,2,n/Σn=1
N 

p36,nqA,2,n], and then link this index to the index value for PLO3
t 

at t = 36. Thus for t = 37,. . .,48, define PLO3
t ≡ PLO3

36×[Σn=1
N 

pt,nqA,2,n/Σn=1
N p36,nqA,2,n]. In a similar manner, for t = 49,. . .,60, 

define PLO3
t ≡ PLO3

48×[Σn=1
N pt,nqA,3,n/Σn=1

N p48,nqA,3,n] and for t = 
61,. . .,72, define PLO3

t ≡ PLO3
60×[Σn=1

N pt,nqA,4,n/Σn=1
N p60,nqA,4,n]. 

These partially chained Lowe indices using annual weights 

60 In the context of seasonal price indices, this type of index corresponds 
to Bean and Stine’s (1924; 31) Type A index.
61 The year 1 annual quantity weights qA,1,n are as follows for our sample 
of 14 types of fruits: 7.968, 7.159, 27.106, 2.285, 0.966, 8.805, 10.069, 2.266, 
0.664, 0.884, 3.560, 9.528, 0.782, and 2.168.

lagged two years, PLO3
t, are listed in Table A.24 and plotted 

in Figure 9.12.
Recall the notation for prices and quantities that was 

used in Section 2: qy,m,n is the quantity of product n that is 
purchased by households in month m of year y, and py,m,n is 
the corresponding price where y = 1,. . .,Y; m = 1,. . .,M and 
n = 1,.  .  .,N.62 Annual expenditures for product n purchased 
in year y, eA,y,n, are obtained by summing expenditures on 
product n in year y over the months in the year; that is, we 
have the following definitions:

 eA,y,n ≡ Σm=1
M py,m,nqy,m,n; y = 1,. . .,Y; n = 1,. . .,N; (142)

 ey ≡ Σn=1
N eA,y,m; y = 1,. . .,Y; (143)

 sA,y,n ≡ eA,y,n/ey; y = 1,. . .,Y; n = 1,. . .,N, (144)

where ey is the total expenditure on all products in year y 
and sA,y,n is the annual expenditure share of product n in year 
y. We will use the annual expenditure shares on products for 
year 1, sA,1,n, in order to define our next index.

The fixed-base Young (1812) index for month t using the 
annual weights of year 1, PY1

t, is defined as follows:

 PY1
t ≡ Σn=1

N sA,1,n(pt,n/p1,n); t = 1,. . .,T. (145)

Using the data listed in Tables A.23 and A.24, this fixed-
base Young index PY1

t is listed in Table 9.24 and is plotted in  
Figure 9.12.63

The aforementioned Young index PY1
t is not a real-time 

Young index. Many statistical agencies use the annual 
expenditure share weights of the prior year and construct 
a real-time Young index by using these lagged annual 
weights for one year and then they update their lagged 
annual weights for the following year. To approximate 
this type of index, we construct a (partially) chained 
Young index for month t, PY2

t, as follows. For t = 1,. . .,24, 
define PY2

t ≡ PY1
t. Thus, we use the annual expenditure 

shares for year 1 for the first 24 months of data. For a 
month t = 25,.  .  .,36 in the third year, define a new link 
Young index using the expenditure share weights of year 
2 and the prices of year 3 relative to December of year 2, 
Σn=1

N sA,2,n(pt,n/p24,n), and then link this index to the index 
value for PY2

t at t = 24. Thus for t = 25,. . .,36, define PY2
t 

≡ PY2
24×Σn=1

N sA,2,n(pt,n/p24,n). For year 4, use the expendi-
ture share weights of year 3 and the new Young link index 
that compares the prices of month t in year 4 to month 
12 in year 3 to extend the definition of PY2

t. Thus for t 
= 37,.  .  .,48, define PY2

t ≡ PY2
36×Σn=1

N sA,3,n(pt,n/p36,n). In a 
similar manner, for t = 49,. . .,60, define PY2

t ≡ PY2
48×Σn=1

N 
sA,4,n(pt,n/p48,n) and for t = 61,. . .,72, define PY2

t ≡ PY2
60 ×Σn=1

N 
sA,5,n(pt,n/p60,n). These partially chained Young indices 
using annual weights lagged one year, PY2

t, are listed in 
Table 9.24 and plotted in Figure 9.12.

As was the case with Lowe indices, some countries 
that produce Young indices use annual expenditure share 
weights that are lagged two years. To approximate this  

62 Carry-forward/carry-backward prices are used for missing products in 
this section.
63 The year 1 annual expenditure shares sA,1,n are as follows for our sample 
of 14 types of fruits: 0.07688, 0.09895, 0.12712, 0.04061, 0.00644, 0.18375, 
0.14648, 0.07842, 0.03345, 0.02055, 0.05667, 0.07869, 0.01647, 0.03552.



293

SEASONAL PRODUCTS

type of index, we construct a lagged two year chained 
Young index for month t, PY3

t, as follows. For t = 1,. . .,36, 
define PY3

t ≡ PY1
t. Thus, we use the annual expenditure 

shares for year 1 for the first 36 months of data to con-
struct this alternative Young index which will be equal to 
our initial fixed-base Young index, PY1

t, for the first three 
years of data. For the fourth year of data, define a new link 
Young index using the expenditure share weights of year 
2 and the prices of year 4 relative to December of year 3, 
Σn=1

N sA,2,n(pt,n/p36,n), and then link this index to the index 

value for PY3
t at t = 36. Thus for t = 37,.  .  .,48, define PY3

t 
≡ PY3

36×Σn=1
N sA,2,n(pt,n/p36,n). In a similar manner, for t = 

49,.  .  .,60, define PY3
t ≡ PY3

48×Σn=1
N sA,3,n(pt,n/p48,n) and for t 

= 61,.  .  .,72, define PY3
t ≡ PY3

60×Σn=1
N sA,4,n(pt,n/p60,n). These 

partially chained Young indices using annual expenditure 
share weights lagged two years PY3

t, are listed in Table 9.24 
and plotted in Figure 9.12.

For comparison purposes, the maximum overlap pre-
dicted share similarity-linked indices PS

t* are also listed in 
Table 9.24 and are plotted in Figure 9.12. These indices were 

Table 9.24 Alternative Lowe and Young Indices and Maximum Overlap Predicted Share Indices
t PLO1

t PLO2
t PLO3

t PY1
t PY2

t PY3
t PS

t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.04326 1.04326 1.04326 1.05268 1.05268 1.05268 1.06603
3 1.08548 1.08548 1.08548 1.10507 1.10507 1.10507 1.17647
4 1.08876 1.08876 1.08876 1.10788 1.10788 1.10788 1.17956
5 1.13936 1.13936 1.13936 1.15868 1.15868 1.15868 1.18310
6 1.03900 1.03900 1.03900 1.06992 1.06992 1.06992 1.00296
7 1.06729 1.06729 1.06729 1.10912 1.10912 1.10912 1.01198
8 1.19403 1.19403 1.19403 1.25591 1.25591 1.25591 1.05554
9 1.10376 1.10376 1.10376 1.15229 1.15229 1.15229 0.97973
10 1.08384 1.08384 1.08384 1.12758 1.12758 1.12758 0.99067
11 0.98815 0.98815 0.98815 1.02055 1.02055 1.02055 1.04107
12 0.95707 0.95707 0.95707 0.98609 0.98609 0.98609 0.97592
13 0.96145 0.96145 0.96145 0.99008 0.99144 0.99144 0.99684
14 1.00464 1.00464 1.00464 1.04855 1.03587 1.03587 1.17902
15 0.98637 0.98637 0.98637 1.01337 1.02120 1.02120 1.08056
16 1.03456 1.03456 1.03456 1.07048 1.07208 1.07208 1.17474
17 1.10996 1.10996 1.10996 1.15028 1.15016 1.15016 1.10498
18 1.23903 1.23903 1.23903 1.27051 1.27978 1.27978 1.30841
19 1.32716 1.32716 1.32716 1.36592 1.37230 1.37230 1.18142
20 1.34389 1.34389 1.34389 1.37751 1.39097 1.39097 1.23391
21 1.21519 1.21519 1.21519 1.23145 1.25047 1.25047 1.09986
22 1.20236 1.20236 1.20236 1.21261 1.23257 1.23257 1.23179
23 1.14380 1.14380 1.14380 1.14866 1.16844 1.16844 1.06906
24 1.12858 1.12858 1.12858 1.13117 1.15207 1.15207 1.04392
25 1.11756 1.11376 1.11756 1.11914 1.13660 1.15403 1.02270
26 1.17002 1.16392 1.17002 1.19040 1.19004 1.21753 1.22856
27 1.16512 1.17153 1.16512 1.17183 1.19817 1.21480 1.17215
28 1.21869 1.23906 1.21869 1.22908 1.26991 1.28190 1.25327
29 1.26146 1.30297 1.26146 1.28205 1.34101 1.35073 1.22223
30 1.21967 1.26375 1.21967 1.25523 1.30879 1.32380 1.15449
31 1.31282 1.37439 1.31282 1.36083 1.43366 1.44250 1.20526
32 1.36885 1.45695 1.36885 1.42380 1.52351 1.52542 1.16278
33 1.23566 1.30444 1.23566 1.27315 1.35170 1.35787 1.18929
34 1.20359 1.26686 1.20359 1.23562 1.31157 1.31230 1.31066
35 1.09640 1.13257 1.09640 1.11793 1.16504 1.17490 1.07810
36 1.06780 1.09851 1.06780 1.08641 1.12818 1.13999 1.01195

(Continued )
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t PLO1
t PLO2

t PLO3
t PY1

t PY2
t PY3

t PS
t*

37 1.06587 1.09628 1.06579 1.08420 1.12718 1.15462 1.01076
38 1.09187 1.11622 1.08513 1.12263 1.14963 1.17557 1.16812
39 1.11013 1.14497 1.11553 1.13424 1.18354 1.21131 1.17108
40 1.24637 1.30601 1.28028 1.28318 1.36839 1.39454 1.39663
41 1.52833 1.59991 1.54600 1.54905 1.70292 1.70586 1.50841
42 1.44653 1.53923 1.49936 1.49624 1.64162 1.65526 1.37756
43 1.46704 1.57449 1.55011 1.54226 1.69526 1.70704 1.22151
44 1.35281 1.44427 1.40749 1.42269 1.55393 1.56055 1.05506
45 1.24425 1.30625 1.27269 1.29453 1.37818 1.39849 1.22173
46 1.23748 1.29271 1.25707 1.28513 1.35919 1.38018 1.19999
47 1.16552 1.21047 1.17278 1.20599 1.26673 1.28470 1.26828
48 1.10676 1.14443 1.09805 1.14252 1.19705 1.20779 1.13921
49 1.10034 1.13626 1.09053 1.13441 1.18973 1.20886 1.13475
50 1.18691 1.22131 1.17300 1.24418 1.28716 1.30691 1.38339
51 1.16776 1.21323 1.16760 1.20785 1.27810 1.29792 1.29063
52 1.25206 1.30889 1.26315 1.30331 1.38020 1.40329 1.43303
53 1.36482 1.42634 1.38322 1.40161 1.52043 1.54805 1.34386
54 1.37422 1.44057 1.39343 1.43167 1.54143 1.56224 1.25757
55 1.47429 1.55230 1.50203 1.53753 1.67156 1.68595 1.34547
56 1.41979 1.49149 1.44386 1.46712 1.59174 1.61501 1.30412
57 1.33528 1.39119 1.33533 1.36367 1.48060 1.50056 1.26875
58 1.30946 1.36033 1.30726 1.33383 1.44496 1.46756 1.34737
59 1.18387 1.21857 1.16801 1.19556 1.28643 1.30911 1.09738
60 1.14666 1.17665 1.12767 1.15470 1.23912 1.26212 1.01922
61 1.17220 1.20921 1.15517 1.18209 1.28337 1.32271 1.07767
62 1.28637 1.33420 1.26463 1.32312 1.44306 1.48080 1.39115
63 1.27916 1.34273 1.26912 1.29807 1.46002 1.49454 1.32072
64 1.34213 1.42892 1.34161 1.36226 1.57761 1.60731 1.39001
65 1.47799 1.58492 1.48634 1.49954 1.75811 1.78672 1.52597
66 1.35495 1.46134 1.36328 1.40213 1.65693 1.67184 1.25740
67 1.45383 1.60427 1.47019 1.52241 1.85953 1.86366 1.22459
68 1.39418 1.52032 1.40637 1.45631 1.73987 1.74864 1.11160
69 1.36826 1.48091 1.37725 1.42296 1.67215 1.68685 1.27951
70 1.31139 1.39452 1.31040 1.35463 1.54773 1.57445 1.27885
71 1.16938 1.22085 1.15803 1.19906 1.32578 1.35928 1.23088
72 1.16123 1.20830 1.14936 1.18982 1.31397 1.34640 1.19115
Mean 1.20940 1.24830 1.21360 1.24240 1.31660 1.32920 1.18920

Table 9.24 (Continued)

defined in Section 7. Recall that these indices had the “best” 
axiomatic and economic properties.

The fixed-base Young index PY1
t ends up very close to  

our preferred index PS
t* at t = 72. However, the mean of 

PY1
t is 5.3 percentage points above the mean of PS

t*. It is 
interesting that the partially chained Young indices, PY2

t  
and PY3

t, appear to have some upward chain drift since they 
finished 12.3 and 15.5 percentage points above PS

72*. Note 
that PLO1

t, PY1
t and PS

t*, all satisfy the multiperiod identity 

test so these indices are not subject to chain drift.64 Turn-
ing to the Lowe indices, the partially chained Lowe 
index that used annual quantity weights lagged one year, 
PLO2

t, ended up 1.7 percentage points above our preferred  

64 However, as soon as the base period annual quantities or annual expen-
diture shares are updated, the resulting Lowe and Young indices will be 
subject to potential chain drift. The similarity-linked indices PS

t* always 
satisfy the multiperiod identity test and hence are not subject to chain drift.
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similarity-linked index PS
t*. However, on average, PLO2

t was 
9.4 percentage points above PS

t*. The fixed-base Lowe index, 
PLO1

t, and the partially chained Lowe index that used annual 
quantity weights lagged two years, PLO3

t, ended up 3.0 and 
4.2 percentage points below PS

72*.
From Figure 9.12, it can be seen that none of the annual 

basket or annual expenditure share indices provide an 
adequate approximation to our preferred similarity-linked 
index PS

t*. The large upward seasonal fluctuations in the two 
partially chained Young indices, PY2

t and PY3
t, are a particu-

lar cause for concern. In general, the indices that use annual 
quantities or expenditure shares as weights have an upward 
bias which is interesting since these indices use carry-for-
ward prices so they should have a downward bias relative 
to PS

t* since this similarity-linked index does not use carry-
forward prices.

There is a conceptual problem with using annual bas-
ket indices along with carry-forward prices in the strongly 
seasonal products context. The problem is that these indi-
ces have no theoretical justification. To see the problem 
clearly, think of an extreme case of strong seasonality for 
an elementary category where each product is available in 
only one month of the year. It is simply impossible to con-
struct a meaningful price (or quantity) index for this cat-
egory of goods or services. There is no basis for comparing 
the prices or quantities of one month or quarter with the 
corresponding prices or quantities of a different month or 
quarter of the same year since the product categories do not 
overlap.65 In the strongly seasonal products context where 

65 Andrew Baldwin (1990; 258) noted that there is a problem with using 
annual basket (AB) indices in the seasonal context even if there is no 
strong seasonality: “For seasonal goods, the AB index is best considered 
an index partially adjusted for seasonal variation. It is based on annual 
quantities, which do not reflect the seasonal fluctuations in the volume 
of purchases, and on raw monthly prices, which do incorporate seasonal 
price fluctuations. Zarnowitz (1961; 256–257) calls it an index of ‘a hybrid 
sort.’ Being neither of sea nor land, it does not provide an appropriate 
measure either of monthly or 12 month price change. The question that 
an AB index answers with respect to price change from January to Feb-
ruary say, or January of one year to January of the next, is ‘What would 
the change in consumer prices have been if there were no seasonality in 
purchases in the months in question but prices nonetheless retained their 

there is some product overlap for months in the same year, 
we can construct meaningful price indices between months 
in the same year for the set of overlap products between any 
two months, and this is exactly what was done to create the 
similarity-linked indices PS

t*.
Our conclusions for this section are as follows:

• In the strongly seasonal products context, Lowe and 
Young indices using carry-forward prices for missing 
products are subject to both carry-forward bias and 
substitution bias and are unlikely to approximate alter-
native indices that have better axiomatic and economic 
properties.

It was noted earlier that Mudgett Stone indices, which com-
pare the prices of the current year with the prices of a previ-
ous year, provide meaningful measures of annual inflation 
even in the case where each product in scope is only available 
in one month of the year. This type of index was studied in 
Sections 4 and 5. In the following section, this type of index 
will be generalized to provide a measure of annual inflation 
that is updated each month. The resulting measures of price 
change can be compared to smoothed measures of month-
to-month price change.

Just a comment on footnote 66: I don’t think Baldwin’s 
characteristic of the annual basket (AB) is helpful at all. 
Instead of his formulation, I would say that the AB shows 
the changing price from month-to-month of buying the 
same annual average basket of goods and services. This is 
a clear and simple concept and can be explained to users. 
There are numerous measurement problems, including for 
strongly seasonal products: prices of out-of-season products 
have to be estimated or imputed, but you can do this in a 
reasonable ways and imputations are used in a lot of eco-
nomic statistics, including the national accounts. The alter-
native is to allow the expenditure weights to change during 
the year would solve this problem. The weights of out-of-
season products would be zero and there would be no need 
to estimate/impute artificial prices. But allowing weights to 

own seasonal behaviour?’ It is hard to believe that this is a question that 
anyone would be interested in asking.”
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change from month to month during the year would create 
other problems, in particular that one would leave the fixed 
basket approach and the index would no longer show only 
the effect of price changes; it would be difficult to interpret 
the changes in such an index since these might be caused by 
both price changes and changes in weights. It is my impres-
sion that users in general are happy with this approach 
and the stability and ease of interpretation this give to the 
CPI. Sure, you can criticize AB and Lowe/Young for many 
things, but they also have advantages, which are completely 
disregarded in this chapter.

11. Rolling Year Measures of Annual 
Inflation and Measures of Trend 
Inflation
In Sections 4 and 5, the price and quantity data pertain-
ing to the 12 months of a calendar year were compared to 
the 12 months of a base calendar year. However, there is no 
need to restrict attention to calendar year comparisons: any 
12 consecutive months of price and quantity data could be 
compared to the price and quantity data of the base year, 
provided that the January data in the non-calendar year are 
compared to the January data of the base year, the February 
data of the non-calendar year are compared to the Febru-
ary data of the base year, .  .  ., and the December data of 
the non-calendar year are compared to the December data 
of the base year.66 Alterman, Diewert, and Feenstra (1999; 
70) called the resulting indices rolling year indices.67 This 
approach to the measurement of price change is consistent 
with three of the four main approaches to index number the-
ory: (i) the comparison of purchases of products in the two 
periods using the base period consumption basket, the cur-
rent period consumption basket, or an average of the two68; 
(ii) the test approach; and (iii) the stochastic approach.69

It is easy to explain how the rolling year indices work in 
principle: The prices of the 12 months in the current roll-
ing year are compared to the corresponding monthly prices 
in the base year, where January prices are matched up with 
January prices, February prices with February prices, and 
so on. However, setting up the algebra for the maximum 
overlap Laspeyres and Paasche indices is somewhat com-
plex, as will be seen subsequently.

Recall that pt and qt are the month t vectors of dimension 
14 for our example for t = 1,. . .,72. Treat these vectors as col-
umn vectors in what follows. The inner product of pt and qr 
is defined as pt·qr ≡ Σn=1

14 pt,nqr,n. If product n is not purchased 
in month t, then the nth components of pt and qt, pt,n, and qt,n, 

66 Diewert (1983) suggested this type of comparison and termed the 
resulting index a “split year” comparison.
67 Crump (1924; 185) used this term in the context of various seasonal 
adjustment procedures. Mendershausen (1937; 245) used the term “mov-
ing year.” The term “rolling year” seems to be well established in the busi-
ness literature in the UK.
68 This leads to maximum overlap Laspeyres, Paasche, and Fisher indices.
69 In order to rigorously justify rolling year indices from the viewpoint 
of the economic approach to index number theory, some restrictions on 
preferences are required. The details of these assumptions can be found 
in Diewert (1999a; 56–61). The problems associated with forming annual 
indices from monthly or quarterly indices have not been completely 
resolved from the viewpoint of the economic approach to index number 
theory.

are set equal to 0. For t = 1,. . .,72, define the diagonal 14 by 
14 matrix Δt as follows: If qt,n > 0, then the element in the nth 
row and nth column of Δt is set equal to 1; if qt,n = 0, then the 
element in the nth row and nth column of Δt is set equal to 0. 
The remaining components of Δt are set equal to 0.

The rolling year indices cannot be defined until 12 months 
of data are available. Thus for our example data set which 
consists of 72 months of data, the rolling year indices will 
run from t = 1 to t = 72. When t = 1, the first 12 months of 
data are compared with the first 12 months of data and the 
resulting rolling year index will equal 1. When t = 61, the 
rolling year index compares the last 12 months of data with 
the first 12 months of data.

The algebra for the rolling year fixed-base maximum 
overlap Laspeyres indices is set out here. This index for 
period t is denoted by PLRY

t* = Numt/Dent. The numerators, 
Numt, and the denominators, Dent, for PLRY

t* are defined 
as follows:

Num1 ≡ Σt=1
12 pt·qt; Den1 ≡ Σt=1

12 pt·qt;

Num2 ≡ Num1 – p1·q1  
 + p13·q1;

Den2 ≡ Den1 – p1·q1 + p1·Δ13q1;

Num3 ≡ Num2 – p2·q2  
 + p14·q2;

Den3 ≡ Den2 – p2·q2 + p2·Δ14q2;

Num4 ≡ Num3 – p3·q3  
 + p15·q3;

Den4 ≡ Den3 – p3·q3 + p3·Δ15q3;

••• •••

Num13 ≡ Num12 – p12·q12 
+ p24·q12;

Den13 ≡ Den12 – p12·q12 + 
p12·Δ24q12;

Num14 ≡ Num13 – p13·q1 
+ p25·q1;

Den14 ≡ Den13 – p1·Δ13q1  
 + p1·Δ25q1;

Num15 ≡ Num14 – p14·q2 
+ p26·q2;

Den15 ≡ Den14 – p2·Δ14q2 + 
p2·Δ26q2;

••• •••

Num25 ≡ Num24 – p24·q12 
+ p36·q12;

Den25 ≡ Den24 – p12·Δ24q12  
 + p12·Δ36q12;

Num26 ≡ Num25 – p25·q1 
+ p37·q1;

Den26 ≡ Den25 – p1·Δ25q1 + 
p1·Δ37q1;

Num27 ≡ Num26 – p26·q2 
+ p38·q2;

Den27 ≡ Den26 – p2·Δ26q2 + 
p2·Δ38q2;

••• •••

Num37 ≡ Num36 – p36·q12 
+ p48·q12;

Den37 ≡ Den36 – p12·Δ36 q 12  
 + p 12·Δ48 q 12;

Num38 ≡ Num37 – p37·  
q 1 + p 49· q 1;

Den38 ≡ Den37 – p 1·Δ37 q 1  
 + p 1·Δ49 q 1;

Num39 ≡ Num38 – p 38·  
q 2 + p 50· q 2;

Den39 ≡ Den38 – p 2·Δ38 q 2  
 + p 2·Δ50 q 2;

••• •••

Num49 ≡ Num48 – p 48·  
q 12 + p 60· q 12;

Den49 ≡ Den48 – p 12·Δ48 q 12  
 + p 12·Δ60 q 12;

Num50 ≡ Num49 – p 49· q 1 
+ p 61· q 1;

Den50 ≡ Den49 – p 1·Δ49 q 1  
 + p 1·Δ61 q 1;
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Num51 ≡ Num50 – p 50· q 2 
+ p 62· q 2;

Den51 ≡ Den50 – p 2·Δ50 q 2  
 + p 2·Δ62 q 2;

••• •••

Num61 ≡ Num60 – p 60·  
q 12 + p 72· q 12;

Den61 ≡ Den60 – p 12·Δ60 q 12  
 + p 12·Δ72 q 12;

The period t rolling year (fixed-base maximum overlap) 
Laspeyres index is defined as

 PLRY
t* ≡ Numt/Dent; t = 1,. . .,61. (146)

These rolling year Laspeyres indices are listed in Table 9.25 
and are plotted in Figure 9.13.

Recall that in Section 5, the maximum overlap annual 
fixed-base Laspeyres indices, PLFB

y* were defined by (69) for 
years y = 1,.  .  .,6. It can be verified that the Rolling Year 
Laspeyres indices PLRY

t* coincide with the earlier annual 
indices PLFB

y* for t = 1, 13, 25, 37, 49, and 61 and y = 1,. . .,6; 
that is, we have PLRY

1* = PLFB
1* = 1, PLRY

13* = PLFB
2*, PLRY

25* = 
PLFB

3*, PLRY
37* = PLFB

4*, PLRY
49* = PLFB

5*, and PLRY
61* = PLFB

6*. 
Thus, the new rolling year Laspeyres indices defined in this 
section are a natural extension of the fixed-base Mudgett 
Stone maximum overlap Laspeyres annual indices defined 
in Section 5. The new indices provide a seasonally adjusted 
measure of annual inflation for the current split year that 
consists of the last consecutive 12 months relative to the cor-
responding seasonal prices prevailing in a base year.

The aforementioned algebra is modified to define the roll-
ing year fixed-base maximum overlap Paasche indices, PPRY

t*. 
The numerators, Numt, and the denominators, Dent, for 
PPRY

t* are defined as follows:

Num1 ≡ Σt=1
12 pt· q t; Den1 ≡ Σt=1

12 pt· q t;

Num2 ≡ Num1 – p1· q 1  
 + p13·Δ1 q 13;

Den2 ≡ Den1 – p1· q 1  
 + p 1· q 13;

Num3 ≡ Num2 – p 2· q 2  
 + p 14·Δ2 q 14;

Den3 ≡ Den2 – p 2· q 2  
 + p 2· q 14;

Num4 ≡ Num3 – p 3· q 3  
 + p 15·Δ3 q 15;

Den4 ≡ Den3 – p 3· q 3  
 + p 3· q 15;

••• •••

Num13 ≡ Num12 – p 12· q 12  
 + p 24·Δ12 q 24;

Den13 ≡ Den12 – p 12· q 12  
 + p 12· q 24;

Num14 ≡ Num13 – p 13· 
Δ1 q 13 + p 25·Δ1 q 25;

Den14 ≡ Den13 – p 1· q 13  
 + p 1·q25;

Num15 ≡ Num14 – p 14· 
Δ2q14 + p 26·Δ2q26;

Den15 ≡ Den14 – p 2·q14  
 + p 2·q26;

••• •••

Num25 ≡ Num24 – p 24· 
Δ12q24 + p 36·Δ12q36;

Den25 ≡ Den24 – p 12·q24  
 + p 12·q36;

Num26 ≡ Num25 – p 25· 
Δ1q25 + p 37·Δ1q37;

Den26 ≡ Den25 – p 1·q25  
 + p 1·q37;

Num27 ≡ Num26 – p 26· 
Δ2q26 + p 38·Δ2q38;

Den27 ≡ Den26 – p 2·q26  
 + p 2·q38;

••• •••

Num37 ≡ Num36 – p 36·Δ12q36  
 + p 48·Δ12q48;

Den37 ≡ Den36 – p 12·q36  
 + p 12·q48;

Num38 ≡ Num37 – p 25·Δ1q37  
 + p 37·Δ1q49;

Den38 ≡ Den37 – p 1·q37  
 + p 1·q49;

Num39 ≡ Num38 – p 26·Δ2q38  
 + p 38·Δ2q50;

Den39 ≡ Den38 – p 2·q38  
 + p 2·q50;

••• •••

Num49 ≡ Num48 – p 48·Δ12q48  
 + p 60·Δ12q60;

Den49 ≡ Den48 – p 12·q48  
 + p 12·q60;

Num50 ≡ Num49 – p 49·Δ1q49  
 + p 61·Δ1q61;

Den50 ≡ Den49 – p 1·q49  
 + p 1·q61;

Num51 ≡ Num50 – p 50·Δ2q50  
 + p 61·Δ2q62;

Den51 ≡ Den50 – p 2·q50  
 + p 2·q62;

••• •••

Num61 ≡ Num60 – p 60·Δ12q60  
 + p 72·Δ12q72;

Den61 ≡ Den60 – p 12·q60  
 + p 12·q72 .

The period t rolling year (fixed-base maximum overlap) 
Paasche Index is defined as

 PPRY
t* ≡ Numt/Dent; t = 1,. . .,61. (147)

The period t rolling year (fixed-base maximum overlap) 
Fisher Index, PFRY

t* is defined as the geometric mean of the 
period t Rolling year Laspeyres and Paasche indices:

 PFRY
t* ≡ (PLRY

t* PPRY
t*)1/2; t = 1,. . .,61. (148)

These rolling year Paasche and Fisher indices are listed in 
Table 9.25 and are plotted in Figure 9.13.70

70 The indices defined in the last three columns of Table 9.25 will be 
defined later.

Table 9.25 Rolling Year Maximum Overlap 
Laspeyres, Paasche, and Fisher Price Indices and 
Some Moving Average Approximations
t PLRY

t* PPRY
t* PFRY

t* PSMA
t* PFMMA

t* PSMMA
t*

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.99986 0.99993 0.99990 0.99975 0.99984 0.99984
3 1.01275 1.00477 1.00875 1.00867 1.00831 1.00831
4 1.00672 0.99713 1.00192 1.00110 1.00158 1.00158
5 1.00599 0.99599 1.00097 1.00072 1.00037 1.00037
6 1.00217 0.98795 0.99504 0.99455 0.99487 0.99487
7 1.05211 1.01266 1.03220 1.01867 1.02025 1.02025
8 1.09356 1.03034 1.06148 1.03205 1.04268 1.04268
9 1.11096 1.04550 1.07774 1.04614 1.05676 1.05676

10 1.12245 1.05347 1.08741 1.05562 1.06698 1.06698
11 1.12983 1.05505 1.09180 1.07467 1.07090 1.07090
12 1.13288 1.05680 1.09418 1.07688 1.07315 1.07315
13 1.13733 1.06109 1.09855 1.08225 1.07893 1.07893
14 1.13936 1.06215 1.10008 1.08429 1.08124 1.08099
15 1.14418 1.06902 1.10596 1.08820 1.08665 1.08485

(Continued )
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Using the means listed in Table 9.25, it can be seen that 
the rolling year Laspeyres indices, PLRY

t*, are on average 
2.8 percentage points above the corresponding rolling year 
Fisher indices, PFRY

t*, while the rolling year Paasche indices, 
PPRY

t*, are on average 2.7 percentage points below the corre-
sponding rolling year Fisher indices. This indicates that the 
Laspeyres and Paasche indices suffer from a considerable 
amount of substitution bias.

It can be verified that the rolling year Laspeyres, Paasche, 
and Fisher indices, PLRY

t*, PPRY
t*, and PFRY

t*, coincide with the 
corresponding annual indices, listed in Table 9.12 in Section 
5, PLFB

y*, PPFB
y*, and PFFB

y*, for t = 1, 13, 25, 37, 49, and 61 and 
y = 1,. . .,6.

The indices listed in Table 9.25 are plotted in Figure 9.13.
A comparison of the Laspeyres, Paasche, and Fisher roll-

ing year indices shown in Figure 9.13 with the month-to-
month indices that are plotted in Figures 9.7 to 9.12 indicates 
that the Rolling Year indices are much less variable than any 
of the month-to-month indices. Thus the rolling year indices 
both capture the trend in inflation and eliminate the sea-
sonal fluctuations in the month-to-month measures of infla-
tion. The upward bias in the rolling year Laspeyres index 
and the downward bias in the rolling year Paasche index are 
apparent in Figure 9.13.

At this point, our conclusions in this section are as follows:

• Rolling year maximum overlap Laspeyres, Paasche, and 
Fisher indices can readily be calculated provided monthly 
information on prices and quantities is available.

• These indices are a natural generalization of the annual 
Mudgett Stone indices defined in Section 5 to provide 
annual index numbers for non-calendar years. They have 
the advantage that they can provide a new measure of 
trend inflation each month; that is, one does not have to 
wait until the end of a calendar year to get a current mea-
sure of inflation.

• These indices can be regarded as seasonally adjusted 
measures of trend inflation that is centered in the middle 
of the current non-calendar year that consists of the last 
string of 12 consecutive months. In the strongly seasonal 
products context, these indices provide the most accurate 
measures of inflation.

• As usual, the rolling year maximum overlap Fisher index 
of annualized inflation is preferred over the counterpart 
rolling year Laspeyres and Paasche indices which suffer 
from substitution bias.

In addition to the rolling year fixed-base Laspeyres, Paas-
che, and Fisher indices that are listed in Table 9.25 and plot-
ted in Figure 9.13, there are three indices that are listed in 
Table 9.25. These additional indices are approximations to 
other indices and hence are not of primary importance, but 
they are of interest.

The first additional index of interest is a moving average 
of our “best” month-to-month maximum overlap similarity-
linked indices PS

t* defined in Section 9. How well can such 
an index approximate the rolling year Fisher index PFRY

t* 
defined earlier? The 12-month moving average of PS

t*, PMA
t, 

is defined as follows:

PMA
1 ≡ (1/12)Σm=1

12 PS
m*; PMA

t ≡ PMA
t–1  

  + (1/12)PS
t + 11* – (1/12)PS

t–1*; t = 2,3,. . .,61. (149)

t PLRY
t* PPRY

t* PFRY
t* PSMA

t* PFMMA
t* PSMMA

t*

16 1.15089 1.07688 1.11327 1.09543 1.09337 1.09134
17 1.15589 1.08247 1.11858 1.10163 1.09979 1.09776
18 1.16438 1.09490 1.12910 1.11089 1.10894 1.10602
19 1.14176 1.08425 1.11264 1.09874 1.09814 1.09323
20 1.11904 1.07086 1.09469 1.10062 1.08460 1.08040
21 1.11661 1.06762 1.09184 1.09500 1.08185 1.07840
22 1.12505 1.07248 1.09845 1.10207 1.08856 1.08601
23 1.12847 1.07606 1.10195 1.10829 1.09327 1.09149
24 1.12908 1.07732 1.10289 1.10901 1.09458 1.09221
25 1.12732 1.07502 1.10086 1.10648 1.09196 1.08956
26 1.12612 1.07412 1.09981 1.10554 1.09071 1.08856
27 1.12030 1.06836 1.09403 1.10077 1.08528 1.08385
28 1.11999 1.06776 1.09356 1.10068 1.08496 1.08377
29 1.12900 1.07624 1.10231 1.11200 1.09596 1.09390
30 1.15203 1.09503 1.12317 1.13460 1.11745 1.11406
31 1.18096 1.11449 1.14724 1.15222 1.13439 1.13259
32 1.18007 1.11904 1.14915 1.15350 1.13552 1.13385
33 1.16794 1.10638 1.13674 1.14500 1.12513 1.12501
34 1.16815 1.10961 1.13850 1.14756 1.12787 1.12777
35 1.17315 1.12032 1.14643 1.13882 1.13684 1.13597
36 1.18452 1.13220 1.15807 1.15384 1.15148 1.15118
37 1.19194 1.14068 1.16603 1.16389 1.16170 1.16144
38 1.19810 1.14830 1.17294 1.17368 1.17126 1.17173
39 1.21756 1.16467 1.19082 1.19068 1.18805 1.18849
40 1.22668 1.17024 1.19813 1.20012 1.19509 1.19647
41 1.22795 1.17032 1.19879 1.20299 1.19598 1.19801
42 1.21506 1.16311 1.18880 1.19000 1.18545 1.18642
43 1.20435 1.14967 1.17670 1.18052 1.17641 1.17645
44 1.21910 1.16329 1.19087 1.19031 1.18707 1.18601
45 1.23970 1.18457 1.21182 1.20998 1.20506 1.20239
46 1.24684 1.18607 1.21608 1.21369 1.20894 1.20639
47 1.24310 1.17770 1.20996 1.22533 1.20009 1.20336
48 1.23297 1.16529 1.19866 1.21184 1.18601 1.18911
49 1.22527 1.15652 1.19040 1.20236 1.17608 1.17882
50 1.22248 1.15126 1.18633 1.19785 1.17143 1.17343
51 1.22365 1.15275 1.18767 1.19847 1.17242 1.17404
52 1.22568 1.15747 1.19108 1.20084 1.17603 1.17667
53 1.22548 1.15675 1.19062 1.19745 1.17531 1.17467
54 1.23906 1.16849 1.20326 1.21183 1.18741 1.18749
55 1.23623 1.17260 1.20399 1.21181 1.18786 1.18748
56 1.22222 1.15521 1.18824 1.20227 1.17682 1.17816
57 1.20681 1.14061 1.17325 1.18706 1.16390 1.16641
58 1.20534 1.14562 1.17510 1.18791 1.16585 1.16733
59 1.21683 1.15703 1.18655 1.18250 1.18044 1.17700
60 1.22373 1.16429 1.19364 1.19305 1.19014 1.18686
61 1.23439 1.17520 1.20443 1.20662 1.20447 1.20137
Mean 1.15940 1.10380 1.13120 1.13060 1.12120 1.12050

Table 9.25 (Continued)
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To make a price index out of these series of moving aver-
ages, divide PMA

t by PMA
1. Thus, the smoothed version of the 

month-to-month similarity-linked indices PS
t* is the 12-month 

moving average series PSMA
t* defined as follows;

 PSMA
t* ≡ PMA

t/PMA
1; t = 1,2,. . .,61. (150)

The smoothed month-to-month similarity indices PSMA
t* rep-

resent estimates of the trend in the month-to-month relative 
price similarity-linked indices PS

t*. Thus, PSMA
1 represents the 

trend in PS
1*– PS

12* centered in the middle of year 1 of our 
sample; PSMA

2 represents the trend in PS
2*– PS

13* centered in 
the middle of the split year consisting of months 2–12 in year 
1, January in year 2, and so on. Table 9.25 and Figure 9.13 
show that the trend indices PSMA

t* are fairly close to the roll-
ing year fixed-base maximum overlap Fisher indices PFRY

t*; 
the two indices end up at 1.2066 and 1.2044, respectively and 
their means are 1.1306 and 1.1312, respectively. Thus for our 
particular data set, the rolling year Fisher indices not only 
have an explicit annual index number interpretation, but they 
also provide an estimate for the trend in the month-to-month 
similarity-linked Fisher indices, PS

t*.71

We conclude this section by describing the last two addi-
tional indices of interest that are shown in Figure 9.13.

In Section 4, we saw that the true Mudgett Stone annual 
Laspeyres index could be computed as a share-weighted aver-
age of the monthly year-over-year indices. In Section 5, we took 
a simple equally weighted average of the maximum overlap fixed-
base year-over-year monthly Fisher indices PFFB

y,m* and showed 
that the resulting index could provide an approximation to the 

71 However, it should be kept in mind that the similarity-linked month-to-
month indices PS

t* are conceptually quite different from the Rolling Year 
Fisher indices PFRY

t*. In the case where all products are strongly seasonal 
and appear in only one month of the year, the Rolling Year Mudgett Stone 
indices are still well defined and meaningful from an economic perspec-
tive, whereas month-to-month indices maximum overlap indices cannot 
even be defined in this case. For a review of the early history of time series 
methods for measuring trends and providing seasonally adjusted series, 
see Diewert, Alterman, and Feenstra (2012). Oskar Anderson (1927; 
552–554) provided a very clear statement of the arbitrariness of existing 
methods for decomposing time series into trend, seasonal, and erratic 
components.

“true” annual Mudgett Stone fixed-base Fisher indices PFFB
y*. 

The resulting annual Mudgett Stone indices were defined by 
(82) and denoted by PFFBA

y* for y = 1,. . .,Y. The same type of 
approximation can be made for the rolling year Fisher indices, 
PFRY

t*. We indicate how these approximate rolling year Fisher 
indices PFMMA

t* can be defined.
PFFB

y,m* is the year-over-year monthly fixed-base maximum 
overlap Fisher price index for month m in year y. These indi-
ces were defined in Section 3 and are listed in Table A.22 in the 
annex. We simplify the notation and define P(y,m) as follows:

 P(y,m) ≡ PFFB
y,m*; y = 1,. . .,6; m = 1,. . .,12. (151)

The 12-month moving averages of these indices, Pt for t = 
1,. . .,61, are defined as follows:

P1 ≡ (1/12)Σm=1
12 P(1,m)

P2 ≡ P1 + (1/12)P(2,1) – (1/12)P(1,1)

P3 ≡ P2 + (1/12)P(2,2) – (1/12)P(1,2)

P4 ≡ P3 + (1/12)P(2,3) – (1/12)P(1,3)

•••

P13 ≡ P12 + (1/12)P(2,12) – (1/12)P(1,12)

P14 ≡ P13 + (1/12)P(3,1) – (1/12)P(2,1)

P15 ≡ P14 + (1/12)P(3,2) – (1/12)P(2,2)

•••

P25 ≡ P24 + (1/12)P(3,12) – (1/12)P(2,12)

P26 ≡ P25 + (1/12)P(4,1) – (1/12)P(3,1)

P27 ≡ P24 + (1/12)P(4,2) – (1/12)P(3,2)

•••

P37 ≡ P36 + (1/12)P(4,12) – (1/12)P(3,12)

P38 ≡ P36 + (1/12)P(5,1) – (1/12)P(4,1)

P39 ≡ P37 + (1/12)P(5,2) – (1/12)P(4,2)

•••
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Figure 9.13 Rolling Year Laspeyres, Paasche, and Fisher Indices and Some Approximations 
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P49 ≡ P48 + (1/12)P(5,12) – (1/12)P(4,12)

P50 ≡ P49 + (1/12)P(6,1) – (1/12)P(5,1)

P51 ≡ P50 + (1/12)P(6,2) – (1/12)P(5,2)

•••
P61 ≡ P60 + (1/12)P(6,12) – (1/12)P(5,12).

Normalize this 12-month moving averages into an index 
which equals 1 in the base period. Define the moving aver-
age index of the year-over-year monthly fixed-base maximum 
overlap Fisher indices, PFMMA

t*, as follows:

 PFMMA
t* ≡ Pt/P1; t = 1,. . .,61, (152)

where Pt are defined by (151). PFMMA
t* are listed in Table 9.25 

and are plotted in Figure 9.13.
Instead of using the year-over-year monthly fixed-base max-

imum overlap Fisher indices as basic building blocks to form 
the approximate rolling year index PFMMA

t*, other year-over-
year indices could be used as basic monthly building blocks, 
such as the maximum overlap similarity-linked monthly year-
over-year monthly indices PS

y,m* listed in Table 9.6 in Section 
3. These indices are also listed in Table A.22 in the annex. To 
construct the resulting approximate similarity-linked rolling 
year index PSMMA

t*, redefine P(y,m) as follows:

 P(y,m) ≡ PS
y,m*; y = 1,. . .,6; m = 1,. . .,12. (153)

The 12-month moving averages of these indices, Pt for t = 
1,. . .,61, can be defined using the algebra listed in (151) but 
using definitions (153) for P(y,m). Define the moving average 
index of the year-over-year monthly similarity-linked indices, 
PSMMA

t*, as follows:

 PSMMA
t* ≡ Pt/P1; t = 1,. . .,61, (154)

where the P t are defined by the algebra following (151) . PSM-

MA
t* are listed in Table 9.25 and are plotted in Figure 9.13.
From Table 9.25 and Figure 9.13, it can be seen that the 

indices PFMMA
t* and PSMMA

t* (which are normalized 12-month 
moving average series of the Fisher fixed-base and similarity- 
linked maximum overlap year-over-year monthly indices 
PFFB

y,m* and PS
y,m*) closely approximate each other and can 

barely be distinguished in Figure 9.13. This is to be expected 
since the underlying year-over-year monthly series, PFFB

y,m* 
and PS

y,m*, closely approximate each other.
In Section 5, two approximate annual maximum overlap 

Mudgett Stone indices, PFFB
y* and PSA

y*, were defined and 
listed in Table 9.13 for y = 1,. . .,6. The indices PFMMA

t* and 
PSMMA

t* are extensions of these indices to rolling years. Thus, 
we have PFFB

2* = PFMMA
13*, PFFB

3* = PFMMA
25*, PFFB

4* = PFMMA
37*, 

PFFB
5* = PFMMA

49*, and PFFB
6* = PFMMA

61*. Similarly, compar-
ing entries in Tables 9.13 and 9.25, we have PSA

2* = PSMMA
13*, 

PSA
3* = PSMMA

25*, PSA
4* = PSMMA

37*, PSA
5* = PSMMA

49*, and PSA
6* 

= PSMMA
61*. Thus, the indices PFMMA

t* and PSMMA
t* are natural 

extensions of the approximate calendar year annual Mud-
gett Stone indices PFFB

y* and PSA
y* to split years.

Our preferred rolling year index is the rolling year maxi-
mum overlap fixed-base Fisher index PFRY

t*. This index and 
the two approximate indices PFMMA

t* and PSMMA
t* ended 

up at 1.20433, 1.20447, and 1.20137, respectively, for our 

empirical example, which is more or less the same place. 
However, the means of the three indices were 1.1312, 1.1212, 
and 1.1205, respectively. Thus, the two approximate indices 
were on average about 1 percentage point below the mean 
of the Fisher rolling year index, PFRY

t*. The two approximate 
rolling year indices capture the trend quite well, but they 
give equal weights to each of the 12 months in the rolling 
year and thus are not as accurate (from the viewpoint of 
the economic approach to index number theory) as the roll-
ing year Fisher index which weights the 12 year-over-year 
monthly indices according to their economic importance.

From Table 9.25 and Figure 9.13, it can be seen that the 
indices PFMMA

t* and PSMMA
t* (which are normalized 12-month 

moving average series of the Fisher fixed-base and similarity- 
linked maximum overlap year-over-year monthly indices 
PFFB

y,m* and PS
y,m*) closely approximate each other and can 

barely be distinguished in Figure 9.13. This is to be expected 
since the underlying year-over-year monthly series, PFFB

y,m* 
and PS

y,m*, closely approximate each other.

12. Conclusion
The existence of strongly seasonal products raises a num-
ber of problems that national statistical offices face when 
attempting to construct CPIs that include strongly seasonal 
product categories.

This chapter has considered four main classes of alterna-
tive price indices that could be constructed for a strongly 
seasonal class of products:

• Year-over-year monthly indices (see Sections 2 and 3);
• Annual indices (see Sections 4,5, and 11);
• Month-to-month indices that measure consumer price 

inflation going from one month to the next month (see 
Sections 6 and 7 for indices that make use of price and 
quantity information and Sections 8 and 9 for indices that 
use only price information); and

• Month-to-month annual basket indices (or annual share 
indices) that make use of annual quantities or annual 
expenditure shares for a base year and monthly prices (see 
Section 10 for the Lowe and Young indices).

As was discussed in Section 10, in the strongly seasonal 
products context, Lowe or Young indices have little intui-
tive appeal. Consumers do not purchase an annual basket 
of strongly seasonal products in each month nor do they 
face carry-forward prices each month for this hypothetical 
annual basket of products.

The other three types of index have strong justifications. 
Month-to-month indices are required by central banks and 
others to monitor short-run movements in inflation. Annual 
indices are needed as deflators to produce annual constant 
dollar national accounts. It turns out that in the strongly 
seasonal products context, year-over-year monthly indices 
are far more accurate measures of inflation than month-to-
month indices. Moreover, the year-over-year monthly indices 
are basic building blocks for accurate annual indices. Thus in 
the strongly seasonal products context, all three types of index 
serve a useful purpose. This is our first important conclusion.

There are five other more technical issues that proved to 
be important in producing price indices for strongly sea-
sonal product groups:
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• Should carry-forward/carry-backward prices be used for 
missing prices in constructing a price index or should maxi-
mum overlap indices be produced (which is roughly equiv-
alent to using inflation-adjusted carry-forward prices for 
missing prices)? Common sense and our computations 
show that the use of carry-forward prices in the strongly 
seasonal products context will lead to a downward bias in 
the index if there is general inflation (and vice versa if there 
is general deflation as has occurred in Japan at times). Thus 
the use of carry-forward prices is not recommended.

• Are monthly price and quantity (or expenditure) data avail-
able or are just monthly price data available? The type of 
index that can be produced depends on data availability. Of 
course, indices that make use of price and quantity infor-
mation are preferred, but statistical offices usually do not 
have price and quantity information, so the issue of which 
index to use in the prices only situation is important. Our 
results in Section 9 show that, for our empirical example, 
it is possible to come up with a prices only index that can 
provide a fairly satisfactory approximation to our “best” 
index that makes use of price and quantity information.

• What is the “best” bilateral index number formula to use 
when making price comparisons between two periods? 
When price and quantity information are available for 
the two periods under consideration, the Fisher price 
index is a good candidate for the “best” index. It has very 
good properties from the perspectives of both the eco-
nomic approach to index number theory72 and the test 
approach.73 When only price information is available, the 
choice of a “best” functional form for a bilateral index 
is not so clear. If there are no missing prices (or if prices 
are completely matched across the two periods), then the 
Jevons index has the best axiomatic properties.74 In the 
case where prices are not matched across the two periods, 
the best approach at this stage of our knowledge is prob-
ably the maximum overlap Jevons index.

• However, the choice of a “best” bilateral index num-
ber formula is not the end of the story. In making index 
comparisons across multiple time periods using bilat-
eral indices as basic building blocks to link the prices of 
any pair of periods, one has to choose a path of bilateral 
links in order to link all of the periods. For example, one 
can choose the first period as the base period and link 
all subsequent periods to this base period, generating 
a sequence of fixed-base indices. Or one can calculate 
a chained index where the prices of period t are linked 
to the prices of period t – 1 and this chain link index is 
used to update the period t index level. The problem with 
fixed-base indices in the strongly seasonal context when 
producing month-to-month indices is that the choice 
of base period matters to a very significant degree; see 
Figure 9.5 in Section 6 and Figure 9.7 in Section 7. The 
problem with chained indices is that they are subject to 
chain drift; that is, if prices are identical in any two peri-
ods, it is desirable that the price index register the same 

72 See Diewert (1976).
73 See Diewert (1992; 221).
74 See Diewert (1995). The economic approach to index number theory 
that relies on exact index number formulae cannot be implemented if 
only price information is available.

index level for those two periods. Fixed base indices will 
satisfy this test but chained indices will in general not  
satisfy this multiperiod identity test. There are numerous 
examples in this chapter that show that chain drift can be 
a very significant problem when one uses chained indices. 
Thus there is the problem of choosing a “best” path to link 
bilateral price indices into a single index. Our suggested 
solution to this problem is to use a measure of relative 
price dissimilarity between the prices of any two periods 
and choose a path of bilateral links that minimizes the 
measure of price dissimilarity between the prices of the 
current period and the prices of all previous periods (up 
to some specified limit on how far back we want to go 
with the bilateral relative price comparisons). The price 
dissimilarity measure determines the path of bilateral 
links. If price and quantity information is available, then 
bilateral maximum overlap Fisher indices are used to 
make the bilateral links in the chosen path. If only price 
information is available, then maximum overlap Jevons 
indices are used to make the bilateral links. The result-
ing indices satisfy the multiperiod identity test and hence 
are free from chain drift. The main problem with this 
methodology is this: what is the “best” dissimilarity mea-
sure that could be used? We do not provide a definitive 
answer to this question but the predicted share measure 
of relative price dissimilarity suggested by Diewert (2021b) 
seems to work well for our empirical example when price 
and quantity information is available. When only price 
information is available, we adapted the predicted share 
measure of relative price dissimilarity to deal with this 
case; see definitions (131) and (139) in Section 9. For our 
particular example, this modified predicted share method 
(PSJ

t*) that used maximum overlap Jevons indices for the 
bilateral links provided the closest approximation to our 
preferred predicted share similarity-linked indices (PS

t*) 
that used price and quantity information and maximum 
overlap Fisher indices for the bilateral links.75

• How to trade off a lack of matching of prices over two peri-
ods with a lack of price proportionality in the matched prices 
for the two periods? In Section 9, we showed how the modi-
fied predicted share measure of relative price dissimilarity 
traded off a lack of matching of product prices over the 
two periods under consideration with a measure of rela-
tive price dissimilarity of the matched prices for the two 
periods. In the strongly seasonal products context, it 
is important to have a penalty for a lack of matching of 
prices between the two periods being compared. Con-
sider an extreme case where we are matching the prices of 
a current period with the prices of two prior periods. For 
period 1, there is only one matched product and so if we 
look at only matched product prices, the matched prices of 
period 1 and 3 are proportional and any reasonable mea-
sure of relative price dissimilarity defined over matched 
prices will register a value of 0. On the other hand, there 
are 10 matched prices for periods 2 and 3, but the resulting 
matched prices are not quite proportional so the measure 
of relative price dissimilarity over matched products regis-
ters a positive value. Is it “best” to link the prices of period 
3 with the single price of period 1 rather than to link the  

75 See Figure 9.11 in Section 9.
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prices of period 3 with the prices of period 2? Probably 
not. Thus we think it is important for a bilateral measure 
of relative price dissimilarity to have a penalty for a lack of 
matching of prices between the two periods. The Predicted 
Share and Modified Predicted Share measures of relative 
price dissimilarity do have a penalty for a lack of matching. 
Further research is required to see if “better” measures of 
relative price dissimilarity can be found.76

Another area that requires further research is the problem 
of integrating an elementary index for a strongly seasonal 
class of products with indices for other elementary cat-
egories where the problems associated with missing prices 
are not as severe. Thus different elementary categories of a 
national CPI may use different methods for constructing the 
various subindices. As a result, it may become difficult to 
explain and interpret the resulting national index.

For our data set, the year-over-year monthly indices (Janu-
ary data compared across years, February data compared 
across years, and so on) performed well. Thus for National 
Statistical Offices that use Lowe or Young indices, we suggest 
the use of monthly baskets for strongly seasonal products so 
that reasonably accurate year-over-year monthly Lowe indi-
ces could be computed. However, the problem is how to link 
these indices for a base year so that the year-over-year indices 
could be aligned to provide some indication of January to 
February inflation, February to March inflation, and so on 
for a base year. This could be done for the base year using 
some form of relative price similarity linking, or one could 
choose a base month in the base year which had the highest 
number of available products and use fixed-base maximum 
overlap Lowe or Fisher indices to link the months in the base 
year. Then going forward, year-over-year monthly Lowe type 
indices could be used to calculate the index.77 Our general 
advice to National Statistical Officies is to explore the use 
of monthly baskets and similarity linking, particularly for 
periods with large shifts in consumer expenditure patterns, 
such as during the COVID-19 pandemic.78

Finally, we note that we have listed the complete data set 
that we used in the annex so that our results can be rep-
licated by statistical agencies.79 Moreover, this data set 
could be used by other researchers to construct alternative 
indices, which may have superior properties.80

76 Research on this topic is sparse, but see Hill and Timmer (2006) for an 
alternative approach to these issues.
77 The problems associated with reconciling the year-over-year estimates 
of inflation for each month with month-to-month estimates of inflation 
within a given year are similar to the problems associated with reconcil-
ing year-over-year annual CPI country inflation estimates with estimates 
of inflation across countries for the same year. The annual CPI inflation 
rates for a given country are very likely to be much more accurate than a 
measure of relative inflation across countries due to better matching of 
product prices within a country, which is analogous to the better match-
ing of product prices across years for the same month in the strongly sea-
sonal context. For a discussion of alternative approaches to reconciling 
the conflicting estimates of inflation, see Diewert and Fox (2017) (2018).
78 Statistics Canada has used the predicted share linking methodology in 
its adjusted CPI; see O’ Donnell and Yélou (2021).
79 We have also taken care to carefully explain exactly how the various 
indices listed in this chapter were constructed.
80 Turvey’s (1979) artificial data set on seasonal products filled this role 
for many years.

Annex: Listing of the Data and 
Supplementary Tables

1. Year-over-Year Monthly Indices 
Using Year-over-Year Carry-Forward 
Prices
In order to illustrate the variation in the various seasonal 
product indices using actual country data, we tabulate the 
various indices described in the main text for Israel for 14 
fresh fruit household consumption categories over the six 
years (2012–2017) which we relabel as years 1–6. The 14 fresh 
fruit categories are as follows:

• 1 = Lemons
• 2 = Avocados
• 3 = Watermelon
• 4 = Persimmon 
• 5 = Grapefruit
• 6 = Bananas
• 7 = Peaches
• 8 = Strawberries
• 9 = Cherries
• 10 = Apricots
• 11 = Plums
• 12 = Clementines
• 13 = Kiwi fruit 
• 14 = Mangos

The price and quantity data for the available products in 
each month are listed in Tables A.1–A.20. The price and 
quantity for product n in month m in year t are denoted by 
py,m,n and qy,m,n, respectively.

Fruits 1, 2, 4, 5, 6, 12, and 13 were always available in 
January for each of the six years in our sample, but the 
other fruits were always missing in January. The price and 
quantity data for February and the remaining months fol-
low. Prices and quantities for products that were missing in 
a given month for all six years are not listed in the tables.

Fruits 1, 2, 4, 5, 6, 8, 12, and 13 were always available in 
February for each of the six years in our sample, but the 
other fruits were always missing in February.

Note that product 4 was missing in March of year 5; that 
is, q5,3,4 = 0. The corresponding price, p5,3,4 = 11.02, is an 
imputed carry-forward price from March of year 4. In Table 
A.4, this imputed price is printed in italics to distinguish it 
from observed prices. Products 1, 2, 5, 6, 8, 12, and 13 were 
present in every April. Products 3, 7, 9, 10, and 11 were miss-
ing in every March.

Fruits 1, 2, 5, 6, 8, 12, and 13 were always available in 
April for each of the six years in our sample, but the other 
fruits were always missing in April. 

Products 1, 2, 3, 5, 6, and 10 were always present in May. 
However, product 8 was only present in year 1 of our sample 
so the price for product 8 in year 1 was carried forward for years 
2–6; thus py,5,8 is set equal to py,5,8 = 16.68 for y = 2,3,4,5,6. 
Product 9 was missing in years 1 and 2 and so the price for 
product 9 in years 1 and 2 was set equal to the carry-backward 
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Table A.1 Year-over-Year Price and Quantity Data for Month 1 (January)
y py,1,1 py,1,2 py,1,4 py,1,5 py,1,6 py,1,12 py,1,13 qy,1,1 qy,1,2 qy,1,4 qy,1,5 qy,1,6 qy,1,12 qy,1,13

1 5.41 8.29 9.46 4.88 6.22 5.81 11.82 0.370 0.676 0.465 0.082 1.881 1.824 0.135
2 6.28 8.70 10.55 5.21 5.57 5.89 10.72 0.430 0.897 0.417 0.058 1.957 1.579 0.103
3 6.63 8.88 10.49 5.03 5.44 6.30 14.94 0.513 0.890 0.486 0.298 2.261 1.175 0.067
4 6.20 8.00 8.94 4.99 6.27 5.83 14.98 0.645 0.975 0.559 0.160 2.281 1.492 0.100
5 7.07 11.13 12.59 5.35 6.12 5.93 14.59 0.552 1.006 0.485 0.093 2.647 1.737 0.206
6 6.51 9.64 11.11 5.25 6.07 5.83 17.88 0.906 1.172 0.630 0.057 3.262 2.093 0.056

Table A.2 Year-over-Year Price Data for Month 2 (February)
y py,2,1 py,2,2 py,2,4 py,2,5 py,2,6 py,2,8 py,2,12 py,2,13

1 4.99 8.37 10.20 4.84 6.90 15.08 6.32 12.78
2 5.93 9.15 11.41 5.21 5.57 23.29 6.43 11.58
3 5.97 8.84 11.32 5.03 5.98 25.11 6.50 14.92
4 5.97 8.15 9.95 5.14 6.06 23.49 5.94 15.41
5 6.99 12.27 13.22 5.09 7.22 26.86 6.15 14.88
6 6.39 10.59 11.85 5.00 8.23 28.26 5.65 18.97

Table A.3 Year-over-Year Quantity Data for Month 2 (February)
y qy,2,1 qy,2,2 qy,2,4 q y,2,5 qy,2,6 qy,2,8 qy,2,12 qy,2,13

1 0.701 0.920 0.510 0.103 2.087 1.134 1.408 0.102
2 0.624 0.831 0.412 0.269 2.621 0.593 1.664 0.155
3 0.754 1.075 0.486 0.119 2.308 0.737 1.492 0.168
4 0.553 1.031 0.412 0.156 2.591 0.766 1.919 0.117
5 0.658 0.717 0.386 0.157 2.299 0.648 1.886 0.108
6 0.657 0.859 0.447 0.260 2.211 0.711 2.071 0.111

Table A.4 Year-over-Year Price Data for Month 3 (March)
y py,3,1 py,3,2 py,3,4 py,3,5 py,3,6 py,3,8 py,3,12 py,3,13

1 5.14 8.59 10.76 4.92 7.42 18.67 6.62 13.34
2 5.70 9.43 11.69 5.16 6.11 15.31 6.64 11.72
3 5.72 9.47 12.41 4.97 6.51 18.23 6.82 15.36
4 6.08 9.06 11.02 4.98 6.83 18.95 6.17 15.73
5 6.78 13.98 11.02 5.13 7.51 18.06 6.03 15.11
6 6.32 11.05 13.66 5.24 8.85 19.26 6.06 19.66

Table A.5 Year-over-Year Quantity Data for Month 3 (March)
y qy,3,1 qy,3,2 qy,3,4 qy,3,5 qy,3,6 qy,3,8 qy,3,12 qy,3,13

1 0.661 0.908 0.362 0.081 1.819 0.884 1.269 0.112
2 0.684 0.732 0.257 0.116 2.242 0.947 1.160 0.154
3 0.822 0.612 0.290 0.121 2.012 0.845 1.496 0.085
4 0.658 0.828 0.209 0.181 2.255 0.813 1.556 0.108
5 0.708 0.694 0.000 0.234 2.490 1.107 1.509 0.152
6 0.759 0.787 0.293 0.095 2.395 1.038 1.650 0.102
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Table A.6 Year-over-Year Price and Quantity Data for Month 4 (April)
y py,4,1 py,4,2 py,4,5 py,4,6 py,4,8 py,4,12 py,4,13 qy,4,1 qy,4,2 qy,4,5 qy,4,6 qy,4,8 qy,4,12 qy,4,13

1 5.08 9.06 5.13 7.25 18.24 7.01 13.70 0.689 0.585 0.156 1.876 0.609 0.728 0.131
2 6.84 11.00 5.43 6.26 16.62 7.18 12.42 0.760 0.591 0.092 2.141 0.698 0.766 0.129
3 6.00 10.27 5.09 7.60 17.80 7.72 16.91 0.617 0.662 0.157 1.737 0.663 0.997 0.053
4 7.04 12.60 5.41 9.68 18.35 7.03 16.30 0.895 0.683 0.129 1.550 0.687 1.252 0.135
5 7.05 18.26 5.07 8.40 18.80 6.58 16.36 0.766 0.460 0.079 1.988 0.585 1.231 0.122
6 6.47 12.59 5.45 10.75 16.85 6.28 20.39 0.773 0.627 0.037 2.047 0.926 1.210 0.069

Table A.7 Year-over-Year Price Data for Month 5 (May)
y py,5,1 py,5,2 py,5,3 py,5,5 py,5,6 py,5,7 py,5,8 py,5,9 py,5,10 py,5,13

1 5.19 11.48 4.14 5.27 7.05 11.50 16.68 40.84 12.16 13.69
2 7.35 14.62 3.49 5.67 5.96 11.08 16.68 40.84 9.46 13.69
3 6.60 13.66 4.10 5.34 7.60 10.62 16.68 40.84 14.79 19.93
4 7.73 15.92 4.56 5.39 13.19 11.75 16.68 61.43 17.78 17.16
5 7.52 19.36 4.07 5.81 8.98 11.27 16.68 39.10 18.31 17.33
6 7.00 15.34 4.77 6.16 12.30 12.95 16.68 39.10 18.03 22.56

Table A.8 Year-over-Year Quantity Data for Month 5 (May)
y qy,5,1 qy,5,2 qy,5,3 qy,5,5 qy,5,6 qy,5,7 qy,5,8 qy,5,9 qy,5,10 qy,5,13

1 0.751 0.409 4.106 0.076 1.730 0.922 0.456 0.000 0.206 0.080
2 0.626 0.321 6.504 0.053 1.913 1.273 0.000 0.000 0.370 0.000
3 0.682 0.417 5.244 0.075 1.526 1.525 0.000 0.088 0.176 0.045
4 0.660 0.528 4.211 0.056 1.054 1.183 0.000 0.016 0.107 0.041
5 0.785 0.584 5.430 0.103 1.726 1.287 0.000 0.138 0.284 0.069
6 0.814 0.587 5.891 0.065 1.504 1.243 0.000 0.000 0.322 0.040

Table A.9 Year-over-Year Price Data for Month 6 (June)
y p y,6,1 p y,6,2 p y,6,3 p y,6,5 p y,6,6 p y,6,7 p y,6,9 p y,6,10 p y,6,11 p y,6,13

1 5.66 11.83 3.24 5.57 5.92 10.08 17.44 8.82 11.05 13.74
2 7.83 19.58 3.36 5.86 5.85 11.25 42.05 14.44 12.61 13.74
3 6.64 14.00 2.55 5.63 8.07 10.42 32.81 13.25 14.03 27.25
4 8.62 18.98 3.68 5.63 12.71 10.80 34.48 12.36 13.56 21.55
5 9.01 20.42 2.67 5.63 10.99 9.73 34.21 15.05 13.62 22.38
6 8.20 18.56 2.93 5.63 11.15 9.81 31.08 14.71 14.01 26.03

Table A.10 Year-over-Year Quantity Data for Month 6 (June)
y qy,6,1 qy,6,2 qy,6,3 qy,6,5 qy,6,6 qy,6,7 qy,6,9 qy,6,10 qy,6,11 qy,6,13

1 0.724 0.440 6.698 0.036 1.486 1.657 0.717 1.270 0.290 0.022
2 0.766 0.266 7.738 0.051 1.419 1.831 0.228 0.616 0.523 0.000
3 0.678 0.450 8.118 0.036 1.016 1.910 0.466 0.694 0.335 0.011
4 0.673 0.295 7.038 0.000 0.653 1.880 0.299 0.777 0.354 0.014
5 0.599 0.318 8.876 0.000 0.792 1.922 0.406 0.472 0.382 0.031
6 0.915 0.436 9.693 0.000 0.969 2.487 0.560 0.727 0.378 0.019
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price for product 9 in year 3; that is, p1,5,9 and p2,5,9 were set 
equal to p3,5,9 = 40.84, the price of product 9 in year 3. The 
price of product 13 was missing in year 2, so this missing price 
was set equal to the price of product 13 in year 1; that is, we 
have p2,5,13 = p1,5,13. Thus, Table A.7 shows eight imputed prices 
(which are in italics): six imputed carry-forward prices and 
two imputed carry-backward prices. Products 4, 11, 12, and 
14 were missing in May for every year in our sample.

There were four missing prices for the products that were 
available for one or more months in June. Product 5 was miss-
ing in years 4, 5, and 6 and product 13 was missing in year 2.  

These four missing prices were replaced by carry-forward 
prices (in italics) in Table A.9. Products 4, 8, 12, and 14 were 
always missing in June.

Product 2 was missing in years 2, 4, 5, and 6 and so carry-
forward prices (in italics) appear for these four prices in Table 
A.11. Fruits 1, 2, 3, 6, 7, 9, 11, and 14 were available in at least 
one July; the remaining six fruits were not available in July.

Product 2 was missing in years 2, 4, 5, and 6 and so 
carry- forward prices (in italics) appear in these four 
prices in Table A.11. Product 9 was missing in years 1 
and 2 (use carry-backward prices) and years 4, 5, and 6 

Table A.11 Year-over-Year Price Data for Month 7 (July)
y py,7,1 py,7,2 py,7,3 py,7,6 py,7,7 py,7,9 py,7,11 py,7,14

1 7.40 13.02 3.18 6.65 9.27 20.10 8.82 10.41
2 9.96 13.02 3.30 7.46 11.91 53.77 10.65 10.92
3 7.51 15.44 2.29 10.76 11.23 37.98 12.59 10.63
4 9.83 15.44 2.51 15.91 10.24 30.62 10.36 12.32
5 11.34 15.44 3.09 12.56 10.66 37.31 12.85 11.35
6 10.86 15.44 2.32 14.74 9.87 35.14 11.23 13.48

Table A.12 Year-over-Year Quantity Data for Month 7 (July)
y qy,7,1 qy,7,2 qy,7,3 qy,7,6 qy,7,7 qy,7,9 qy,7,11 qy,7,14

1 0.595 0.292 8.145 0.722 2.093 0.488 0.964 0.221
2 0.612 0.000 7.394 0.871 1.520 0.073 0.761 0.421
3 0.746 0.389 9.869 0.539 1.915 0.179 0.667 0.546
4 0.600 0.000 8.486 0.289 2.129 0.349 0.685 0.390
5 0.635 0.000 8.188 0.701 2.073 0.198 0.545 0.643
6 0.847 0.000 12.845 0.468 2.837 0.361 0.784 0.593

Table A.13 Year-over-Year Price Data for Month 8 (August)
y py,8,1 py,8,2 py,8,3 py,8,6 py,8,7 py,8,9 py,8,11 py,8,14

1 10.62 18.23 3.28 8.24 9.06 22.50 8.13 9.15
2 9.44 18.23 3.83 7.78 11.53 22.50 10.94 10.35
3 8.23 19.44 3.12 10.56 11.84 22.50 13.30 8.94
4 9.87 19.44 2.51 12.25 10.14 22.50 9.61 10.40
5 10.30 19.44 4.01 9.65 10.73 22.50 13.20 11.19
6 10.87 19.44 2.60 12.20 10.39 22.50 11.09 11.37

Table A.14 Year-over-Year Quantity Data for Month 8 (August)
y qy,8,1 qy,8,2 qy,8,3 qy,8,6 qy,8,7 qy,8,9 qy,8,11 qy,8,14

1 0.452 0.159 6.159 0.558 1.932 0.000 1.009 0.721
2 0.625 0.000 5.065 0.746 1.761 0.000 0.914 0.850
3 0.656 0.180 5.577 0.616 1.791 0.031 0.759 1.040
4 0.719 0.000 7.371 0.498 1.765 0.000 0.832 0.673
5 0.718 0.000 4.963 0.974 2.171 0.000 0.750 1.028
6 0.690 0.000 8.423 0.770 2.348 0.000 0.748 0.730
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(use carry-forward prices). Thus, there were nine missing 
prices for the August data. Fruits 1, 2, 3, 6, 7, 9, 11, and 
14 were available in at least one August; the remaining six 
fruits were not available in August.

Fruits 1, 2, 6, 7 11, 12, and 14 were present in every Sep-
tember for the six years in our sample. The remaining seven 
products were absent in all September months.

Product 7 was missing in years 2, 3, and 5 and product 
11 was missing in year 5. These four missing prices were 

replaced by carry-forward prices. Products 3, 8, 9, and 10 
were missing in every October.

Product 11 was missing in years 2, 3, and 5 and product 
14 was missing in years 2, 4, and 5. These six missing prices 
were replaced by carry-forward prices. Products 3, 7, 8, 9, 
and 10 were missing in every November.

Fruits 1, 2, 4, 5, 6, 12, and 13 were always available in 
December for each of the six years in our sample; the 
remaining seven fruits were always missing in December.

Table A.15 Year-over-Year Price and Quantity Data for Month 9 (September)
y py,9,1 py,9,2 py,9,6 py,9,7 py,9,11 py,9,12 py,9,14 qy,9,1 qy,9,2 qy,9,6 qy,9,7 qy,9,11 qy,9,12 qy,9,14

1 9.27 11.65 8.55 8.03 8.15 6.88 10.03 0.647 0.335 0.643 2.379 1.104 0.058 0.857
2 8.00 11.92 7.21 10.07 11.31 7.36 10.85 0.650 0.235 0.957 1.927 0.716 0.231 0.710
3 7.12 12.03 9.34 11.43 13.44 7.20 9.66 0.758 0.532 0.921 1.899 0.543 0.181 0.932
4 9.42 12.23 9.59 10.85 11.18 7.89 12.29 0.594 0.278 0.792 1.604 0.689 0.114 0.667
5 8.91 13.52 8.39 11.77 14.61 7.40 11.52 0.831 0.473 1.335 2.022 0.568 0.243 0.972
6 10.11 17.74 10.52 10.72 12.03 7.98 12.49 0.752 0.282 1.502 2.136 0.948 0.188 0.945

Table A.16 Year-over-Year Price Data for Month 10 (October)
y py,10,1 py,10,2 py,10,4 py,10,5 py,10,6 py,10,7 py,10,11 py,10,12 py,10,13 py,10,14

1 8.15 11.26 11.45 6.59 7.93 9.18 8.18 6.19 14.63 9.87
2 8.03  9.8 12.3 6.43 6.8 9.18 12.32 7.19 15.47 13.09
3 7.14 10.51 12.98 6.21 8.79 9.18 14.5 7.33 17.43 9.67
4 9.53 11.54 12.85 7.28 8.91 11.94 11.58 7.22 20.19 11.88
5 8.35 12.65 13.61 6.57 7.88 11.94 11.58 7.07 22.85 12.87
6 9.62 14.86 13.85 6.81 8.92 12.67 13.13 7.09 21.74 12.49

Table A.17 Year-over-Year Quantity Data for Month 10 (October)
y qy,10,1 qy,10,2 qy,10,3 qy,10,5 qy,10,6 qy,10,7 qy,10,9 qy,10,10 qy,10,11 qy,10,13

1 0.724 0.409 0.428 0.030 1.021 1.569 0.648 0.420 0.055 0.395
2 0.635 0.673 0.537 0.078 1.721 0.000 0.373 0.612 0.045 0.306
3 0.742 0.666 0.108 0.048 1.365 0.000 0.269 0.641 0.040 0.486
4 0.724 0.537 0.117 0.041 1.459 1.508 0.717 0.402 0.064 0.438
5 1.018 0.735 0.272 0.046 2.183 0.000 0.000 0.863 0.101 0.420
6 0.811 0.505 0.159 0.044 1.996 1.294 0.457 0.367 0.055 0.456

Table A.18 Year-over-Year Price Data for Month 11 (November)
y py,11,1 py,11,2 py,11,4 py,11,5 py,11,6 py,11,11 py,11,12 py,11,13 py,11,14

1 7.30 8.89 9.80 5.96 6.09 8.78 5.96 10.45 10.32
2 7.46 8.90 9.82 5.89 6.07 8.78 6.43 14.12 10.32
3 6.73 8.58 9.80 5.78 6.40 8.78 6.62 14.98 12.26
4 8.82 10.13 12.40 6.27 7.75 11.68 6.62 15.13 12.26
5 7.26 9.58 11.31 6.00 5.89 11.68 6.17 19.60 12.26
6 8.49 11.51 11.06 6.95 6.57 12.93 6.34 17.18 12.26
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Table A.19 Year-over-Year Quantity Data for Month 11 (November)
y qy,11,1 qy,11,2 qy,11,4 qy,11,5 qy,11,6 qy,11,11 qy,11,12 qy,11,13 qy,11,14

1 0.712 0.765 0.510 0.101 2.069 0.410 1.309 0.124 0.223
2 0.603 1.000 0.601 0.085 2.405 0.000 1.726 0.064 0.000
3 0.594 0.897 0.510 0.087 2.328 0.000 1.344 0.080 0.220
4 0.612 1.066 0.435 0.080 2.400 0.283 1.148 0.099 0.000
5 0.992 1.075 0.557 0.150 2.920 0.000 1.313 0.087 0.000
6 0.836 0.990 0.443 0.158 3.014 0.116 1.167 0.076 0.179

Table A.20 Year-over-Year Price and Quantity Data for Month 12 (December)
y py,12,1 py,12,2 py,12,4 py,12,5 py,12,6 py,12,12 py,12,13 qy,12,1 qy,12,2 qy,12,4 qy,12,5 qy,12,6 qy,12,12 qy,12,13

1 5.41 8.29 9.46 4.88 6.22 5.81 11.82 0.370 0.676 0.465 0.082 1.881 1.824 0.135
2 6.28 8.70 10.55 5.21 5.57 5.89 10.72 0.430 0.897 0.417 0.058 1.957 1.579 0.103
3 6.63 8.88 10.49 5.03 5.44 6.30 14.94 0.513 0.890 0.486 0.298 2.261 1.175 0.067
4 6.20 8.00 8.94 4.99 6.27 5.83 14.98 0.645 0.975 0.559 0.160 2.281 1.492 0.100
5 7.07 11.13 12.59 5.35 6.12 5.93 14.59 0.552 1.006 0.485 0.093 2.647 1.737 0.206
6 6.51 9.64 11.11 5.25 6.07 5.83 17.88 0.906 1.172 0.630 0.057 3.262 2.093 0.056

Table A.21 Year-over-Year Indices for Months Using Carry-Forward Prices
y m PLFB

y,m PPFB
y,m PFFB

y,m PTFB
y,m PLCH

y,m PPCH
y,m PFCH

y,m PTCH
y,m PGEKS

y,m PS
y,m

1 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1 0.99746 0.99881 0.99813 0.99817 0.99746 0.99881 0.99813 0.99817 0.99814 0.99813
3 1 1.03276 1.01894 1.02583 1.02591 1.02762 1.01799 1.02280 1.02261 1.02295 1.02280
4 1 1.01159 1.00992 1.01076 1.01072 1.01586 0.99872 1.00725 1.00700 1.00816 1.01076
5 1 1.12212 1.12896 1.12554 1.12582 1.14808 1.10989 1.12883 1.12854 1.12973 1.13415
6 1 1.07410 1.06543 1.06976 1.06889 1.09958 1.04827 1.07362 1.07252 1.07153 1.06944
1 2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 2 1.14673 1.05830 1.10163 1.09970 1.14673 1.05830 1.10163 1.09970 1.10937 1.10163
3 2 1.19856 1.13544 1.16657 1.16430 1.19530 1.10240 1.14791 1.14597 1.15856 1.14791
4 2 1.13489 1.06908 1.10149 1.09983 1.13690 1.04779 1.09144 1.08957 1.10156 1.09144
5 2 1.35079 1.25687 1.30298 1.30238 1.35316 1.23472 1.29259 1.29006 1.30486 1.29259
6 2 1.36333 1.26804 1.31482 1.31429 1.36508 1.23771 1.29984 1.29727 1.31271 1.29984
1 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 3 0.92742 0.91116 0.91925 0.91910 0.92742 0.91116 0.91925 0.91910 0.91727 0.91925
3 3 1.00396 0.99578 0.99986 0.99981 1.00995 0.98455 0.99717 0.99686 0.99912 0.99717
4 3 1.00033 0.99176 0.99603 0.99611 1.00911 0.98358 0.99626 0.99588 0.99714 0.99626
5 3 1.09322 1.06264 1.07782 1.07646 1.09945 1.05318 1.07607 1.07519 1.07794 1.08539
6 3 1.13016 1.11723 1.12368 1.12351 1.15073 1.10109 1.12564 1.12495 1.12558 1.12368
1 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 4 0.98803 0.98284 0.98543 0.98569 0.98803 0.98284 0.98543 0.98569 0.98766 0.98543
3 4 1.06459 1.06038 1.06248 1.06235 1.06796 1.04900 1.05844 1.05817 1.06550 1.06248
4 4 1.20496 1.18402 1.19444 1.19482 1.19860 1.16073 1.17951 1.17928 1.19142 1.18402

Over all 12 months, there were 34 missing prices that were 
imputed. Thirty of the imputed prices were carry-forward 
prices and four of the imputed prices were carry-backward 
prices.

These data series were used to compute all of the year-
over-year monthly indices that are listed in Table A.21:

(Continued )
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y m PLFB
y,m PPFB

y,m PFFB
y,m PTFB

y,m PLCH
y,m PPCH

y,m PFCH
y,m PTCH

y,m PGEKS
y,m PS

y,m

5 4 1.22481 1.18576 1.20513 1.20454 1.23398 1.15532 1.19400 1.19293 1.20392 1.20245
6 4 1.22173 1.17182 1.19652 1.19732 1.24896 1.13499 1.19061 1.18951 1.19466 1.17841
1 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 5 0.95731 0.91814 0.93752 0.93708 0.95731 0.91814 0.93752 0.93708 0.93879 0.93752
3 5 1.04955 1.02931 1.03938 1.03929 1.07750 0.99674 1.03634 1.03544 1.04223 1.03938
4 5 1.29576 1.26861 1.28211 1.27958 1.34446 1.21671 1.27899 1.27733 1.28376 1.28275
5 5 1.15686 1.15394 1.15540 1.15718 1.22628 1.06571 1.14318 1.14348 1.15227 1.14281
6 5 1.29885 1.29900 1.29893 1.29611 1.36519 1.18589 1.27239 1.27244 1.29548 1.29399
1 6 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 6 1.39164 1.22166 1.30388 1.29242 1.39164 1.22166 1.30388 1.29242 1.31098 1.30388
3 6 1.22178 1.12981 1.17489 1.17396 1.25257 1.05876 1.15159 1.14046 1.16554 1.15159
4 6 1.44251 1.31595 1.37778 1.37391 1.50699 1.25245 1.37384 1.36073 1.39106 1.37384
5 6 1.36006 1.18481 1.26941 1.26930 1.38245 1.12163 1.24523 1.23252 1.26646 1.25428
6 6 1.33890 1.21385 1.27484 1.27390 1.38772 1.11708 1.24507 1.23232 1.26886 1.25412
1 7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 7 1.34108 1.18579 1.26105 1.24052 1.34108 1.18579 1.26105 1.24052 1.24998 1.26105
3 7 1.16473 1.05154 1.10669 1.10140 1.21160 1.03449 1.11955 1.09931 1.10632 1.11955
4 7 1.15777 1.08526 1.12093 1.11635 1.25418 1.02377 1.13313 1.11271 1.12257 1.13313
5 7 1.27857 1.21396 1.24585 1.24441 1.40919 1.10546 1.24812 1.22775 1.24618 1.24812
6 7 1.16724 1.06722 1.11611 1.11371 1.29886 0.98785 1.13273 1.11312 1.12442 1.13599
1 8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 8 1.17083 1.15923 1.16501 1.16556 1.17083 1.15923 1.16501 1.16556 0.15685 1.16501
3 8 1.15211 1.11885 1.13536 1.13510 1.15792 1.12961 1.14367 1.14349 1.13068 1.14367
4 8 1.02823 0.99631 1.01215 1.01276 1.07022 1.01120 1.04029 1.04008 1.02243 1.04029
5 8 1.23369 1.21298 1.22329 1.22287 1.31264 1.15293 1.23020 1.22990 1.21444 1.22329
6 8 1.08462 1.05909 1.07178 1.07241 1.21200 1.00477 1.10353 1.10473 1.08073 1.09604
1 9 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 9 1.14248 1.10310 1.12262 1.12333 1.14248 1.10310 1.12262 1.12333 1.11489 1.12262
3 9 1.24526 1.16240 1.20312 1.20144 1.24737 1.18134 1.21391 1.21481 1.20187 1.21391
4 9 1.24783 1.22435 1.23603 1.23613 1.29599 1.20422 1.24927 1.25078 1.23805 1.24701
5 9 1.33579 1.23154 1.28261 1.28165 1.35658 1.23101 1.29227 1.29321 1.28087 1.29501
6 9 1.31824 1.29386 1.30599 1.30586 1.42107 1.25797 1.33704 1.33840 1.31605 1.30599
1 10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 10 1.05802 1.01422 1.03589 1.03679 1.05802 1.01422 1.03589 1.03679 1.03745 1.03589
3 10 1.10122 1.06718 1.08407 1.08219 1.14481 1.05881 1.10097 1.10408 1.09587 1.08407
4 10 1.21299 1.20960 1.21129 1.21150 1.23038 1.16216 1.19578 1.20230 1.19357 1.21129
5 10 1.19970 1.09432 1.14580 1.14499 1.20798 1.12170 1.16404 1.17143 1.15553 1.17915
6 10 1.29717 1.26337 1.28016 1.28015 1.32255 1.22509 1.27289 1.28047 1.27244 1.28940
1 11 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 11 1.02552 1.02452 1.02502 1.02479 1.02552 1.02452 1.02502 1.02479 1.03130 1.02502
3 11 1.04068 1.04095 1.04081 1.04058 1.03426 1.04261 1.03842 1.03856 1.04307 1.03842
4 11 1.21879 1.21606 1.21742 1.21737 1.19912 1.23241 1.21565 1.21542 1.21782 1.21742
5 11 1.08609 1.04101 1.06331 1.06158 1.05063 1.05983 1.05522 1.05462 1.05707 1.04532
6 11 1.17818 1.15325 1.16565 1.16445 1.15826 1.16658 1.16241 1.16159 1.16249 1.15150
1 12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 12 1.07104 1.06784 1.06944 1.06922 1.07104 1.06784 1.06944 1.06922 1.06907 1.06944

Table A.21 (Continued)
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2. Year-Over-Year Monthly Indices 
Using Maximum Overlap Bilateral 
Indices
The data listed in Tables A.1 to A.20 were used to compute 
all of the maximum overlap indices that are listed in Table 
A.22. However, the imputed prices (in italics) listed in Tables 
A.1 to A.20 were set equal to 0 when computing the year-
over-year maximum overlap indices that are listed in Table 
A.22. Thus, the year-over-year maximum overlap indices do 
not use any imputed prices. The indices listed in Table A.22 
are discussed in Section 3 of the main text.

In order to fit all 10 maximum overlap indices in one row, 
the index titles have omitted the asterisk; that is, PLFB

y,m in 
row 1 of Table A.22 should be listed as PLFB

y,m*, PPFB
y,m should 

be listed as PPFB
y,m*, and so on.

Our best indices are the fixed-base Fisher and Törn-
qvist–Theil indices, PFFB

y,m* and PTFT
y,m*, the GEKS indices, 

PGEKS
y,m,* and the predicted share price similarity-linked 

indices, PS
y,m*. The average index value over all observations 

for these four maximum overlap indices is 1.1184. The aver-
age index value for the corresponding four carry-forward 
indices is 1.1160. Thus, the use of carry-forward prices led to 
a downward bias for our best indices of about 0.24 percent-
age points per observation.

y m PLFB
y,m PPFB

y,m PFFB
y,m PTFB

y,m PLCH
y,m PPCH

y,m PFCH
y,m PTCH

y,m PGEKS
y,m PS

y,m

3 12 1.04248 1.03372 1.03809 1.03803 1.04200 1.03319 1.03759 1.03744 1.03607 1.03759
4 12 1.16428 1.15713 1.16070 1.16065 1.18173 1.14757 1.16453 1.16408 1.16277 1.16070
5 12 1.04311 1.03999 1.04155 1.04147 1.05685 1.02477 1.04069 1.04050 1.03999 1.03727
6 12 1.21874 1.20829 1.21350 1.21311 1.23554 1.20465 1.22000 1.21948 1.21593 1.21140
Mean 1.13650 1.10010 1.11800 1.11700 1.15600 1.08170 1.11760 1.11540 1.11110 1.11780

Table A.22 Year-over-Year Alternative Indices Using Maximum Overlap Price Indices
y m PLFB

y,m PPFB
y,m PFFB

y,m PTFB
y,m PLCH

y,m PPCH
y,m PFCH

y,m PTCH
y,m PGEKS

y,m PS
y,m

1 1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1 0.99746 0.99881 0.99813 0.99817 0.99746 0.99881 0.99813 0.99817 0.99814 0.99813
3 1 1.03276 1.01894 1.02583 1.02591 1.02762 1.01799 1.02280 1.02261 1.02295 1.02280
4 1 1.01159 1.00992 1.01076 1.01072 1.01586 0.99872 1.00725 1.00700 1.00816 1.01076
5 1 1.12212 1.12896 1.12554 1.12582 1.14808 1.10989 1.12883 1.12854 1.12973 1.13415
6 1 1.07410 1.06543 1.06976 1.06889 1.09958 1.04827 1.07362 1.07252 1.07153 1.06944
1 2 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 2 1.14673 1.05830 1.10163 1.09970 1.14673 1.05830 1.10163 1.09970 1.10937 1.10163
3 2 1.19856 1.13544 1.16657 1.16430 1.19530 1.10240 1.14791 1.14597 1.15856 1.14791
4 2 1.13489 1.06908 1.10149 1.09983 1.13690 1.04779 1.09144 1.08957 1.10156 1.09144
5 2 1.35079 1.25687 1.30298 1.30238 1.35316 1.23472 1.29259 1.29006 1.30486 1.29259
6 2 1.36333 1.26804 1.31482 1.31429 1.36508 1.23771 1.29984 1.29727 1.31271 1.29984
1 3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 3 0.92742 0.91116 0.91925 0.91910 0.92742 0.91116 0.91925 0.91910 0.91669 0.91925
3 3 1.00396 0.99578 0.99986 0.99981 1.00995 0.98455 0.99717 0.99686 0.99852 0.99717
4 3 1.00033 0.99176 0.99603 0.99611 1.00911 0.98358 0.99626 0.99588 0.99724 0.99626
5 3 1.09845 1.06264 1.08040 1.07833 1.10327 1.05318 1.07793 1.07685 1.08213 1.09208
6 3 1.13016 1.11723 1.12368 1.12351 1.15473 1.09091 1.12237 1.12130 1.12515 1.12368
1 4 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 4 0.98803 0.98284 0.98543 0.98569 0.98803 0.98284 0.98543 0.98569 0.98766 0.98543
3 4 1.06459 1.06038 1.06248 1.06235 1.06796 1.04900 1.05844 1.05817 1.06550 1.06248
4 4 1.20496 1.18402 1.19444 1.19482 1.19860 1.16073 1.17951 1.17928 1.19142 1.18402
5 4 1.22481 1.18576 1.20513 1.20454 1.23398 1.15532 1.19400 1.19293 1.20392 1.20245
6 4 1.22173 1.17182 1.19652 1.19732 1.24896 1.13499 1.19061 1.18951 1.19466 1.17841
1 5 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 5 0.95007 0.91814 0.93397 0.93252 0.95007 0.91814 0.93397 0.93252 0.94462 0.93397
3 5 1.05674 1.03102 1.04380 1.04354 1.06935 0.99802 1.03307 1.03104 1.05052 1.03307

(Continued )
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y m PLFB
y,m PPFB

y,m PFFB
y,m PTFB

y,m PLCH
y,m PPCH

y,m PFCH
y,m PTCH

y,m PGEKS
y,m PS

y,m

4 5 1.33870 1.26554 1.30161 1.29967 1.33429 1.21827 1.27496 1.27191 1.29677 1.27496
5 5 1.17963 1.17093 1.17527 1.17658 1.21701 1.06707 1.13958 1.13863 1.16610 1.13587
6 5 1.34224 1.29900 1.32044 1.31917 1.36461 1.18740 1.27293 1.27122 1.31228 1.28980
1 6 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 6 1.39305 1.22166 1.30455 1.29307 1.39305 1.22166 1.30455 1.29307 1.31228 1.30455
3 6 1.22178 1.12981 1.17489 1.17396 1.25384 1.05675 1.15109 1.13948 1.16557 1.15109
4 6 1.44355 1.31595 1.37827 1.37444 1.50911 1.25008 1.37350 1.35982 1.39145 1.37350
5 6 1.36089 1.18481 1.26980 1.26966 1.38439 1.11951 1.24492 1.23170 1.26652 1.25386
6 6 1.33968 1.21385 1.27521 1.27426 1.38967 1.11496 1.24476 1.23149 1.26903 1.25369
1 7 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 7 1.35835 1.18579 1.26914 1.24812 1.35835 1.18579 1.26914 1.24812 1.25497 1.26914
3 7 1.16473 1.05154 1.10669 1.10140 1.22720 1.01345 1.11522 1.09393 1.10445 1.11522
4 7 1.15635 1.08526 1.12024 1.11432 1.27371 1.00296 1.13025 1.10813 1.12406 1.13025
5 7 1.28326 1.21396 1.24813 1.24583 1.43113 1.08299 1.24495 1.22269 1.24902 1.24495
6 7 1.16630 1.06722 1.11566 1.11153 1.31909 0.96776 1.12985 1.10854 1.12591 1.13310
1 8 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 8 1.17882 1.15923 1.16899 1.16969 1.17882 1.15923 1.16899 1.16969 1.15923 1.16899
3 8 1.15211 1.12012 1.13600 1.13583 1.16583 1.12447 1.14496 1.14526 1.13180 1.14496
4 8 1.02645 0.99631 1.01127 1.01139 1.07223 1.00660 1.03889 1.03874 1.02300 1.03889
5 8 1.24152 1.21298 1.22717 1.22682 1.31511 1.14769 1.22855 1.22832 1.21689 1.23551
6 8 1.08548 1.05909 1.07220 1.07226 1.21428 1.00020 1.10205 1.10331 1.08186 1.09457
1 9 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 9 1.14248 1.10310 1.12262 1.12333 1.14248 1.10310 1.12262 1.12333 1.11489 1.12262
3 9 1.24526 1.16240 1.20312 1.20144 1.24737 1.18134 1.21391 1.21481 1.20187 1.21391
4 9 1.24783 1.22435 1.23603 1.23613 1.29599 1.20422 1.24927 1.25078 1.23805 1.24701
5 9 1.33579 1.23154 1.28261 1.28165 1.35658 1.23101 1.29227 1.29321 1.28087 1.29501
6 9 1.31824 1.29386 1.30599 1.30586 1.42107 1.25797 1.33704 1.33840 1.31605 1.30599
1 10 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 10 1.08104 1.01422 1.04710 1.04526 1.08104 1.01422 1.04710 1.04526 1.04292 1.04710
3 10 1.14138 1.06718 1.10366 1.09872 1.16972 1.05881 1.11288 1.11310 1.10523 1.11288
4 10 1.21299 1.20960 1.21129 1.21150 1.25714 1.09468 1.17310 1.17560 1.18322 1.21129
5 10 1.11588 1.09432 1.10505 1.10521 1.21812 1.05657 1.13448 1.13676 1.14941 1.17489
6 10 1.29717 1.26337 1.28016 1.28015 1.33365 1.16062 1.24413 1.24654 1.26320 1.29090
1 11 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 11 1.02936 1.02452 1.02694 1.02660 1.02936 1.02452 1.02694 1.02660 1.03219 1.02694
3 11 1.04420 1.04095 1.04257 1.04220 1.03812 1.03314 1.03563 1.03532 1.04139 1.03563
4 11 1.22044 1.21606 1.21825 1.21813 1.21418 1.21225 1.21322 1.21259 1.21672 1.21825
5 11 1.05775 1.04101 1.04934 1.04823 1.05385 1.04249 1.04816 1.04730 1.05206 1.04727
6 11 1.17818 1.15325 1.16565 1.16445 1.16180 1.15211 1.15694 1.15584 1.15950 1.16565
1 12 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 12 1.07104 1.06784 1.06944 1.06922 1.07104 1.06784 1.06944 1.06922 1.06907 1.06944
3 12 1.04248 1.03372 1.03809 1.03803 1.04200 1.03319 1.03759 1.03744 1.03607 1.03759
4 12 1.16428 1.15713 1.16070 1.16065 1.18173 1.14757 1.16453 1.16408 1.16277 1.16070
5 12 1.04311 1.03999 1.04155 1.04147 1.05685 1.02477 1.04069 1.04050 1.03999 1.03727
6 12 1.21874 1.20829 1.21350 1.21311 1.23554 1.20465 1.22000 1.21948 1.21593 1.21140
Mean 1.13810 1.10030 1.11890 1.11770 1.15910 1.07650 1.11630 1.11360 1.11870 1.11840

Table A.22 (Continued)
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3. Listing of the Data Using Month-
to-Month Carry-Forward and Carry-
Backward Prices
Tables A.23 and A.24 list the price and quantity data for 
fresh fruit purchased by households in Israel for the 72 
months in the years 2012–2017. Carry-forward (and carry-
backward) unit value prices are used for the prices which 
were not sold in month t. Note that these new carry-forward 
prices are different from the year-over-year carry-forward 
prices, which were listed earlier in various tables. The new 
carry-forward prices are month-to-month carry-forward 
prices. In Table A.23, these carry-forward prices are listed 
in italics. For example if a product n is present in month t 
but missing for the subsequent three months, then the last 

existing price pt,n is carried forward for the next four months; 
that is, we have pt + 1,n ≡ pt + 2,n ≡ pt + 3,n ≡ pt,n. There are 451 
carry-forward prices listed in Table A.23. The maximum 
number of monthly product prices is 1008 = 72×14. Thus, 
the sample probability that a price listed in Table A.23 is an 
imputed price is 0.447 = 451/1008. The earlier year-over-year 
carry-forward/carry-backward prices do not coincide with 
the month-to-month carry-forward/carry-backward prices 
listed here in italics.

The monthly quantity data are listed in Table A.24. The 
quantity data listed in Table A.24 are the same as the quan-
tity data that were listed earlier in various tables in this 
annex but the earlier data were listed as year-over-year data 
for each month. The data listed here are month-to-month 
data that start at January 2012 and end at December 2017.

Table A.23 Month-to-Month Price Data Using Carry-Forward and Carry-Backward Prices
t pt,1 pt,2 pt,3 pt,4 pt,5 pt,6 pt,7 pt,8 pt,9 pt,10 pt,11 pt,12 pt,13 pt,14

1 5.41 8.29 4.14 9.46 4.88 6.22 11.50 15.08 17.44 12.16 11.05 5.81 11.82 10.41
2 4.99 8.37 4.14 10.20 4.84 6.90 11.50 15.08 17.44 12.16 11.05 6.32 12.78 10.41
3 5.14 8.59 4.14 10.76 4.92 7.42 11.50 18.67 17.44 12.16 11.05 6.62 13.34 10.41
4 5.08 9.06 4.14 10.76 5.13 7.25 11.50 18.24 17.44 12.16 11.05 7.01 13.70 10.41
5 5.19 11.48 4.14 10.76 5.27 7.05 11.50 16.68 17.44 12.16 11.05 7.01 13.69 10.41
6 5.66 11.83 3.24 10.76 5.57 5.92 10.08 16.68 17.44 8.82 11.05 7.01 13.74 10.41
7 7.40 13.02 3.18 10.76 5.57 6.65 9.27 16.68 20.10 8.82 8.82 7.01 13.74 10.41
8 10.62 18.23 3.28 10.76 5.57 8.24 9.06 16.68 20.10 8.82 8.13 7.01 13.74 9.15
9 9.27 11.65 3.28 10.76 5.57 8.55 8.03 16.68 20.10 8.82 8.15 6.88 13.74 10.03

10 8.15 11.26 3.28 11.45 6.59 7.93 9.18 16.68 20.10 8.82 8.18 6.19 14.63 9.87
11 7.30 8.89 3.28 9.80 5.96 6.09 9.18 16.68 20.10 8.82 8.78 5.96 10.45 10.32
12 6.78 8.34 3.28 9.48 5.34 5.63 9.18 16.68 20.10 8.82 8.78 5.63 10.27 10.32
13 6.28 8.70 3.28 10.55 5.21 5.57 9.18 16.68 20.10 8.82 8.78 5.89 10.72 10.32
14 5.93 9.15 3.28 11.41 5.21 5.57 9.18 23.29 20.10 8.82 8.78 6.43 11.58 10.32
15 5.70 9.43 3.28 11.69 5.16 6.11 9.18 15.31 20.10 8.82 8.78 6.64 11.72 10.32
16 6.84 11.00 3.28 11.69 5.43 6.26 9.18 16.62 20.10 8.82 8.78 7.18 12.42 10.32
17 7.35 14.62 3.49 11.69 5.67 5.96 11.08 16.62 20.10 9.46 8.78 7.18 12.42 10.32
18 7.83 19.58 3.36 11.69 5.86 5.85 11.25 16.62 42.05 14.44 12.61 7.18 12.42 10.32
19 9.96 19.58 3.30 11.69 5.86 7.46 11.91 16.62 53.77 14.44 10.65 7.18 12.42 10.92
20 9.44 19.58 3.83 11.69 5.86 7.78 11.53 16.62 53.77 14.44 10.94 7.18 12.42 10.35
21 8.00 11.92 3.83 11.69 5.86 7.21 10.07 16.62 53.77 14.44 11.31 7.36 12.42 10.85
22 8.03 9.80 3.83 12.30 6.43 6.80 10.07 16.62 53.77 14.44 12.32 7.19 15.47 13.09
23 7.46 8.90 3.83 9.82 5.89 6.07 10.07 16.62 53.77 14.44 12.32 6.43 14.12 13.09
24 6.92 8.61 3.83 10.19 5.28 5.79 10.07 16.62 53.77 14.44 12.32 6.46 14.64 13.09
25 6.63 8.88 3.83 10.49 5.03 5.44 10.07 16.62 53.77 14.44 12.32 6.30 14.94 13.09
26 5.97 8.84 3.83 11.32 5.03 5.98 10.07 25.11 53.77 14.44 12.32 6.50 14.92 13.09
27 5.72 9.47 3.83 12.41 4.97 6.51 10.07 18.23 53.77 14.44 12.32 6.82 15.36 13.09
28 6.00 10.27 3.83 12.41 5.09 7.60 10.07 17.80 53.77 14.44 12.32 7.72 16.91 13.09
29 6.60 13.66 4.10 12.41 5.34 7.60 10.62 17.80 40.84 14.79 12.32 7.72 19.93 13.09
30 6.64 14.00 2.55 12.41 5.63 8.07 10.42 17.80 32.81 13.25 14.03 7.72 27.25 13.09
31 7.51 15.44 2.29 12.41 5.63 10.76 11.23 17.80 37.98 13.25 12.59 7.72 27.25 10.63
32 8.23 19.44 3.12 12.41 5.63 10.56 11.84 17.80 22.50 13.25 13.30 7.72 27.25 8.94
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t pt,1 pt,2 pt,3 pt,4 pt,5 pt,6 pt,7 pt,8 pt,9 pt,10 pt,11 pt,12 pt,13 pt,14

33 7.12 12.03 3.12 12.41 5.63 9.34 11.43 17.80 22.50 13.25 13.44 7.20 27.25 9.66
34 7.14 10.51 3.12 12.98 6.21 8.79 11.43 17.80 22.50 13.25 14.50 7.33 17.43 9.67
35 6.73 8.58 3.12 9.80 5.78 6.40 11.43 17.80 22.50 13.25 14.50 6.62 14.98 12.26
36 6.47 7.80 3.12 8.98 5.44 6.09 11.43 17.80 22.50 13.25 14.50 6.26 14.61 12.26
37 6.20 8.00 3.12 8.94 4.99 6.27 11.43 17.80 22.50 13.25 14.50 5.83 14.98 12.26
38 5.97 8.15 3.12 9.95 5.14 6.06 11.43 23.49 22.50 13.25 14.50 5.94 15.41 12.26
39 6.08 9.06 3.12 11.02 4.98 6.83 11.43 18.95 22.50 13.25 14.50 6.17 15.73 12.26
40 7.04 12.60 3.12 11.02 5.41 9.68 11.43 18.35 22.50 13.25 14.50 7.03 16.30 12.26
41 7.73 15.92 4.56 11.02 5.39 13.19 11.75 18.35 61.43 17.78 14.50 7.03 17.16 12.26
42 8.62 18.98 3.68 11.02 5.39 12.71 10.80 18.35 34.48 12.36 13.56 7.03 21.55 12.26
43 9.83 18.98 2.51 11.02 5.39 15.91 10.24 18.35 30.62 12.36 10.36 7.03 21.55 12.32
44 9.87 18.98 2.51 11.02 5.39 12.25 10.14 18.35 30.62 12.36 9.61 7.03 21.55 10.40
45 9.42 12.23 2.51 11.02 5.39 9.59 10.85 18.35 30.62 12.36 11.18 7.89 21.55 12.29
46 9.53 11.54 2.51 12.85 7.28 8.91 11.94 18.35 30.62 12.36 11.58 7.22 20.19 11.88
47 8.82 10.13 2.51 12.40 6.27 7.75 11.94 18.35 30.62 12.36 11.68 6.62 15.13 11.88
48 7.87 11.09 2.51 11.94 5.52 6.00 11.94 18.35 30.62 12.36 11.68 6.20 14.36 11.88
49 7.07 11.13 2.51 12.59 5.35 6.12 11.94 18.35 30.62 12.36 11.68 5.93 14.59 11.88
50 6.99 12.27 2.51 13.22 5.09 7.22 11.94 26.86 30.62 12.36 11.68 6.15 14.88 11.88
51 6.78 13.98 2.51 13.22 5.13 7.51 11.94 18.06 30.62 12.36 11.68 6.03 15.11 11.88
52 7.05 18.26 2.51 13.22 5.07 8.40 11.94 18.80 30.62 12.36 11.68 6.58 16.36 11.88
53 7.52 19.36 4.07 13.22 5.81 8.98 11.27 18.80 39.10 18.31 11.68 6.58 17.33 11.88
54 9.01 20.42 2.67 13.22 5.81 10.99 9.73 18.80 34.21 15.05 13.62 6.58 22.38 11.88
55 11.34 20.42 3.09 13.22 5.81 12.56 10.66 18.80 37.31 15.05 12.85 6.58 22.38 11.35
56 10.30 20.42 4.01 13.22 5.81 9.65 10.73 18.80 37.31 15.05 13.20 6.58 22.38 11.19
57 8.91 13.52 4.01 13.22 5.81 8.39 11.77 18.80 37.31 15.05 14.61 7.40 22.38 11.52
58 8.35 12.65 4.01 13.61 6.57 7.88 11.77 18.80 37.31 15.05 14.61 7.07 22.85 12.87
59 7.26 9.58 4.01 11.31 6.00 5.89 11.77 18.80 37.31 15.05 14.61 6.17 19.60 12.87
60 6.70 9.15 4.01 10.85 5.45 5.31 11.77 18.80 37.31 15.05 14.61 5.83 17.21 12.87
61 6.51 9.64 4.01 11.11 5.25 6.07 11.77 18.80 37.31 15.05 14.61 5.83 17.88 12.87
62 6.39 10.59 4.01 11.85 5.00 8.23 11.77 28.26 37.31 15.05 14.61 5.65 18.97 12.87
63 6.32 11.05 4.01 13.66 5.24 8.85 11.77 19.26 37.31 15.05 14.61 6.06 19.66 12.87
64 6.47 12.59 4.01 13.66 5.45 10.75 11.77 16.85 37.31 15.05 14.61 6.28 20.39 12.87
65 7.00 15.34 4.77 13.66 6.16 12.30 12.95 16.85 37.31 18.03 14.61 6.28 22.56 12.87
66 8.20 18.56 2.93 13.66 6.16 11.15 9.81 16.85 31.08 14.71 14.01 6.28 26.03 12.87
67 10.86 18.56 2.32 13.66 6.16 14.74 9.87 16.85 35.14 14.71 11.23 6.28 26.03 13.48
68 10.87 18.56 2.60 13.66 6.16 12.20 10.39 16.85 35.14 14.71 11.09 6.28 26.03 11.37
69 10.11 17.74 2.60 13.66 6.16 10.52 10.72 16.85 35.14 14.71 12.03 7.98 26.03 12.49
70 9.62 14.86 2.60 13.85 6.81 8.92 12.67 16.85 35.14 14.71 13.13 7.09 21.74 12.49
71 8.49 11.51 2.60 11.06 6.95 6.57 12.67 16.85 35.14 14.71 12.93 6.34 17.18 12.26
72 7.38 12.96 2.60 10.94 6.35 6.38 12.67 16.85 35.14 14.71 12.93 6.15 16.26 12.26

Table A.23 (Continued)

Table A.24 Monthly Quantity Data for Household Fresh Fruit Consumption
t qt,1 qt,2 qt,3 qt,4 qt,5 qt,6 qt,7 qt,8 qt,9 qt,10 qt,11 qt,12 qt,13 qt,14

1 0.370 0.676 0.000 0.465 0.082 1.881 0.000 0.000 0.000 0.000 0.000 1.824 0.135 0.000
2 0.701 0.920 0.000 0.510 0.103 2.087 0.000 1.134 0.000 0.000 0.000 1.408 0.102 0.000
3 0.661 0.908 0.000 0.362 0.081 1.819 0.000 0.884 0.000 0.000 0.000 1.269 0.112 0.000
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t qt,1 qt,2 qt,3 qt,4 qt,5 qt,6 qt,7 qt,8 qt,9 qt,10 qt,11 qt,12 qt,13 qt,14

4 0.689 0.585 0.000 0.000 0.156 1.876 0.000 0.609 0.000 0.000 0.000 0.728 0.131 0.000
5 0.751 0.409 4.106 0.000 0.076 1.730 0.922 0.456 0.000 0.206 0.000 0.000 0.080 0.000
6 0.724 0.440 6.698 0.000 0.036 1.486 1.657 0.000 0.717 1.270 0.290 0.000 0.022 0.000
7 0.595 0.292 8.145 0.000 0.000 0.722 2.093 0.000 0.488 0.000 0.964 0.000 0.000 0.221
8 0.452 0.159 6.159 0.000 0.000 0.558 1.932 0.000 0.000 0.000 1.009 0.000 0.000 0.721
9 0.647 0.335 0.000 0.000 0.000 0.643 2.379 0.000 0.000 0.000 1.104 0.058 0.000 0.857
10 0.724 0.409 0.000 0.428 0.030 1.021 1.569 0.000 0.000 0.000 0.648 0.420 0.055 0.395
11 0.712 0.765 0.000 0.510 0.101 2.069 0.000 0.000 0.000 0.000 0.410 1.309 0.124 0.223
12 0.678 0.923 0.000 0.390 0.150 2.274 0.000 0.000 0.000 0.000 0.000 1.545 0.127 0.000
13 0.430 0.897 0.000 0.417 0.058 1.957 0.000 0.000 0.000 0.000 0.000 1.579 0.103 0.000
14 0.624 0.831 0.000 0.412 0.269 2.621 0.000 0.593 0.000 0.000 0.000 1.664 0.155 0.000
15 0.684 0.732 0.000 0.257 0.116 2.242 0.000 0.947 0.000 0.000 0.000 1.160 0.154 0.000
16 0.760 0.591 0.000 0.000 0.092 2.141 0.000 0.698 0.000 0.000 0.000 0.766 0.129 0.000
17 0.626 0.321 6.504 0.000 0.053 1.913 1.273 0.000 0.000 0.370 0.000 0.000 0.000 0.000
18 0.766 0.266 7.738 0.000 0.051 1.419 1.831 0.000 0.228 0.616 0.523 0.000 0.000 0.000
19 0.612 0.000 7.394 0.000 0.000 0.871 1.520 0.000 0.073 0.000 0.761 0.000 0.000 0.421
20 0.625 0.000 5.065 0.000 0.000 0.746 1.761 0.000 0.000 0.000 0.914 0.000 0.000 0.850
21 0.650 0.235 0.000 0.000 0.000 0.957 1.927 0.000 0.000 0.000 0.716 0.231 0.000 0.710
22 0.635 0.673 0.000 0.537 0.078 1.721 0.000 0.000 0.000 0.000 0.373 0.612 0.045 0.306
23 0.603 1.000 0.000 0.601 0.085 2.405 0.000 0.000 0.000 0.000 0.000 1.726 0.064 0.000
24 0.621 1.010 0.000 0.481 0.170 2.522 0.000 0.000 0.000 0.000 0.000 1.718 0.089 0.000
25 0.513 0.890 0.000 0.486 0.298 2.261 0.000 0.000 0.000 0.000 0.000 1.175 0.067 0.000
26 0.754 1.075 0.000 0.486 0.119 2.308 0.000 0.737 0.000 0.000 0.000 1.492 0.168 0.000
27 0.822 0.612 0.000 0.290 0.121 2.012 0.000 0.845 0.000 0.000 0.000 1.496 0.085 0.000
28 0.617 0.662 0.000 0.000 0.157 1.737 0.000 0.663 0.000 0.000 0.000 0.997 0.053 0.000
29 0.682 0.417 5.244 0.000 0.075 1.526 1.525 0.000 0.088 0.176 0.000 0.000 0.045 0.000
30 0.678 0.450 8.118 0.000 0.036 1.016 1.910 0.000 0.466 0.694 0.335 0.000 0.011 0.000
31 0.746 0.389 9.869 0.000 0.000 0.539 1.915 0.000 0.179 0.000 0.667 0.000 0.000 0.546
32 0.656 0.180 5.577 0.000 0.000 0.616 1.791 0.000 0.031 0.000 0.759 0.000 0.000 1.040
33 0.758 0.532 0.000 0.000 0.000 0.921 1.899 0.000 0.000 0.000 0.543 0.181 0.000 0.932
34 0.742 0.666 0.000 0.108 0.048 1.365 0.000 0.000 0.000 0.000 0.269 0.641 0.040 0.486
35 0.594 0.897 0.000 0.510 0.087 2.328 0.000 0.000 0.000 0.000 0.000 1.344 0.080 0.220
36 0.649 1.077 0.000 0.657 0.092 2.463 0.000 0.000 0.000 0.000 0.000 1.534 0.110 0.000
37 0.645 0.975 0.000 0.559 0.160 2.281 0.000 0.000 0.000 0.000 0.000 1.492 0.100 0.000
38 0.553 1.031 0.000 0.412 0.156 2.591 0.000 0.766 0.000 0.000 0.000 1.919 0.117 0.000
39 0.658 0.828 0.000 0.209 0.181 2.255 0.000 0.813 0.000 0.000 0.000 1.556 0.108 0.000
40 0.895 0.683 0.000 0.000 0.129 1.550 0.000 0.687 0.000 0.000 0.000 1.252 0.135 0.000
41 0.660 0.528 4.211 0.000 0.056 1.054 1.183 0.000 0.016 0.107 0.000 0.000 0.041 0.000
42 0.673 0.295 7.038 0.000 0.000 0.653 1.880 0.000 0.299 0.777 0.354 0.000 0.014 0.000
43 0.600 0.000 8.486 0.000 0.000 0.289 2.129 0.000 0.349 0.000 0.685 0.000 0.000 0.390
44 0.719 0.000 7.371 0.000 0.000 0.498 1.765 0.000 0.000 0.000 0.832 0.000 0.000 0.673
45 0.594 0.278 0.000 0.000 0.000 0.792 1.604 0.000 0.000 0.000 0.689 0.114 0.000 0.667
46 0.724 0.537 0.000 0.117 0.041 1.459 1.508 0.000 0.000 0.000 0.717 0.402 0.064 0.438
47 0.612 1.066 0.000 0.435 0.080 2.400 0.000 0.000 0.000 0.000 0.283 1.148 0.099 0.000
48 0.635 0.938 0.000 0.553 0.163 2.983 0.000 0.000 0.000 0.000 0.000 1.645 0.104 0.000
49 0.552 1.006 0.000 0.485 0.093 2.647 0.000 0.000 0.000 0.000 0.000 1.737 0.206 0.000
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4. Month-to-Month Fixed-Base 
Fisher Indices Using Carry-  
Forward Prices
Here is a listing of the 12 Fisher fixed-base “star” indices, 
PF1

t – PF12
t, that are plotted in Figure 9.5 in Section 6 of the 

main text.
For the final month, the lowest index value is 1.0487 and 

the highest is 1.1843. The lowest average value for the 12 
indices is 1.1382 and the highest is 1.2354. Thus, the choice 
of a base month matters a lot for our particular empirical 
example.

5. Maximum Overlap Month-to-
Month Fixed-Base Fisher Indices
Here is a listing of the 12 Fisher fixed-base “star” indices, 
PF1

t* – PF12
t*, that are plotted in Figure 9.7 in Section 7 of the 

main text.
For the final month 72, the lowest index value, as shown 

in Table A.26, is 1.1733 and the highest is 1.2386. From Table 
A.25, the lowest index value for month 72 is 1.0487 and the 
highest is 1.1843. Thus, using maximum overlap bilateral 
Fisher indices in place of carry-forward Fisher indices has 
led to a narrower spread of final index values when different 
base periods are used. The arithmetic mean of the month 72 
means recorded in the last row of Table A.25 is 1.1947 and 

the corresponding arithmetic mean of the month 72 means 
recorded in the last row of Table A.26 is 1.3420. Thus, for 
these alternative fixed-base Fisher indices, the use of carry-
forward prices led to final index values which on average are 
14.7 percentage points below the corresponding maximum 
overlap indices. This is a very large downward bias over the 
six-year period.

The use of maximum overlap indices in place of their 
carry-forward counterparts has greatly increased seasonal 
fluctuations and led to fixed-base Fisher indices which have 
much larger seasonal peaks. Thus, the use of carry-forward 
prices led to Fisher fixed-base indices which have a lower 
trend and much lower seasonal fluctuations than their maxi-
mum overlap counterpart indices.

6. Computation of the Geary–
Khamis Indices
The GK multilateral method was introduced by Geary 
(1958) in the context of making international comparisons 
of prices. Khamis (1970) showed that the equations that 
define the method have a positive solution under certain 
conditions. A modification of this method has been adapted 
to the time series context and is being used to construct 
some components of the Dutch CPI; see Chessa (2016). The 
GK index was the multilateral index chosen by the Dutch to 
avoid the chain drift problem for the segments of their CPI 

t qt,1 qt,2 qt,3 qt,4 qt,5 qt,6 qt,7 qt,8 qt,9 qt,10 qt,11 qt,12 qt,13 qt,14

50 0.658 0.717 0.000 0.386 0.157 2.299 0.000 0.648 0.000 0.000 0.000 1.886 0.108 0.000
51 0.708 0.694 0.000 0.000 0.234 2.490 0.000 1.107 0.000 0.000 0.000 1.509 0.152 0.000
52 0.766 0.460 0.000 0.000 0.079 1.988 0.000 0.585 0.000 0.000 0.000 1.231 0.122 0.000
53 0.785 0.584 5.430 0.000 0.103 1.726 1.287 0.000 0.138 0.284 0.000 0.000 0.069 0.000
54 0.599 0.318 8.876 0.000 0.000 0.792 1.922 0.000 0.406 0.472 0.382 0.000 0.031 0.000
55 0.635 0.000 8.188 0.000 0.000 0.701 2.073 0.000 0.198 0.000 0.545 0.000 0.000 0.643
56 0.718 0.000 4.963 0.000 0.000 0.974 2.171 0.000 0.000 0.000 0.750 0.000 0.000 1.028
57 0.831 0.473 0.000 0.000 0.000 1.335 2.022 0.000 0.000 0.000 0.568 0.243 0.000 0.972
58 1.018 0.735 0.000 0.272 0.046 2.183 0.000 0.000 0.000 0.000 0.000 0.863 0.101 0.420
59 0.992 1.075 0.000 0.557 0.150 2.920 0.000 0.000 0.000 0.000 0.000 1.313 0.087 0.000
60 0.896 1.191 0.000 0.562 0.128 2.976 0.000 0.000 0.000 0.000 0.000 1.955 0.134 0.000
61 0.906 1.172 0.000 0.630 0.057 3.262 0.000 0.000 0.000 0.000 0.000 2.093 0.056 0.000
62 0.657 0.859 0.000 0.447 0.260 2.211 0.000 0.711 0.000 0.000 0.000 2.071 0.111 0.000
63 0.759 0.787 0.000 0.293 0.095 2.395 0.000 1.038 0.000 0.000 0.000 1.650 0.102 0.000
64 0.773 0.627 0.000 0.000 0.037 2.047 0.000 0.926 0.000 0.000 0.000 1.210 0.069 0.000
65 0.814 0.587 5.891 0.000 0.065 1.504 1.243 0.000 0.000 0.322 0.000 0.000 0.040 0.000
66 0.915 0.436 9.693 0.000 0.000 0.969 2.487 0.000 0.560 0.727 0.378 0.000 0.019 0.000
67 0.847 0.000 12.845 0.000 0.000 0.468 2.837 0.000 0.361 0.000 0.784 0.000 0.000 0.593
68 0.690 0.000 8.423 0.000 0.000 0.770 2.348 0.000 0.000 0.000 0.748 0.000 0.000 0.730
69 0.752 0.282 0.000 0.000 0.000 1.502 2.136 0.000 0.000 0.000 0.948 0.188 0.000 0.945
70 0.811 0.505 0.000 0.159 0.044 1.996 1.294 0.000 0.000 0.000 0.457 0.367 0.055 0.456
71 0.836 0.990 0.000 0.443 0.158 3.014 0.000 0.000 0.000 0.000 0.116 1.167 0.076 0.179
72 0.623 0.980 0.000 0.558 0.079 3.119 0.000 0.000 0.000 0.000 0.000 1.447 0.062 0.000
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Table A.25 Fisher Star Month-to-Month Indices Using Carry-Forward Prices and Using Months 1 to 12 as the Base Month
t PFS1

t PFS2
t PFS3

t PFS4
t PFS5

t PFS6
t PFS7

t PFS8
t PFS9

t PFS10
t PFS11

t PFS12
t

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0567 1.0567 1.0310 1.0391 1.0414 1.0295 1.0307 1.0397 1.0376 1.0381 1.0306 1.0258
3 1.1378 1.1661 1.1378 1.1444 1.1163 1.0828 1.0794 1.0824 1.0885 1.0979 1.1057 1.1056
4 1.1473 1.1666 1.1406 1.1473 1.1189 1.0945 1.0828 1.0745 1.0744 1.0894 1.1097 1.1148
5 1.1216 1.1380 1.1433 1.1501 1.1216 1.1517 1.1615 1.1784 1.1720 1.1687 1.1658 1.1638
6 1.0019 1.0283 1.0528 1.0502 0.9758 1.0019 1.0292 1.0713 1.0918 1.0841 1.0693 1.0575
7 1.0363 1.0624 1.0924 1.0980 1.0007 1.0089 1.0363 1.0789 1.0991 1.1048 1.1073 1.1075
8 1.1215 1.1398 1.1789 1.1974 1.0674 1.0488 1.0772 1.1215 1.1463 1.1765 1.2144 1.2342
9 1.0754 1.0951 1.1241 1.1482 1.0291 0.9868 1.0139 1.0521 1.0754 1.0978 1.1396 1.1494

10 1.1143 1.1342 1.1548 1.1735 1.0694 1.0298 1.0452 1.0622 1.0916 1.1143 1.1554 1.1687
11 1.0265 1.0525 1.0564 1.0613 0.9876 0.9618 0.9607 0.9480 0.9687 0.9900 1.0265 1.0363
12 0.9759 1.0053 1.0043 1.0043 0.9405 0.9246 0.9132 0.8867 0.9131 0.9305 0.9667 0.9759
13 0.9981 1.0195 1.0181 1.0099 0.9419 0.9266 0.9190 0.8960 0.9245 0.9470 0.9878 0.9968
14 1.0795 1.1640 1.1403 1.1282 1.0376 0.9911 0.9869 0.9763 0.9891 1.0146 1.0531 1.0603
15 1.0701 1.0711 1.0459 1.0429 0.9850 0.9684 0.9626 0.9543 0.9664 0.9952 1.0349 1.0413
16 1.1478 1.1547 1.1310 1.1305 1.0470 1.0198 1.0037 0.9821 1.0022 1.0434 1.1051 1.1211
17 1.0812 1.1010 1.1262 1.1224 1.0504 1.0951 1.1105 1.1197 1.1408 1.1510 1.1568 1.1669
18 1.1855 1.2092 1.2468 1.2377 1.1476 1.3062 1.2908 1.2592 1.3078 1.3012 1.2914 1.2898
19 1.1998 1.2183 1.2588 1.2676 1.1687 1.3376 1.3186 1.2743 1.3188 1.3217 1.3073 1.3150
20 1.2151 1.2320 1.2731 1.2827 1.1976 1.3490 1.3436 1.3084 1.3210 1.3251 1.3159 1.3245
21 1.1384 1.1558 1.1819 1.1900 1.1240 1.2629 1.2509 1.1961 1.2072 1.2051 1.2051 1.1994
22 1.2081 1.2079 1.2154 1.2205 1.1480 1.2755 1.2238 1.1243 1.1511 1.1693 1.2146 1.2095
23 1.0702 1.0803 1.0815 1.0855 1.0371 1.1692 1.1127 1.0112 1.0402 1.0436 1.0755 1.0691
24 1.0486 1.0593 1.0597 1.0586 1.0164 1.1526 1.0970 0.9953 1.0214 1.0241 1.0523 1.0437
25 1.0258 1.0403 1.0405 1.0362 0.9986 1.1375 1.0830 0.9809 1.0059 1.0036 1.0293 1.0192
26 1.1305 1.2327 1.2043 1.1968 1.1269 1.2292 1.1767 1.0815 1.1029 1.1042 1.1211 1.1039
27 1.1432 1.1648 1.1376 1.1339 1.0937 1.2199 1.1666 1.0809 1.0882 1.1017 1.1212 1.1077
28 1.2433 1.2420 1.2158 1.2189 1.1479 1.2680 1.2041 1.1036 1.1274 1.1543 1.2065 1.2054
29 1.2224 1.2332 1.2610 1.2671 1.1895 1.3273 1.3018 1.2629 1.2784 1.2777 1.3055 1.2981
30 1.1826 1.1895 1.2235 1.2364 1.0882 1.1772 1.1622 1.1787 1.2691 1.2651 1.2775 1.2595
31 1.2068 1.2033 1.2413 1.2706 1.1000 1.1725 1.1469 1.1443 1.2482 1.2677 1.2952 1.2985
32 1.3019 1.2976 1.3420 1.3697 1.2148 1.2121 1.2202 1.2740 1.3390 1.3632 1.3907 1.4024
33 1.2648 1.2703 1.3005 1.3269 1.1960 1.1809 1.1849 1.2139 1.2938 1.3039 1.3192 1.3164
34 1.3029 1.3018 1.3127 1.3251 1.1978 1.1775 1.1489 1.1277 1.2065 1.2456 1.2924 1.2963
35 1.0853 1.1035 1.1044 1.1100 1.0370 1.0508 1.0341 1.0248 1.0907 1.0843 1.0947 1.0803
36 1.0179 1.0436 1.0426 1.0485 0.9869 1.0036 0.9890 0.9757 1.0434 1.0287 1.0310 1.0131
37 1.0108 1.0403 1.0396 1.0465 0.9881 1.0034 0.9880 0.9751 1.0413 1.0259 1.0253 1.0070
38 1.0725 1.1639 1.1377 1.1390 1.0692 1.0604 1.0542 1.0599 1.1184 1.1026 1.0823 1.0549
39 1.1221 1.1583 1.1333 1.1390 1.0770 1.0790 1.0673 1.0716 1.1308 1.1265 1.1205 1.0991
40 1.3653 1.3688 1.3462 1.3703 1.2488 1.2142 1.1805 1.1739 1.2581 1.2819 1.3341 1.3388
41 1.4804 1.4785 1.5155 1.5668 1.4504 1.6421 1.5691 1.4516 1.4957 1.5063 1.5830 1.5946
42 1.3876 1.3904 1.4365 1.4829 1.3227 1.3804 1.3708 1.3821 1.4386 1.4521 1.5118 1.5202
43 1.3133 1.3054 1.3512 1.4131 1.2089 1.2042 1.1682 1.2066 1.2977 1.3343 1.4143 1.4374
44 1.2094 1.2165 1.2582 1.3000 1.1224 1.1362 1.1127 1.1345 1.2105 1.2481 1.3054 1.3284
45 1.2925 1.3041 1.3368 1.3709 1.2028 1.2072 1.2017 1.2224 1.3292 1.3358 1.3597 1.3636
46 1.3094 1.3234 1.3472 1.3735 1.2208 1.2313 1.2203 1.2177 1.3374 1.3498 1.3685 1.3716
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t PFS1
t PFS2

t PFS3
t PFS4

t PFS5
t PFS6

t PFS7
t PFS8

t PFS9
t PFS10

t PFS11
t PFS12

t

47 1.2450 1.2572 1.2602 1.2706 1.1377 1.1542 1.1126 1.0647 1.1810 1.2053 1.2488 1.2578
48 1.1275 1.1509 1.1508 1.1461 1.0469 1.0841 1.0452 1.0042 1.0975 1.1095 1.1296 1.1327
49 1.1255 1.1493 1.1488 1.1392 1.0407 1.0762 1.0397 1.0007 1.0976 1.1100 1.1302 1.1309
50 1.2706 1.3768 1.3484 1.3414 1.2020 1.1842 1.1467 1.1236 1.2171 1.2389 1.2548 1.2569
51 1.2445 1.2632 1.2344 1.2366 1.1352 1.1533 1.1146 1.0925 1.1821 1.2047 1.2230 1.2270
52 1.3914 1.3980 1.3800 1.3826 1.2372 1.2391 1.1836 1.1472 1.2501 1.2938 1.3568 1.3816
53 1.3716 1.3947 1.4292 1.4400 1.3357 1.4644 1.3933 1.3401 1.3791 1.4007 1.4570 1.4715
54 1.3004 1.3149 1.3578 1.3857 1.2020 1.2719 1.2288 1.2361 1.3319 1.3565 1.4178 1.4203
55 1.3474 1.3579 1.4038 1.4477 1.2765 1.3329 1.3004 1.3176 1.3852 1.4164 1.4676 1.4771
56 1.3151 1.3380 1.3813 1.4064 1.2884 1.3544 1.3538 1.3732 1.3862 1.4036 1.4296 1.4323
57 1.3102 1.3306 1.3603 1.3775 1.2848 1.3436 1.3437 1.3362 1.3793 1.3797 1.3815 1.3695
58 1.3642 1.3681 1.3763 1.3862 1.2915 1.3406 1.2832 1.2153 1.2615 1.2945 1.3522 1.3539
59 1.0984 1.1290 1.1288 1.1305 1.0902 1.1618 1.1223 1.0572 1.0959 1.0947 1.1063 1.0908
60 1.0215 1.0615 1.0601 1.0547 1.0317 1.1072 1.0771 1.0217 1.0561 1.0469 1.0387 1.0165
61 1.0698 1.1014 1.1001 1.0990 1.0672 1.1403 1.1061 1.0492 1.0828 1.0804 1.0837 1.0664
62 1.2683 1.3893 1.3594 1.3669 1.2824 1.2924 1.2604 1.2254 1.2554 1.2584 1.2686 1.2536
63 1.2914 1.3091 1.2785 1.2927 1.2403 1.2847 1.2485 1.2127 1.2394 1.2571 1.2797 1.2665
64 1.3945 1.3735 1.3425 1.3727 1.3029 1.3408 1.2902 1.2451 1.2798 1.3149 1.3685 1.3685
65 1.4687 1.4550 1.4901 1.5336 1.4576 1.5815 1.5379 1.5020 1.5309 1.5422 1.5838 1.5841
66 1.3079 1.3050 1.3475 1.3801 1.2143 1.2774 1.2420 1.2622 1.3468 1.3668 1.4220 1.4176
67 1.2828 1.2699 1.3145 1.3704 1.1760 1.2134 1.1623 1.1908 1.2910 1.3300 1.3984 1.4088
68 1.2502 1.2462 1.2885 1.3319 1.1650 1.2162 1.1824 1.2008 1.2822 1.3179 1.3666 1.3777
69 1.4321 1.4109 1.4510 1.4835 1.2912 1.3188 1.2881 1.2955 1.4044 1.4386 1.5051 1.5197
70 1.4049 1.3955 1.4213 1.4444 1.2955 1.3475 1.3086 1.2838 1.4097 1.4265 1.4589 1.4645
71 1.1903 1.1973 1.2030 1.2136 1.1149 1.1814 1.1242 1.0677 1.1729 1.1801 1.1966 1.1989
72 1.1733 1.1765 1.1806 1.1834 1.0889 1.1616 1.1050 1.0487 1.1516 1.1567 1.1790 1.1843
Mean 1.1947 1.2126 1.2225 1.2354 1.1383 1.1821 1.1584 1.1382 1.1896 1.2031 1.2303 1.2309

Table A.26 Fisher Star Maximum Overlap Month-to-Month Indices Using Months 1 to 12 as the Base Month
t PFS1

t* PFS2
t* PFS3

t* PFS4
t* PFS5

t* PFS6
t* PFS7

t* PFS8
t* PFS9

t* PFS10
t* PFS11

t* PFS12
t*

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0660 1.0660 1.0154 1.0274 1.0519 1.0409 1.0266 1.0223 1.0253 1.0415 1.0529 1.0541
3 1.1206 1.1765 1.1206 1.1340 1.1637 1.0901 1.0730 1.0677 1.0742 1.0922 1.1058 1.1070
4 1.1370 1.1798 1.1235 1.1370 1.1589 1.1102 1.0919 1.0887 1.0728 1.0795 1.1144 1.1224
5 1.1624 1.1780 1.1192 1.1404 1.1624 1.2880 1.4462 1.7124 1.4438 1.2416 1.1292 1.1443
6 1.0919 1.1183 1.1224 1.1182 0.9854 1.0919 1.2534 1.5766 1.4340 1.2197 1.0899 1.0749
7 1.2646 1.3132 1.3207 1.3169 1.0164 1.1017 1.2646 1.6030 1.4584 1.2577 1.1568 1.2275
8 1.6720 1.7436 1.7548 1.7462 1.1350 1.1580 1.3191 1.6720 1.5190 1.3514 1.3164 1.6277
9 1.4099 1.4660 1.4707 1.4942 1.1351 1.0735 1.2226 1.5520 1.4099 1.2481 1.2167 1.3729
10 1.2621 1.2918 1.2949 1.3293 1.1815 1.1298 1.2691 1.5616 1.4256 1.2621 1.1919 1.2498
11 1.0411 1.0541 1.0550 1.0622 1.0717 1.0429 1.1381 1.3224 1.2064 1.1024 1.0411 1.0407
12 0.9759 0.9870 0.9879 0.9886 0.9913 0.9913 1.0055 1.0025 1.0022 0.9855 0.9762 0.9759
13 0.9981 1.0043 1.0042 0.9878 0.9722 0.9729 0.9861 0.9813 1.0010 1.0069 0.9988 0.9968
14 1.0359 1.1744 1.1230 1.1139 1.1368 0.9887 0.9953 0.9917 1.0069 1.0318 1.0297 1.0290
15 1.0776 1.0806 1.0301 1.0285 1.0453 1.0365 1.0383 1.0329 1.0375 1.0616 1.0678 1.0680
16 1.1480 1.1629 1.1105 1.1204 1.1404 1.1398 1.1497 1.1417 1.1352 1.1168 1.1343 1.1423
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t PFS1
t* PFS2

t* PFS3
t* PFS4

t* PFS5
t* PFS6

t* PFS7
t* PFS8

t* PFS9
t* PFS10

t* PFS11
t* PFS12

t*

17 1.1920 1.2251 1.2303 1.2187 1.0856 1.1957 1.3729 1.6517 1.4872 1.2798 1.1686 1.1885
18 1.3415 1.3953 1.4093 1.3719 1.1463 1.4244 1.5595 1.7902 1.7022 1.4552 1.3326 1.3212
19 1.3659 1.4105 1.4011 1.4516 1.1545 1.4529 1.6050 1.8714 1.7432 1.5066 1.2772 1.3438
20 1.3894 1.4334 1.4240 1.4748 1.2245 1.3062 1.5219 1.9546 1.7169 1.4841 1.2628 1.3525
21 1.2859 1.3152 1.3177 1.3228 1.1738 1.1858 1.3915 1.7609 1.5828 1.3716 1.2407 1.2585
22 1.2120 1.2223 1.2224 1.2179 1.2045 1.2021 1.3679 1.6155 1.4592 1.3215 1.2318 1.1998
23 1.0702 1.0767 1.0788 1.0869 1.0750 1.0735 1.0837 1.0819 1.0939 1.0769 1.0691 1.0691
24 1.0486 1.0519 1.0534 1.0507 1.0280 1.0249 1.0310 1.0290 1.0469 1.0489 1.0440 1.0437
25 1.0258 1.0300 1.0316 1.0202 0.9954 0.9922 0.9993 0.9956 1.0103 1.0228 1.0195 1.0192
26 1.0709 1.2436 1.1861 1.1853 1.2134 1.0186 1.0115 1.0045 1.0261 1.0589 1.0608 1.0590
27 1.1314 1.1751 1.1204 1.1183 1.1453 1.0858 1.0722 1.0660 1.0739 1.1164 1.1143 1.1134
28 1.2477 1.2512 1.1939 1.2081 1.2228 1.2052 1.1918 1.1853 1.1929 1.1960 1.2223 1.2305
29 1.3413 1.3634 1.3680 1.3677 1.2133 1.4527 1.5736 1.7720 1.5298 1.3298 1.3015 1.3176
30 1.4282 1.4522 1.4617 1.4642 1.0565 1.2828 1.3943 1.6184 1.6835 1.4441 1.4074 1.3798
31 1.6860 1.7403 1.7475 1.7547 1.0734 1.2637 1.3995 1.6708 1.7864 1.5648 1.4925 1.5978
32 1.8005 1.8601 1.8686 1.8639 1.2578 1.3339 1.4890 1.8994 1.8232 1.6102 1.4988 1.7178
33 1.4029 1.4408 1.4436 1.4597 1.3212 1.3322 1.5096 1.8692 1.6963 1.4770 1.3189 1.3681
34 1.3373 1.3531 1.3537 1.3650 1.3675 1.3578 1.4647 1.6770 1.5104 1.3929 1.3107 1.3160
35 1.0826 1.0843 1.0855 1.0966 1.0790 1.0749 1.1187 1.2892 1.2093 1.1146 1.0854 1.0779
36 1.0179 1.0194 1.0210 1.0364 1.0174 1.0097 1.0072 1.0068 1.0166 1.0091 1.0126 1.0131
37 1.0108 1.0151 1.0171 1.0338 1.0331 1.0240 1.0187 1.0174 1.0140 1.0046 1.0063 1.0070
38 1.0182 1.1742 1.1205 1.1309 1.1747 1.0059 0.9998 0.9993 1.0039 1.0156 1.0156 1.0153
39 1.1031 1.1686 1.1161 1.1280 1.1728 1.1080 1.0993 1.0970 1.0849 1.0965 1.0970 1.0974
40 1.4040 1.3916 1.3323 1.3581 1.4302 1.4698 1.4547 1.4398 1.4032 1.3799 1.3884 1.3943
41 1.8975 1.9304 1.9283 1.9375 1.5129 1.7996 1.9161 2.0870 1.9017 1.6845 1.8214 1.8410
42 1.9937 2.0489 2.0532 2.0591 1.3405 1.5049 1.6691 1.9928 1.9347 1.6979 1.8456 1.9131
43 2.2578 2.3145 2.2994 2.3769 1.1826 1.2955 1.4167 1.7577 1.8205 1.6248 1.7234 2.0790
44 1.9183 1.9686 1.9552 2.0226 1.1290 1.1592 1.3084 1.6909 1.6882 1.5070 1.4868 1.8028
45 1.5254 1.5681 1.5690 1.5951 1.3664 1.3324 1.5316 1.9316 1.7427 1.5262 1.4159 1.4917
46 1.4305 1.4576 1.4601 1.4931 1.4021 1.3760 1.5702 1.9258 1.7498 1.5288 1.3927 1.4215
47 1.2525 1.2695 1.2696 1.2794 1.3005 1.2797 1.3878 1.5328 1.4330 1.3225 1.2683 1.2567
48 1.1275 1.1414 1.1427 1.1278 1.1386 1.1486 1.1684 1.1641 1.1529 1.1488 1.1345 1.1327
49 1.1255 1.1384 1.1393 1.1156 1.1301 1.1338 1.1462 1.1384 1.1317 1.1459 1.1345 1.1309
50 1.2165 1.3890 1.3279 1.3258 1.4179 1.2646 1.2728 1.2641 1.2310 1.2358 1.2200 1.2185
51 1.2425 1.2701 1.2106 1.2255 1.3003 1.3274 1.3389 1.3261 1.2796 1.2422 1.2470 1.2554
52 1.4108 1.4129 1.3594 1.3702 1.4568 1.5267 1.5331 1.5071 1.4519 1.4065 1.4122 1.4239
53 1.6510 1.6917 1.7000 1.6739 1.3661 1.6056 1.6885 1.8991 1.7467 1.5371 1.6035 1.6283
54 1.9296 1.9827 1.9910 1.9807 1.1841 1.3865 1.4792 1.7302 1.8456 1.6221 1.8150 1.8783
55 2.0418 2.0824 2.0649 2.1376 1.2521 1.4315 1.5784 1.9331 1.8834 1.6635 1.6895 1.9618
56 1.6455 1.6827 1.6689 1.7285 1.2958 1.3840 1.5991 2.0519 1.8024 1.5702 1.4725 1.6028
57 1.4359 1.4774 1.4810 1.4925 1.3644 1.3930 1.6116 2.0057 1.8083 1.5667 1.4016 1.4162
58 1.3727 1.3927 1.3962 1.4042 1.4258 1.4135 1.4202 1.5897 1.4549 1.3947 1.3568 1.3620
59 1.0984 1.1079 1.1102 1.1079 1.1039 1.0947 1.0910 1.0853 1.0793 1.0986 1.0924 1.0909
60 1.0215 1.0289 1.0311 1.0194 1.0112 1.0045 1.0031 0.9965 1.0066 1.0286 1.0188 1.0165
61 1.0698 1.0769 1.0784 1.0718 1.0788 1.0753 1.0741 1.0690 1.0602 1.0751 1.0680 1.0664
62 1.2029 1.4016 1.3388 1.3574 1.4746 1.2851 1.2714 1.2673 1.2116 1.2136 1.2049 1.2038
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t PFS1
t* PFS2

t* PFS3
t* PFS4

t* PFS5
t* PFS6

t* PFS7
t* PFS8

t* PFS9
t* PFS10

t* PFS11
t* PFS12

t*

63 1.2938 1.3207 1.2591 1.2765 1.3642 1.3644 1.3397 1.3370 1.2725 1.2960 1.2935 1.2915
64 1.4493 1.3835 1.3187 1.3605 1.4623 1.5829 1.5447 1.5409 1.4425 1.4287 1.4463 1.4524
65 1.8187 1.8378 1.8364 1.8513 1.5348 1.6835 1.8128 2.1547 1.9214 1.6963 1.7452 1.7653
66 1.8654 1.9123 1.9208 1.9220 1.2138 1.3924 1.4919 1.7687 1.8118 1.5912 1.7562 1.7934
67 2.2309 2.2936 2.2795 2.3570 1.1303 1.2842 1.4109 1.7295 1.8490 1.6399 1.7690 2.0736
68 1.9754 2.0131 1.9958 2.0662 1.1684 1.2144 1.3826 1.7928 1.8026 1.5942 1.6048 1.8980
69 1.7245 1.7767 1.7783 1.8012 1.4971 1.4525 1.6367 2.0508 1.8413 1.6320 1.5844 1.7190
70 1.5060 1.5383 1.5420 1.5684 1.4961 1.4915 1.6850 2.0395 1.8434 1.6157 1.4853 1.5069
71 1.1912 1.2098 1.2135 1.2268 1.2440 1.2490 1.3792 1.5776 1.4281 1.2874 1.2135 1.1969
72 1.1733 1.1892 1.1936 1.1963 1.2131 1.2254 1.2386 1.2286 1.2096 1.1821 1.1806 1.1843
Mean 1.3552 1.3916 1.3774 1.3897 1.2052 1.2403 1.3196 1.4841 1.4165 1.3095 1.2848 1.3307

Table A.26 (Continued)

definition of pGK
t zeros out any reservation prices that are 

applied to missing products, and thus PGK
t ≡ pGK

t/pGK
1 also 

does not depend on reservation prices.82

It can be seen that if a solution to equations (A2) and (A3) 
exists, then if all of the period price levels pGK

t are multiplied, 
say, by a positive scalar λ say and all of the quality adjust-
ment factors αn are divided by the same λ, then another solu-
tion to (A2) and (A3) is obtained. Hence, an and pGK

t are only 
determined up to a scalar multiple, and an additional nor-
malization such as pGK

1 = 1 or α1 = 1 is required to determine 
a unique solution to the system of equations defined by (A2) 
and (A3).

A traditional method for obtaining a solution to (A2) 
and (A3) is to iterate between these equations. Thus, set α 
= 1N, a vector of ones, and use equations (A3) to obtain an 
initial sequence for pGK

t. Substitute these pGK
t estimates into 

equations (A2) and obtain αn estimates. Substitute these αn 
estimates into equations (A3) and obtain a new sequence of 
pGK

t estimates. Continue iterating between the two systems 
until convergence is achieved. This method was used to cal-
culate the GK price levels pGK

t. Using our data set, the itera-
tive method took 20 iterations to converge to three decimal 
places.

However, there is a more efficient non-iterative method 
which can be used to compute the GK indices. Following 
Diewert (1999b; 26),83 substitute equations (A3) into equa-
tions (A2) and after some simplification, obtain the follow-
ing system of equations that will determine the components 
of the α vector:

 [IN – C]α = 0N, (A4)

where IN is the N by N identity matrix, 0N is a vector of zeros 
of dimension N, and the C matrix is defined as:

 C ≡ q−1 Σt=1
T stqtT, (A5)

82 In equations (A2) and (A3), each price ptn always appears with the mul-
tiplicative factor qtn. Thus, if ptn is an imputed price, it will always be 
multiplied by qtn = 0, and thus any imputed price will have no impact on 
αn and pGK

t.
83 See also Diewert and Fox (2020) for additional discussion on this solu-
tion method.

that use scanner data. Given the recent use of GK indices by 
several national statistical agencies, it seems to be useful to 
calculate these indices using our data set.

The GK system of equations for T time periods involves 
T price levels pGK

1,. . .,pGK
T and N quality adjustment factors 

α1,. . .,αN. Let pt and qt denote the N-dimensional price and 
quantity vectors for month t (with components pt,n and qt,n 
as usual). The total consumption (or sales) vector q over the 
entire window of observations is defined as the following 
simple sum of the period-by-period consumption vectors:

 q ≡ Σt=1
T qt, (A1)

where q ≡ [q1,q2,. . .,qN]. The equations which determine the 
GK price levels pGK

1,.  .  .,pGK
T and quality adjustment factors 

α1,. . .,αN (up to a scalar multiple) are as follows:

 αn = Σt=1
T [qt,n/qn][pt,n/pGK

t]; n = 1,. . .,N; (A2)
pGK

t = pt·qt/α·qt = Σn=1
N [αnqt,n/α·qt][pt,n/αn]; 

 t = 1,. . .,T, (A3)

where α ≡ [α1,.  .  .,αN] is the vector of GK quality adjust-
ment factors. The sample share of period t’s purchases 
of product n in total sales of product n over all T peri-
ods can be defined as St,n ≡ qt,n/qn for n = 1,.  .  .,N and t 
= 1,.  .  .,T. Thus, αn ≡ Σt=1

T St,n[pt,n/pGK
t] is a (real) share-

weighted average of the period t inflation-adjusted prices 
pt,n/pGK

t for product n over all T periods. The period t 
quality-adjusted sum of quantities sold is defined as the 
period t GK quantity level, qGK

t ≡ α·qt = Σn=1
N αnqt,n.

81 Thus, 
the aggregate quantity or volume or utility function for 
period t is a simple linear function of the quantities qt,n 
consumed during period t. This period t quantity level is 
divided into the value of period t sales, pt·qt = Σn=1

N ptnqtn, 
in order to obtain the period t GK price level, pGK

t. Thus, 
the GK price level for period t can be interpreted as a 
quality-adjusted unit value index, where αn act as the qual-
ity adjustment factors.

Note that the GK price level, pGK
t, defined by (A3) does 

not depend on the estimated reservation prices; that is, the 

81 Khamis (1972; 101) also derived this equation in the time series context.
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where q  is an N by N diagonal matrix with the elements of 
the sample total purchase vector q running down the main 
diagonal and q−1 denotes the inverse of this matrix, st is the 
period t expenditure share column vector, q t is the column 
vector of quantities purchased during period t, and qn is the 
nth element of the sample total q defined by (A1).

The matrix IN – C is singular which implies that the N 
equations in (A4) are not all independent. In particular, if the 
first N-1 equations in (A4) are satisfied, then the last equa-
tion in (A4) will also be satisfied. It can also be seen that the 
N equations in (A4) are homogeneous of degree one in the 
components of the vector α. Thus, to obtain a unique α solu-
tion to (A4), set αN equal to 1, drop the last equation in (A4) 
and solve the remaining N–1 equations for α1,α2,.  .  .,αN-1.  
Once the αn values are known, equations (A3) can be used 

to determine the GK price levels, pGK
t = pt·qt/α·qt for t = 

1,. . .,T. These price levels were then divided by the first price 
level pGK

1 in order to form the GK indices, PGK
t ≡ pGK

t/pGK
1, 

which are listed in Table A.27.84 For comparison purposes, 
we also list the indices from Table 9.17 in the main text. The 
indices listed in Table A.27 are plotted in Figure A9.1.

The GK indices PGK
t end up capturing the trend as was 

the case for all of the other indices with the exception of 
the chained Paasche and Fisher indices, PPCH

t* and PFCH
t*, 

which suffer from severe downward chain drift. The sea-
sonal fluctuations in the GK indices are smaller than the 
fluctuations in the fixed-base Fisher and GEKS indices, 
PFB

t* and PGEKS
t* but the mean of PGK

t is 1.2982 compared 
to the mean of the similarity-linked indices PS

t* of 1.4749. 
The following chart shows that the seasonal fluctuations 
in the GK indices are substantial.

84 Table A.27 lists the GK indices using the efficient method. The efficient 
method will always work if the elements in the C matrix are all positive. 
If the elements of C are only nonnegative, then in rare cases, the efficient 
method may not work; see Diewert (1999b; 26).

Table A.27 GK Price Levels and Indices and Alternative Month-to-Month Price Indices Using Maximum Overlap 
Bilateral Indices as Building Blocks
t PLFB

t* PLCH
t* PPFB

t* PPCH
t* PFCH

t* PFFB
t* PGEKS

t* PS
t* PGK

t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.07104 1.07104 1.06104 1.06104 1.06603 1.06603 1.03802 1.06603 1.00629
3 1.12812 1.18503 1.11303 1.16798 1.17647 1.12055 1.10386 1.17647 1.10863
4 1.15044 1.19078 1.12373 1.16845 1.17956 1.13701 1.11167 1.17956 1.11325
5 1.18406 1.19694 1.14104 1.16942 1.18310 1.16235 1.28331 1.18310 1.34728
6 1.10502 1.03417 1.07887 0.97269 1.00296 1.09186 1.17550 1.00296 1.15685
7 1.24566 1.06832 1.28386 0.95860 1.01198 1.26462 1.28536 1.01198 1.25985
8 1.64472 1.13041 1.69981 0.98562 1.05554 1.67204 1.53539 1.05554 1.35030
9 1.33555 1.05897 1.48835 0.90641 0.97973 1.40988 1.34806 0.97973 1.20870

10 1.23076 1.08596 1.29420 0.90374 0.99067 1.26208 1.29133 0.99067 1.24074
11 1.03294 0.96785 1.04925 0.77360 0.86529 1.04107 1.08720 1.04107 1.05898
12 0.97081 0.90818 0.98105 0.72496 0.81141 0.97592 0.99061 0.97592 0.97584
13 0.99746 0.92454 0.99881 0.74299 0.82881 0.99813 0.99017 0.99684 0.99408
14 1.04362 0.96387 1.02824 0.76965 0.86130 1.03590 1.03346 1.17902 1.09779
15 1.08902 0.91833 1.06632 0.69057 0.79635 1.07761 1.04121 1.08056 1.01912
16 1.15867 0.99822 1.13743 0.75088 0.86576 1.14800 1.12905 1.17474 1.09612
17 1.23204 1.07256 1.15330 0.78529 0.91776 1.19202 1.30850 1.10498 1.37790
18 1.40150 1.12341 1.28409 0.82835 0.96466 1.34151 1.44174 1.30841 1.53226
19 1.29310 1.21533 1.44276 0.86212 1.02360 1.36588 1.49357 1.18142 1.54893
20 1.32299 1.27417 1.45909 0.88364 1.06109 1.38937 1.50199 1.23391 1.54799
21 1.27093 1.19560 1.30112 0.81994 0.99011 1.28593 1.35277 1.09986 1.36646
22 1.20769 1.24737 1.21638 0.79472 0.99564 1.21203 1.26983 1.23179 1.26559
23 1.07109 1.10288 1.06924 0.70461 0.88153 1.07017 1.07993 1.06906 1.06493
24 1.05248 1.07832 1.04479 0.68717 0.86081 1.04863 1.04214 1.04392 1.04178
25 1.03276 1.05627 1.01894 0.67328 0.84331 1.02583 1.01037 1.02270 1.01509
26 1.07388 1.09687 1.06790 0.69442 0.87275 1.07089 1.07080 1.22856 1.15710
27 1.14208 1.05809 1.12088 0.64996 0.82929 1.13143 1.09977 1.17215 1.11378
28 1.26148 1.14177 1.23415 0.70168 0.89507 1.24774 1.20934 1.25327 1.18622

(Continued )
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t PLFB
t* PLCH

t* PPFB
t* PPCH

t* PFCH
t* PFFB

t* PGEKS
t* PS

t* PGK
t

29 1.36612 1.26826 1.31684 0.76739 0.98654 1.34125 1.43467 1.22223 1.54415
30 1.46661 1.11351 1.39075 0.63881 0.84340 1.42818 1.42150 1.15449 1.39074
31 1.73296 1.18814 1.64024 0.65250 0.88049 1.68596 1.57446 1.20526 1.39273
32 1.86733 1.30512 1.73601 0.70065 0.95626 1.80047 1.68844 1.16278 1.52494
33 1.38675 1.24237 1.41926 0.63598 0.88889 1.40291 1.47063 1.18929 1.46106
34 1.33751 1.21976 1.33703 0.61354 0.86509 1.33727 1.38167 1.31066 1.34770
35 1.08703 1.06732 1.07810 0.50379 0.73329 1.08256 1.11771 1.07810 1.09437
36 1.02305 1.00314 1.01285 0.47308 0.68889 1.01793 1.01873 1.01195 1.00484
37 1.01159 0.99864 1.00992 0.47009 0.68516 1.01076 1.01965 1.01076 1.00324
38 1.02156 1.00610 1.01478 0.47200 0.68912 1.01816 1.03899 1.16812 1.10257
39 1.10562 1.01261 1.10047 0.46755 0.68807 1.10305 1.10616 1.17108 1.11092
40 1.40435 1.21657 1.40366 0.55437 0.82124 1.40401 1.40571 1.39663 1.31260
41 1.93372 1.52949 1.86189 0.70095 1.03542 1.89746 1.90004 1.50841 1.86742
42 2.04948 1.43492 1.93935 0.57426 0.90775 1.99365 1.85555 1.37756 1.64465
43 2.44964 1.26995 2.08106 0.48573 0.78540 2.25784 1.86789 1.22151 1.39593
44 1.94826 1.22130 1.88870 0.45816 0.74803 1.91825 1.68235 1.05506 1.36349
45 1.47755 1.27915 1.57473 0.46934 0.77483 1.52537 1.55868 1.22173 1.51780
46 1.39276 1.30456 1.46928 0.47089 0.78377 1.43051 1.51589 1.19999 1.51189
47 1.24213 1.18988 1.26300 0.42194 0.70856 1.25252 1.30463 1.26828 1.26399
48 1.12808 1.08051 1.12696 0.37820 0.63926 1.12752 1.13747 1.13921 1.12666
49 1.12212 1.07637 1.12896 0.37668 0.63675 1.12554 1.12370 1.13475 1.12367
50 1.21916 1.17596 1.21377 0.40957 0.69400 1.21646 1.25767 1.38339 1.30070
51 1.23969 1.09662 1.24530 0.36458 0.63230 1.24249 1.25967 1.29063 1.19632
52 1.42259 1.21667 1.39905 0.40512 0.70206 1.41077 1.42183 1.43303 1.33554
53 1.67018 1.29789 1.63196 0.43211 0.74889 1.65096 1.67706 1.34386 1.70876
54 1.95352 1.20862 1.90595 0.36369 0.66299 1.92959 1.74172 1.25757 1.49425
55 2.03052 1.35442 2.05315 0.40619 0.74173 2.04180 1.85986 1.34547 1.58188
56 1.60294 1.44271 1.68914 0.41245 0.77140 1.64547 1.68088 1.30412 1.62578
57 1.39502 1.47625 1.47791 0.41505 0.78276 1.43587 1.53684 1.26875 1.55911
58 1.35851 1.46359 1.38700 0.39760 0.76284 1.37268 1.41013 1.34737 1.39857
59 1.09904 1.17136 1.09780 0.31761 0.60994 1.09842 1.09276 1.09738 1.08979
60 1.02215 1.08744 1.02087 0.29512 0.56650 1.02151 1.01005 1.01922 1.01532
61 1.07410 1.14641 1.06543 0.31177 0.59784 1.06976 1.06802 1.07767 1.06331
62 1.20643 1.30964 1.19934 0.34893 0.67600 1.20288 1.26692 1.39115 1.30698
63 1.29331 1.25722 1.29424 0.32078 0.63505 1.29377 1.30348 1.32072 1.25348
64 1.43515 1.32893 1.46351 0.33813 0.67033 1.44926 1.45723 1.39001 1.31303
65 1.86123 1.52850 1.77723 0.38896 0.77106 1.81874 1.86177 1.52597 1.91247
66 1.91700 1.26434 1.81516 0.30051 0.61640 1.86539 1.70997 1.25740 1.50202
67 2.31683 1.28283 2.14817 0.28713 0.60691 2.23091 1.86260 1.22459 1.39528
68 1.96840 1.31863 1.98236 0.28708 0.61526 1.97537 1.76427 1.11160 1.44934
69 1.67463 1.32951 1.77584 0.28527 0.61585 1.72450 1.72233 1.27951 1.61471
70 1.46701 1.35499 1.54608 0.27515 0.61059 1.50602 1.60516 1.27885 1.60223
71 1.18124 1.13072 1.20127 0.22115 0.50006 1.19121 1.26341 1.23088 1.21718
72 1.17122 1.11995 1.17533 0.21988 0.49624 1.17327 1.18952 1.19115 1.17489
Mean 1.35950 1.17720 1.35160 0.59613 0.81450 1.35520 1.34680 1.18920 1.29820

Table A.27 (Continued)
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THE TREATMENT OF DURABLE GOODS 
AND HOUSING* 10
1. Introduction
When a durable good (other than housing) is purchased by a 
consumer, national CPIs typically attribute all of that expen-
diture to the period of purchase even though the use of the 
good extends beyond the period of purchase.1 By definition, 
a durable good delivers services longer than the account-
ing period under consideration.2 The System of National 
Accounts, 1993 (SNA), defines a durable good as follows:

In the case of goods, the distinction between acquisi-
tion and use is analytically important. It underlies the 
distinction between durable and non-durable goods 
extensively used in economic analysis. In fact, the dis-
tinction between durable and non-durable goods is 
not based on physical durability as such. Instead, the 
distinction is based on whether the goods can be used 
once only for purposes of production or consump-
tion or whether they can be used repeatedly, or con-
tinuously. For example, coal is a highly durable good 
in a physical sense, but it can be burnt only once. A 
durable good is therefore defined as one which may 
be used repeatedly or continuously over a period of 
more than a year, assuming a normal or average rate 
of physical usage. A consumer durable is a good that 
may be used for purposes of consumption repeatedly 
or continuously over a period of a year or more. 

System of National Accounts (1993, 208)

1 This treatment of the purchases of durable goods dates back to Alfred 
Marshall (1898, 594–595) at least: “We have noticed also that though the 
benefits which a man derives from living in his own house are commonly 
reckoned as part of his real income, and estimated at the net rental value 
of his house; the same plan is not followed with regard to the benefits 
which he derives from the use of his furniture and clothes. It is best here 
to follow the common practice, and not count as part of the national 
income or dividend anything that is not commonly counted as part of the 
income of the individual.”
2 An alternative definition of a durable good is that the good delivers ser-
vices to its purchaser for a period exceeding three years: “The Bureau 
of Economic Analysis defines consumer durables as those durables that 
have an average life of at least 3 years” (Arnold J. Katz, 1983, 422).

This chapter will be concerned with the problems 
involved in pricing the services provided by durable goods 
according to the previous definition. Thus, durability is 
more than the fact that a good can physically persist for 
more than a year (this is true of most goods): A durable 
good is distinguished from a nondurable good due to its 
property that it can deliver useful services to a consumer 
through repeated use over an extended period of time. 
Examples of durable goods are automobiles and washing 
machines. A storable good is a good that can be stored over 
at least two periods of time but can only be used in a single 
period—for example, a can of beans. A perishable good is a 
good that can be stored for only a limited period of time—
for example, a carton of milk. Thus, perishable goods are 
like services: depending on the length of the period, they 
must be consumed in their period of purchase. Most of this 
chapter will be concerned with the treatment of durable 
goods, but Section 10 will look at the treatment of storable 
goods.

Since the benefits of using the consumer durable 
extend over more than one period, it is not appropriate to 
charge the entire purchase cost of the durable to the initial 
period of purchase. If this point of view is taken, then the 
initial purchase cost must be distributed somehow over 
the useful life of the asset. This is the fundamental prob-
lem of accounting.3 Hulten (1990) explained the conse-
quences for accountants of the durability of a purchase as  
follows:

Durability means that a capital good is productive 
for two or more time periods, and this, in turn, im-
plies that a distinction must be made between the 
value of using or renting capital in any year and 
the value of owning the capital asset. This distinc-
tion would not necessarily lead to a measurement 

3 “The third convention is that of the annual accounting period. It is this 
convention which is responsible for most of the difficult accounting prob-
lems. Without this convention, accounting would be a simple matter of 
recording completed and fully realized transactions: an act of primitive 
simplicity” (Stephen Gilman, 1939, 26).

“All the problems of income measurement are the result of our desire 
to attribute income to arbitrarily determined short periods of time. 
Everything comes right in the end; but by then it is too late to matter” 
(David Solomons, 1961, 378). Note that these authors do not mention 
the additional complications that are due to the fact that future reve-
nues and costs must be discounted to yield values that are equivalent to 
present dollars. For more recent papers on the fundamental problem of 
accounting, see Diewert (2005a, 480), Cairns (2013, 634), and Diewert and  
Fox (2016).

* This chapter draws on Chapter 23 of the Consumer Price Index 
Manual; see ILO, IMF, OECD, UNECE, Eurostat, World Bank (2004, 
419–441) and Chapter 6 of Diewert et al. (2020, 223–298). The authors 
thank Paul Armknecht, John Astin, Corinne Becker-Vermeulen, David 
Fenwick, Dennis Fixler, Elspeth Hazell, Michael Henderson, Brian 
Graf, Ronald Johnson, Shaima Kamleh, Jill Leyland, Jens Mehrhoff, 
Paul Schreyer, Nigel Stapledon, Valentina Stoevska, Randall Verbrugge, 
and Alice Xu for their helpful comments on earlier drafts.
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commodity. However, historically, it turns out that the 
rental equivalence and user cost approaches have only been 
applied to OOH. In other words, the acquisitions approach 
to the purchase of consumer durables has been universally 
used by statistical agencies, with the exception of OOH. A 
possible reason for this is tradition; that is, Marshall (1898) 
set the standard and statisticians have followed his example 
for the past century. However, another possible reason is 
that unless the durable good has a very long useful life, it 
usually will not make a great deal of difference in the long 
run whether the acquisitions approach or one of the two 
alternative approaches is used. This point is discussed in 
more detail in Section 10.

A major component of the user cost approach to valu-
ing the services of OOH is the depreciation component. In 
Section 6, a general model of depreciation for a consumer 
durable is presented, and then it is specialized in Sections 
7 and 8 to the three models of depreciation that are widely 
used.

The general model presented in Section 6 assumes that 
homogeneous units of the durable good are produced in 
each period, and it also assumes that used units of the 
durable trade on secondhand markets so that informa-
tion on the prices of the various vintages of the dura-
ble at any point in time can be used to determine the 
pattern of depreciation. However, many durables (like 
housing) are custom produced (that is, they are unique 
goods), and thus the methods for determining the form 
of depreciation explained in Section 6 are not immedi-
ately applicable. The special problems associated with 
the measurement of housing services are considered in 
Sections 11–18.

Sections 11 and 12 show how information on the sales of 
dwelling units can be used to decompose the sales price into 
land and structure components. This information is required 
for the country’s national balance sheet accounts. The decom-
position into land and structure components is also required 
for the construction of rental prices and user costs and for 
measures of multifactor productivity for the rental housing 
sector of the economy.6 Section 11 looks at land and structure 
decompositions for the sale of detached housing units, while 
Section 12 does the same for the sales of condominium units. 
The hedonic regression models that are explained in Sections 
11 and 12 are basically supply-side models, while Section 13 
looks at demand-side hedonic regression models for the sales 
of detached houses. Sections 14 and 15 look at the problems 
associated with the construction of rent indices. Section 14 
shows how a very simple repeat rents model can be modified in 
order to deal with depreciation of the structure, which causes 
the quality of a rental unit to decline over time. However, there 
are some problems with the modified repeat rents model, so 
Section 15 considers more general hedonic regression models 
for rents. Sections 16 and 17 look at the problems associated 
with valuing the services of OOH in a CPI. Section 16 notes 
that, in principle, there are separate user costs for the owned 
structure and for the land that the structure sits on. Section 
17 compares the rental equivalence and user cost approaches 
for the treatment of OOH. This section also explains why the 

6 Depreciation applies to the structure part of property value but not to 
the land part.

problem if  the capital services used in any given year 
were paid for in that year; that is, if  all capital were 
rented. In this case, transactions in the rental market 
would fix the price and quantity of capital in each 
time period, much as data on the price and quan-
tity of labor services are derived from labor market 
transactions. But, unfortunately, much capital is uti-
lized by its owner and the transfer of capital services 
between owner and user results in an implicit rent 
typically not observed by the statistician. Market 
data are thus inadequate for the task of directly es-
timating the price and quantity of capital services, 
and this has led to the development of indirect pro-
cedures for inferring the quantity of capital, like the 
perpetual inventory method, or to the acceptance of 
flawed measures, like book value. 

Charles R. Hulten (1990, 120–121)

There are three main methods for dealing with the dura-
bility problem:

• Ignore the problem of distributing the initial cost of the 
durable over the useful life of the good and allocate the 
entire charge to the period of purchase. This is known as 
the acquisitions approach, and it is the present approach 
used by CPI statisticians for all durables with the excep-
tion of housing.

• The rental equivalence or leasing equivalence approach: 
In this approach, a price is imputed for the durable; 
this price is equal to the rental price or leasing price of 
an equivalent consumer durable for the same period of 
time.

• The user cost approach: In this approach, the initial pur-
chase cost of the durable is decomposed into two parts: One 
part that reflects an estimated cost of using the services of 
the durable for the period and another part that is regarded 
as an investment that must earn some exogenous rate of 
return.

These three major approaches will be discussed more fully 
in Sections 2, 3, 4, and 9.4 There is a fourth approach that 
has not been applied but seems conceptually attractive. It 
will be discussed in Section 5: the opportunity cost approach. 
This approach takes the maximum of the rental equivalence 
and user cost as the price for the use of the services of a con-
sumer durable over a period of time. Finally, there is a fifth 
approach to the treatment of consumer durables that has 
only been used in the context of pricing OOH and that is the 
payments approach.5 This is a kind of cash flow approach, 
which will be discussed in Section 18 after we have discussed 
the other approaches in more detail.

The three main approaches to the treatment of durable 
purchases can be applied to the purchase of any durable 

4 It should be noted that, in principle, the user cost and rental equivalence 
approaches should be much the same: The owner of a rental property needs 
to construct a user cost for the current period (using its opportunity cost 
of capital as the interest rate that appears in the user cost formula) so that 
the resulting user cost can be used as the rental price that will just allow the 
owner to make the target rate of return on the property investment. In prac-
tice, the exact equality does not hold due to various market imperfections 
which will be discussed later.
5 This is the term used by Goodhart (2001, F350–F351).
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One additional implication of the net acquisitions 
approach is that major renovations and additions to owner-
occupied dwelling units could also be considered as being 
in scope for this approach. In practice, major renovations 
to a house are treated as investment expenditures and not 
covered as part of a CPI. Normal maintenance expenditures 
on a dwelling unit are usually treated in a separate category 
in the CPI.

Traditionally, the net acquisitions approach also includes 
transfer costs related to the buying and selling of second-
hand houses as expenditures that are in scope for an acqui-
sitions-type CPI. These costs are mainly the costs of using 
a real estate agent’s services and asset transfer taxes. These 
costs can be measured, but the question arises as to what is 
the appropriate deflator for these costs. An overall property 
price index is probably a satisfactory deflator.8

The major advantage of the acquisitions approach is that 
it treats durable and nondurable purchases in a completely 
symmetric manner, and thus no special procedures have to 
be developed by a statistical agency to deal with durable 
goods.9 As will be seen in Section 10, the major disadvantage 
of this approach is that the expenditures associated with this 
approach will tend to understate the corresponding expen-
ditures on durables that are implied by the rental equiva-
lence and user cost approaches.

Some differences between the acquisitions approach and 
the other approaches are as follows:

• If rental or leasing markets for the durable exist and the 
durable has a long useful life, then, as mentioned earlier, 
the expenditure weights implied by the rental equivalence 
or user cost approaches will typically be much larger than 
the corresponding expenditure weights implied by the 
acquisitions approach; see Section 17.

• If the base year corresponds to a boom year (or a slump 
year) for the durable, then the base period expenditure 
weights may be too large or too small. Put another way, 
the aggregate expenditures that correspond to the acqui-
sitions approach are likely to be more volatile than the 
expenditures for the aggregate that are implied by the 
rental equivalence or user cost approaches.10

• In making comparisons of consumption across countries 
where the proportion of owning versus renting or leasing the 
durable varies greatly,11 the use of the acquisitions approach 
may lead to misleading cross-country comparisons. The rea-
son for this is that opportunity costs of capital are excluded 

8 See the discussion in Section 17 on transfer costs.
9 The acquisitions approach is straightforward and simple for most dura-
ble goods but not for housing if the land component of property value 
is regarded as out of scope. Properties are sold with a single price that 
includes both the land and structure components of housing and so if the 
land part of property value is regarded as out of scope for the index, then 
there is a problem in decomposing property value into land and structure 
components. This decomposition problem can be avoided if information 
on the construction costs for building a new housing unit is available. In 
this case, the construction cost index (including builder’s markups) can 
serve as the price index for newly constructed dwelling units.
10 Hill, Steurer, and Waltl (2020) make this point and list other problems 
with the acquisitions approach.
11 From Hoffmann and Kurz (2002, 3–4), about 60 percent of German 
households lived in rented dwellings, whereas only about 11 percent of 
Spaniards rented their dwellings in 1999.

amount that an owned dwelling unit could rent for is in gen-
eral different from the user cost that could be used to price 
the services of the unit to an owner. Section 18 looks at some 
alternative approaches to measuring housing services in a 
CPI such as the payments approach and the household costs 
approach.

Section 19 applies the user cost approach to house-
hold holdings of monetary balances. The difficult issues 
associated with defining real monetary balances are also 
addressed.

Section 20 concludes.

2. The Acquisitions Approach
The net acquisitions approach to the treatment of OOH is 
described by Goodhart as follows:

The first is the net acquisitions approach, which is the 
change in the price of newly purchased owner occu-
pied dwellings, weighted by the net purchases of the 
reference population. This is an asset based measure, 
and therefore comes close to my preferred measure of 
inflation as a change in the value of money, though 
the change in the price of the stock of existing houses 
rather than just of net purchases would in some re-
spects be even better. It is, moreover, consistent with 
the treatment of other durables. A few countries, e.g., 
Australia and New Zealand, have used it, and it is, I 
understand, the main contender for use in the Euro-
area Harmonized Index of Consumer Prices (HICP), 
which currently excludes any measure of the purchase 
price of (new) housing, though it does include minor 
repairs and maintenance by home owners, as well as 
all expenditures by tenants. 

Charles Goodhart (2001, F350)

Thus, the weights for the net acquisitions approach are 
the net purchases of the household sector of houses from 
other institutional sectors in the base period. Note that, in 
principle, purchases of secondhand dwellings from other 
sectors are relevant here; for example, a local government 
may sell rental dwellings to owner occupiers. However, typi-
cally, newly built houses form a major part of these types 
of transactions. Thus, the long-term price relative to this 
category of expenditure will be primarily the price of (new) 
houses (quality adjusted) in the current period relative to the 
price of new houses in the base period.7 If this approach is 
applied to other consumer durables, it is extremely easy to 
implement: The purchase of a durable is treated in the same 
way as a nondurable or service purchase.

7 This price index may or may not include the price of the land that the new 
dwelling unit sits on; for example, a new house price construction index 
would typically not include the land cost. The acquisitions approach con-
centrates on the purchases by households of goods and services that are 
provided by suppliers from outside the household sector. Thus, if the land 
on which a new house sits was previously owned by the household sector, 
then presumably, the cost of this land would be excluded from an acquisi-
tions type new house price index. In this case, the price index that corre-
sponds to the acquisitions approach is basically a new house price index 
(excluding land) or a modification of a construction cost index where the 
modification takes into account builder’s margins.
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housing services produced by owner-occupiers is val-
ued at the estimated rental that a tenant would pay 
for the same accommodation, taking into account 
factors such as location, neighbourhood amenities, 
etc. as well as the size and quality of the dwelling 
itself.

Eurostat, IMF, OECD, UN and  
World Bank (1993, 134)

However, the SNA 1993 followed Marshall (1898, 595) 
and did not extend the rental equivalence approach to con-
sumer durables other than housing. This seemingly incon-
sistent treatment of durables was explained in the SNA 1993 
as follows:

The production of housing services for their own 
final consumption by owner-occupiers has always 
been included within the production boundary in 
national accounts, although it constitutes an excep-
tion to the general exclusion of own-account service 
production. The ratio of owner-occupied to rented 
dwellings can vary significantly between countries 
and even over short periods of time within a single 
country, so that both international and intertemporal 
comparisons of the production and consumption of 
housing services could be distorted if  no imputation 
were made for the value of own-account services. 

Eurostat, IMF, OECD, UN and  
World Bank (1993, 126)

Eurostat’s (2001) Handbook on Price and Volume Mea-
sures in National Accounts also recommended the rental 
equivalence approach for the treatment of the dwelling ser-
vices for OOH:

The output of dwelling services of owner occupiers 
at current prices is in many countries estimated by 
linking the actual rents paid by those renting simi-
lar properties in the rented sector to those of owner 
occupiers. This allows the imputation of a notional 
rent for the service owner occupiers receive from 
their property. 

Eurostat (2001, 99)

To summarize the preceding material, it can be seen 
that the rental equivalence approach to the treatment of a 
durable good is conceptually simple: Use the current period 
rental or leasing price for a comparable unit of the consumer 
durable to measure its service flow. But where will the statis-
tical agency find the relevant rental data to price the services 
of OOH? There are at least three possible methods:

• Ask homeowners what they think the market rent for 
their dwelling unit is.16

• Undertake a survey of owners of rental properties or 
managers of rental properties, and ask what rents they 
charge for their rental properties by type of property.

16 This approach is used by the Bureau of Labor Statistics (1983) in order 
to determine expenditure weights for OOH; that is, homeowners are asked 
to estimate what their house would rent for if it were rented to a third 
party.

in the net acquisitions approach, whereas they are explicitly 
or implicitly included in the other two approaches.

More fundamentally, whether the acquisitions approach is 
the right choice or not depends on the overall purpose of 
the index number. If the purpose is to measure the price of 
current period consumption services, then the acquisitions 
approach can only be regarded as an approximation to a 
more appropriate approach (which would be either the rental 
equivalence or the user cost approach). If the purpose of the 
index is to measure monetary (or nonimputed) expenditures 
by the household sector during the period, then the acquisi-
tions approach is preferable (provided the land component 
of property value is in scope), since the rental equivalence 
and user cost approaches necessarily involve imputations.12

The acquisitions approach (as applied to OOH) is dis-
cussed in detail in Eurostat (2017).13 Eurostat is consider-
ing the use of the acquisitions approach for the treatment 
of OOH in its HICP, but at this date, no decision has been 
finalized. At present, OOH is simply omitted in the HICP. 
Eurostat considered the use of the acquisitions approach for 
OOH because at first sight it seems that no imputations have 
to be made in order to implement it. The HICP was created 
as an index of consumer prices that used actual transaction 
prices without the use of any imputations.14 As such, it was 
thought to be particularly useful for monitoring inflation 
by central banks. However, the sale of a newly constructed 
dwelling unit typically includes a land component, which 
the Eurostat methodology excludes, but existing methods 
for excluding the land component involve imputations.15

3. The Rental Equivalence 
Approach
The rental equivalence approach simply values the services 
yielded by the use of a consumer durable good for a period 
by the corresponding market rental value for the same dura-
ble for the same period of time (if such a rental value exists).

The most important consumer durable in a CPI is hous-
ing that is owned (OOH). The international SNA 1993 rec-
ommended the use of the rental equivalence approach to 
measure the services of OOH:

As well-organized markets for rented housing exist in 
most countries, the output of own-account housing 
services can be valued using the prices of the same 
kinds of services sold on the market with the general 
valuation rules adopted for goods and services pro-
duced on own account. In other words, the output of 

12 Fenwick (2009, 2012) laid out the case for the use of the acquisitions 
approach as a useful measure of general inflation. He also argued for the 
construction of multiple CPIs to suit different purposes.
13 This very useful publication also discusses the main methods for the 
treatment of OOH, and it also covers the methods used to construct resi-
dential property price indices. The latter topic is also covered in Eurostat 
(2013).
14 However, with the passage of time, it became apparent that some impu-
tations for changes in the quality of consumer goods and services had to 
be made. Thus the current HICP is not completely free from imputations. 
See Astin (1999) for the methodological foundations of the HICP.
15 The use of a construction cost index to value the structure component 
of property value also involves an imputation, but it is a reasonably 
straightforward one.
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• Use one of the preceding two methods to get a rent to 
value ratio for various types of property for a benchmark 
period, and then link these ratios to indices of purchase 
prices for the various types of property.17

There are some disadvantages associated with the use of 
the rental equivalence approach to the valuation of OOH 
services:

• Homeowners may not be able to provide very accurate 
estimates for the rental value of their dwelling unit.

• On the other hand, if the statistical agency tries to match 
the characteristics of an owned dwelling unit with a com-
parable unit that is rented in order to obtain the imputed 
rent for the owned unit, there may be difficulties in finding 
such comparable units. Furthermore, even if a compara-
ble unit is found, the rent for the comparable unit may not 
be an appropriate opportunity cost for valuing the ser-
vices of the owned unit.18

• The statistical agency should make an adjustment to these 
estimated rents over time in order to take into account 
the effects of depreciation, which causes the quality of the 
unit to slowly decline over time (unless this effect is com-
pletely offset by renovation and repair expenditures).19

• Care must be taken to determine exactly what extra ser-
vices are included in the homeowner’s estimated rent; that 
is, does the rent include insurance, electricity, and fuel or 
the use of various consumer durables in addition to the 
structure? If so, these extra services should be stripped 
out of the rent if they are covered elsewhere in the CPI.20

In order to overcome the first difficulty listed earlier, the 
Japanese government collects housing rent data from 
property management companies or owners who rent out 
their dwelling units; that is, Japan uses the second method 
to value the services of OOH. However, the characteris-
tics of the owner-occupied population of dwelling units 
are generally quite different from the characteristics of 
the rental population.21 Thus, typically, it is difficult to 
find rental units that are comparable to owned dwelling 

17 Lebow and Rudd (2003, 169) note that the US Bureau of Economic 
Analysis applies a benchmark rent to value ratio for rented properties to 
the value of the owner-occupied stock of housing. It can be seen that this 
approach is essentially a simplified user cost method where all of the key 
variables in the user cost formula (to be discussed later) are held constant 
except the asset price of the property.
18 We will return to this point after we have discussed the opportunity 
cost approach to the valuation of OOH services.
19 This issue will be discussed in more detail in Section 17. Papers which 
discuss how to strip out utility and insurance costs out of rents include 
Verbrugge (2012), Coffey, McQuinn, and O’Toole (2020), and Adams and 
Verbrugge (2021). Also, in many countries, there are rent controls. A rent-
controlled comparable property is not a correct opportunity cost to use 
to value the services of an owned dwelling unit.
20 However, it could be argued that these extra services that might be 
included in the rent are mainly a weighting issue; that is, it could be 
argued that the trend in the homeowner's estimated rent would be a rea-
sonably accurate estimate of the trend in the rents after adjusting for the 
extra services included in the rent.
21 For example, according to the 2013 Japanese Housing and Land Sur-
vey, the average floor space (size) of OOH in Tokyo was 110.64 square 
meters for single family houses and 82.71 square meters for rental hous-
ing, a difference of over 30 square meters. For condominiums, an even 
greater discrepancy exists: the average floor space is 65.73 square meters 
for OOH and 37.64 square meters for rental housing. Moreover, in addi-
tion to the difference in floor space between rented and owned units, the 

units. The use of hedonic regression techniques can miti-
gate this lack of matching problem. Moreover, the use 
of hedonic regressions can deal with the depreciation or 
quality decline problem mentioned earlier. We will discuss 
hedonic regression techniques later in this chapter in Sec-
tions 11–15.

In addition to these possible biases in using the rental 
equivalence approach to the valuation of the services of 
OOH, there are differences between contract rent and mar-
ket rent. Contract rent or roll-over rent refers to the rent 
paid by a renter who has a long-term rental contract with 
the owner of the dwelling unit and (current) market rent is 
the rent paid by the renter in the first period after a rental 
contract has been negotiated. In a normal economy that is 
experiencing moderate or low general inflation, typically 
market rent will be higher than contract rent. However, if 
there are rent controls or a temporary glut of rental units, 
then market rent could be lower than contract rent. In any 
case, it can be seen that if we value the services of an owner-
occupied dwelling at its current opportunity cost on the 
rental market, market rent should be used in the CPI to 
value the services of OOH rather than contract rent. How-
ever, contract rent or rollover rent (adjusted for deprecia-
tion and improvements) should be used to estimate the cost 
of rented dwellings in a CPI.

Finally, it is known that price adjustments are often not 
made for rollover contracts (that is, renewed leases). As a 
result, it is likely that new contract rents determined freely 
by the market will diverge considerably from rollover con-
tract rents.22 This is the stickiness of rents problem.

In the following section, we provide an introduction to 
user cost theory for a non-housing durable good. In subse-
quent sections, we will deal with the problems associated 
with measuring depreciation and the aggregation of user 
costs over different ages of the same good. In Sections 11–17, 
we will look at the additional difficulties that are associated 
with the formation of user costs for housing and the rela-
tionship between user costs and rental prices for housing 
services.

4. The User Cost Approach 
for Pricing the Services of a 
Durable Good
The user cost approach to the treatment of durable goods is 
in some ways very simple: It calculates the cost of purchas-
ing the durable at the beginning of the period, using the ser-
vices of the durable during the period, and then netting off 
from these costs the benefit that could be obtained by selling 
the durable good at the end of the period. However, there are 
several details of this procedure that are somewhat contro-
versial. These details involve the use of opportunity costs 
(which are usually imputed costs), the treatment of interest, 
and the treatment of capital gains or holding gains.

Another complication with the user cost approach is 
that it involves making distinctions between current period 

quality of the owned units tends to be higher than the rented units and 
these quality differences need to be taken into account.
22 On this point, see Genesove (2003), Shimizu, Nishimura, and Wata-
nabe (2010b), Shimizu and Watanabe (2011), Lewis and Restieaux (2015), 
Gallin and Verbrugge (2019), and Suzuki, Asami, and Shimizu (2021).
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(flow) purchases within the period under consideration and 
the holdings of physical stocks of the durable at the begin-
ning and end of the accounting period. Typically, when con-
structing a CPI, we think of all quantity purchases as taking 
place at a single point in time, say the middle of the period 
under consideration, at the (unit value) average prices for 
the period. In constructing user costs, prices at the begin-
ning and end of an accounting period play an important 
role.

To determine the net cost of using a durable good during 
period 0, it is assumed that one unit of the durable good 
is purchased at the beginning of period 0 at price P0. The 
“used” or “second-hand” durable good can be sold at the 
end of period 0 at price PS

1.23 It might seem that a reason-
able net cost for the use of one unit of the consumer durable 
during period 0 is its initial purchase price P0 less its end of 
period 0 “scrap value,” PS

1. However, money received at the 
end of the period is not as valuable as money that is received 
at the beginning of the period. Thus, in order to convert the 
end-of-period value into its beginning of the period equiva-
lent value, it is necessary to discount the term PS

1 by the term  
1 + r0, where r0 is the beginning of period 0 nominal interest 
rate that the consumer faces. Hence, the period 0 user cost u0 
for the consumer durable24 is defined as

 u0 ≡ P0 – PS
1/(1 + r0). (1)

There is another way to view the user cost formula (1): the 
consumer purchases the durable at the beginning of period 
0 at price P0 and charges himself or herself the rental price 
u0. The remainder of the purchase price, I0, defined as

 I0 ≡ P0 – u0 (2)

can be regarded as an investment, which is to yield the appro-
priate opportunity cost of capital r0 that the consumer faces. 
At the end of period 0, this rate of return could be realized 
provided that I0, r0, and the selling price of the durable at the 
end of the period PS

1 satisfy the following equation:

 I0(1 + r0) = PS
1. (3)

Given PS
1 and r0, (3) determines I0, which in turn, given P0, 

determines the user cost u0 using (2).25

Thus, user costs are not like the prices of nondurables or 
services because the user cost concept involves pricing the 
durable at two points in time rather than at a single point in 
time. Because the user cost concept involves prices at two 
points in time, money received or paid out at the first point 
in time is more valuable than money paid out or received 
at the second point in time, and so interest rates creep into 
the user cost formula. Furthermore, because the user cost 

23 Note that this approach to pricing the services of a durable good 
assumes the existence of secondhand markets for units of the durables 
that have aged. This assumption may not be satisfied for many consumer 
durables including unique assets such as dwelling units and works of art, 
which are not bought and sold every period.
24 This approach to the derivation of a user cost formula was suggested 
by Diewert (1974), who in turn based it on an approach adopted by 
Hicks (1946, 326).
25 This derivation for the user cost of a consumer durable was also made 
by Diewert (1974, 504).

concept involves prices at two points in time, expected prices 
can be involved if the user cost is calculated at the beginning 
of the period under consideration instead of at the end. With 
all of these complications, it is no wonder that many price 
statisticians would like to avoid using user costs as a pric-
ing concept. However, even for price statisticians who would 
prefer to use the rental equivalence approach to the treat-
ment of durables over the user cost approach, there is some 
justification for considering the user cost approach in some 
detail, since this approach gives insights into the economic 
determinants of the rental or leasing price of a durable.

The user cost formula (1) can be put into a more famil-
iar form if the period 0 economic depreciation rate 0 and the 
period 0 ex-post asset inflation rate i0 are defined. Define δ by

 (1 – δ) ≡ PS
1/P1, (4)

where PS
1 is the price of a one-period old used asset at the 

end of period 0 and P1 is the price of a new asset at the end 
of period 0. Typically, if a new asset and a one-period older 
asset are sold at the same time, then the new asset will be 
worth more than the used asset, and hence δ will be a posi-
tive number between 0 and 1. The period 0 inflation rate for 
the new asset, i0, is defined by

 1 + i0 ≡ P1/P0. (5)

Eliminating P1 from equations (4) and (5) leads to the fol-
lowing formula for the end of period 0 used asset price:

 PS
1 = (1 – δ)(1 + i0)P0. (6)

Substitution of (6) into (1) yields the following expression for 
the period 0 user cost u0:

 u0 = [(1 + r0) – (1 – δ)(1 + i0)]P0/(1 + r0). (7)

Note that r0–i0 can be interpreted as a period 0 real interest 
rate, and δ(1 + i0) can be interpreted as an inflation-adjusted 
depreciation rate.

The user cost u0 is expressed in terms of prices that are 
discounted to the beginning of period 0. However, it is also 
possible to express the user cost in terms of prices that are 
“anti-discounted” or appreciated to the end of period 0.26 
Thus, define the end of period 0 user cost p0 as27

26 Thus, the beginning of the period user cost u0 discounts all monetary 
costs and benefits into their dollar equivalent at the beginning of period 0, 
whereas p0 discounts (or appreciates) all monetary costs and benefits into 
their dollar equivalent at the end of period 0. This leaves open how flow 
transactions that take place within the period should be treated. Follow-
ing the conventions used in financial accounting suggests that flow trans-
actions taking place within the accounting period be regarded as taking 
place at the end of the accounting period and hence, following this con-
vention, end-of-period user costs should be used by the price statistician; 
see Peasnell (1981).
27 Christensen and Jorgenson (1969) derived a user cost formula similar 
to (7) in a different way using a continuous time optimization model. If 
the inflation rate i equals 0, then the user cost formula (7) reduces to that 
derived by Walras (1954, 269, first edition 1874). This zero inflation rate 
user cost formula was also derived by the industrial engineer A. Hamil-
ton Church (1901, 907–908), who perhaps drew on the work of Mathe-
son: “In the case of a factory where the occupancy is assured for a term 
of years, and the rent is a first charge on profits, the rate of interest, to 
be an appropriate rate, should, so far as it applies to the buildings, be 
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 p0 ≡ (1 + r0)u0 = [(1 + r0) – (1 – δ)(1 + i0)]P0, (8)

where the last equation follows from (7). If the real interest 
rate r0* is defined as the nominal interest rate r0 less the asset 
inflation rate i0 and the small term δi0 is neglected, then the 
end-of-period user cost defined by (8) reduces to

 p0 = (r0* + δ)P0. (9)

Abstracting from transaction costs and inflation, it can be 
seen that the end-of-period user cost defined by (9) is an 
approximate rental cost; that is, the rental cost for the use 
of a consumer (or producer) durable good should equal the 
(real) opportunity cost of the capital tied up, r0*P0, plus the 
decline in value of the asset over the period, δP0. Formulae 
(8) and (9) thus cast some light on the economic determi-
nants of rental or leasing prices for consumer durables.

If the simplified user cost formula defined by (9) is used, 
then, at first glance, forming a price index for the user cost 
of a durable good is not very much more difficult than form-
ing a price index for the purchase price of the durable good, 
P0. The price statistician needs only to

• make a reasonable assumption as to what an appropriate 
monthly or quarterly real interest rate r0* should be;

• make an assumption as to what a reasonable monthly or 
quarterly depreciation rate δ should be;28

• collect purchase prices P0 for the durable and use formula 
(9) to calculate the simplified user cost.29

If it is thought necessary to implement the more compli-
cated user cost formula (8) in place of the simpler formula 
(9), then the situation is more complicated. As it stands, the 
end-of-period user cost formula (8) is an ex-post (or after 
the fact) user cost: The asset inflation rate i0 cannot be cal-
culated until the end of period 0 has been reached. Formula 
(8) can be converted into an ex ante (or before the fact) user 
cost formula if i0 is interpreted as an anticipated asset infla-
tion rate. The resulting formula should approximate a mar-
ket rental rate for the durable good.30

equal (including the depreciation rate) to the rental which a landlord who 
owned but did not occupy a factory would let it for.” Ewing Matheson 
(1910, 169), first published in 1884. Additional derivations of user cost 
formulae in discrete time have been made by Katz (1983, 408–409) and 
Diewert (2005a). Hall and Jorgenson (1967) introduced tax consider-
ations into user cost formulae.
28 The geometric model for depreciation to be explained in more detail in 
Section 6 requires only a single monthly or quarterly depreciation rate. 
Other models of depreciation may require the estimation of a sequence of 
vintage depreciation rates. If the estimated annual geometric deprecia-
tion rate is δa, then the corresponding monthly geometric depreciation 
rate δ can be obtained by solving the equation (1 – δ)12 = 1 – δa. Simi-
larly, if the estimated annual real interest rate is ra

*, then the correspond-
ing monthly real interest rate r* can be obtained by solving the equation  
(1 + r*)12 = 1 + ra

*.
29 Iceland uses a variant of the simplified user cost formula (9) to estimate 
the services of OOH with a real interest rate approximately equal to 4 
percent and a depreciation rate of 1.25 percent. The depreciation rate is 
relatively low because it is applied to the entire property value and not to 
just the structure portion of property value; see Guðnason and Jónsdót-
tir (2011). Eurostat (2005) also uses a simplified user cost formula. Addi-
tional simplified user cost formulae have been developed by Verbrugge 
(2008), Hill, Steurer, and Waltl (2020) and many others; see Section 17.
30 Since landlords must set their rent at the beginning of the period (in 
actual practice, they usually set their rent for an extended period of time) 
and if the user cost approach is used to model the economic determinants 

Note that in the user cost approach to the treatment of con-
sumer durables, the entire user cost formula (8) or (9) is the 
period 0 price. Thus, in the time series context, it is not neces-
sary to deflate each component of the formula separately; the 
period 0 price p0 º [r0 – i0 + δ(1 + i0)]P0 is compared to the cor-
responding period 1 price, p1 ≡ [r1 – i1 + δ(1 + i1)]P1, and so on.

In principle, depreciation rates can be estimated using 
information on the selling prices of used units of the durable 
good.31 However, for housing, the situation is more complex, 
as will be explained later.

We conclude this introductory section by noting some 
practical problems that statistical agencies will face when 
calculating user costs for durable goods:32

• It is difficult to determine what the relevant nominal inter-
est rate r0 is for each household. If a consumer has to bor-
row to finance the cost of a durable good purchase, then 
this interest rate will typically be much higher than the 
safe rate of return that would be the appropriate opportu-
nity cost rate of return for a consumer who had no need to 
borrow funds to finance the purchase.33 It may be neces-
sary to simply use a benchmark interest rate that would 
be determined by the government, a national statistical 
agency, or an accounting standards board.34

• It will generally be difficult to determine what the rele-
vant depreciation rate is for the consumer durable.35

of market rental rates, then the asset inflation rate i0 should be interpreted 
as an expected inflation rate rather than an after the fact actual inflation 
rate. This use of ex ante prices in this price measurement context should 
be contrasted with the preference of national accountants to use actual or 
ex-post prices in the system of national accounts.
31 For housing, the situation is more complex because typically a dwell-
ing unit is a unique good; its location is a price-determining character-
istic and each housing unit has a unique location and thus is a unique 
good. It also changes its characteristic over time due to renovations and 
depreciation of the structure. Thus the treatment of housing is much 
more difficult than the treatment of other durable goods. Note that the 
definitions (4) and (5) of the depreciation rate δ and the asset inflation 
rate i0 implicitly assumed that prices for a new asset and a one period 
old asset were available in both periods 0 and 1. This assumption is not 
satisfied for a unique asset.
32 For additional material on difficulties with the user cost approach, see 
Diewert (1980, 475–479) and Katz (1983, 415–422).
33 Katz (1983, 415–416) comments on the difficulties involved in determin-
ing the appropriate rate of interest to use: “There are numerous alterna-
tives: a rate on financial borrowings, on savings, and a weighted average 
of the two; a rate on nonfinancial investments. e.g., residential housing, 
perhaps adjusted for capital gains; and the consumer’s subjective rate of 
time preference. Furthermore, there is some controversy about whether it 
should be the maximum observed rate, the average observed rate, or the 
rate of return earned on investments that have the same degree of risk and 
liquidity as the durables whose services are being valued.”
34 One way for choosing the nominal interest rate for period t, rt, is to set it 
equal to (1 + r*)(1 + ρt) – 1, where ρt is a consumer price inflation rate for 
period t and r* is a reference real interest rate. The Australian Bureau of 
Statistics has used this method for determining rt with r* ≡ 0.04; that is, a 4 
percent real interest rate was chosen. Other methods for determining the 
appropriate interest rate that should be inserted into user cost formula 
are discussed by Harper, Berndt, and Wood (1989), Schreyer (2001), and 
Hill, Steurer, and Waltl (2020).
35 We will discuss geometric or declining balance depreciation and  
one-hoss-shay depreciation below. For references to the depreciation lit-
erature and for empirical methods for estimating depreciation rates, see 
Hulten and Wykoff (1981a, 1981b, 1996), Beidelman (1973, 1976), Jorgen-
son (1996), and Diewert and Lawrence (2000).
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• Ex-post user costs based on formula (8) may be too vol-
atile to be acceptable to users36 (due to the volatility of 
the ex-post asset inflation rate i0), and hence an ex ante 
user cost concept may have to be used. For most durable 
goods, the asset inflation rates are smaller than the refer-
ence nominal interest rate so that subtracting an ex-post 
asset inflation rate from the sum of the nominal interest 
rate plus the asset depreciation rate will usually lead to 
reasonably stable positive user costs. However, for dura-
ble goods with very low depreciation rates, like a housing 
structure or like land (which has a zero depreciation rate), 
the resulting ex-post user costs may turn out to be nega-
tive for some periods. This means that the resulting nega-
tive user costs are not useful approximations to rental 
prices for these long-lived durable goods. This creates dif-
ficulties in that different national statistical agencies will 
generally make different assumptions and use different 
methods in order to construct anticipated inflation rates 
for structures and land, and hence the resulting ex ante 
user costs of the durable may not be comparable across 
countries.37

• The user cost formula (8) should be generalized to accom-
modate various taxes that may be associated with the 
purchase of a durable or with the continuing use of the 
durable.38

Some of the problems associated with estimating deprecia-
tion rates will be discussed in Section 6.

36 Goodhart (2001, F351) commented on the practical difficulties of using 
ex-post user costs for housing as follows: “An even more theoretical user 
cost approach is to measure the cost foregone by living in an owner- 
occupied property as compared with selling it at the beginning of the 
period and repurchasing it at the end. . . . But this gives the absurd result 
that as house prices rise, so the opportunity cost falls; indeed the more 
virulent the inflation of housing asset prices, the more negative would this 
measure become. Although it has some academic aficionados, this flies in 
the face of common sense; I am glad to say that no country has adopted 
this method.” As noted above, Iceland and Eurostat have in fact adopted 
a simplified user cost framework which seems to work well enough. More-
over, the user cost concept is used widely in production function and pro-
ductivity studies and by national statisticians who construct multifactor 
productivity accounts for their countries.
37 For additional material on the difficulties involved in constructing ex 
ante user costs, see Diewert (1980, 475–486) and Katz (1983, 419–420). 
For empirical comparisons of different user cost formulae, see Harper, 
Berndt and Wood (1989), Diewert and Lawrence (2000) and Hill, Steurer, 
and Waltl (2020). In Diewert and Fox (2018), the authors calculated Jor-
gensonian (ex-post) user costs for US land used in residential housing for 
the years 1960–2014 and found that negative user costs occurred. Diewert 
and Fox then replaced the ex-post capital gains term in the user cost for 
land with the long-term inflation rate for land over the previous rolling 
window of 25 years (as an approximation to the ex ante or expected asset 
inflation rate) and this substitution led to positive user costs for land that 
were relatively smooth. Hill, Steurer, and Waltl (2020) also recommend 
the use of long-run asset inflation rates to avoid chain drift in housing 
indices based on user costs.
38 For example, property taxes are associated with the use of housing ser-
vices and hence should be included in the user cost formula; see Section 
16. As Katz (1983, 418) noted, taxation issues also impact the choice of 
the interest rate: “Should the rate of return be a before or after tax rate?” 
From the viewpoint of a household that is not borrowing to finance the 
purchase of the durable, an after tax rate of return seems appropriate but 
from the point of a leasing firm, a before tax rate of return seems appro-
priate. This difference helps to explain why rental equivalence prices for 
the durable might be higher than user cost prices; see also Section 16.

5. The Opportunity Cost Approach
The opportunity cost approach to the valuation of the ser-
vices of a consumer durable during a time period is quite 
easy to describe: The opportunity cost valuation is simply 
the maximum of the foregone rental or leasing price for the 
services of the durable during a period of time and the cor-
responding user cost for the durable.

It is easy to see that when a household has a consumer 
durable in its possession, the household forgoes the money 
that one could earn by renting out the services of the dura-
ble good for the period of time under consideration. (Such 
rental markets may not exist, in which case, this opportu-
nity cost is 0.) Thus, the rental equivalent (at current market 
rates) is one opportunity cost that the household incurs by 
continuing to own and use the services of the durable during 
the period.

However, there is another opportunity cost that is appli-
cable to using the services of the durable good during the 
period under consideration. By using the services of the dura-
ble good, the household also forgoes a financial opportunity 
cost. Thus, the durable good could be sold on the secondhand 
market at the beginning of the period at the price P0. This 
amount of money could be invested in some financial instru-
ment that earns the one period rate of return of r0. Thus, at 
the end of the period, the household would have accumulated 
P0(1 + r0) dollars as a result of selling the consumer durable 
at the beginning of the period. Now suppose at the end of the 
period, the household buys back the consumer durable that it 
sold at the beginning of the period. The value of the durable 
good at the end of the period will be (1 + i0)(1 – δ0)P0, where i0 
is the asset appreciation rate over period 0 and d0 is the depre-
ciation rate for the durable good. Thus, the net opportunity 
cost of using the services of the durable for period 0 from the 
financial perspective is P0(1 + r0) – (1 + i0)(1 – δ0)P0, which is 
exactly the end-of-period user cost for the durable good that 
was derived earlier; see equation (8).

A true opportunity cost for using the services of a dura-
ble good should equal the maximum of the benefits that are 
foregone by not using these services. Thus the opportunity 
cost approach to pricing the services of a consumer durable 
is equivalent to taking the maximum of the rent and user 
cost that the durable could generate over the period under 
consideration.39

6. A General Model of Depreciation 
for Consumer Durables
In this section, a “general” model of depreciation for dura-
ble goods that appear on the market each period without 
undergoing quality change will be presented. In the follow-
ing two sections, this general model will be specialized to 
the three most common models of depreciation that appear 
in the literature.

The main tool that can be used to identify depreciation 
rates for a durable good is the cross-sectional sequence of 

39 The opportunity cost approach to pricing the services of OOH was 
first proposed by Diewert (2008). It was further developed by Diewert 
and Nakamura (2011) and Diewert, Nakamura, and Nakamura (2011). 
There have been at least two studies that implemented the opportunity 
cost approach to the valuation of the services of OOH; see Shimizu et al. 
(2012) and Aten (2018).
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asset prices classified by their age that units of the good sell 
for on the secondhand market at any point of time.40 Thus, 
in order to apply this method for the measurement of depre-
ciation, it is necessary that such secondhand markets exist.

Some notation is required. Let P0
t be the price of a newly 

produced unit of the durable good at the beginning of period 
t. Let Pv

t be the secondhand market price at the beginning 
of period t of a unit of the durable good that is v periods 
old.41 The beginning of period t cross-sectional depreciation 
rate for a brand new unit of the durable good, δ0

t, is defined 
as follows:

 1 – δ0
t ≡ P1

t/P0
t. (10)

Once δ0
t has been defined by (10), the period t cross- sectional 

depreciation rate for a unit of the durable good that is one-
period old at the beginning of period t, δ1

t, can be defined 
using the following equation:

 (1 – δ1
t)(1 – δ0

t) ≡ P2
t/P0

t. (11)

Note that P2
t is the beginning of period t asset price of a 

unit of the durable good that is two periods old, and it is 
compared to the price of a brand new unit of the durable P0

t.
Given that the period t cross-sectional depreciation rates 

for units of the durable that are 0, 1, 2, . . ., v - 1 periods old 
at the beginning of period 0 are defined (these are the depre-
ciation rates δ0

t, δ1
t, δ2

t, . . ., δv–1
t), the period t cross-sectional 

depreciation rate for units of the durable that are v periods old 
at the beginning of period t, δv

t, can be defined using the fol-
lowing equation:

 (1 – δv
t)(1 – δv–1

t) . . . (1 – δ1
t)(1 – δ0

t) ≡ Pv + 1
t/P0

t. (12)

Thus, it is clear how the sequence of period 0 vintage asset 
prices Pv

t can be converted into a sequence of period t vin-
tage depreciation rates, δv

t. In the depreciation literature, it is 
usually assumed that the sequence of vintage depreciation 
rates, δv

t, is independent of the period t so that

 δv
t = δv for all periods t and all ages v. (13)

This material shows how the sequence of vintage or used 
durable goods prices at a point in time can be used in order 
to estimate depreciation rates. This method for estimating 
depreciation rates using data on secondhand assets, with 
a few extra modifications to account for differing ages of 

40 Another information source that could be used to identify depreciation 
rates for the durable good is the sequence of vintage rental or leasing 
prices that might exist for some consumer durables. In the closely related 
capital measurement literature, the general framework for an internally 
consistent treatment of capital services and capital stocks in a set of vin-
tage accounts was set out by Jorgenson (1989) and Hulten (1990, 127–129; 
1996, 152–160).
41 If these secondhand vintage prices depend on how intensively the dura-
ble good has been used in previous periods, then it will be necessary to 
further classify the durable good not only by its vintage v but also accord-
ing to the intensity of its use. In this case, think of the sequence of vintage 
asset prices Pv

t as corresponding to the prevailing market prices of the 
various vintages of the good at the beginning of period t for assets that 
have been used at “average” intensities.

retirement, was pioneered by Beidelman (1973, 1976) and 
Hulten and Wykoff (1981a, 1981b, 1996).42

Recall the user cost formula for a new unit of the durable 
good under consideration, which was defined by (1). The 
same approach can be used in order to define a sequence of 
period 0 user costs for all vintages v of the durable. Thus, 
suppose that Pv + 1

1a is the anticipated end of period 0 price 
of a unit of the durable good that is v periods old at the 
beginning of period 0, and let r0 be the consumer’s oppor-
tunity cost of capital for period 0. Then the discounted to 
the beginning of period 0 user cost of a unit of the durable 
good that is v periods old at the beginning of period 0, uv

0, is 
defined as follows:

 uv
0 ≡ Pv

0 – Pv + 1
1a/(1 + r0); v = 0,1,2, . . . (14)

It is now necessary to specify how the end of period 0 antici-
pated vintage asset prices Pv

1a are related to their coun-
terpart beginning of period 0 vintage asset prices Pv

0. The 
assumption that is made now is that the entire sequence of 
vintage asset prices at the end of period 0 is equal to the 
corresponding sequence of asset prices at the beginning of 
period 0 times a general anticipated period 0 inflation rate 
factor, (1 + i0), where i0 is the anticipated period 0 (general) 
asset inflation rate. Thus, it is assumed that43

 Pv
1a = (1 + i0)Pv

0; v = 0,1,2, . . . . (15)

Substituting (15) and (10)–(13) into (14) leads to the follow-
ing beginning of period 0 sequence of vintage user costs:44

uv
0 = (1 – δv–1)(1 – δv–2) . . . (1 – d0)[(1 + r0)

  – (1 – δv)(1 + i0)]P0
0/(1 + r0) (16)

   =  (1 – δv–1)(1 – δv–2) . . . (1 – δ0)[ r
0 – i0 + δv(1 + i0)]P0

0/ 
(1 + r0);  v = 1,2, . . . .

If v = 0, then u0
0 ≡ [r0 – i0 + δ0(1 + i0)]P0

0/(1 + r0), and this 
agrees with the user cost formula for a new purchase of the 
durable u0 that was derived earlier in (7) (with our changes 
in notation; that is, P0 is now called P0

0).
The sequence of vintage user costs uv

0 defined by (16) is 
expressed in terms of prices that are discounted to the begin-
ning of period 0. However, as was done in Section 4, it is also 
possible to express the user costs in terms of prices that are 
“anti-discounted” to the end of period 0. Thus, define the 
sequence of vintage end of period 0 user cost pv

0 as follows:

pv
0 ≡ (1 + r0)uv

0 = (1 – δv–1)(1 – δv–2) . . . (1 – δ0)[r
0 – i0 

      + δv(1 + i0)]P0
0;  v = 1,2, . . . , (17)

42 See also Jorgenson (1996) for a review of the empirical literature on the 
estimation of depreciation rates.
43 More generally, we assume that assumptions (15) hold for subsequent 
periods t as well; that is, it is assumed that Pv

t + 1a = (1 + it)Pv
t for v = 0,1,2, 

. . . and t = 0,1,2, . . ., where Pv
t + 1a is the anticipated price of a unit of the 

durable good that is v periods old at the end of period t, it is a period t 
expected asset inflation rate for all ages of the durable and Pv

t is the second-
hand market price for a unit of the durable good that is v periods old at the 
beginning of period t.
44 When v = 0, define δ–1 ≡1; that is, the terms in front of the square brack-
ets on the right-hand side of (16) are set equal to 1.
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with p0
0 defined as follows:

 p0
0 ≡ (1 + r0)u0

0 = [r0 – i0 + δv(1 + i0)]P0
0. (18)

Thus, if the price statistician has estimates for the vin-
tage depreciation rates δv, the nominal interest rate r0, the 
expected asset inflation rate, and is also able to collect 
a sample of prices for new units of the durable good P0

0, 
then the sequence of vintage user costs defined by (17) can 
be calculated. To complete the model, the price statistician 
should gather information on the stocks held by the house-
hold sector of each vintage of the durable good, and then 
normal index number theory can be applied to these p’s and 
q’s, with the p’s being vintage user costs and the q’s being the 
vintage stocks pertaining to each period. For some worked 
examples of this methodology under various assumptions 
about depreciation rates and the calculation of expected 
asset inflation rates, see Diewert and Lawrence (2000) and 
Diewert (2005a).45

In the following two sections, the general methodol-
ogy described earlier is specialized by making additional 
assumptions about the form of the vintage depreciation 
rates δv.

46

7. Geometric or Declining Balance 
Depreciation
The declining balance method of depreciation dates back to 
Matheson (1910, 55) at least.47 In terms of the algebra pre-
sented in the previous section, the method is very simple: all 
of the cross-sectional vintage depreciation rates δv

t defined 
by (10)–(12) are assumed to be equal to the same rate d, 
where δ is a positive number less than one; that is, for all 
time periods t and all vintages v, it is assumed that

 δv
t = δ; v = 0,1,2, . . . . (19)

Substitution of (19) into (17) leads to the following formula 
for the sequence of end of period 0 vintage user costs:

 pv
0 = (1 – δ)v[ r0 – i0 + δ(1 + i0)]P0; v = 0,1,2, . . . (20)

    = (1 – δ)vp0
0,

where the second equation follows from definition (18). The 
second set of equations in (20) says that all of the vintage user 
costs are proportional to the user cost for a new asset. This 
proportionality means that it is not necessary to use an index 
number formula to aggregate over vintages to form a dura-
ble services aggregate. To see this, it is useful to calculate 
the aggregate value of services yielded by all vintages of the 

45 Additional examples and discussion can be found in two OECD Manu-
als on productivity measurement and the measurement of capital; see 
Schreyer (2001, 2009).
46 In the case of one-hoss-shay depreciation, assumptions are made about 
the sequence of user costs, uv

t, as the asset age v increases.
47 A case for attributing the method to Walras (1954, 268–269) could be 
made but he did not lay out all of the details. Matheson (1910, 91) used 
the term “diminishing value” to describe the method. Hotelling (1925, 
350) used the term “the reducing balance method,” while Canning (1929, 
276) used the term the “declining balance formula.” For a more recent 
exposition of the geometric model of depreciation, see Jorgenson (1989).

consumer durable at the beginning of period 0. Let q–v be 
the quantity of the new durable purchased by the household 
sector v periods ago for v = 1,2, . . . ., and let q0 be the new 
purchases of the durable during period 0. The beginning of 
period 0 user cost for the holdings of the durable of age v will 
be pv

0 defined by (20). Thus, the aggregate value of services 
over all vintages of the good, including those purchased in 
period 0, will have the value v0 defined as follows:

v0 = p0
0q0 + p1

0q–1 + p2
0q–2 + . . . (21)

     = p0
0q0 + (1 – δ) p0

0q–1 + (1 – δ)2 p0
0q–2 + . . .  using (20)

   = p0
0 [q0 + (1 - d)q–1 + (1 – δ)2q-2 + . . . ]

   = p0
0Q0,

where the period 0 aggregate (quality-adjusted) quantity of 
durable services consumed in period 0, Q0, is defined as

 Q0 ≡ q0 + (1 – δ)q–1 + (1 – δ)2q–2 + . . . . (22)

Thus, the period 0 services quantity aggregate Q0 is equal to 
new purchases of the durable in period 0, q0, plus one minus 
the depreciation rate δ times the purchases of the durable 
in the previous period, q–1, plus the square of one minus the 
depreciation rate times the purchases of the durable two peri-
ods ago, q–2, and so on. The service price that can be applied 
to this quantity aggregate is p0

0, the imputed rental price or 
user cost for a new unit of the durable purchased in period 0.

This result greatly simplifies the valuation of consumer 
durables. Normally, the price statistician would have to 
keep track of all new purchases of the durable good by 
the reference population by period, calculate the relevant 
user costs pv

0 and pv
t for periods 0 and t, and apply the rel-

evant index number formula (Laspeyres, Paasche, Fisher, 
or whatever formula is used in the CPI) to these age-spe-
cific prices and quantities for periods 0 and t. But because 
under assumptions (13), (15), and (19), all vintage user costs 
vary in a proportional manner over time,48 and thus any rea-
sonable index number formula will find that the price index 
going from period 0 to t is equal to p0

t/p0
0, the ratio of user 

costs for a new unit of the durable good. Moreover, the cor-
responding aggregate quantity index will be equal to Qt/Q0, 
where Q0 is defined by (22) and Qt is defined by

 Qt ≡ qt + (1 – δ)qt-1 + (1 – δ)2qt–2 + . . . . (23)
 = qt + (1 – δ)Qt–1.

Note that the second equation simplifies the calculation of 
the period t aggregate service flow (in real terms) over all 
vintages of the consumer durable: The period t aggregate 

48 Equations (20) for period t are as follows: pv
t = (1 – δ)vp0

t for v = 1,2, 
.  .  . and so the entire sequence of user costs by age of asset vary in a 
proportional manner over time under our assumptions. Thus, an aggre-
gate period t price for the entire group of assets of varying ages is p0

t and 
the corresponding aggregate quantity will be Qt defined by (23). This is 
an application of Hicks’ (1946, 312–313) aggregation theorem: “Thus we 
have demonstrated mathematically the very important principle, used 
extensively in the text, that if the prices of a group of goods change in the 
same proportion, that group of goods behaves just as if it were a single 
commodity.”
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flow, Qt, is equal to period t new purchases of the durable, qt, 
plus (1 – δ) times the aggregate flow of services in the previ-
ous period, Qt–1.

If the depreciation rate δ and the purchases of the dura-
ble in prior periods are known, then the aggregate service 
quantity Q0 can readily be calculated using (22). Then using 
(21), it can be seen that the period 0 value of the services 
of the durable (over all vintages), v0, decomposes into the 
price term p0

0 times the quantity term Q0. Hence, it is not 
necessary to use an index number formula to aggregate over 
vintages using this depreciation model.

The stock of consumer durables held by the household 
sector of a country should appear in the balance sheets of 
the country.49 Using the geometric model of depreciation, 
it is very easy to calculate the nominal and real value of the 
stock of consumer durables held by households. At time t, 
the stocks held by the household sector for the particular 
type of consumer durable under consideration are qt, qt–1, qt–2,  
. . . and the corresponding asset prices by age of asset are P0

t, 
P1

t, P2
t, . . . . Assumptions (12), (13), and (19) imply that these 

period t asset prices satisfy the following equations:

 Pv
t = (1 – δ)v P0

t; v = 1,2, . . . . (24)

Equation (24) can be used to define period t aggregate asset 
value for the stocks held by households for the durable good 
over all ages of the durable good Vt:

 Vt ≡ P0
tqt + P1

tqt–1 + P2
tqt–2 + P3

tqt–3 + . . . (25)
 = P0

t[qt + (1 – δ)1qt–1 + (1 – δ)2qt–2 + . . . ] using (24)
 = P0

t Qt,

where Qt is defined by (23). Thus, Qt serves as a measure 
of the real capital stock of the consumer durable at the 
end of period t, and it also serves as a measure of the real 
consumption services provided by this capital stock during 
period t.

This algebra explains why the geometric model of depre-
ciation is used so widely in production function studies and 
in the measurement of total factor productivity or multifac-
tor productivity in the production accounts of countries: It 
is very simple to work with!50

8. Alternative Depreciation Models
Another very common model of depreciation is the straight 
line model.51 In this model, the most probable length of life 
for the durable is somehow determined, say L periods, so 
that after being used for L periods, the durable is scrapped. 
In the straight line depreciation model, it is assumed that 

49 However, for many countries, stocks of consumer durables will not be 
present in the country’s balance sheets and so it will be necessary to use 
historical data on the purchases of durables along with estimated depre-
ciation rates in order to form estimated stocks for consumer durables.
50 See Jorgenson (1989) who popularized the use of the geometric model 
of depreciation in production function and total factor productivity 
studies. For an application of his methodology to valuing the services of 
consumer durables in the United States, see Christensen and Jorgenson 
(1969).
51 This model of depreciation dates back to the late 1800s; see Matheson 
(1910, 55), Garcke and Fells (1893, 98), or Canning (1929, 265–266).

the period 0 cross-sectional vintage asset prices Pv
0 decline 

in a linear fashion relative to the period 0 price of a new 
asset P0

0:

  Pv
0/P0

0 = [L – v]/L  for v = 0, 1, 2, . . . , L – 1. (26)

For v = L, L + 1, . . . ., it is assumed that Pv
0 = 0. Now use 

definitions (14) and (17) along with assumptions (15) in order 
to obtain the following sequence of end of period 0 vintage 
user costs for a unit of the durable good of age v at the begin-
ning of period 0:

 pv
0 = Pv

0(1 + r0) – (1 + i0)Pv + 1
0 for v = 0, 1, 2, . . . , L – 1 (27)

 = [1/L][(L – v)(1 + r0) – (L – v – 1)(1 + i0)]P0
0

  using assumptions (26)
 = [(r0 – i0)(L – v)L–1 + (1 + i0)L–1]P0

0.

The user costs for units of the durable good that are older 
than L periods are zero; that is, pv

0 ≡ 0 for v ≥ L. Looking 
at the terms in square brackets on the right-hand side of 
(27), it can be seen that the first term (r0 – i0)(L – v)L–1P0

0 is 
a real interest opportunity cost for holding and using the 
unit of the durable that is v periods old (and this imputed 
real interest cost declines as the durable good ages; that 
is, as the age v increases), and the second term (1 + i0)
(1/L)P0

0 is an inflation-adjusted depreciation term that is 
equal to the constant straight line depreciation rate 1/L 
times the adjustment factor for asset inflation over the 
period, (1 + i0), times the price of a new unit of the dura-
ble good P0

0. In period t, the corresponding end-of-period 
user cost for a unit of the durable good that is v periods 
old is defined as pv

t ≡ [(rt – it)(L – v)L–1 + (1 + it)L–1]P0
t, for 

v = 0,1,2,  .  .  ., L – 1. Thus, in both periods 0 and t, the 
sequences of end-of-period user costs by age, {pv

0} and 
{pv

t} for v = 0,1,2, . . .,L – 1, are proportional to the price 
of a new unit of the durable for periods 0 and t, P0

0 and 
P0

t, respectively,52 but if r0 and/or i0 change to a different 
rt or it, then the factors of proportionality will change as 
we go from period 0 to t, and so we cannot apply Hicks’ 
aggregation theorem in this case.

In the case of changing nominal interest rates r and/or 
changing expected or actual asset price inflation rates, it, we 
cannot assume that the overall inflation rate between peri-
ods 0 and t for all ages of the durable good is equal to P0

t/P0
0 

as was the case with the geometric model of depreciation. 
Thus, for the straight line model of depreciation, it is neces-
sary to keep track of household purchases of the durable 
for L periods and weight up each vintage quantity q–v of 
these purchases by the corresponding end-of-period user 
costs vintage user cost pv

0 defined by (27) for period 0, and a 
similar calculation will have to be made for period t. Once 
these vectors of prices and quantities have been calculated 
for both periods, then normal index number theory can 

52 Thus as the price of a new unit of the durable good changes over time, 
the value of depreciation will also change in line with the change in the 
price of the new unit. Thus economic depreciation as we have defined it 
is different from historical cost accounting depreciation which does not 
adjust depreciation allowances for changes in the levels of asset prices 
over time. Put another way, historical cost depreciation does not reflect 
current opportunity costs of using the services of consumer durable.
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be applied to get the overall price index for the household 
holdings of the durable good, and this index can be used to 
deflate the user cost aggregate values to get an appropriate 
volume index.53 It can be seen that the straight line model 
of depreciation is considerably more complicated to imple-
ment than the geometric model of depreciation explained in 
the previous section.54

The final model of depreciation that is in common use 
is the “light bulb” or one-hoss-shay model of depreciation.55 
In this model, the durable delivers the same services for 
each vintage: a chair is a chair, no matter what its age is 
(until it falls to pieces and is scrapped). Thus, this model 
also requires an estimate of the most probable life L of the 
consumer durable.56 In this model, it is assumed that the 
sequence of vintage beginning of the period user costs uv

0 
defined by (14) and (15) is constant for all vintages younger 
than the asset lifetime L; that is, it is assumed that

 uv
0 ≡ Pv

0 – (1 + i0)Pv + 1
0/(1 + r0) = u0; (28)

      v = 0, 1, 2, . . . , L – 1, 

where u0 > 0 is a constant. Equation (28) can be rewritten in 
the following form:

 u0 = Pv
0 – γPv + 1

0; v = 0, 1, 2, . . . , L – 1, (29)

where the discount factor γ is defined as

 γ ≡ (1 + i0)/(1 + r0) ≡ 1/(1 + r0*). (30)

53 Diewert and Lawrence (2000) noted this problem with the straight line 
model of depreciation; that is, that in general, an index number formula should 
be used to aggregate over the different ages of the asset in order to obtain an 
aggregate of the capital services of the different vintages of the asset.
54 However, if one is willing to assume that the reference interest rate 
for period t, rt, and the expected asset inflation rate over all ages of the 
asset, it, both remain constant, then all reasonable index number formu-
lae will estimate the overall rate of user cost inflation between periods 0 
and t as the new consumer good purchase price ratio, P0

t/P0
0. However, 

the assumption that rt and it remain constant over time is only a rough 
approximation to reality. Note that in order to calculate real and nominal 
consumption of the durable (over all ages of the durable), it will be neces-
sary to use the vintage user costs defined by (27) for a constant r and i to 
weight up past purchases of the durable good. Thus, define the constants 
αv ≡ [(r – i)(L – v)L–1 + (1 + i)L–1] for v = 0,1,2, . . .,L – 1 and αv ≡ 0 for v ≥ L. 
Then the period t nominal value of durable services is defined as vt ≡ p0

tqt + 
p1

tqt–1 + p2
tqt–2 + . . . + pL–1

tqt–L + 1 = α0P0
tqt + α1P0

tqt–1 + α2P0
tqt–2 + . . . + aL–

1P0
tqt–L + 1 = P0

t Qt, where Qt is the real value or volume of durable services 
defined as Qt ≡ α0q

t + α1q
t-1 + α2q

t-2 + . . . + αL–1q
t–L + 1. Define βv ≡ (L – v)/L 

for v = 0,1,2, . . ., L – 1 . The period t asset value of consumer holdings of 
the durable good is defined as Vt ≡ P0

tqt + P1
tqt–1 + P2

tqt–2 + . . . + PL–1
tqt–L + 1 =  

P0
t[β0q

t + β1q
t-1 + β2q

t-2 + .  .  . + βL–1q
t–L + 1] = P0

tQt*, where we have used 
assumptions (26) applied to period t and the real value of durable stocks 
held by households at the end of period t is defined as Qt* ≡ β0q

t + β1q
t-1 +  

β2q
t-2 + .  .  . + βL–1q

t–L + 1. The decomposition of Vt into P0
tQt* does not 

require the assumption of constant rt and it.

55 This model can be traced back to Böhm-Bawerk (1891, 342). For a more 
comprehensive exposition, see Hulten (1990, 124) or Diewert (2005a).
56 The assumption of a single life L for a durable can be relaxed using a 
methodology developed by Hulten: “We have thus far taken the date of 
retirement T to be the same for all assets in a given cohort (all assets put 
in place in a given year). However, there is no reason for this to be true, 
and the theory is readily extended to allow for different retirement dates. 
A given cohort can be broken into components, or subcohorts, accord-
ing to date of retirement and a separate T assigned to each. Each sub-
cohort can then be characterized by its own efficiency sequence, which 
depends among other things on the subcohort’s useful life Ti” (Charles 
R. Hulten (1990, 125)). For more details on how this methodology works, 
see Schreyer (2009).

The interest rate r0* can be regarded as an asset-specific real 
interest rate; that is, 1 + r0* ≡ (1 + r0)/(1 + i0) so that one 
plus the nominal interest rate r0 is deflated by one plus the 
expected asset price inflation rate, i0. Note that equations 
(29) can be rewritten as follows:

 Pv
0 = u0 + γPv + 1

0; v = 0, 1, 2, . . . , L – 1. (31)

Use equation (31) with v = 0 to express P0
0 in terms of u0 and 

P1
0. Now use (31) with v = 1 to express P2

0 in terms of u0 and 
P1

0 and then substitute P1
0 using the previous expression that 

expressed P1
0 in terms of P0

0 and u0. Continue this substitu-
tion process until finally it ends after L such substitutions 
when PL

0 is reached and, of course, PL
0 equals zero. The fol-

lowing equation is obtained:

 P0
0 = u0 + γu0 + γ2u0 + . . . + γL–1u0 (32)

 = u0 [1 + γ + γ2 + . . . + γL–1]

 = {u0/(1 – γ)} – {u0 γL/(1 – γ)} provided that γ < 1 57

 = u0 (1 – γL)/(1 – γ) .

Now use the last equation in (32) in order to solve for the 
constant over vintages (beginning of the period) user cost 
for this model, u0, in terms of the period 0 price for a new 
unit of the durable, P0

0, and the discount factor γ defined 
by (31):

 u0 = (1 – γ)P0
0/(1 – γL) = uv

0; v = 0,1,2, . . .,L – 1. (33)

The sequence of end of period 0 user cost, pv
0, is as usual equal 

to the corresponding beginning of the period 0 user cost, uv
0, 

times the period 0 nominal interest rate factor, 1 + r0:

pv
0 ≡ (1 + r0)uv

0 = [1 + r0][1 – γ0][1 – (γ0)L]–1P0
0 = p0

0;
     v = 0,1,2, . . .,L – 1, (34)

and pv
0 = 0 for v = L, L + 1, . . . and γ0 ≡ (1 + i0)/(1 + r0).

The aggregate services of all vintages of the good for 
period 0, including those purchased in period 0, will have 
the value v0, which is given by:

 v0 = p0
0q0 + p1

0q–1 + p2
0q–2 + . . . + pL–1

0q–(L–1) (35)
 = p0

0 [q0 + q-1 + q–2 + . . . + q–(L–1)]
 = p0

0Q0,

where the period 0 aggregate (quality-adjusted) quantity of 
durable services consumed in period 0, Q0, is defined as fol-
lows for this depreciation model:

 Q0 ≡ q0 + q–1 + q–2 + . . . + q–(L–1) . (36)

Thus, in this model of depreciation, the service quantity 
aggregate is the simple sum of household purchases over the 

57 If γ ≥ 1, then use the second equation in (32) to express u0 in terms of P0
0 

and the various powers of γ.
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last L periods.58 As was the case with the geometric deprecia-
tion model, the one-hoss-shay model does not require index 
number aggregation over vintages when calculating aggre-
gate services from all vintages of the durable: There is a con-
stant service price p0

0 for all assets that are less than L periods 
old and the associated period 0 quantity Q0 is the simple sum 
defined by (36) over the purchases of the last L periods.59

The first two models of depreciation considered earlier (the 
geometric and straight line models) made assumptions about 
the pattern of depreciation rates for durables of different ages. 
The light bulb model made assumptions about the pattern of 
user costs for a durable good by its age. For a more general 
model of depreciation that allows for an arbitrary pattern of 
user costs by age of asset, see Diewert and Wei (2017).

How can the different models of depreciation be distin-
guished empirically? For durable goods that do not change 
in quality over time, there are three possible methods for 
determining the sequence of vintage depreciation rates:60

• By making a rough estimate of the average length of life L 
for the durable good and then by assuming a depreciation 
model that seems most appropriate.61

• By using cross-sectional information on the sales of used 
durable prices at a single point in time and then using 
equations (10)–(12) to determine the corresponding 
sequence of vintage depreciation rates.62

• By using cross-sectional information on the rental or 
leasing prices of the durable as a function of the age of the 
durable and then equations (17) and (18), along with infor-
mation on the appropriate nominal interest rate r0 and 
expected durables inflation rate i0 in addition to informa-
tion on the price of a new unit of the durable good P0, the 
corresponding sequence of vintage depreciation rates can 
be determined.

Which one of the three models of depreciation presented in 
this chapter should be used in empirical applications? It is 
not possible to give a universally valid answer to this ques-
tion, but it is worth mentioning that the geometric model of 
depreciation is probably the most useful at the macro level. 
A problem with the models of depreciation considered in 
this section is that they assume that all assets in the asset 
class under consideration are retired at the same age. In real 
life, this is not the case. Thus, Hulten and Wykoff (1981a) 
and Schreyer (2009) generalized these models to allow for 
the assets to be retired at different ages, and they showed 

58 In the national income accounting literature, this measure is sometimes 
called the gross capital stock.
59 Using equations (31), it can be shown that Pv

0 = u0[1 + (γ0) + (γ0)2 + . . . + 
(γ0)L-1–v] for v = 0,1,2, . . .,L – 1, where γ0 ≡ (1 + i0)/(1 + r0) and Pv

0 = 0 for v 
≥ L. Thus, the period 0 value of the stock of consumer durables is Σv=0

L–1 
Pv

0q–v. The corresponding asset prices for period t are equal to Pv
t = ut[1 +  

(γt) + (γt)2 + . . . + (γt)L-1–v] for v = 0,1,2, . . .,L – 1, where ut ≡ [1 – (γt)]P0
t/

[1 – (γt)L], gt ≡ (1 + it)/(1 + rt), and Pv
t = 0 for v ≥ L. The period t value of 

the stock of consumer durables is Σv=0
L–1 Pv

tqt–v. An index number for-
mula will have to be used to form aggregate price and quantity indices 
for the stocks of consumer durables using the one-hoss-shay model of 
depreciation.
60 These three classes of methods were noted in Malpezzi, Ozanne, and 
Thibodeau (1987, 373–375) in the housing context.
61 A length of life L can be converted into an equivalent geometric depre-
ciation rate δ by setting δ equal to a number between 1/L and 2/L.
62 This method will be pursued in Sections 11–15 for housing depreciation 
rates.

that under these conditions aggregate depreciation followed 
the geometric model to a reasonably high degree of approxi-
mation. The resulting geometric depreciation rates reflect 
the sum of wear and tear depreciation of unretired assets 
plus the average amount of additional depreciation that is 
due to premature retirement of the assets.

9. The Relationship between User 
Costs and Acquisition Costs
In this section, the user cost approach to the treatment of 
consumer durables will be compared to the acquisitions 
approach. Obviously, in the short run, the value flows 
associated with each approach could be very different. For 
example, if real interest rates, r0 – i0, are very high and the 
economy is in a severe recession or depression, then pur-
chases of new consumer durables, say q0, could be very low 
and even approach 0 for very long-lived assets like houses. On 
the other hand, using the user cost approach, existing stocks 
of consumer durables would be carried over from previous 
periods and priced out at the appropriate user costs, and the 
resulting consumption value flow could be quite large. Thus, 
in the short run, the monetary values of consumption under 
the two approaches could be vastly different. Hence, in what 
follows, a (hypothetical) longer-run comparison is consid-
ered where real interest rates are held constant.63

Suppose that in period 0, the reference population of 
households purchased q0 units of a consumer durable at the 
purchase price P0. Then the period 0 value of consumption 
from the viewpoint of the acquisitions approach is

 VA
0 ≡ P0q0 . (37)

Recall that the end-of-period user cost for one new unit 
of the asset purchased at the beginning of period 0 was p0 
defined by (8). In order to simplify the analysis, the geomet-
ric model of depreciation is assumed; that is, at the begin-
ning of period 0, a one-period old asset is worth (1 – δ)P0, 
a two-period old asset is worth (1-d)2P0, . . . , a t-period old 
asset is worth (1 – δ)tP0, and so on. Under these hypoth-
eses, the corresponding end of period 0 user cost for a new 
asset purchased at the beginning of period 0 is p0; the end 
of period 0 user cost for a one-period old asset at the begin-
ning of period 0 is (1 – δ)p0; the corresponding user cost 
for a two-period old asset at the beginning of period 0 is 
(1 – δ)2p0; .  .  .; the corresponding user cost for a t-period 
old asset at the beginning of period 0 is (1 – δ)tp0; and so 
on The final simplifying assumption is that household pur-
chases of the consumer durable have been growing at the 
geometric rate g into the indefinite past. This means that 
if household purchases of the durable were q0 in period 
0, then in the previous period they purchased q0/(1 + g) 
new units, two periods ago, they purchased q0/(1 + g)2 new 
units,  .  .  . , t periods ago, they purchased q0/(1 + g)t new 
units, and so on. Putting all of these assumptions together, 
it can be seen that the period 0 value of consumption services 
from the viewpoint of the user cost approach is

 VU
0 ≡ p0q0 + [(1 – δ)p0q0/(1 + g)] 

  + [(1 – δ)2 p0q0/(1 + g)2] + . . . (38)

63 The following material is based on Diewert (2002).
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 = (1 + g)p0q0/(g + δ) summing the infinite series
 = (1 + g)[(1 + r0) – (1 – δ)(1 + i0)]P0q0/(g + δ) using (8).

Equation (38) can be simplified by letting the asset inflation 
rate i0 be 0 ( or by replacing r0 – i0 by the real interest rate r0* and 
by ignoring the small term δi0), and under these conditions, the 
ratio of the user cost flow of consumption (38) to the acquisi-
tions measure of consumption in period 0, (37) becomes

 VU
0/VA

0 = (1 + g)(r0* + δ)/(g + δ). (39)

Using formula (39), it can be seen that if 1 + g > 0 and d + g 
> 0, then VU

0/VA
0 will be greater than unity if r0* > g(1 – δ)/(1 

+ g), a condition that will usually be satisfied. Thus, under 
normal conditions and over a longer time horizon, house-
hold expenditures on consumer durables using the user cost 
approach will tend to exceed the corresponding expenditures 
on new purchases of the consumer durable. Since the value of 
consumption services using the rental equivalence approach 
will tend to approximate the value of consumption services 
using the user cost approach, it can be seen that the acqui-
sitions approach to household expenditures will tend to 
understate the value of consumption services estimated by 
the user cost and rental equivalence approaches. The differ-
ence between the user cost and acquisitions approach will 
tend to grow as the depreciation rate d decreases.

To get a rough idea of the possible magnitude of the value 
ratio for the two approaches, VU

0/VA
0, equation (39) is evalu-

ated for a “housing” example using annual data, where the 
depreciation rate is 2 percent (that is, δ = .02), the real inter-
est rate is 3 percent (that is, r0* = .03), and the growth rate 
for the production of new houses is 1 percent (that is, g = 
.01). In this base case, the ratio of user cost expenditures on 
housing to the purchases of new housing in the same period, 
VU

0/VA
0, is 1.68. If the depreciation rate is decreased to 1 per-

cent, then VU
0/VA

0 increases to 2.02. If the real interest rate is 
decreased to 2 percent (with δ = .02 and g = .01), then VU

0/VA
0 

decreases to 1.35, and if the real interest rate is increased to 
4 percent, then VU

0/VA
0 increases to 2.02. Thus, an acquisi-

tions approach to housing in the CPI is likely to give a sub-
stantially smaller weight to housing services than a user cost 
approach would give.

However, for shorter-lived consumer durables like cloth-
ing, the difference between the acquisitions approach and 
the user cost approach will not be so large, and hence, the 
acquisitions approach can be justified as being approxi-
mately “correct” as a measure of consumption services for 
these high-depreciation-rate durable goods.64

For longer-lived durables such as houses, automobiles, 
and household furnishings, it would be useful for a national 
statistical agency to produce user costs for these goods 
and for the national accounts division to produce the cor-
responding consumption flows as “analytic series.” This 
would extend the present national accounts treatment of 

64 Let r0* = .03, g = .01, and δ = .2. Under these assumptions, using (39), 
we find that VU

0/VA
0 = 1.11; that is, using a geometric depreciation rate of 

20 percent, the user cost approach leads to an estimated value of con-
sumption that is 11 percent higher than that obtained using the acqui-
sitions approach under the conditions specified. Thus the acquisitions 
approach for consumer durables with high depreciation rates is probably 
satisfactory.

housing to other long-lived consumer durables. Note also 
that this revised treatment of consumption in the national 
accounts would tend to make rich countries richer, since 
poorer countries hold fewer long-lived consumer durables 
on a per capita basis.

10. User Costs for Storable Goods
A storable good is similar to a durable good in that it can be 
purchased in one period and then consumed in a subsequent 
period. However, the services of a durable good can be uti-
lized in multiple periods, whereas a storable good (such as 
a can of beans) can only be consumed in a single period. 
Stocks of storable goods that are held at the beginning of an 
accounting period tie up financial capital in a manner that 
is similar to the holdings of durable goods at the beginning 
of the period. Thus, the implicit (or explicit) interest cost of 
inventories of storable goods should be recognized in the 
household accounts. Furthermore, stocks of storable goods 
should be included in the balance sheets or wealth accounts 
of households.65

The user cost for a unit of a storable good held at the 
beginning of an accounting period can be formed using the 
same methodology that was used in Section 4 where the user 
cost of a durable good was set equal to its purchase cost less 
the discounted value of its price at the end of the accounting 
period.

Suppose that there are N storable goods that a house-
hold (or a group of households) can purchase during an 
accounting period t. Denote the vector of period t purchases 
of storable goods by the household group in scope as qt ≡ 
[qt1, . . .,qtN] > 0N and denote the corresponding period t (unit 
value) price vector by pt ≡ [pt1, . . .,ptN] >> 0N with pt·qt > 0. 
However, the household group also holds some inventories 
of the N storable goods. Denote the vector of household 
inventory holdings of the N storable goods at the beginning 
of period t by Qt ≡ [Qt1,  .  .  .,QtN] ≥ 0N.66 Denote the corre-
sponding vector of storable goods prices at the beginning 
of period t by Pt ≡ [Pt1, . . .,PtN] >> 0N. Typically, these prices 
would be the market prices for the storable goods that pre-
vail at the beginning of period t.67 In any case, the beginning 
of period t value of inventories of storable goods is equal to 
Pt·Qt = ∑n=1

N PtnQtn.
The period t user cost for storable good n, Utn

*, is defined as 
the cost of purchase of a unit of the good at the beginning of 
the accounting period less the discounted price of a similar 
unit sold at the end of the accounting period; that is, Utn

*, is 
defined as follows:

 Utn
* ≡ Ptn – Pt + 1,n/(1 + rt); n = 1, . . .,N, (40)

65 The response of households to the lockdown restrictions prevailing 
at the time of writing has been to dramatically increase inventories of 
storable goods. Health authorities have encouraged households to make 
fewer trips to retail outlets and this advice has led to increased invento-
ries of storables.
66 It should be noted that most countries do not have estimates for inven-
tories of household storable items. For Japan, some information on food 
inventories is collected by the Lifescape Marketing Company. This infor-
mation was used in a study on storable goods by Ueda, Watanabe, and 
Watanabe (2020). This study has many references to the literature on the 
treatment of storable commodities in a CPI.
67 If beginning of the period t prices for storable goods are not available, 
Pt could be approximated by (½)pt–1 + (½)pt or by pt–1.
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where rt is the beginning of period t household cost of finan-
cial capital for the group of households under consideration; 
that is, rt is an appropriate nominal interest rate.68

The user cost defined by (40) is a beginning of the period 
t user cost; that is, costs and benefits are discounted to the 
beginning of period t. If we anti-discount prices to the end 
of period t, the resulting user cost, Utn, is defined as follows:

 Utn ≡ (1 + rt)Utn
* = (1 + rt)Ptn – Pt + 1,n = rtPtn – (Pt + 1,n – Ptn); 

 n = 1, . . .,N. (41)

Thus, the end-of-period user cost for holding a unit of 
the nth storable good during period t, Utn, is the imputed 
or actual interest cost of tying up financial capital during 
the period, rtPtn, less the actual or imputed capital gain the 
household would make on selling the unit of the storable 
good at the end of the period.69

Define the period t vector of user costs of storable prod-
ucts, Ut, as [Ut1, . . . .UtN]. Using definitions (41), Ut is equal to 
the following vector:

 Ut = rtP
t – (Pt + 1 – Pt); t = 1,2, . . . (42)

Thus far, the treatment of inventories of storable products in 
the consumer context seems to be a straightforward exten-
sion of the earlier treatment of durable products in Section 
4. But the situation is a bit more complicated than the pre-
ceding algebra would indicate. When dealing with storable 
products in the consumer context, there is an extra set of 
equations that does not occur when dealing with inventory 
items in the producer context. The extra equations are the 
following ones:

 qt = ct + [Qt + 1 – Qt] = ct + ΔQt t = 1,2, . . . , (43)

where ct ≡ [ct1,  .  .  .,ctN] > 0N is the period t vector of actual 
consumption of the N storable commodities and ΔQt ≡ Qt + 

1 – Qt is the period t vector of change in inventories of stor-
able goods. Equation (43) says that household period t pur-
chases of storable commodities, qt, equals household period 
t actual consumption of the commodities, ct, plus the net 
change in inventories of the storable products, Qt + 1 – Qt, 
which in turn is equal to the end of period t stock of invento-
ries, Qt + 1, less the beginning of period t stock of inventories, 
Qt. Of course, equation t in equations (43) can be rearranged 
to give us the following supply equals demand equations:

 Qt + qt = ct + Qt + 1; t = 1,2, . . . (44)

68 As usual, it is difficult to determine this reference interest rate. If the 
household is borrowing money, then rt is the appropriate borrowing rate 
or mortgage interest rate; if the household is loaning financial capital to 
others, then the appropriate interest rate is the expected rate of return on 
investments.
69 The user costs Utn are the counterparts to the end-of-period user cost 
for a durable good defined by (8) in Section 4. If the depreciation rate δ 
in equation (8) is equal to 0, then the user costs defined by (41) are exactly 
the same as the user costs defined by (8) using different notation. The 
user costs of inventories defined by definitions (41) are frequently used to 
value the services of business inventories; for example, see Christensen 
and Jorgenson (1969) and Diewert and Fox (2018). However, the valua-
tion of the services of storable inventories in the household context has 
not been widespread.

Thus, the beginning of period t stock of storable goods, Qt, 
plus new purchases of storable goods, qt, equals consump-
tion of the storable goods in period t, ct, plus the end of 
period t stocks of storable goods, Qt + 1.

Recall that period t price and quantity vectors for house-
hold purchases of storable goods are pt and qt. Thus, the 
value vt of household purchases of storable goods during 
period t is defined as follows:

 vt ≡ pt·qt t = 1,2, . . . 
= pt·ct + pt×[Qt + 1 – Qt] using (43)
= pt·ct + pt×DQt. (45)

Thus, the period t value of household purchases of storables, 
pt·qt, is equal to the period t value of household consump-
tion of storable goods, pt·ct, plus period t net investment in 
storables, pt·ΔQt. All of these value aggregates use the vector 
of average period t purchase prices pt to value qt, ct, and ΔQt.

When a product goes on sale, typically households will 
dramatically increase their purchases of it. However, not 
all of the purchased storable good will be consumed in the 
period of purchase, so inventories of the storable product 
will greatly increase. Basically, changes in inventory will 
tend to smooth purchases of storable goods so that con-
sumption is relatively stable over time. Thus adjusting pur-
chases of storable goods for changes in inventory will lead 
to estimates of household actual consumption of storables 
that are much smoother than household purchases of sto-
rables. Constructing CPIs using pt and ct as the basic price 
and quantity data to be used in an index number formula 
(rather than using pt and qt) will greatly mitigate the chain 
drift problem that will arise if household purchase data are 
used in place of household consumption data.

The length of the accounting period will affect the sever-
ity of the chain drift problem. If the accounting period 
length is a day, inventory changes may be large relative to 
daily consumption, leading to a big chain drift problem if 
daily purchase price and quantity data are used in an index 
number formula with variable weights. Furthermore, if the 
household data pertain to a single household or a small 
number of households, the vector of daily purchases of stor-
able goods may have many zero components, leading to a 
lack of matching problem which affects the reliability of the 
resulting daily price index. On the other hand, the changes in 
storable inventories for an annual CPI will be small relative 
to the annual consumption of storables, and thus the differ-
ence between qt and ct in the case of an annual index will be 
small. Thus, for annual CPIs, it is probably not necessary to 
collect data on inventories of storables.70 However, if a daily 
or weekly CPI is to be produced, it will be important to col-
lect inventory data on storable goods and to adjust purchase 
data for changes in inventories.

This accounting treatment for storable goods does not 
give any insight into why large changes in storable invento-
ries might occur. In order to provide an analytic framework 
for the treatment of storable goods in a cost of living index, 

70 However, if the national statistical agency also constructs measures 
of household wealth, it will be necessary to conduct periodic surveys of 
household inventories of storables.
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it is necessary to introduce the concept of intertemporal cost 
minimization. The basic idea is that the consumer or house-
hold tries to minimize the discounted cost of consumption 
over a number of discrete time periods subject to attaining 
a certain level of (intertemporal) utility.71 In order to mini-
mize conceptual and notational complexity, we will look at 
the household’s intertemporal cost minimization problem 
over a horizon that consists of just two periods.72

Suppose that the household’s opportunity cost of capi-
tal at the beginning of period t is the interest rate rt. As 
usual, let pt and qt be the price and quantity vectors for 
household purchases of storable goods for period t for t = 
1,2,3. Define the household’s (expected) discounted value 
of household purchases of storable goods W > 0 over the 
two-period horizon (discounted to the end of period 1) as 
follows:73

W ≡ p1·q1 + (1 + r2)
–1p2·q2

= p1·q1 + p2*·q2 defining p2* ≡ (1 + r2)
–1p2

 = p1·[c1 + Q2] + p2*·[c2 – Q2] using Q1 ≡ 0N, q1 

= c1 + Q2, q2 = c2 – Q2 and Q3 ≡ 0N

= p1·c1 + p2*·c2 + [p1 – p2*]·Q2

 = p1·c1 + p2*·c2 + u2·Q2, (46)

where

 u2 ≡ p1 – p2* = p1 – (1 + r2)
–1p2 (47)

is the vector of user costs of storable products for the begin-
ning of period 2 stocks of inventories.74 In the previous 
model of consumer expenditures on storable goods, we are 
assuming that the household has no inventories of stora-
bles at the beginning of period 1 and at the end of period 2.  
Thus, inventories Q2 are only held at the beginning of 
period 2.

In order to apply classical economic theory to the prob-
lem on deciding the level of inventories for storables, it is 
useful to regard W on the left-hand side of definition (46) as 
an exogenous amount of money that the household plans to 
spend on purchases of storable goods over the two-period 
horizon. Thus, we assume that the household is subject to 

71 The framework for intertemporal consumer theory is basically the con-
sumer theory counterpart to Hicks’ (1946, 325–328) intertemporal pro-
ducer theory; see Diewert (1974, 1977).
72 It is straightforward to extend the number of time periods under con-
sideration to an arbitrary finite number.
73 As was the case for our analysis of user costs in Section 4, we are fol-
lowing the conventions used in financial accounting that suggest that flow 
transactions taking place within the accounting period be regarded as 
taking place at the end of the accounting period and hence the period t 
cost of household purchases of storables, pt·qt, is regarded as taking place 
at the end of period t; see Peasnell (1981). Thus the period 2 and 3 pur-
chase costs, p2·q2 and p3·q3, in definition (46) are discounted to the end of 
period 1 which is the beginning of period 2.
74 Compare these new user costs to our previous definition for the vector 
beginning of period 2 user costs given by equations (40) for t = 2. These 
definitions imply that U2* ≡ P2 – (1 + r2)

–1P3 where Pt is the vector of pur-
chase prices for storable goods at the beginning of period t. It can be seen 
that u2 ≡ p1 – (1 + r2)

–1p2 has a similar form except in place of P2 and P3, 
the new definition uses the average purchase prices for storable goods for 
periods 1 and 2, p1 and p2.

a partial “wealth” constraint of the form W ≥ p1·c1 + p2*·c2 
+ u2·Q2 = p1·q1 + p2*·q2, where the household’s decision vari-
ables are purchases of storables over the two periods, q1, 
q2, consumption of storables over the two periods, c1, c2, 
and holdings of inventories of storables at the beginning of 
period 2, Q2.

If holdings of storables are not valued, except that they 
allow consumers to transfer purchases of consumption 
goods from one period where they are relatively cheap to 
another period where they are relatively expensive,75 then 
if any component of the user cost vector u2 is positive, say 
u2n = p1n – (1 + r2)

–1p2n > 0, then it does not make sense to 
purchase storable good n in period 1 in order to consume it 
in period 2 because it will be cheaper to purchase the good 
in period 2, taking into account the fact that the household 
will tie up financial capital if it holds the good as an inven-
tory item. Thus good n will be held as an inventory item (so 
that Q2n > 0) only if u2n ≤ 0. If u2n < 0, then it definitely will 
be worthwhile to hold some inventories of storable good n. 
But how much inventory will be held? Furthermore, can we 
apply the usual exact index number theory that relies on 
static utility-maximizing behavior to the household’s pur-
chases of storable goods? In order to provide answers to 
these questions, we will look at an economic model of con-
sumer behavior.

When modeling consumer behavior over a time horizon, 
economists assume that households have intertemporal util-
ity functions to measure the relative worth of consuming the 
services of various commodities. A general utility function to 
model the relative value of storables over a two-period hori-
zon is a function of the form U(c1,c2). However, for produc-
ers of CPIs who might want to apply the simple exact index 
number theory explained in Chapter 5 to produce a price 
index for each separate period, it is necessary to assume a 
more restrictive functional form for the intertemporal utility 
function. Thus, we assume that U(c1,c2) = F( f(c1),f(c2)), where 
F(C1,C2) is a “macro” utility function that describes the trad-
eoffs in consuming aggregate consumption in period 1, C1 ≡ 
f(c1), against consuming aggregate consumption in period 2, 
C2 = f(c2), where f(c) is a within-the-period static utility func-
tion of the type studied in Chapter 5. As usual, we assume 
that the one-period utility function f(c) is a differentiable, 
concave, linearly homogeneous, and increasing function of 
the nonnegative consumption vector c. We assume that the 
macro utility function, F(C1,C2) is a differentiable,76 increas-
ing, and concave function of C1 and C2.

The household’s intertemporal utility maximization 
problem is the problem of maximizing F( f(c1),f(c2)) sub-
ject to (i) the intertemporal budget constraint W – [p1·q1 + 
p2*·q2] ≥ 0; (ii) the household material balance equations 
that relate purchases to consumption and inventory change 
for both periods, q1 = c1 + Q2 and q2 + Q2 = c2; and (iii) the 
nonnegativity constraints q1 ≥ 0N, q2 ≥ 0N, Q2 ≥ 0N, c1 ≥ 0N, 
and c2 ≥ 0N. The decision variables for this constrained util-
ity maximization problem are q1, q2, Q2, c1, and c2. Use the 

75 The user cost theory developed at the beginning of this section essen-
tially assumed that holdings of storable goods increased household 
utility; that is, holding inventories of storable goods was assumed to be 
desirable even if the goods were never consumed. Our present perspec-
tive assumes that inventories are only valuable when they are consumed.
76 We assume that the first-order partial derivatives of F(C1,C2) are positive.
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material balance equations to eliminate q1 and q2 from the 
intertemporal budget constraint. After eliminating q1 and q2 
from the constraints, the household’s utility maximization 
problem becomes the problem of maximizing F( f(c1),f(c2)) 
subject to (i) the intertemporal budget constraint W – [p1·c1 + 
p2*·c2 + u2·Q2] ≥ 0; (ii) c2 – Q2 ≥ 0N; and (iii) the nonnegativity 
constraints Q2 ≥ 0N, c1 ≥ 0N and c2 ≥ 0N. The decision vari-
ables for this constrained utility maximization problem are 
Q2, c1, and c2. The Lagrangian function for this constrained 
maximization problem is defined as follows:

 L(c1,c2,Q2,λ,κ,μ) ≡ F( f(c1),f(c2)) + λ{W – [p1·c1 + p2*·c2 
 + u2·Q2]} + μ·[c2 – Q2] + κ·Q2, (48)

where λ is a nonnegative scalar Lagrange or Kuhn and 
Tucker (1951) multiplier and μ and κ are nonnegative vectors 
of Lagrange multipliers.

Suppose c1* >> 0N, c2* >> 0N, and Q2* ≥ 0N is a solution 
to the household’s intertemporal constrained maximization 
problem. Then there exist λ* > 0,77 μ* ≥ 0N, and κ* ≥ 0N such 
that the following Kuhn–Tucker conditions are satisfied:78

(i) F1
* ∇f(c1*) = λ*p1; c1* >> 0N;

(ii) F2
* ∇f(c2*) = λ*p2* – μ*; c2* >> 0N;

(iii) – λ*u2 – μ* + κ* ≤ 0N; Q2* ≥ 0N; [–λ*u2 – μ* + κ*]Q2* = 0;

(iv) W = p1·c1* + p2*·c2* + u2·Q2*; λ* > 0;

(v) c2* – Q2* ≥ 0N; μ* ≥ 0N; μ*·[c2* – Q2*] = 0;
(vi) Q2* ≥ 0N; κ* ≥ 0N; κ*·Q2* = 0, (49)

where F1
* ≡ ∂F( f(c1*), f(c2*))/∂C1, F2

* ≡ ∂F( f(c1*), f(c2*))/∂C2 
are the first-order partial derivatives of the macro utility 
function with respect to aggregate consumption Ct in each 
period t and ∇f(ct*) is the vector of first-order partial deriva-
tives of the micro utility function f(ct) with respect to the 
components of the period t consumption of storables vector 
ct for t = 1,2. Conditions (49) are more complicated than the 
usual first-order necessary conditions that economists use 
when solving constrained optimization problems because, 
usually, we can assume that an interior solution to the opti-
mization problem occurs and hence we can ignore non-
negativity constraints. But for this particular intertemporal 
utility maximization problem, nonnegativity constraints 
cannot be ignored; that is, usually, the solution to the prob-
lem will require that some decision variables be equal to 
zero. The conditions defined by (49) allow for zero decision 
variables.

Suppose the preceding solution to the household’s inter-
temporal utility maximization problem satisfies conditions 

77 The Kuhn–Tucker conditions imply the existence of λ ≥ 0, and we 
assumed the existence of only λ > 0. Our stronger assumption is justified 
if the first-order partial derivatives of the utility function are positive.
78 See Kuhn and Tucker (1951) or Karlin (1959, 204). In the original con-
strained utility maximization problem that involved q1, q2, c1,c2, and Q2, 
all of these decision variables were restricted to be nonnegative. Recall 
that q1 = c1 + Q2. Thus, if c1 ≥ 0N and Q2 ≥ 0N, then we also have q1 ≥ 0N. 
However, q2 = c2 – Q2 and so even though the simplified constrained utility 
maximization problem involved only the decision variables c1, c2, and Q2, 
we still need to impose the restriction q2 ≥ 0N, which implies the restric-
tion (49) (v).

(49) and in addition, μ* = 0N. Then conditions (49) (ii) become 
F2

* ∇f(c2*) = λ*p2*, which are the period 2 counterparts to 
conditions (49) (i): F1

* ∇f(c1*) = λ*p1. Using these two sets of 
equations and the linear homogeneity of f(c), we can estab-
lish the following equations:79

 pt/pt·ct* = ∇f(ct*)/f(ct*); t = 1,2. (50)

But equation (50) is the equation for Wold’s Identity (1944, 
69–71); see equation (15) in Chapter 5. Thus, if the vector 
of Kuhn–Tucker multipliers μ* turns out to be a vector of 
zeros, then we can apply the exact index number theory that 
was explained in Chapter 5 to the consumer’s demand for 
storable goods in our highly simplified model of inventory 
behavior.

The question that now needs to be addressed is “Under 
what conditions will μ* = 0N?” An answer is provided sub-
sequently. We will look at each component μn

* of μ* in turn.

Case (i): Suppose that the user cost for storable good n 
for beginning of period 2 inventories is positive; that is, 
suppose that un

2 ≡ pn
1 – pn

2* = pn
1 - (1 + r2)

–1pn
2 > 0. Thus, 

we have pn
1 > (1 + r2)

–1pn
2 so that the price of storable 

good n in period 1 is greater than its discounted period 
2 expected price. Under these conditions, it makes no 
sense to purchase storable good n in period 1 to use in 
period 2 so that under these conditions, there will be no 
accumulation of inventories so that Qn

2* will equal 0. To 
see that Qn

2* = 0 follows from conditions (49), suppose 
that Qn

2* > 0. Using conditions (49) (vi), it can be seen 
that our supposition implies that κn

* = 0. Using κn
* = 0 

and Qn
2* > 0, condition (49) (iii) implies that –λ*un

2 – μn
* =  

0 or μn
* = –λ*un

2 < 0 using λ* > 0 and un
2 > 0. But μn

* < 
0 contradicts conditions (49) (v) which implies μn

* ≥ 0. 
This contradiction means that our supposition that Qn

2* 
> 0 is false, and hence Qn

2* = 0. Using Qn
2* = 0 along 

with (49) (ii) which implies cn
2* > 0 means that the equa-

tions 0 = μn
*[cn

2* – Qn
2*] = μn

*cn
2* will hold using (49) (v), 

which in turn implies that μn
* = 0. This algebra can be 

summarized as follows: If the user cost of storable good 
n at the beginning of period 2, un

2, is positive, then no 
inventories of good n will be accumulated (so that Qn

2* = 0) 
and the Lagrange multiplier for the nonnegativity con-
straints pertaining to purchases of good n will also be 
equal to zero (so that κn

* = μn
* = 0). Thus, if all N user 

costs of storables, un
2, are positive, then there will be no 

purchases of inventories so that actual consumption in 
period t, ct*, will equal market purchases for period t, 
qt*, for periods t = 1,2.80

Case (ii): Suppose that the user cost for storable good n 
for beginning of period 2 inventories is negative; that 
is, suppose that un

2 ≡ pn
1 – (1 + r2)

–1pn
2 < 0. In this case, 

it makes sense to accumulate inventories of good n 
in period 1 because the period 1 price is less than the 

79 Premultiply both sides of ∇f(ct*) = [λ*/Ft
*] pt by ct* for t = 1,2. Using 

Euler’s theorem on linearly homogeneous functions, f(ct*) = ct*·Ñf(ct*) for  
t = 1,2. Use the equations ct*·∇f(ct*) = f(ct*) = [λ*/Ft

*] pt·ct* to solve for [λ*/Ft
*] 

= f(ct*)/pt·ct* for t = 1,2. Thus we obtain the equations ∇f(ct*) = [λ*/Ft
*] pt = pt 

f(ct*)/pt·ct* for t = 1,2, which are equivalent to equations (50).
80 This very simple economic approach to the accumulation of inventories 
of storable goods neglects the costs of shopping which will imply some 
short-term inventory accumulation even if all user costs are positive.
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discounted period 2 price for storable good n. It turns 
out that our simple model will imply that all of the pur-
chases of good n are made in period 1; that is, we will 
have cn

2* = Qn
2*. Thus, there is a maximal amount of 

inventory accumulation that takes place in period 1.81 
We explain how conditions (49) can be used to explain 
this result. Suppose 0 ≤ Qn

2* < cn
2*. Conditions (49) (v) 

and our supposition imply that μn
* = 0. Conditions (49) 

(iii) and μn
* = 0 imply that –λ*un

2 + κn
* ≤ 0, and this 

condition along with un
2 < 0 and λ* > 0 imply that 0 < 

–λ*un
2 ≤ –κn

*, which in turn implies that κn
* < 0. This 

contradicts part of conditions (49) (vi). Thus, our sup-
position is false. Since we also have the constraint qn

2* ≡ 
cn

2* – Qn
2* ≥ 0, we see that we must have qn

2* ≡ cn
2* – Qn

2* 
= 0. In this case, we also have kn

* = 0 and μn
* ≥ 0.

It can be seen that using an economic approach to model 
household purchases of storable goods is a difficult task. 
More realistic models of inventory accumulation need to 
take into account the costs of storing the inventories and 
they need to take into account the costs of shopping, which 
would include not only the transportation costs to the retail 
outlets but also the expenditure of time during the shopping 
process. A more realistic model of inventory accumulation 
would require a great deal of household information—infor-
mation that is unlikely to be available to national statistical 
agencies in the near future.

What practical implications for statistical agencies can be 
drawn from the preceding analysis?

• The simplest strategy would be to just apply the acqui-
sitions approach to purchases of storable goods; that is, 
simply assume that purchases of storables over a month 
are equal to the actual consumption of the goods over the 
month. Over the course of a year, the value of average 
inventory holdings of storable goods to total household 
consumption of storables will typically be a small stable 
fraction,82 and thus the overall accuracy of the CPI will 
not be greatly affected.

• If periodic surveys of household inventories of storable 
goods are made and if the statistical agency target index is 
a cost of living index, then it would be useful to treat hold-
ings of storable goods in the same manner as holdings of 
durable goods are treated; that is, a user cost approach 
should be applied to storable goods.83 If monthly surveys 
for household inventories of storable goods could be con-
ducted, then estimates for the actual consumption of sto-
rables could be made along with estimates for the user 
cost value for the household holdings of storable inven-
tories. Users could decide to use the estimates for actual 
consumption or for actual consumption plus the services 
of household inventories of storables, depending on their 
needs.

• For the country’s balance sheet accounts, household 
inventories of storable goods are part of household 
wealth. Thus, for the construction of the balance sheet 

81 Our simple model of inventory accumulation neglects any costs of inven-
tory storage, which helps explain our all or none results.
82 This assumption will not be satisfied if the country is under a COVID-
19 lockdown. Inventories of storable goods will be much larger than usual 
and may be quite variable.
83 See (47) which defines the vector of user costs for storable goods.

accounts, it is necessary for the national statistical agency 
to provide quarterly or annual estimates of household 
holdings of storable goods.84

In the following eight sections of this chapter, the focus will 
be on the special problems that are associated with both 
measuring the value of the housing stock and valuing the 
services of OOH.

11. Decomposing Residential 
Property Prices into Land and 
Structure Components
In this section, the problems associated with the construc-
tion of constant quality residential property price indices 
will be studied. The user cost approach to valuing the ser-
vices of a durable good discussed in Section 4 cannot be 
applied directly to the construction of user costs for OOH 
because a residential property has two main components: 
a structure (which depreciates) and a land plot (which does 
not depreciate).85 In this section, we will look at the result-
ing problems associated with the construction of constant 
quality indices for the stock of residential housing units; in 
subsequent sections, we will look at the problems associated 
with pricing the services of a residential dwelling unit.

There are two difficult measurement problems associ-
ated with the construction of a constant quality house price 
index:

• A dwelling unit is a unique consumer durable good; that is, 
the location of a housing unit is a price-determining char-
acteristic of the unit and each house or apartment has a 
unique location.

• As mentioned earlier, there are two main components of 
a dwelling unit: (i) the size of the structure (measured in 
square meters of floor space) and (ii) the size of the land 
plot that the structure sits on (also measured in square 
meters). However, the purchase or selling price of a dwell-
ing unit is for the entire property and thus the decompo-
sition of property price into its two main components will 
involve imputations.

The first problem area listed here might not be a problem if 
the same dwelling unit sold at market prices at a frequent 
rate so that the location would be held constant and it would 
seem that the usual matched model methodology that is used 
in constructing price indices could be applied. But houses 
do not transact all that frequently; typically, a house is held 
for 10–20 years by the same owner before it is resold. More-
over, the structure is not constant over time; depreciation 
of the structure occurs over time and owners renovate and 
replace aging components of the structure. For example, the 
roofing materials for many dwellings are replaced every 20 

84 If balance sheet estimates are made at a quarterly frequency, approxi-
mate monthly estimates for holdings of storable goods could be con-
structed using various interpolation methods.
85 It is important to recognize that a residential property is a bundle of 
two important components: a land component and a structure compo-
nent. Knoll, Schularick, and Steger (2017, 331) summarize their study of 
house prices in 14 countries over the period 1870–2012 as follows: “Land 
prices, not replacement costs, are the key to understanding the trajectory 
of house prices. Rising land prices explain about 80 percent of the global 
house price boom that has taken place since World War II.”
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or 30 years. Thus depreciation and renovation constantly 
change the quality of the structure.

The second problem area is associated with the difficulty 
of decomposing the transaction price for a housing unit into 
separate components representing the structure value and 
the land value; that is, the single property price is for both 
components of the housing unit but for many purposes, we 
require separate valuations for the two components. The 
international SNA requires separate valuations for the 
land and structure components of residential housing in the 
national balance sheets of the country. Many countries con-
struct estimates for the total factor productivity or multifac-
tor productivity of the various sectors in the economy and 
the methodology used to construct these estimates requires 
separate price and quantity information on both structures 
and the land that the structures sit on. In this section, we 
indicate a possible method that can be used to accomplish 
this decomposition of property value into constant quality 
land and structure components.

The builder’s model for valuing a detached dwelling unit 
postulates that the value of the property is the sum of two 
components: the value of the land that the structure sits on 
plus the value of the structure. This model can be justified 
in two situations:

• A household purchases a residential land plot with no 
structure on it (or if there are structures on the land plot, 
they are immediately demolished).86

• A household purchases a land plot and immediately 
builds a new dwelling unit on the property.

In the first case, it is clear that the property value is equal 
to the land value. In the second case, the total cost of the 
property after the structure is completed will be equal to 
the floor space area of the structure, say S square meters, 
times the building cost per square meter βt during period t, 
plus the cost of the land, which will be equal to the cost per 
square meter αt times the area of the land site, say L square 
meters. Now think of a sample of properties of the same 
general type in the same general location, which have prices 
or values Vtn in period t (where t = 1, .  .  .,T) and structure 
floor space areas Stn and land areas Ltn for n = 1,  .  .  .,N(t), 
where N(t) is the number of observations in period t. Assume 
that these prices are equal to the sum of the land and struc-
ture costs plus error terms εtn, which we assume are indepen-
dently normally distributed with zero means and constant 
variances. This leads to the following hedonic regression 
model for period t, where αt and βt are the parameters to be 
estimated in the regression:87

 Vtn = αtLtn + βtStn + εtn; t = 1, . . .,T; n = 1, . . .,N(t). (51)

86 The cost of the demolition should be added to the purchase price for the 
land to get the overall land price for the land plot.
87 Other papers that have suggested hedonic regression models that lead 
to additive decompositions of property values into land and structure 
components include Clapp (1980, 257–258), Davis and Heathcote (2007), 
Bostic, Longhofer, and Readfearn (2007, 184), Francke and Vos (2004), 
Diewert (2008, 19–22; 2010), Francke (2008, 167), Koev and Santos Silva 
(2008), Rambaldi et al. (2010), Diewert, Haan, and Hendriks (2011, 2015), 
Eurostat (2013), Diewert and Shimizu (2015, 2016, 2020), Diewert, Huang, 
and Burnett-Issacs (2017) and Burnett-Issacs, Huang, and Diewert (2021).

The hedonic regression model defined by (51) applies to 
new structures and to purchases of vacant residential lots 
in the neighborhood under consideration, where Stn = 0. 
Note that there are some strong simplifying assumptions 
built into the model defined by (51): (i) the period t land 
price αt (per square meter) is assumed to be constant across 
all properties in the neighborhood under consideration 
and (ii) the construction cost (per square meter) is also 
assumed to be constant across all housing units built in 
the neighborhood during period t. The model here applies 
to raw land purchases and the purchases of new dwelling 
units during period t in the neighborhood under consider-
ation. It is likely that a model that is similar to (51) applies 
to sales of older structures as well. Older structures will be 
worth less than newer structures due to the depreciation of 
the structure. Assuming that we have information on the 
age of the structure n at time t, say A(t,n), and assuming 
a geometric (or declining balance) depreciation model, a 
more realistic hedonic regression model than that defined 
by (51) is the following basic builder’s model:

Vtn = αt Ltn + βt(1 – δ)A(t,n)Stn + εtn; 
t = 1, . . .,T; n = 1, . . .,N(t), (52)

where the parameter δ reflects the net geometric depreciation 
rate as the structure ages one additional period. Thus, if the 
age of the structure is measured in years, we would expect 
an annual net depreciation rate to be around 1 to 3 per-
cent per year.88 Note that (52) is now a nonlinear regression 
model, whereas (51) was a simple linear regression model. 
The period t constant quality price of land will be the esti-
mated coefficient for the parameter αt and the price of a unit 
of a newly built structure for period t will be the estimate for 
the parameter βt. The period t quantity of land for property 
n is Ltn and the period t quantity of structure for property 
n, expressed in equivalent units of a new structure, is (1 – 
δ)A(t,n)Stn, where Stn is the floor space area of the structure for 
property n in period t.

Note that the preceding model can be viewed as a supply-
side model as opposed to a demand-side model.89 Basically, 
we are assuming a valuation of a housing structure that 
is equal to the cost per unit floor space area of a new unit 
times the floor space area times an adjustment for structure 
depreciation. The corresponding land value of the property 
is determined residually as total property value minus the 
imputed value of structures quality adjusted for the age of 
the structure. This assumption is justified for the case of 
newly built houses and sales of vacant lots, but it is less well 
justified for sales of properties with older structures, where 
a demand-side model may be more relevant.

There is a major practical problem with the hedonic 
regression model defined by (52): the multicollinearity 
problem. Experience has shown that it is usually not pos-
sible to estimate sensible land and structure prices in 

88 This estimate of depreciation is regarded as a net depreciation rate 
because it is equal to a “true” gross structure depreciation rate less an 
average renovations appreciation rate. Since typically information on 
renovations and major repairs to a structure is not available, the age vari-
able will only pick up average gross depreciation less average real renova-
tion expenditures.
89 We will pursue a demand-side model in Section 13.
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a hedonic regression like that defined by (52) due to the 
multicollinearity between lot size and structure size.90 
Thus, in order to deal with the multicollinearity problem, 
the parameter βt in (52) is replaced by pSt, an exogenous 
period t construction cost price for houses in the area under 
consideration.91 The exogenous construction price index 
may be an official construction price index estimated by 
the national statistical agency or a relevant commercially 
available residential construction price index. Thus, the 
new model that replaces (52) is the following nonlinear 
hedonic regression model:

Vtn = αt Ltn + pSt(1 – d)A(t,n)Stn + εtn;
t = 1, . . .,T; n = 1, . . .,N(t). (53)

This model has T land price parameters (the αt) and one (net) 
geometric depreciation rate δ. Note that the replacement of 
βt by the exogenous construction price level, pSt, means that 
we have saved T degrees of freedom as well as eliminated the 
multicollinearity problem.

In order to allow for a finer structure of local land 
prices, the sales data may be further classified into a 
finer classification of locations. For example, the initial 
regression (53) may be applied to say city-wide sales of 
residential properties. Suppose that the postal code of 
each sale is also available, and there are J postal codes. 
Then one can introduce the following postal code dummy 
variables, DPC,tn, j, into the hedonic regression (53). These J 
dummy variables are defined as follows: for t = 1, . . .,T; n 
= 1, . . .,N(t); j = 1, . . .,J:

 DPC,tn,j ≡ 1 if observation n in period t is in Postal Code j; 
 ≡ 0 if observation n in period t is not in Postal Code j. (54)

We now modify the model defined by (53) to allow the level 
of land prices to differ across the J postal codes. The new 
nonlinear regression model is as follows:

Vtn = αt(∑ j=1
J ωjDPC,tn,j)Ltn + pSt(1 – δ)A(t,n)Stn + εtn;

t = 1, . . .,T; n = 1, . . .,N(t). (55)

Comparing the models defined by equations (53) and (55), it 
can be seen that we have added additional J neighborhood 
relative land value parameters, ω1, . . .,ωJ, to the model defined 
by (53). However, looking at (55), it can be seen that the T 
land time parameters (at) and the J location parameters (ωj) 
cannot all be identified. Thus, it is necessary to impose at 

90 See Schwann (1998) and Diewert, de Haan, and Hendriks (2011, 2015) 
for details on the multicollinearity problem.
91 This formulation follows that of Diewert (2010), Diewert, de Haan, and 
Hendriks (2011, 2015), Eurostat (2013), Diewert and Shimizu (2015, 2016, 
2020), Diewert, Huang, and Burnett-Issacs (2017) and Burnett-Issacs, 
Huang, and Diewert (2021). These authors assume that property value is 
the sum of land and structure components but movements in the price of 
structures are proportional to an exogenous structure price index. Note 
that the index pSt should be a levels price that gives the period t cost of 
building one square meter of structure.

least one identifying normalization on these parameters. 
The following normalization is a convenient one:92

 ω1 ≡ 1. (56)

Thus, Model 2 defined by equations (55) and (56) has J-1 
additional parameters compared to Model 1 defined by (53). 
Note that if  we initially set all of  the ωj values equal to unity, 
Model 2 collapses to Model 1. It is useful to make use of this 
fact in running a sequence of nonlinear hedonic regressions. 
The models that are proposed in this section are nested so that 
the final parameter estimates from a previous model can be 
used as starting parameter values in the next model’s nonlin-
ear regression.93

Model 2 makes the price of a residential land a nonsmooth 
function of the postal code or local neighborhood area; that 
is, the estimated price of land will exhibit discrete jumps as 
we move from one local area to an adjacent local area that 
has a different ωj. If  it is possible to collect spatial coordinate 
information for the properties in the sample, then it is possible 
to estimate a continuous land price surface for the hedonic 
regression model in place of the discrete plateau model that 
is defined by (55). These continuous surface models are very 
complex and not easy to estimate. However, Hill and Scholz 
(2018) and Diewert and Shimizu (2019) showed that for their 
particular samples of Australian and Japanese properties, the 
continuous surface models generated very similar price indi-
ces to their counterpart discrete models. Thus, if  the purpose 
of the hedonic regressions is to generate residential land or 
property price indices, it is not necessary to estimate complex 
continuous surface models.

In the next model, some nonlinearities in the pricing of 
the land area for each property are introduced. The land plot 
areas in a typical sample of  properties can vary five- or ten-
fold.94 Up to this point, we have assumed that land plots in 
the same neighborhood sell at a constant price per square 
meter of  lot area. However, it is likely that there is some non-
linearity in this pricing schedule; for example, it is likely that 
large lots sell at a per square meter price that is well below 
the per square meter price of  medium-sized lots. In order 

92 Equivalently, one could make the normalization α1 = 1 and not normalize 
ωj. The resulting estimated at for t = 2,3, . . .,T can then be interpreted as 
a constant quality land price index for the entire region relative to period 1 
where α1 ≡ 1. In this section, we are drawing on the formulation of Diewert, 
Huang, and Burnett-Issacs (2017) and using the normalization used in that 
paper.
93 In order to obtain sensible parameter estimates in our final (quite com-
plex) nonlinear regression model, it is absolutely necessary to follow our 
procedure of sequentially estimating gradually more complex models, 
using the final coefficients from the previous model as starting values for 
the next model. The models that are being described in this section were 
implemented in Diewert, Huang, and Burnett-Issacs (2017) where the 
econometric software Shazam was used to perform the nonlinear regres-
sions; see White (2004).
94 This brings up an important point that has not been mentioned until 
now. Panel data on the selling prices of properties and on the character-
istics of the properties are subject to tremendous variations in the ratio 
of the highest price property to the lowest price property, to the largest 
lot size to the smallest lot size, to the largest floor space area to the small-
est floor space area, and so on. The observations that appear in the tails 
of the distribution of prices and in the distributions of property charac-
teristics are inevitably sparse and subject to measurement error. Thus in 
order to obtain sensible estimates in running these hedonic regressions, 
it is typically necessary to delete the observations that are in the tails of 
these distributions.
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to capture this nonlinearity, divide up the total number of 
observations into K groups of  observations based on their lot 
size. The Group 1 properties have lot size less than L1 square 
meter; the Group 2 properties Ltn have lot sizes that satisfy 
the inequalities L1 ≤ Ltn < L2; the Group 3 properties Ltn have 
lot sizes that satisfy the inequalities L2 ≤ Ltn < L3; .  .  . ; the 
Group K properties Ltn have lot sizes that satisfy the inequali-
ties LK–1 ≤ Ltn. The break points L1 < L2 < . . . < LK–1 should be 
chosen so that the sample probability that any property in the 
sample will fall into any one of  the groups is approximately 
equal. For each observation n in period t, the K land dummy 
variables, DL,tn,k, for k = 1, . . .,K are defined as follows:

DL,tn,k ≡ 1 if observation tn has land area that  
belongs to group k;

≡ 0 if observation tn has land area that  
 does not belong to group k. (57)

These dummy variables are used in the definition of the fol-
lowing piecewise linear function of Ltn, fL(Ltn):

fL(Ltn) ≡ DL,tn,1λ1Ltn + DL,tn,2[λ1L1 + λ2(Ltn – L1)] 
  + DL,tn,3[λ1L1 + λ2(L2 – L1) + λ3(Ltn – L2)] 
  + . . . + DL,tn,K[λ1L1 + λ2(L2-L1) + . . . + λK(Ltn – LK–1)], (58)

where λk are unknown parameters. The function fL(Ltn) 
defines a relative valuation function for the land area of a 
house as a function of the plot area, Ltn. The new nonlinear 
regression model is the following one:

Vtn = αt(∑ j=1
J ωjDPC,tn,j)fL(Ltn) + pSt(1 – δ)A(t,n)Stn + εtn;

t = 1, . . .,T; n = 1, . . .,N(t). (59)

Comparing the models defined by equations (55) and (59), 
it can be seen that we have added an additional K land plot 
size parameters, λ1,  .  .  .,λK, to the model defined by (55). 
However, looking at (59), it can be seen that the T land time 
parameters (αt), the J postal code parameters (ωj), and the K 
land plot size parameters (λk) all cannot be identified. Thus, 
the following identification normalizations on the param-
eters for Model 3 defined by (59) and (60) are imposed:

 ω1 ≡ 1; λ1 ≡ 1. (60)

Note that if all of the λk parameters are set equal to unity, 
Model 3 collapses to Model 2. Typically, the log likelihood 
for Model 3 will be considerably higher than that for Model 
2.95 Land prices as functions of lot size do not always decline 
monotonically, but for very large land plots, the marginal 
price of an extra square foot of land is typically quite low.

The next model is similar to Model 3 except that now the 
marginal price of adding an extra amount of structure is 
allowed to vary as the size of the structure increases. It is 

95 For the example in Diewert, Huang, and Burnett-Issacs (2017) where 
the models described in this section were estimated, the log likelihood 
increased by 1762 log likelihood points and the R2 value jumped from 
0.7662 for Model 2 to 0.8283 for Model 3 for the addition of six new λk 
parameters.

likely that the quality of the structure increases as the size 
of the structure increases. In order to capture this nonlin-
earity, divide up the sample observations into M groups 
of observations based on their structure size. The Group 
1 properties have structures with floor space area Stn less 
than S1 square meter, the Group 2 properties have structure 
areas Stn satisfying the inequalities S1 ≤ Stn < S2, .  .  . , the 
Group M – 1 properties have structure areas Stn satisfying 
the inequalities SM–2 ≤ Stn < SM–1, and the Group M proper-
ties have structure areas Stn satisfying the inequalities SM–1 ≤ 
Stn, where the M – 1 break points satisfy the inequalities S1 < 
S2 < . . . < SM–1. Again, the break points should be chosen so 
that the sample probability that any property in the sample 
will fall into any one of the groups is approximately equal. 
For each observation n in period t, we define the M structure 
dummy variables, DS,tn,m, for m = 1, . . .,M as follows:

DS,tn,m ≡ 1 if observation tn has structure area that  
belongs to structure group m;

≡ 0 if observation tn has structure area that  
 does not belong to group m. (61)

These dummy variables are used in the definition of the fol-
lowing piecewise linear function of Stn, gS(Stn):

gS(Stn) ≡ DS,tn,1μ1Stn + DS,tn,2[μ1S1 + μ2(Stn – S1)] 
 + DS,tn,3[μ1S1 + μ2(S2 – S1) + μ 3(Stn – S2)]

 + DS,tn,4[μ1S1 + μ2(S2 – S1) + μ3(S3 – S2) + μ4(Stn – S3)] + . . .
   + DS,tn,M[μ1S1 + μ2(S2-S1) + μ3(S3 – S2) + . . . + μM(Stn – SM–1)],
 (62)

where the μm are unknown parameters. The function gS(Stn) 
defines a relative valuation function for the structure area of a 
house as a function of the structure area.

The new nonlinear regression model is the following 
Model 4:

Vtn = αt(∑ j=1
J ωjDPC,tn,j)fL(Ltn) + pSt(1 – δ)A(t,n) gS(Stn) + εtn;

t = 1, . . .,T; n = 1, . . .,N(t). (63)

Comparing the models defined by equations (59) and (63), it 
can be seen that additional M structure floor space param-
eters, μ1,  .  .  .,μM, have been added to the model defined by 
(59).96 Again, we add the normalizations (60) in order to 
identify all of the parameters in the model. Note that if all of 
the μm parameters are set equal to unity, Model 4 collapses 
down to Model 3. Typically, the log likelihood for Model 4 
will be considerably higher than that for Model 3.97

96 At this stage of the sequential estimation procedure, it is usually not 
necessary to impose a normalization on the parameters μ1-μM. This lack 
of a normalization means that the scale of the exogenous structure price 
levels pSt is allowed to change; that is, essentially, allowance is now made 
to quality adjust the exogenous index to a certain extent. However, if the 
resulting estimated structure values turn out to be unreasonably large or 
small, then it will be necessary to set one of the μm equal to 1.
97 For the example in Diewert, Huang, and Burnett-Issacs (2017), the log 
likelihood increased by 935 log likelihood points and the R2 value jumped 
from 0.8283 for Model 3 to 0.8520 for Model 4 for the addition of five new 
μm parameters.
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At this stage, it is often the case that an acceptable model 
has been estimated. How can the estimated parameters from 
the final model be used in order to form price and quantity 
indices?

The sequence of  price levels for the land component of 
residential property sales is defined as α1, α2,  .  .  .,αT, and 
the corresponding sequence of  price levels for the structure 
component of  residential property sales in the T periods is 
defined as the exogenous sequence of  indices, pS1, pS2, . . .,pST. 
The land and structure values of  properties transacted in 
period t, VLt and VSt, are defined by using the estimated land 
and structure-additive components of  transacted properties 
in period t, αt(∑j=1

J ωjDPC,tn,j)fL(Ltn) and pSt(1 – δ)A(t,n) gS(Stn), 
respectively, and summing over properties that were sold in 
period t, we have

 VLt ≡ Σn∈N(t) αt(∑ j=1
J ωjDPC,tn,j)fL(Ltn); t = 1, . . .,T; (64)

 VSt ≡ Σn∈N(t) pSt(1 – δ)A(t,n) gS(Stn); t = 1, . . .,T. (65)

Using the prices α1, α2, . . .,αT, the corresponding estimated 
land values VL1,  .  .  .,VLT, the prices pS1, pS2,  .  .  .,pST, and the 
corresponding estimated structure values VS1, . . .,VST, one can 
just apply normal index number theory using these data to 
construct Laspeyres, Paasche, Fisher, or whatever index for-
mula is being used by the statistical agency in order to con-
struct constant quality price and quantity overall property 
indices for the sales of residential properties in the area under 
consideration for the T periods.

However, constant quality land and structure price  
indices for sales of owner-occupied residential houses are 
not what are needed for most purposes; what is required 
are constant quality price and quantity indices for the 
stock of residential houses. In order to accomplish this 
task, it is necessary to have a census of the housing stock in 
the country, which would include information on the char-
acteristics that are used in the hedonic regression model 
that is defined by (63). The information that is required in 
order to estimate (63) is as follows:

• The selling price of the residential properties (Ptn)
• The age of the structure on the property (Atn)
• The area of the land plot (Ltn)
• The floor space area of the structure (Stn)
• The neighborhood of the property (or the postal code)
• The exogenous structure price index that provides the 

construction cost of a new structure per meter square or 
per square foot (pSt)

If a national housing census has information on these prop-
erty characteristics (excluding the information on selling 
prices Ptn and on the exogenous structure price index pSt),

98 
then it will be possible to insert the characteristics of each 
residential dwelling unit into the right-hand side of (63), and 
then using appropriate modifications of definitions (64) and 
(65), it will be possible to obtain estimates for the land and 

98 Every country will have a national residential construction deflator 
because this deflator is required to form estimates of real investment in 
residential structures. However, this national deflator may not be entirely 
appropriate for the type of buildings in a particular neighbourhood.

structure value for each dwelling unit in the area covered by 
the regression. If there is no national housing census infor-
mation or the required characteristics are not included in 
the census, then it will be very difficult to form estimates for 
the value of residential land.

Additional information on house and property character-
istics will lead to more accurate land and structure decom-
positions of property value. Examples of useful additional 
structure price determination characteristics are (i) the 
number of bathrooms, (ii) the number of bedrooms, (iii) the 
type of construction material, (iv) the number of stories, and 
so on. Examples of useful additional land price determina-
tion characteristics are (i) the distance to the nearest subway 
station, (ii) the distance to the city core, (iii) the quality of 
neighborhood schools, (iv) the existence of various neigh-
borhood amenities, and so on. For examples of how these 
characteristics can be integrated into the builder’s model, 
see Diewert, de Haan, and Hendriks (2011, 2015), Eurostat 
(2013, 2017), Diewert and Shimizu (2015), and Diewert, 
Huang, and Burnett-Issacs (2017).99

The estimates for the geometric depreciation rate gener-
ated by the application of the builder’s model are useful 
for national income accountants because they facilitate 
the accurate estimation of structure depreciation, which is 
required for the national accounts. However, the deprecia-
tion estimates that are generated by the builder’s model are 
wear and tear depreciation estimates that apply to struc-
tures that continue in existence over the sample period. 
The estimated depreciation rate measures (net) deprecia-
tion100 of a structure that has survived from its birth to 
the period of its sale. However, there is another form of 
structure depreciation that the estimated depreciation 
rate misses, namely the loss of residual structure value 
that results from the early demolition of the structure. This 
problem was noticed and addressed by Hulten and Wykoff 
(1981a, 377–379; 1981b; 1996). Wear and tear depreciation 
is often called deterioration depreciation, and demolition or 
early retirement depreciation is sometimes called obsoles-
cence depreciation.101 Methods for estimating this form of 
depreciation have been proposed by Hulten and Wykoff as 
mentioned earlier and by Diewert and Shimizu (2017, 512–
516). Both methods require information on the distribution 
of the ages of retirement for the asset class. The Hulten 
and Wykoff method absorbs demolition depreciation into 
the wear and tear depreciation rate, whereas the Diewert 
and Shimizu method uses the wear and tear depreciation 
rate that is generated by sales of surviving buildings but 
adds a separate depreciation rate that is due to early demo-
lition of the structures in the asset class. Both methods 

99 It is also possible to estimate more general models of depreciation using 
the builder’s model; see Diewert and Shimizu (2017) and Diewert, Huang, 
and Burnett-Issacs (2017).
100 It is a net estimate since renovation and replacement investments in the 
building tend to extend the life of the building or augment its value. Thus, 
the gross wear and tear depreciation rate for the structure will tend to be 
larger than the estimated net depreciation rate.
101 Crosby, Devaney, and Law (2012, 230) distinguish the two types of 
depreciation and in addition, they provide a comprehensive survey of the 
depreciation literature as it applies to commercial properties.
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require information on the age of structures when they are 
demolished.102

The previous paragraph simply warns the reader that 
wear and tear depreciation103 for surviving buildings is not 
the entire depreciation story: there is also a loss of asset 
value that results from the early retirement of a building that 
needs to be taken into account when constructing national 
income accounting estimates of depreciation.

There is one additional complication that needs to be taken 
into account when running a hedonic regression on the sales 
of houses; that is, what happens when the sales information 
for an additional period becomes available? The simplest way 
of dealing with this problem dates back to Court (1939). His 
method works as follows: set T = 2 and run a hedonic regres-
sion that has a time dummy variable in it. In the context of 
the hedonic regression model defined by (63), estimates for 
the price of land for periods 1 and 2 would be obtained, say 
α1

1 and α2
1. The price index for land for periods 1 and 2 is 

defined as PL
1 = 1 and PL

2 = α2
1/α1

1. Now run a new hedonic 
regression using (63) for t = 2,3 and obtain new estimates for 
the price of land in periods 2 and 3, say α2

2 and α3
2. The price 

index for land in period 3 is defined as PL
3 = PL

2(a3
2/α2

2); that 
is, we update the price index value for period 2, PL

2, by the 
rate of change in land prices going from period 2 to 3, (α3

2/
α2

2). Thus, the previously estimated index is updated each 
period as new information becomes available. This adjacent 
period time dummy model has the advantage that it does not 
revise the previously estimated indices as the new information 
becomes available.104

The preceding method does not always work well in the 
context of estimating property price indices due to the 
sparseness of sales in a neighborhood and the multiplicity of 
parameters that are required to adequately control for differ-
ences in housing characteristics. Thus, Shimizu, Nishimura, 
and Watanabe (2010a, 797) suggested extending the number 

102 The Hulten and Wykoff method estimates the age of retirement in a 
somewhat arbitrary fashion, whereas the Diewert and Shimizu method 
relies on mortality distributions on the age of buildings at the time they 
are demolished. Over long periods of time and using country wide data, 
the two methods should be equivalent. However, the Diewert and Shi-
mizu method should give more accurate results at the firm and regional 
levels since their method is consistent with the hedonic estimation of 
structure depreciation rates as explained in this section.
103 What has been labeled as wear and tear depreciation could be bet-
ter described as anticipated amortization of the structure rather than wear 
and tear depreciation. Once a structure is built, it becomes a fixed asset 
which cannot be transferred to alternative uses (like a truck or machine). 
Thus amortization of the cost of the structure should be proportional to 
the cash flows or to the service flows of utility that the building generates 
over its expected lifetime. However, technical progress, obsolescence, or 
unanticipated market developments can cause the building to be demol-
ished before it is fully amortized. See Diewert and Fox (2016) for a more 
complete discussion of the fixity problem.
104 The two-period time dummy variable hedonic regression (and its 
extension to many periods) was first considered explicitly by Court (1939, 
109–111) as his hedonic suggestion number two. Court used adjacent 
period time dummy hedonic regressions as links in a longer chain of 
comparisons extending from 1920 to 1939 for US automobiles: “The net 
regressions on time shown above are in effect price link relatives for cars 
of constant specifications. By joining these together, a continuous index 
is secured.” If the two periods being compared are consecutive years, 
Griliches (1971, 7) coined the term “adjacent year regression” to describe 
this method for updating the index as new information becomes avail-
able. Diewert (2005b) looked at the axiomatic properties of adjacent year 
time dummy hedonic regressions.

of periods from two to a longer window of T consecutive 
periods, leading to the rolling window time dummy hedonic 
regression model. Thus, for the model defined by (63), the 
land price parameters that are estimated by the first regres-
sion using the data for periods 1 to T are α1

1, α2
1, . . ., αT

1, and 
the corresponding land price indices for periods 1 to t are 
PL

t ≡ at
1/α1

1 for t = 1, . . .,T. The second hedonic regression 
uses the data for periods 2, 3, . . . , T, T + 1 and the estimated 
land price parameters are α2

2, α3
2, . . ., αT

2, αT + 1
2. The price 

index for land in period T + 1 is defined as PL
T + 1 = PL

T(αT 

+ 1
2/αT

2); that is, the price index for period T, PL
t, is updated 

by the rate of change in land prices going from period T to  
T + 1, αT + 1

2/αT
2.

There are two additional issues that need to be addressed 
when using a rolling window time dummy hedonic regres-
sion model:

• How long should the window length be? A longer win-
dow length will usually lead to more stable estimates for 
the unknown parameters in the hedonic regression. A 
shorter window length will allow for taste changes to take 
place more quickly. A window length of one year plus one 
period will allow for seasonal effects. At this stage of our 
knowledge, it is difficult to give definitive advice on the 
length of the window.

• When a new window is computed, how should the index 
results from the new window be linked to the previous 
index values? The same issue applies when a multilateral 
method is used in the time series context. Ivancic, Diew-
ert, and Fox (2011) along with Shimizu, Nishimura, and 
Watanabe (2010a) and Shimizu et al. (2010) suggested that 
the movement of the indices for the last two periods in the 
new window be linked to the last index value generated by 
the previous window. However, Krsinich (2016) suggested 
that the movement of the indices generated by the new win-
dow over the entire new window period be linked to the 
window index value for the second period in the previous 
window. Krsinich called this a window splice as opposed to 
the movement splice explained earlier. De Haan (2015, 27) 
suggested that perhaps the linking period should be in the 
middle of the old window, which the Australian Bureau of 
Statistics (2016, 12) termed a half splice. Ivancic, Diewert, 
and Fox (2011, 33) suggested that the average of all possible 
links of the new window to the old window be used, and 
they called this a mean splice method for linking the results 
of the new window to the previous window.105 Again, there 
is no consensus at this time on which linking method is 
“best.” However, it is likely that all of these linking meth-
ods will generate much the same results.

It can be seen that estimating price indices for houses (or 
detached dwelling units) is not a straightforward task, par-
ticularly if one wants separate constant quality indices for 
the land and structure components of property value.106 In 
the following section, it will be seen that it is even more 

105 For the details on how the mean splice method works, see Diewert and 
Fox (2020).
106 For additional hedonic regression models for detached houses, see 
Verbrugge (2008), Garner and Verbrugge (2011), Eurostat (2013, 2017), 
Hill (2013), Hill et al. (2018), Rambaldi and Fletcher (2014), and Silver 
(2018).
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complicated to obtain separate indices for the land and 
structure components for condominium sales.

12. Decomposing Condominium 
Sales Prices into Land and Structure 
Components
A starting point for applying the builder’s model to con-
dominium sales is the hedonic regression model defined by 
equation (53) in the previous section.107 For convenience, 
equation (53) is repeated as equation (66):

Vtn = αt Ltn + pSt(1 - d)A(t,n)Stn + εtn; 
t = 1, . . .,T; n = 1, . . .,N(t), (66)

where Vtn is the selling price of a condominium property in 
a neighborhood in period t, αt is the price of the land that 
the structure sits on (per square meter), Ltn is the land area 
that can be attributed to the condo unit, pSt is the exoge-
nous period t construction cost for the type of condo under 
consideration (per square meter), δ is the one-period wear 
and tear geometric depreciation rate for the structure, Atn 
= A(t,n) is the age of the structure in periods, Stn is the floor 
space of unit n that is sold in period t (in square meters), and 
εtn is an error term.

A problem with the preceding model is that it is not 
appropriate to allocate the entire land value of the condo-
minium property to any particular unit that is sold in period 
t. Thus, each condo unit in the building should be allocated 
a share of the total land value of the property. The problem 
is “How exactly should this imputed land share be calcu-
lated?” There are two simple methods for constructing an 
appropriate land share: (i) Use the unit’s share of floor space 
to total structure floor space or (ii) simply use 1/N as the 
share, where N is the total number of units in the building. 
Thus, define the following two land share imputations for 
unit n in period t:

LStn ≡ (Stn/TStn)TLtn; LNtn ≡ (1/Ntn)TLtn;
t = 1, . . .,T; n = 1, . . .,N(t), (67)

where Stn is the floor space area of unit n that is sold in 
period t, TStn is the total building floor space area, TLtn is 
the total land area of the building, and Ntn is the total num-
ber of units in the building for unit n sold in period t. The 
first method of land share imputation is used by the Japa-
nese land tax authorities. The second method of imputation 
implicitly assumes that each unit can enjoy the use of the 
entire land area, and so an equal share of land for each unit 
seems “fair.”

There is a problem with the definition of LStn in (67): The 
floor space “share” of unit n, Stn/TStn, if summed over all 
units in the building would be less than 1 because the pri-
vately held floor space of each unit in the building does not 
account for shared building floor spaces such as halls, eleva-
tors, storage spaces, furnace rooms, and other “public” floor 

107 The analysis in this section follows that of Diewert and Shimizu (2016) 
and Burnett-Issacs, Huang, and Diewert (2021).

spaces, which are included in total building floor space, 
TStn. Thus, the “share” Stn/TStn must be adjusted upward by 
some percentage to account for these shared building facili-
ties.108 In what follows, it is assumed that this adjustment has 
been made to Stn (so that Stn is now interpreted as adjusted 
condo floor space area).

In order to obtain sensible decompositions of the condo-
minium selling price into land and structure components, 
it may be necessary to assume a structure value and focus 
on the determinants of land value at the initial stages of the 
sequential estimation procedure. Thus, following Diewert 
and Shimizu (2016), assume that the imputed structure value 
for unit n in period t, VStn, is defined as follows:

 VStn ≡ pSt(1 – δ)A(t,n)Stn; t = 1, . . .,T; n = 1, . . .,N(t), (68)

where δ is an assumed geometric depreciation rate.109 Once 
the imputed value of the structure has been defined by (68), 
the imputed land value for condo n in period t, VLtn, is defined 
by subtracting the imputed structure value from the total 
value of the condo unit, which is Vtn:

 VLtn ≡ Vtn – VStn; t = 1, . . .,T; n = 1, . . .,N(t). (69)

In the hedonic regressions that follow immediately, the 
imputed value of land for the condominium unit, VLtn, is 
used as the dependent variable in a hedonic regression. The 
following regressions explain variations in these imputed 
land values in terms of the property characteristics.

Suppose that the postal code of each sale is also available, 
and there are J postal codes. Then one can introduce the fol-
lowing postal code dummy variables, DPC,tn,j, as explanatory 
variables into a hedonic regression. Define these J dummy 
variables using definitions (54) in the previous section, and 
estimate the following hedonic regression, which is a land 
counterpart to the hedonic regression defined by (55) in the 
previous section:

VLtn = αt(∑ j=1
J ωjDPC,tn, j)LStn + εtn;

t = 1, . . .,T; n = 1, . . .,N(t). (70)

Note that the imputed value of land, VLtn defined by (69), 
replaces the total property value Vtn, which was the depen-
dent variable in (55).110

108 Diewert and Shimizu (2016, 303) constructed estimates of Tokyo total 
building private floor space to total building floor space for each obser-
vation nt as NtnStn/TStn, where Ntn is the number of units in the building 
which contained condo sale n in period t, Stn is the private floor space of 
the sold unit, and TStn is the total floor space of the building. The sample 
wide average of these ratios was 0.899. Thus the first imputation method 
in definitions (67) was changed from LStn ≡ (Stn/TStn)TLtn to LStn ≡ (1/0.899)
(Stn/TStn)TLtn = (1.1)(Stn/TStn)TLtn. Burnett-Issacs, Huang, and Diewert 
(2021) estimated a similar condo model and consulted with construction 
experts and determined that on average, the ratio of total space to pri-
vate space for Ottawa condominium apartments was approximately 1.33. 
Thus they changed LStn ≡ (Stn/TStn)TLtn to LStn ≡ (1.33)(Stn/TStn)TLtn.109 Diewert and Shimizu (2016) assumed δ = 0.03 and Burnett-Issacs, 
Huang, and Diewert (2021) assumed δ = 0.02 where the age variable Atn is 
measured in years. Later, δ will be estimated.
110 As usual, we need a normalization on the parameters such as α1 = 1 
in order to identify all of the remaining parameters, α2, . . .,αT, ω1, . . .,ωJ. 
Note that this regression uses the first method of land imputation defined 
by (67). Later, the second method will also be considered.
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It is likely that the height of the building (number of 
stories) increases the value of the land plot supporting the 
building, all else equal. Thus, define the number of sto-
ries dummy variables, DNS,tn,s, as follows: t = 1,  .  .  .,T; n = 
1, . . .,N(t); s = 1, . . .,NS:

DNS,tn,s ≡ 1 if observation n in period t is in a  
building with s stories;

≡ 0 if observation n in period t is not in  
 building with s stories. (71)

The new nonlinear regression model is as follows:

 VLtn = αt(∑ j=1
J ωjDPC,tn,j)(∑s=1

NS χsDNS,tn,s)LStn + εtn;
t = 1, . . .,T; n = 1, . . .,N(t). (72)

Comparing the models defined by equations (70) and (72), it 
can be seen that additional NS building height parameters, 
χ1, . . .,χNS, have been added to the model defined by (70).111 
As usual, the models defined by (70) and (72) are nested 
so that the finishing parameter values from the nonlinear 
regression (70) can be used as starting values for (72) along 
with the starting values χ1 = χ2 = . . . = χNS = 1.

The higher up a unit is, the better is the view on aver-
age, and so it could be expected that the price of the unit 
increases as its height increases. The quality of the structure 
probably does not increase as the height of the unit increases, 
so it seems reasonable to impute the height premium as an 
adjustment to the land price component of the unit.

It is possible to introduce the height of the unit (the 
H variable) as a categorical variable (like the number of 
stories NS in the last hedonic regression model). How-
ever, both Diewert and Shimizu (2016) (hereafter DS) 
and Burnett-Issacs, Huang, and Diewert (2021) (hereafter 
BHD) found that this dummy variable approach could be 
replaced by using H as a continuous variable with little 
change in the fit of the model. Thus, the new nonlinear 
regression model is the following one, where t = 1,  .  .  .,T 
and n = 1, . . .,N(t):

VLtn = αt(∑ j=1
J ωjDPC,tn, j)(∑s=1

NS χsDNS,tn,s)
(1 + γ(Htn – 3))LStn + εtn, (73)

where Htn is the height of the sold unit n in period t (mea-
sured as the number of stories from the ground level) and 
γ is a height of the unit parameter to be estimated.112 The 
preceding model assumes that the lowest height for the units 
sold in the sample was Htn = 3. Thus, for all the observa-
tions that correspond to the sold unit being located on the 
third floor of the building, the new parameter g in (73) will 
not affect the predicted value in the regression. However, 
for heights of the sold units that were greater than 3, the 

111 Again normalizations like α1 ≡ 1; χ1 ≡ 1 are required in order to identify 
the remaining parameters. If all χs = 1, then the model defined by (72) col-
lapses to the model defined by (70).
112 Normalizations like α1 ≡ 1; χ1 ≡ 1 need to be imposed in order to iden-
tify the remaining parameters.

regression implies that the land value will increase by γ for 
each story that is above 3.113

As was mentioned earlier, there are two simple methods 
for imputing the share of the building’s total land area to 
the sold unit. Up until now, we have used the first method of 
imputation defined by (67), which set the share of total land 
imputed to unit n in period t, LStn, equal to (Stn/TStn)TLtn, 
whereas the second method set LNtn equal to (1/Ntn)TLtn. In 
the next model, the land imputation for unit n in period 
t is set equal to a weighted average of the two imputation 
methods, and the best-fitting weight, λ, is estimated. Thus, 
define

Ltn(λ) = [λ(Stn/TStn) + (1 – λ)(1/Ntn)]TLtn;
t = 1, . . .,T; n = 1, . . .,N(t). (74)

The new nonlinear regression model is the following one, 
where t = 1, . . .,T and n = 1, . . .,N(t), and Ltn(λ) is defined 
by (74):114

VLtn = αt(∑ j=1
J ωjDPC,tn, j)(∑s=1

NS χsDNS,tn,s) 

 (1 + γ(Htn – 3))Ltn(λ) + εtn. (75)

Conditional on the land area of the building, one would 
expect the sold unit’s land imputation value to increase as 
the number of units in the building increases. Thus, one 
could use the total number of units in the building, Ntn, as a 
quality adjustment variable for the imputed land value of a 
condo unit. DS introduced this variable as a continuous vari-
able. The smallest number of units in the buildings in their 
sample was 11. Thus, they introduced the term 1 + κ(Ntn – 11) 
as an explanatory term in the nonlinear regression. The new 
parameter κ is the percentage increase in the unit’s imputed 
value of land as the number of units in the building grows by 
one unit. The new nonlinear regression model is the follow-
ing one, where t = 1, . . .,T and n = 1, . . .,N(t), and Ltn(λ) is 
defined by (74):

VLtn = αt(∑ j=1
J ωjDPC,tn,j)(∑s=1

NS χsDNS,tn,s)
 (1 + γ(Htn – 3))(1 + κ(Ntn – 11))Ltn(λ) + εtn, (76)

where Ltn(λ) is defined by (74).
The next explanatory variable to be introduced into the 

hedonic regression model is one that is not obvious but 
turned out to be very significant in the regressions run by 
DS and BHD. The footprint of a building is the area of the 
land that directly supports the structure. An approximation 
to the footprint land for unit n in period t is the total struc-
ture area TStn divided by the total number of stories in the 
structure THtn. If footprint land is subtracted from the total 

113 The studies that have implemented this model found that the estimated 
γ was in the 2–4 percent range. Thus the imputed land value of a unit 
increases by 2 to 4 percent for each story above the threshold level of 3.
114 For the DS Tokyo condo data, the estimated λ turned out to be λ* = 
0.3636 (t = 9.84) so that the very simple land imputation method that just 
divided the total land plot size by the number of units in the building got 
a higher weight (0.6364) than the weight for the floor space allocation 
method (0.3636). For the Ottawa condo data, the estimated λ turned out 
to be λ* = 0.2525 (t = 12.10).



350

CONSUMER PRICE INDEX MANUAL

land area, TLtn, the resulting variable is excess land,115 ELtn, 
defined as follows:

 ELtn ≡ TLtn – (TStn/THtn); t = 1, . . .,T; n = 1, . . .,N(t). (77)

In the Tokyo data used by DS, excess land ranged from 
47 square meters to 2912 square meters. Now group the 
sample observations into M categories, depending on the 
amount of excess land that pertained to each observation. 
Group 1 consists of observations tn, where ELtn is less than 
some number EL1; Group 2 consists of observations such 
that EL1 ≤ ELtn < EL2; . . . ; Group M consists of observations 
such that ELM–1 ≤ ELtn. The break points EL1, EL2, . . . ,ELM–1 
should be chosen so that the number of observations in each 
group is approximately equal. Define the excess land dummy 
variables, DEL,tn,m, as follows for t = 1, . . .,T; n = 1, . . .,N(t);  
m = 1, . . .,M:

DEL,tn,m ≡ 1 if observation n in period t is in  
excess land group m;

≡ 0 if observation n in period t is not in  
 excess land group m. (78)

The new regression model is as follows:

VLtn = αt(∑ j=1
J ωjDPC,tn,j)(∑s=1

NS χsDNS,tn,s)(∑m=1
M μmDEL,tn,m)×

(1 + γ(Htn – 3))(1 + κ(Ntn – 11))Ltn(λ) + εtn;
 t = 1, . . .,T; n = 1, . . .,N(t). (79)

Not all of the parameters in (79) can be identified, so the 
following normalizations on the parameters in (79) are 
imposed:

 α1 ≡ 1; χ1 ≡ 1; μ1 ≡ 1. (80)

Introducing the excess land dummy variables led to huge 
jumps in the log likelihoods for the hedonic regressions run 
by DS and BHS: 1020 for DS and 2652 for BHS.116 Both stud-
ies found that the estimated μm were positive but their mag-
nitudes decreased monotonically as the excess land variable 
increased.

There are three additional explanatory variables that were 
used by DS that may affect the price of land. Define TW as 
the walking time in minutes to the nearest subway station, 
TT as the subway running time in minutes to the Central 
Tokyo station from the nearest station, and the SOUTH 
dummy variable is set equal to 1 if the sold condo unit faces 
south and 0 otherwise. Let DS,tn,2 equal the SOUTH dummy 
variable for sale n in period t. Define DS,tn,2 = 1 – DS,tn,1. In 
the Tokyo data set used by DS, TW ranged from 1 to 19 
minutes and TT ranged from 12 to 48 minutes. These new 
variables are inserted into the previous nonlinear regression 

115 This is land that is usable for purposes other than the direct support of 
the structure on the land plot.
116 Recall the hedonic regression model defined by (59) in the previous sec-
tion which introduced linear splines on the valuation of the land area of 
a stand-alone housing unit. This introduction also greatly increased the 
log likelihood of the regression. In the present context, the excess land 
dummy variables take the place of the linear spline functions in (59).

model (79) in the following manner for t = 1,  .  .  .,T and  
n = 1, . . .,N(t):

VLtn = αt(∑ j=1
J ωjDPC,tn,j)(∑s=1

NS χsDNS,tn,s)
(∑m=1

M μmDEL,tn,m)(ϕ1DS,tn,1 + ϕ2DS,tn,2) ×

(1 + γ(Htn – 3))(1 + κ(Ntn – 11))(1 + η(TWtn – 1))
 (1 + θ(TTtn – 12))Ltn(λ) + εtn, (81)

where Ltn(λ) is defined by (74). Not all of the parameters in 
(81) can be identified, so the following normalizations (82) 
are imposed on the parameters in (81):

 α1 ≡ 1; χ1 ≡ 1; μ1 ≡ 1; ϕ1 ≡ 1. (82)

Using the DS Tokyo data, the R2 value for this model was 
found to be 0.6308 and the log likelihood increased by 406 
points over the log likelihood of the previous model defined 
by (79) for the addition of three new parameters. The esti-
mated parameters had the expected signs and had reason-
able magnitudes.

At this point, DS concluded that the imputed land value for 
each condominium in their sample was predicted reasonably 
well by the hedonic regression model defined by (81) and (82). 
Thus, in the following regression, they switched from using 
the imputed land value VLtn defined by (69) as the dependent 
variable in the regressions to using the actual selling price 
of the property, Vtn. They used the specification for the land 
component of the property that is defined by (81) and (82), but 
they also added the structure term pSt(1 – δ)A(t,n)Stn to account 
for the structure component of the value of the condo unit. 
Note that the annual depreciation rate d is now estimated 
by the new hedonic regression model rather than assuming 
that it was equal to 3 percent. Thus, the number of unknown 
parameters in the new model increased by 1. They used the 
estimated values for the coefficients in (81) as starting values 
in this new nonlinear regression.117

Using their Tokyo data, DS found that R2 for this new 
model was 0.8190 and the estimated depreciation rate was 
δ* = 0.0367 (t = 27.1). Note that R2 is satisfactory; that is, the 
new model explains a substantial fraction of the variation in 
condo prices.

DS and BHD introduced some additional explanatory 
variables as quality-adjusting variables for the imputed 
value of structures. DS introduced the number of bedrooms 
and the type of building as quality adjusters for the value 
of the structure. BHD introduced the number of bedrooms, 
the number of bathrooms, the presence of balconies, the use 
of natural gas as the heating fuel, and whether there was 
commercial space in the building as additional variables 
that could determine the value of the structure. These vari-
ables were significant explanatory variables, but the over-
all R2 for the final hedonic regression did not increase by 

117 Attempting to estimate the parameters in (83) without good starting 
values for the nonlinear regression will not lead to sensible parameter 
estimates. Thus it is necessary to obtain good starting values for (83) 
by estimating the rather long sequence of regressions explained above, 
starting with a very simple model and gradually introducing additional 
explanatory variables. Each regression in the sequence contains the pre-
vious one as a special case so that the final estimates of one regression can 
be used as starting values for the subsequent one.
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a large amount with the addition of these variables to the 
regression. The details may be found in the work of Diewert 
and Shimizu (2016) and Burnett-Issacs, Huang, and Diewert 
(2021).

Once the final hedonic regression has been run, the 
sequence of land prices is given by α1, α2,  .  .  .,αT and the 
sequence of condo structure prices is given by the exogenous 
structure price indices pS1, pS2, . . .,pST. To obtain the overall 
property price indices for sales of condos, form the follow-
ing counterparts to equations (64) and (65) in the previous 
section to obtain an estimate of period t condo land value, 
VLt, and estimated period t structure value, VSt, for t =1, . . .,T:

VLt ≡ Σn∈N(t) αt(∑ j=1
J ωjDPC,tn,j)(∑s=1

NS χsDNS,tn,s)
 (∑m=1

M μmDEL,tn,m) (83)

×(ϕ1DS,tn,1 + ϕ2DS,tn,2) (1 + γ(Htn – 3))(1 + κ(Ntn – 11))

(1 + η(TWtn – 1))(1 + θ(TTtn – 12))Ltn(λ);
 VSt ≡ Σn∈N(t) pSt(1 – δ)A(t,n)Stn. (84)

Using the prices α1, α2, . . .,αT, the corresponding estimated 
land values VL1, . . .,VLT, the prices pS1, pS2, . . . ,pST, and the 
corresponding estimated structure values VS1,  .  .  .,VST, one 
can again apply normal index number theory using these 
data to construct Laspeyres, Paasche, Fisher, or whatever 
index formula is being used by the statistical agency in order 
to construct constant quality price and quantity overall 
property indices for the sales of condominium units in the 
area under consideration for T periods.

In summary, the builder’s model can be modified to apply 
to the sales of condominium units, and reasonable decom-
positions of property value into land and structure compo-
nents can be obtained. However, the nonlinear regressions 
that are required in order to implement the model end up 
being rather complex. In addition, information on more 
characteristics of the condominium properties needs to be 
collected in order to implement the models. The informa-
tion that is required in order to estimate the final model and 
calculate (83) and (84) is as follows:

• The selling prices of the condominium properties in the 
sample (Ptn)

• The age of the structure on the property (Atn)
• The total area of the land plot (TLtn)
• The floor space area of the condo unit (Stn)
• The total floor space area of the entire building (TStn)
• The neighborhood of the property (or the postal code)
• The exogenous structure price index which provides the 

construction cost of a new structure per meter square or 
per square foot (pSt)

• The number of stories of the building (NStn)
• The height of the sold unit (the number of stories from the 

ground level) (Htn)
• The number of units in the building (Ntn)
• The walking time in minutes to the nearest subway sta-

tion (TWtn)
• The subway running time in minutes to the city center 

from the nearest station (TTtn)

The last two variables are not essential (and are not relevant 
in small towns and cities). Other non-essential variables that 
could be useful are the number of bedrooms, the number of 
bathrooms, the existence of balconies, the type of construc-
tion, the number of parking spaces, and so on.

The hedonic regression models that were considered in 
the last two sections are essentially modified supply-side 
models. In the following section, demand-side hedonic 
regressions are considered.

13. Demand-Side Property Price 
Hedonic Regressions
A way of rationalizing the traditional log price time dummy 
hedonic regression model for properties with varying 
amounts of land area L and constant quality structure area 
S* is that the utility that these properties yield to consumers 
is proportional to the Cobb–Douglas utility function LαS*β, 
where α and β are positive parameters (which do not nec-
essarily sum to one).118 Initially, assume that the constant 
quality structure area S* is equal to the floor space area of 
the structure, S, times an age adjustment, (1 – δ)A, where A 
is the age of the structure in years and δ is a positive depre-
ciation rate that is less than 1. Thus, S* is related to S as 
follows:

 S* ≡ S(1 – δ)A. (85)

In any given time period t, assume that the sale price of 
transacted property n, Vtn, with the amount of land Ltn and 
the amount of quality-adjusted structure Stn

*, is given by the 
following expression:

Vtn = ptLtn
α[Stn

*]β

= ptLtn
α [Stn(1 – d)A(t,n)]β using (85)

= ptLtn
α Stn

b(1 – δ)βA(t,n)

= ptLtn
α Stn

bϕA(t,n), (86)

where A(t,n) = Atn is the age of house n sold in period t, pt can 
be interpreted as the period t property price index, and the 
constant ϕ is defined as

 ϕ ≡ (1 – δ)β. (87)

Thus, if Vtn is deflated by the period t property price index pt, 
the real value or utility utn of the property with characteris-
tics Ltn and Stn

* is obtained:

 Vtn/pt = Ltn
αStn

*β ≡ utn. (88)

118 The early analysis in this section follows that of McMillen  
(2003, 289 – 290), Shimizu, Nishimura, and Watanabe (2010a, 795), and 
Diewert, Huang, and Burnett-Issacs (2017). McMillen assumed that α + β 
= 1. We follow Shimizu, Nishimura, and Watanabe in allowing α and β to 
be unrestricted. Knoll, Schularick, and Steger (2017, 344–345) assumed a 
Cobb–Douglas production function in order to decompose house prices 
into land and structure components; that is, they applied a production-
side model in their decomposition instead of a demand-side decomposi-
tion as will be done in this section.
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Thus, utn ≡ qt is the aggregate real value of the property with 
characteristics Ltn and Stn

*.119

Define ρt as the logarithm of pt and γ as the logarithm of 
ϕ; that is,

 ρt ≡ lnpt; γ ≡ lnϕ. (89)

After taking logarithms of both sides of the first equation in 
(88), using definitions (85) and (89) and adding the error terms, 
the following system of estimating equations is obtained:120

lnVtn = ρt + αlnLtn + βlnStn + γAtn + εtn; 
t = 1, . . .,T; n = 1, . . .,N(t), (90)

where εtn are the independently distributed error terms with 
0 means and constant variances. It can be seen that (90) is a 
traditional log price time dummy hedonic regression model 
with a minimal number of characteristics. The unknown 
parameters in (90) are the constant quality log property 
prices, ρ1,  .  .  .,rT, the taste parameters α, β, and the trans-
formed depreciation rate γ. Once these parameters have 
been determined, the geometric depreciation rate δ that 
appears in equations (86) can be recovered from the regres-
sion parameter estimates as follows:

 δ ≡ 1 – eγ/β. (91)

We now explain how the hedonic pricing model defined 
by (86) can be manipulated to provide a decomposition of 
property value in period t into land- and quality-adjusted 
structure components.

Once estimates for α, β, and δ have been obtained, the 
defined period t value of a property with characteristics 
Ltn and Stn

* is given by the following period t property valu-
ation function by the right-hand side of (86); that is, define 
V(pt,Ltn,Stn

*) ≡ ptLtn
αStn

*β. In empirical applications of the 
hedonic regression model defined by (90), it will often hap-
pen that estimates for α and β are such that α + β is less than 
1.121 This means that a property in a given period that has 
double the land- and quality-adjusted structure than another 
property will sell for less than double the price of the smaller 
property. This follows from the fact that the Cobb–Douglas 
hedonic utility function, u(L,S*) ≡ LαS*β, exhibits diminish-
ing returns to scale when α + β < 1; that is, we have

 u(λL,λS*) = λα + βu(L,S*) (92)

119 For each property n in scope for period t, equations (88) can be rear-
ranged to read as follows: Vtn/utn = pt. Thus, the model assumes that pur-
chasers of the type of property in scope for the sales index have the same 
property preferences over alternative properties n in period t (with land-
 and quality-adjusted structure quantities defined by Ltn and Stn

*) given 
by the utility function Ltn

αStn
*β. Competition between purchasers forces 

the price of the properties in scope per unit utility to equalize in period t; 
that is, we obtain the equations Vtn/Ltn

αStn
*β = pt. Of course, these assump-

tions will only be approximately correct so equations (88) will only hold 
approximately. If the R2 value obtained for the hedonic regression (90) 
is low, then the underlying economic model will provide only a poor 
approximation to reality.
120 Log price hedonic regressions for property prices date back to Bailey, 
Muth, and Nourse (1963).
121 See, for example, the estimated model in Diewert, Huang, and Bur-
nett-Issacs (2017).

for all λ > 0. This behavior is roughly consistent with our build-
er’s Models 5–7, where there was a tendency for property prices 
to increase less than the proportional increase of L and S*.

The marginal prices of land and constant quality struc-
ture in period t for a property with characteristics L and S*, 
πL(pt,L,S*) and πS*(pt,L,S*), are defined by partially differen-
tiating the property valuation function with respect to L and 
S*, respectively:

 πL(pt,Ltn,Stn
*) ≡ ∂V(pt,Ltn,Stn

*)/∂L ≡ pt αLtn
αStn

*β/Ltn 
= aV(pt,Ltn,Stn

*)/Ltn; (93)

πS
*(pt,Ltn,Stn

*) ≡ ∂V(pt,Ltn,Stn
*)/∂S* ≡ pt βLtn

αStn
*β/Stn

* 
= βV(pt,Ltn,Stn

*)/Stn
*. (94)

Multiply the marginal price of land by the amount of land in 
the property, and add to this value of land the product of the 
marginal price of constant quality structure and the amount 
of constant quality structure on the property in order to 
obtain the following identity:

  (α + β)V(pt,Ltn,Stn
*) = πL(pt,Ltn,Stn

*)Ltn + πS
*(pt,Ltn,Stn

*)Stn
*.

 (95)

If α + β is less than one, then using marginal prices to value 
the land and constant quality structure in a property will 
lead to a property valuation that is less than its selling price. 
Thus, to make the land and structure components of prop-
erty value add up to property value, divide the marginal 
prices defined by (93) and (94) by α + β in order to obtain the 
following adjusted prices of land and structures for property n 
sold in period t, ptL(pt,Ltn,Stn

*) and ptS*(pt,Ltn,Stn
*):

 ptL(pt,Ltn,Stn
*) ≡ πL(pt,Ltn,Stn

*)/(α + β) 
  = α(α + β)–1V(pt,Ltn,Stn

*)/Ltn; (96)

 ptS*(pt,Ltn,Stn
*) ≡ πS*(pt,Ltn,Stn

*)/(α + β) 
  = β(α + β)–1V(pt,Ltn,Stn

*)/Stn
*. (97)

The preceding material outlines a theoretical framework 
that can generate a decomposition of property value into 
land and structure components using the results of a tradi-
tional log price time dummy hedonic regression model. To 
complete the analysis, it is necessary to fill in the details of 
how the individual property land and structure prices that 
are generated by the model can be aggregated into period t 
overall land and structure price indices.

Run the hedonic regression model defined by (90). Define 
the constant quality property price index pt for period t as 
follows:

 pt ≡ exp(ρt); t = 1, . . .,T. (98)

Define the geometric depreciation rate δ by (91). Once δ has 
been defined, the amount of quality-adjusted structure for 
property n in period t, Stn

*, is defined as follows:

ln(Stn
*) ≡ ln(Stn) + Atn ln(1 – δ);
t = 1, . . .,T; n = 1, . . .,N(t). (99)
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Now that pt, Ltn, Stn
*, a and b have all been defined, we use 

these data in order to define the predicted prices for prop-
erty n sold in period t, Vtn

*:

 Vtn
* ≡ pt (Ltn )

α (Stn
*)β; t = 1, . . .,T; n = 1, . . .,N(t). (100)

Use equations (96) and (97) in order to define constant qual-
ity land and structure prices for sold property n in period t, 
ptnL and ptnS*, as follows:

 ptnL ≡ α(α + β)–1Vtn
*/Ltn; t = 1, . . .,T; n = 1, . . .,N(t); (101)

   ptnS* ≡ β(α + β)–1Vtn
*/Stn

*; t = 1, . . .,T; n = 1, . . .,N(t). (102)

Finally, unit value constant quality land and structure prices 
for all properties sold in period t, ptL and ptS*, are defined as 
follows:

 ptL ≡ Σn=1
N(t) ptnL Ltn/Σn=1

N(t) Ltn; t = 1, . . .,T; (103)
 ptS* ≡ Σn=1

N(t) ptnS* Stn
*/Σn=1

N(t) Stn
*; t = 1, . . .,T. (104)

The period t land and structure prices that are defined by 
(103) and (104) are reasonable summary statistic prices for 
land and structures sold in period t that are generated by 
the log price time dummy hedonic regression model defined 
by (90).

If the price of land grows at a different rate than the price 
of a constant quality structure, then the time dummy log 
price hedonic regression model defined by (90) will generate 
very different constant quality land and structure subindi-
ces when compared to the corresponding indices estimated 
by the builder’s model. To see this, suppose that the same 
house n sold in period t is sold again in the following period 
t + 1. The period t data for this house are Vtn

*, Ltn, and Stn
*, 

and the period t + 1 data are Vt + 1n
*, Lt + 1n = Ltn, and St + 1n

* 
= (1 – δ)Stn

*. Use definitions (101) and (102) for this house 
for periods t and t + 1 and calculate the following land and 
structure inflation rates for this house going from period t 
to period t + 1:

pt + 1nL/ptnL = [α(α + β)–1Vt + 1n
*/Ltn]/[α(α + β)–1Vtn

*/Ltn] 
= Vt + 1n

*/Vtn
*; (105)

pt + 1nS*/ptnS* = [β(α + β)–1Vt + 1n
*/(1 – δ)Stn

*]/[β(α + β)–1Vtn
*/Stn

*]
= (1 – δ)–1(Vt + 1n

*/Vtn
*). (106)

Thus, (one plus) the imputed land inflation rate, pt + 1nL/ptnL, 
will equal (one plus) the growth in property value, Vt + 1n

*/Vtn
*, 

and (one plus) the imputed constant quality structure infla-
tion rate, pt + 1nS*/ptnS*, will equal (1 – δ)–1(Vt + 1n

*/Vtn
*). Hence, 

if δ is small, then the land and structure inflation rates will 
be almost identical and approximately equal to (one plus) 
the growth rate for the overall property value. Thus, the 
constant quality price indices for land and structures will 
move in an almost proportional manner. In most countries, 
the price of land will grow much more rapidly than the price 
of structures, so the hedonic regression model defined by 
(90) is not suitable for finding usable land price indices for 
residential housing.

However, the hedonic regression model defined by (90) 
(and its generalizations) can generate very reasonable over-
all constant quality property price indices, provided that the 
model generates a plausible estimate for the structure depre-
ciation rate. To see why this result might occur, a highly 
simplified comparison of a builder’s model and the log price 
traditional hedonic regression model studied in this section 
will be performed.

Consider the valuation of a representative property in 
periods 1 and 2 using both the builder’s model and the 
traditional hedonic regression model explained in this sec-
tion. In period 1, the quantity of land and constant quality 
structure are L1 and S1

*, with the total property value equal 
to V1. In period 2, the quantity of land and constant quality 
structure are L2 = (1 + gL)L1 and S2

* = (1 + gS)S1
*, with the 

total property value equal to V2. The Lt and St
* are known, 

and hence the growth rates gL and gS are also known. Using 
the property valuation function defined by (100), the two 
properties have the following value decompositions, where 
p1 and p2 are the constant quality property price levels for 
periods 1 and 2:

 V1 = p1L1
αS1

*β; (107)
 V2 = p2L2

αS2
*β

  = p1(1 + ρ)[L1(1 + gL)]α [S1
*(1 + gS)]

β 

   where 1 + ρ = p2/p1

  = V1(1 + ρ)(1 + gL)α(1 + gS)
β

  ≈ V1(1 + ρ)[α(1 + gL) + β(1 + gS)], (108)

where the last approximate equality follows if α + β = 1 and 
the geometric mean (1 + gL)α(1 + gS)

β is approximated by the 
corresponding arithmetic mean α(1 + gL) + β(1 + gS).

Now use the builder’s model to value the same proper-
ties. Let pL1 and pL2 be the price levels for land in periods 
1 and 2 and let pS1 and pS2 be the constant quality price 
levels for structures in periods 1 and 2. The builder’s model 
imputes the following values for the properties in the two 
periods:

V1 = pL1L1 + pS1S1
*; (109)

V2 = pL2L2 + pS2S2
* (110) 

= pL1(1 + ρL)(1 + gL)L1 + pS1(1 + ρS)(1 + gS)S1
*,

where the land and structure constant quality price indices 
are defined as 1 + ρL = pL2/pL1 and 1 + ρS = pS2/pS1. Define the 
land and structure share of property value in period 1 as 
sL1 ≡ pL1L1/V1 and sS1 ≡ pS1S1

*/V1
, respectively. The Laspeyres 

quantity and Paasche price indices for properties, QL and PP, 
are defined as follows:

QL ≡ sL1(\L2/L1) + sS1(S2
*/S1

*) (111)
= sL1(1 + gL) + sS1(1 + gS);

 PP ≡ [V2/V1]/QL (112)
= [V2/V1]/[sL1(1 + gL) + sS1(1 + gS)],
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where the last equality follows from (111). Using (108), we 
have the following approximate expression for 1 + ρ, which 
is the property price index generated by the traditional 
hedonic regression model:

 1 + ρ ≈ [V2/V1]/[α(1 + gL) + β(1 + gS)]. (113)

Comparing (112) to (113), it can be seen that the Paasche 
property price index that is generated by the builder’s 
model, PP, will be approximately equal to the property 
price index 1 + ρ that is generated by a traditional log price 
time dummy hedonic regression model provided that α is 
approximately equal to the land share sL1 and β is approxi-
mately equal to structure share sS1.

122 Since the hedonic util-
ity function for the traditional model is Cobb–Douglas, this 
approximate equality is likely to hold. Thus, the traditional 
model is likely to generate approximately the same overall 
property price indices as would be generated by the build-
er’s model.123

The approximation result in the previous paragraph 
opens up another possible method for obtaining aggregate 
land values for residential housing. There are residential 
property price indices for many countries that are based 
on traditional hedonic regression models. Consider such 
a country that also conducts periodic censuses of hous-
ing where owners of residential dwelling units are asked to 
value their properties. Let the estimated value of housing in 
periods 1 and t be V1 and Vt. Suppose the aggregate hous-
ing price index levels for these two periods are p1 and pt. 
Using these data, one can form aggregate volume estimates 
for residential housing as q1 ≡ V1/p1 and qt ≡ Vt/pt. From the 
country’s system of national accounts, it should be possible 
to obtain estimates for the aggregate price and quantity or 
volume of residential structures, which we denote by pS1 and 
qS1 for period 1 and pSt and qSt for period t. With these data in 
hand, aggregate Laspeyres, Paasche, and Fisher (1922) price 
and quantity indices for residential land can be obtained 
using (p1,pS1) and (pt,pSt) as period 1 and t price vectors and 
using (q1,–qS1) and (qt,–qSt) as period 1 and t quantity vec-
tors. The resulting land prices (pL1,pLt) and volumes (qL1,qLt) 
would fill a gap in the SNA for the country. Real household 
wealth accounts could be constructed that had household 
land and household structures as separate assets.

For data series on residential property prices for either 
the sales of properties or the stock of properties, see the 
European Central Bank (2018) (which lists 228 series for 
European countries) and the Bank for International Settle-
ments (2018), which lists long series for 18 advanced econo-
mies. For additional information on alternative approaches 
for the measurement of residential property price indices for 
sales of properties and for making estimates for the stock of 
residential properties, see Statistics Portugal (2009), Euro-
stat (2013, 2017), Hill (2013), Silver (2018), and Hill et al. 
(2020).

122 To obtain this approximation result, it is also necessary that the 
depreciation rate that is estimated by the log price time dummy model 
be reasonable.
123 For examples of studies where it was found that this approximate 
equality held, see Diewert (2010, 21), Diewert and Shimizu (2015, 1692), 
and Diewert, Huang, and Burnett-Issacs (2017, 32).

14. Price Indices for Rental 
Housing: The Modified Repeat 
Rents Approach
At first sight, it would seem that the construction of price 
indices for rental housing should be fairly straightforward, 
since typically, rents are paid to owners every month. Thus, 
all that seems to be necessary is to collect information on 
rents paid (from either the tenants or the owners), say Rtn 
and Rt + 1n for rental unit n in periods t and t + 1, form the 
price ratios, Rt + 1n/Rtn, and take a suitable average of these 
ratios to form a rent index.

Specifically, suppose we have data on rents Rtn for a 
group of “somewhat homogeneous” rental dwelling units 
for N(t) properties in period t for consecutive months t = 0, 
1. Denote the set of available properties in period t by S(t) 
for t = 0,1. Assume that there is a large overlap of properties 
between the two periods; that is, assume that the intersec-
tion set of properties S(0)∩S(1) consists of many properties. 
By “somewhat homogeneous” properties, we mean that 
the properties are similar in type (either detached, semi-
detached, or high- or medium-rise apartments), located 
in a local area where a separate rent index could be pro-
duced (a postal code area or a neighborhood), either fur-
nished or unfurnished, and the rental properties in scope 
have roughly similar ratios of land value to structure value. 
Later in this section, it will be assumed that estimates for 
the floor space of the structure of property n in period t, Stn, 
and for the corresponding land area of the property, Ltn, 
are known. Typically, the floor space area and the land area 
of a specific rental property n will remain constant from 
period to period so that Stn = Sn and Ltn = Ln for all time 
periods t that property n is in scope for the index. We also 
assume that the age of property n in period t, Atn = A(t,n) (in 
months if the index is a monthly index), is known (at least 
approximately).

Each rental property provides a unique service since 
the location of each rental property will in general be dif-
ferent and the location of the property is an important 
price- determining characteristic of each rental property. 
The quantity associated with each rent observation could 
be considered to be unity. Since periods 0 and 1 are close 
to each other, the characteristics that describe each rental 
property will not change much. Thus, a useful preliminary 
rent index going from period 0 to 1 is the following repeat 
rents index, PRR, defined as the sum of rents paid in period 1 
divided by the sum of rents paid in period 0 for all properties 
that are common to the two periods:

 PRR ≡ Σn∈S(0)∩S(1) R1n/Σn∈S(0)∩S(1) R0n. (114)

Thus, this preliminary index PRR is equal to the maximum 
overlap rent value ratio. This index can be interpreted as a 
Dutot index, but it can also be interpreted as a Laspeyres, 
Paasche, Lowe, or Fisher index since the quantity associated 
with rental property n in period t is 1 and the corresponding 
price is the rent Rtn.

Since rents usually do not change much from month to 
month, PRR will be close to unity if months 0 and 1 are close 
to each other. Thus, the construction of rental property 
indices seems to be very straightforward!
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However, there are three problems with the preceding 
maximum overlap rental index:

• The quantity (or utility) associated with each property 
does not remain constant from period to period due to 
depreciation of the structure. This depreciation can be 
offset by increased maintenance and renovation of the 
structure. But in general, there will be (on average) a net 
depreciation rate associated with the structure on the 
rental property.

• New rental properties may come into the location in scope 
during period 1. These properties are excluded from 
the continuing unit rent index defined by (114). Newly 
renovated properties also have the character of a new 
commodity that is not directly comparable to the cor-
responding rental property in period 0. If these proper-
ties can be identified, they should be excluded from the 
matched model index defined by (114) and they should be 
treated as a “new” property.

• Some rental properties that were rented out in period 0 
may become vacant in period 1, and thus no household is 
getting utility from the vacant rental property in period 1, 
and hence these vacant properties should not be included 
in the CPI. Similarly, rental properties that were demol-
ished in period 1 should be excluded from the matched 
model index.

Some solutions to the previous problems can be imple-
mented at the cost of making additional assumptions.

To deal with the depreciation problem, assume that the 
statistical agency has an estimate for the annual structure 
geometric depreciation rate for the type of structure in 
scope for the local area rent index. This annual structure 
depreciation rate should be converted into a monthly rate. 
Thus, suppose the annual structure geometric depreciation 
rate is 1 percent or 2 percent. The corresponding monthly 
rate is 0.083 percent or 0.165 percent, respectively. But this 
monthly structure depreciation rate, δ, needs to be converted 
into a property depreciation rate; that is, it needs to be fur-
ther reduced by the ratio of structure value to total property 
value (which includes land value). Suppose that the reduced 
value depreciation rate is known and is equal to the small 
fraction Δ > 0.124

The estimated depreciation rate δ could equal 0. In this 
case, renters do not experience any reduction in the qual-
ity of the rented structure as the structure ages. This cor-
responds to one-hoss-shay or light bulb depreciation. If this 
case were to occur, it would imply that the aging bias adjust-
ments made in these two models are not warranted and the 
estimating equations for those two models would need to 
be changed to reflect the one-hoss-shay depreciation of the 
structures. However, the available empirical evidence indi-
cates that depreciation rates are positive.125

The next assumption that we make is that the utility or real 
value of a rental property declines at a geometric rate as the 

124 Later in this section, we will indicate how this property depreciation 
rate could be estimated using a hedonic regression. Malpezzi, Ozanne, 
and Thibodeau (1987, 382) found that for their US sample of rental prop-
erties, annual rent declined about 0.6 percent per year. This corresponds 
to a monthly Δ equal to 0.050 percent per month.
125 See Malpezzi, Ozanne, and Thibodeau (1987) and the literature cited 
in thier paper.

structure on the property ages. Thus, the utility of a rental 
property with a new structure on it in period t is set equal to 
one, and then its utility declines at a geometric rate as it ages. 
Thus, for rental property n in period t that has a structure on 
it of age Atn = A(t,n), its utility or real quantity qtn as a func-
tion of the structure age is defined as follows:

 qtn ≡ (1 – Δ)A(t,n); t = 0,1; n∈S(t), (115)

where Δ is the assumed geometric property depreciation rate 
that is due to structure depreciation. Thus, in order to measure 
the rental property quantity and adjust it for the change in the 
quality of the structure over time, it is necessary to have an esti-
mate for Δ. We will address this problem later in this section.126

The rent for property n∈S(t) in period t is Rtn and the cor-
responding quantity qtn is defined by (115), so the constant 
quality price for property n∈S(t) in period t is ptn defined as 
the following value to quantity ratio:

 ptn ≡ Rtn/qtn = Rtn/(1 – Δ)A(t,n); t = 0,1; n∈S(t). (116)

Assuming that an estimate for the property depreciation 
rate Δ is available and the ages of the structures on the rental 
properties in scope are available, the prices and quantities 
defined by (116) and (115) can be used to form many indices, 
depending on statistical agency preferences. Thus, the maxi-
mum overlap Laspeyres price index is defined as follows:

 PMOL ≡ Σn∈S(0)∩S(1) p1nq0n / Σn∈S(0)∩S(1) p0nq0n (117)
  = Σn∈S(0)∩S(1) p1nq0n/ Σn∈S(0)∩S(1) R0n 

   using (115) and (116) for t = 0

  = Σn∈S(0)∩S(1) [R1n/(1 – Δ)]/ Σn∈S(0)∩S(1) R0n 

   using (116) for t = 1 and (115) for t = 0

  = PRR/(1 – Δ) using definition (114)

  > PRR,

where the inequality follows since 0 < 1 – Δ < 1. Thus, the 
simple repeat rents index PRR defined by (114) will understate 
constant quality maximum overlap Laspeyres rental price 
inflation, PMOL, defined by the first line in (117) by the fac-
tor 1/(1 – D), where Δ is the one-period geometric property 
depreciation rate.

The maxi mum overlap Paasche price index is defined as 
follows:

 PMOP ≡ Σn∈S(0)∩S(1) p1nq1n / Σn∈S(0)∩S(1) p0nq1n (118)
= Σn∈S(0)∩S(1) R1n / Σn∈S(0)∩S(1) [R0n(1 – Δ)] 

using (115) and (116)

= PMO/(1 – Δ) using definition (114).

> PMO.

126 As indicated earlier, it may be possible to form an estimate for the 
property depreciation rate from a knowledge of the structure deprecia-
tion rate (obtained from national accounts information) and estimates 
of the relative value of the land and structure components of the rental 
properties in scope.
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Using (117) and (118), we see that PMOP = PMOL. Define the 
maximum overlap Fisher index PMOF as the geometric mean 
of the maximum overlap Laspeyres and Paasche indices:

 PMOF ≡ [PMOPPMOL]1/2 = PMOL = PMOP = PMO/(1 – Δ), (119)

where PMO is the rent-to-value ratio for the properties 
that are in the sample for periods 0 and 1, Σn∈S(0)∩S(1) R1n/
Σn∈S(0)∩S(1) R0n.

As a point of interest, define the maximum overlap unit 
value price index, PMOUV, as follows:

 PMOUV ≡ [Σn∈S(0)∩S(1) R1n / Σn∈S(0)∩S(1) q1n]/
   [Σn∈S(0)∩S(1) R0n / Σn∈S(0)∩S(1) q0n] (120)
  = [Σn∈S(0)∩S(1) R1n /Σn∈S(0)∩S(1) (1 – Δ)A(0,n) + 1]/

   [Σn∈S(0)∩S(1) R0n /Σn∈S(0)∩S(1) (1 – Δ)A(0,n)] 

   using definitions (115)

  = [Σn∈S(0)∩S(1) R1n /(1 – Δ)]/[Σn∈S(0)∩S(1) R0n]
  = PMO/(1 – Δ).

Thus, under the geometric property depreciation assump-
tions, the maximum overlap unit value price index PMOUV is 
also equal to the string of indices in (119) that are all equal 
to each other.

This analysis indicates a way forward to deal with the 
depreciation of the structure problem. With an appropri-
ate estimate for the average property depreciation rate Δ, 
we need only apply a simple adjustment to the aggregate 
rent ratio for properties present in both periods under con-
sideration. Of course, our assumptions about the form of 
depreciation may not be very accurate, but making some 
adjustment for depreciation is better than making no adjust-
ment at all.

In order to deal with the problems arising from demol-
ished and vacant rental units and newly constructed (or 
renovated) units, it is necessary to make more assumptions. 
The problem is “how can the quality of a new rental prop-
erty relative to existing rental properties be determined in 
the period when the new property appears?” Similarly, in 
order to construct an estimate of the change in real rental 
services over the two periods under consideration, it is nec-
essary to know what is the quality or utility of a rental unit 
that has disappeared relative to rental properties that con-
tinue to exist. In order to address these questions, the model 
of quality adjustment that is explained in Sections 3 and 4 of 
Chapter 8 will be applied.127

First, consider the case where there are only three rental 
properties in scope for periods 0 and 1. Property 1 is pres-
ent in both periods, property 2 is present in period 0 but 
not in period 1 (a disappearing property), and property 3 
is not present in period 0 but is present in period 1 (a new 
property).128 Denote the real quantity of these three rental 
properties by qC, qD, and qN, respectively, using definitions 

127 See Diewert (2021).
128 The “new” property 3 may not be a truly new property; it may be the 
case that property 3 was temporarily vacant in period 1. Similarly, prop-
erty 2 may not permanently disappear in period 1; it may reappear in a 
subsequent period.

(115) for the three properties.129 We assume that renters 
value the relative usefulness or utility of the various proper-
ties in scope by using the following linear valuation (or util-
ity) function:

 f(qC,qD,qN) ≡ αCqC + αDqD + αNqN, (121)

where αC, αD, and αN are positive constants that reflect the 
relative value to renters of the three properties in scope in 
periods 0 and 1, and qC, qD, and qN are the real quantities for 
the three properties.

In period 0, suppose renters collectively maximize the 
utility function130 f(qC,qD,qN) defined by (121) with respect to 
qC, qD, and qN subject to the budget constraint p0CqC + p0DqD 
= p0Cq0C + p0Dq0D and the non-availability constraint qN = 
0, where q0C and q0D are the property depreciation-adjusted 
quantities for the two properties that are available for rent 
in period 0. The first-order conditions for the observed 
(q0C,q0D) to solve this constrained utility maximization 
problem are as follows:

 ∂f(q0C,q0D,0)/∂qC = αC = λ0p0C; (122)
 ∂f(q0C,q0D,0)/∂qD = αD = λ0p0D, (123)

where λ0 > 0 is the optimal Lagrange multiplier. It can 
be shown that λ0 = 1/P0, where P0 can be interpreted as 
the period 0 aggregate price level for the active renters in 
period 0.131 Equations (122) and (123) can be rewritten as 
follows:

 p0C = P0αC; (124)
 p0D = P0αD. (125)

In period 1, suppose renters again collectively maximize the 
utility function f(qC,qD,qN) defined by (121) with respect to qC, 
qD, and qN subject to the period 1 budget constraint p1CqC + 
p1NqN = p1Cq1C + p1Nq1N and the non-availability constraint 
qD = 0, where q1C and q1N are the property depreciation-
adjusted quantities for the two properties that are available for 
rent in period 1. The first-order conditions for the observed 
(q1C,q1N) to solve this constrained utility maximization prob-
lem are as follows:

 ∂f(q1C,0,qN)/∂qC = αC = λ1p1C; (126)
 ∂f(q1C,0,q1N)/∂qN = αN = λ1p1N, (127)

where λ1 > 0 is the optimal period 1 Lagrange multiplier. 
Again, it can be shown that λ1 = 1/P1, where P1 can be inter-
preted as the period 0 aggregate price level for the active 

129 Thus, q0C is set equal to (1 – Δ)A(0,C); q1C ≡ (1 – Δ)A(0,C) + 1; q0D ≡  
(1 – Δ)A(0,D); and q1N ≡ 1. Thus, an estimate of the age of the rental proper-
ties is required along with an estimate for the geometric property depre-
ciation rate Δ. The corresponding prices are defined as p0C ≡ R0C/q0C, 
p0D ≡ R0D/q0D, p1C ≡ R1C/q1C, and p1N º R1N/q1N = R1N.
130 Alternatively, assume that each renter has the same linear preferences 
over alternative rental properties. It turns out that equations (124) and 
(125) will still be satisfied.
131 See Diewert (2021, 8–10).
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renters in period 0. Equations (126) and (127) can be rewrit-
ten as follows:

 p1C = P1αC; (128)
 p1N = P1αN. (129)

Note that equations (124), (125), (128), and (129) are a special 
case of Court’s (1939, 109–111) hedonic quality adjustment 
suggestion number two. He transformed these underlying 
equations by taking logarithms of both sides of these equa-
tions in order to obtain the classic TPD hedonic regression 
model.132

Looking at equations (124), (125), (128), and (129), it can be 
seen that we have four equations in five unknowns: the price 
levels P0 and P1 and the three relative quality parameters αC, 
αD, and αN. Note each αn measures the relative usefulness of 
an additional unit of product n = C, D, or N to purchasers of 
the three products. It can be seen that Pt and αn cannot all be 
identified using observable data; that is, if P0, P1, αC, αD, and 
αN satisfy equations (124), (125), (128), and (129) and λ is any 
positive number, then λP0, λP1, λ–1αC, λ–1αD, and λ–1αN will 
also satisfy these equations. Thus, it is necessary to place a 
normalization (like P0 = 1 or αC = 1) on the five parameters 
that appear in these equations in order to obtain a unique 
solution. In the index number context, it is natural to set the 
price level for period 0 equal to unity, and so we impose the 
following normalization on the five unknown parameters 
that appear in equations (124), (125), (128), and (129):

 P0 = 1. (130)

The unique solution to equations (124), (125), (128), (129), 
and (130) is

P0 = 1; P1 = p1C/p0C; αC = p0C; 
αD = p0D; αN = p1N/(p1C/p0C) = p1N/P1. (131)

Note that the resulting price index, P1/P0, is equal to p1C/
p0C, the price ratio for the commodity that is present in both 
periods. Thus, the price index for this very simple model 
turns out to be a maximum overlap price index.133

We now consider how companion quantity levels, Q0 and 
Q1, for the price levels, P0 and P1, can be determined. Define 
the aggregate value of rents paid in period t as Vt for t = 0,1. 
Making use of the fact that R0N = 0 and R1D = 0, we have the 
following expressions for V0 and V1:

 V0 ≡ R0C + R0D = p0Cq0C + p0Dq0D; (132)
V1 ≡ RC

1 + RN
1 = p1Cq1C + p1Nq1N. (133)

132 For more accessible sources on the log price TPD hedonic regression 
model, see Griliches (1971) and Aizcorbe (2014). Summers (1973) pro-
posed the same model in the international comparisons context where 
it is known as the country product dummy model. This model can also be 
viewed as a repeat rent model that is analogous to the repeat sales model 
that dates back to Bailey, Muth, and Nourse (1963).
133 Keynes (1930, 94) was an early author who advocated this method 
for dealing with new goods by restricting attention to the goods that 
were present in both periods being compared. He called his suggested 
method the highest common factor method. Marshall (1887, 373) implic-
itly endorsed this method. Triplett (2004, 18) called it the overlapping link 
method.

The quantity level Qt for period t can be determined directly 
by evaluating the linear utility function defined by (121) 
at the period t quantity data or indirectly by deflating the 
period t aggregate value of rents Vt by the period t estimated 
price level, Pt:

 Q0 ≡ αCq0C + αDq0D = p0Cq0C + p0Dq0D 
  = [p0Cq0C + p0Dq0D]/P0 = V0/P0 = V0; (134)

 Q1 ≡ αCq1C + αNq1N = p0Cq1C + [p1N/P1]q1N 
  = [p1C/P1]q1C + [p1N/P1]q1N = V1/P1 
  = V1/[P1/P0], (135)

where the various equalities in (134) and (135) follow by sub-
stituting equations (131) –(133) into the direct definitions for 
Q0 and Q1. Thus, real rents in period 0, Q0, are set equal to 
the aggregate value of rents in period 0, V0. Real rents in 
period 1, Q1, are set equal to the aggregate value of rents 
in period 1, V1, and deflated by the maximum overlap rent 
price index, P1/P0. In this case, there is only one rental unit 
in scope that is occupied in both periods and is equal to the 
following expression:

 P1/P0 = [R1C/R0C]/(1 – Δ). (136)

An interesting aspect of this rent model is that the aggre-
gate price and quantity levels, P0, P1, Q0, Q1, and the price 
index, P1/P0, can all be determined by the national statisti-
cian using only information on collected rents (the Rtn) and 
an estimate for the appropriate monthly geometric prop-
erty depreciation rate, Δ. Thus, detailed information on the 
characteristics of the rental dwelling units is not required in 
order to implement this very simple approach which is basi-
cally a modified repeat rents index.

It is useful to look at the quantity index, Q1/Q0, that is 
implied by this simple model.134 Using the final expres-
sions in (134) and (135) and definitions (132) and (133), we 
have:135

 Q1/Q0 = [V1/V0]/[P1/P0] (137)
  = [(R1C + R1N)/(R0C + R0D)]/[P1/P0]

  = (1 – Δ)[(R1C + R1N)/(R0C + R0D)]/[R1C/R0C]

    using (136)
  = (1 – Δ)[1 + (R1N/R1C)]/[1 + (R0D/R0C)].

134 It is important to construct companion aggregate quantity levels Qt 
to complement the aggregate price levels Pt because the methodology 
outlined here will be applied to a local area or to a specific class of 
rental properties. These subindices will have to be aggregated into a 
national index and in order to do that, it is necessary to have informa-
tion on expenditure or quantity weights for the various sub-national 
indices.
135 Note that the decomposition given by (137) does not require a knowl-
edge of Atn or any other rental housing characteristic. But the assumption 
of a common property depreciation rate implicitly implies that the rental 
properties in scope should have similar characteristics in order to justify 
the assumption of a common depreciation rate.



358

CONSUMER PRICE INDEX MANUAL

Thus, there are three growth factors that determine the over-
all growth of real rentals:

• (1 – Δ), which is one minus the rental property geomet-
ric depreciation rate; this factor will reduce the overall 
growth of real rentals.

• 1 + (R1N/R1C), which is one plus the ratio of new rental 
value to continuing rental value in period 1; this growth 
factor will increase the overall growth of real rentals.

• 1 + (R0D/R0C), which is one plus the ratio of disappear-
ing rental value to continuing rental value in period 0; 
this growth factor is in the denominator and hence will 
decrease the overall growth of real rentals.

In a growing economy with new rental units being added 
to the marketplace, we would expect the ratio R1N/R1C to 
exceed the ratio R0D/R0C; that is, the availability of new 
rental136 units should normally offset the loss of existing 
rental units due to demolition and temporary vacancies.

A problem with this simple model is that there is only 
one product that is present in both periods. However, it is 
possible to generalize the present model to allow for mul-
tiple overlapping products and for many new and disap-
pearing rental units; see the annex for this generalization.

In the period following period 1, the same methodology 
can be applied to a new bilateral data set where the set of 
common rental properties in periods 1 and 2 will in general 
be different. New chain link price and quantity indices can 
be calculated and linked up to previous price and quantity 
levels. Chain drift should not be a problem due to the fact 
that so many properties will be in the maximum overlap cat-
egory, and price and quantity changes will not be large as we 
move from period to period.

Thus, this very simple rents model can in principle deal 
with the three big difficulties associated with the pure repeat 
rents model.

However, there are two main problems with this modified 
repeat rents model:

• The model requires an appropriate geometric property 
depreciation rate.

• The model ignores other important characteristics of 
rental housing that may not remain constant over time, 
such as renovations to the structure and changes in local 
amenities that affect the utility of the rental property.

Note that the geometric depreciation rate is applied to the 
entire property rent that has to cover the user cost of both 
the structure and the land. Thus, properties that have very 
different mixes of structure and land value will have differ-
ent overall property depreciation rates. If the land structure 
mix were to remain constant over time, the assumption of a 
property depreciation rate may be adequate. But of course, 
the structure part of a property changes its real value due to 
depreciation, whereas land does not depreciate. Moreover, 

136 A “new” rental unit includes a rental unit which was available in prior 
periods but vacant in period 0. Landlords sometimes circumvent local 
rent controls by renovating their properties so it may be prudent to use 
the above suggested quality adjustment procedure to capture such reno-
vations rather than attempting to link the “new” rental unit to a prior 
period.

the structure-to-land nominal value ratio is likely to change 
over time.137

Thus, we turn to a hedonic regression model to address 
these difficulties.

15. Price Indices for Rental 
Housing: Hedonic Regression 
Approaches
The hedonic regression model that was explained in Section 
13 can be applied to property rentals rather than property 
sales. Thus, we now assume that, in addition to the age of 
the structure on rental property n in period t, Atn = A(t,n), 
information on the land area and the floor space area of 
property n in period t, Ltn and Stn, is also available. Quality-
adjusted structure floor space for property n in period t, Stn

*, 
is defined as follows:

 Stn
* ≡ Stn(1 – δ)A(t,n); t = 0,1, . . .,T; n∈S(t), (138)

where δ is the one-period geometric depreciation rate for all 
structures for the rental properties in scope. The utility or 
real quantity of rental property n in period t, qtn, is set equal 
to the following function of Ltn and Stn

*:

qtn ≡ Ltn
αStn

*β t = 0,1, . . .,T; n∈S(t) (139)
 = Ltn

α [Stn(1 – δ)A(t,n)]β using definitions (138)

 = Ltn
α Stn

β (1 – δ)βA(t,n)

 = Ltn
α Stn

β ϕA(t,n),

where α and β are positive parameters (which do not neces-
sarily sum to one),138 and the constant ϕ is defined as

 ϕ ≡ (1 – δ)β. (140)

The constant quality price of rental property n in period 
t, ptn, is defined as rents paid, Rtn, divided by qtn. The next 
assumption is that these constant quality prices move in a 
proportional manner (approximately). Thus, we have the 
following assumptions:

 ptn ≡ Rtn/qtn ≈ Pt; t = 0,1, . . .,T; n∈S(t). (141)

Thus, the constant quality rental prices ptn move in an 
approximately proportional manner over time, with the period 
t factor of proportionality equal to the scalar Pt. Thus, Pt 
can be interpreted as the price level for rents in period t. 
The approximate equalities in equations (141) can be rewrit-
ten as the equalities Rtn = Ptqtnetn, where etn is a positive  

137 For information on the increasing share of land in housing prices for 
many economies over the period 1870–2012, see the important paper by 
Knoll, Schularick, and Steger (2017).
138 Thus, the utility function is a Cobb–Douglas function. The analy-
sis in this section follows that of McMillen (2003, 289–290), Shimizu, 
Nishimura, and Watanabe (2010, 795), and Diewert, Huang, and Bur-
nett-Issacs (2017). McMillen assumed that α + β = 1. The above authors 
applied their models to the sales of properties but the same model can be 
applied to property rents. We follow Shimizu, Nishimura, and Watanabe 
in allowing α and β to be unrestricted.
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error term with mean equal to 1. Taking logarithms of both 
sides of these equations leads to the following time dummy 
hedonic regression:

 lnRtn = lnPt + lnqtn + εtn; t = 0,1, . . .,T; n∈S(t) (142)
= lnPt + αlnLtn + βlnStn + (lnϕ)Atn + lnetn

= ρt + αlnLtn + βlnStn + γAtn + lnetn,

where ρt ≡ lnPt for t = 0,1, . . .,T and γ ≡ lnϕ = βln(1 – δ). The 
unknown parameters in (142) are the constant quality log 
rental price levels, ρ0,ρ1, . . .,rT, and the taste parameters α, 
β, and γ. Once these parameters have been determined, the 
geometric depreciation rate δ that appears in equation (139) 
can be recovered from the regression parameter estimates 
(β* and γ*) as follows:

 δ* ≡ 1 – eγ*/β*. (143)

An estimate for the property geometric depreciation rate Δ, 
which appeared in equation (115) in the previous section can 
be obtained using the estimated structure depreciation rate 
δ* defined by (143); that is, solve the equation (1 – Δ) equal to 
(1 – δ*)β* for Δ. The solution is

 Δ* = 1 – (1 – δ*)β*. (144)

If β* = 1, then Δ* = δ*. Typically 0 < β* < 1, in which case, 
the property depreciation rate Δ* will be less than the 
structure depreciation rate δ*. Thus, it can be seen that the 
hedonic regression model approach to the construction of 
rental property indices is not a totally different approach 
to the earlier matched model approach. The weakness of 
the matched model approach is that it requires an estimate 
for the property depreciation rate. It can be seen that the 
hedonic regression approach can generate an estimate for 
the property depreciation rate. Thus, running an occasional 
hedonic regression of the form given by (142) will gener-
ate an estimate for the property depreciation rate Δ, which 
played a prominent role in the modified repeat rents model 
outlined in the previous section.

The estimated aggregate rental price levels for each 
period t, Pt*, generated by the hedonic regression defined by 
(142) are defined as the exponentials of the estimated ρt*:

 Pt* ≡ exp[ρt*]; t = 0,1, . . .,T. (145)

The corresponding aggregate quantity levels Qt* are defined 
as follows:

 Qt* ≡ Σn∈S(t) Rtn/P
t*; t = 0,1, . . .,T. (146)

The corresponding rental price indices for periods t = 
0,1, . . .,T are defined as Pt*/P0*.

If there were only one stratum and one hedonic regres-
sion, then it would not be necessary to calculate the aggre-
gate quantity index Qt* defined by (146). But there will be 
many strata (classified by location, the type of structure, 
and other characteristics), and so to form an aggregate 
Laspeyres, Paasche, or Fisher index of rental prices, it will 
be necessary to calculate Pt* and Qt* by stratum and then 

use two-stage aggregation to construct regional or national 
rental price indices. Since the Laspeyres and Paasche indi-
ces have an equal justification (and are the indices that use 
the most representative weights for the two periods being 
compared), the Fisher index is recommended. It is a sym-
metric average of the Paasche and Laspeyres indices that 
satisfies the time reversal test.

To explain in more detail how the TPD model works, 
exponentiate both sides of equations (142) and drop the 
error terms. Then for each rental property n∈S(t) in scope 
for period t, we have the following expression for the rent for 
property n in period t, Rtn:

 Rtn = PtLtn
α Stn

β(1 – δ)βA(t,n); n∈S(t) = Ptqtn, (147)

where qtn ≡ Ltn
αStn

β(1 – δ)βA(t,n) is the real quantity or util-
ity of rental property n in period t, Ltn = Ln is the land area 
of property n, Stn = Sn is the floor space area of property 
n, δ is the common geometric structure depreciation rate, 
and A(t,n) = Atn is the age of the structure property n in 
period t. Thus, the model (without error terms) assigns the 
same price, Pt, to each rental property in scope in period t. 
Hence, individual rental prices in this model will vary in a pro-
portional manner over time. Thus, any reasonable matched 
model index number formula for the period t index relative 
to period 0 will be equal to Pt/P0. If T = 1, then it can be 
verified that the hedonic regression price index for period 
1, P1/P0, will be equal to PMOL defined by (117), PMOP defined 
by (118), PMOF defined by (119), and PMOUV defined by (120).

It can be seen that the hedonic regression model approach 
to the construction of rental property indices is not a totally 
different approach to the earlier matched model approach. 
The weakness of the matched model approach is that it 
required an estimate for the property depreciation rate. It 
can be seen that the hedonic regression approach can gener-
ate an estimate for the property depreciation rate.

The problems associated with the hedonic regression 
approach are twofold:

• Information on the characteristics of the rental proper-
ties is required.

• The hedonic regression model may not fit the data very 
well, in which case we can conclude that the somewhat 
restrictive assumptions of the model do not provide an 
adequate approximation to reality.

If the sample of rental properties in scope is large enough, 
then set T = 1, and in this case, the hedonic regression model 
defined by (142) becomes a standard adjacent period time 
dummy hedonic regression. P1*/P0* can be used to update the 
period 0 index level. If T is greater than 1, then we have a 
rolling window hedonic regression.139 In this case, there is 
a problem in determining exactly how to link the results of 
the new regression in say period T + 1 to the results of the 
previous regression for period T. A variety of linking meth-
ods have been suggested in the literature.140 In the present 

139 See Shimizu, Nishimura, and Watanabe (2010) for a worked example 
of this type of regression model applied to sales of properties rather than 
to rentals.
140 In the context of rolling window multilateral methods, Ivancic, Diew-
ert, and Fox (2011) (IDF) suggested that the movement of the indices for 
the last two periods in the new window be linked to the last index value 
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context, it is likely that the choice of method will not make 
a material difference.

We indicate how this very simple log price hedonic 
regression model can be generalized to include additional 
(discrete) characteristics of the properties. Suppose that 
properties have been classified into six postal zones. If 
property n in period t belongs to postal zone j, then define 
the dummy variable dj,tn for observation n in period t to 
equal 1, and if property n in period t does not belong 
to postal zone j, then define the dummy variable dj,tn for 
observation n in period t to equal 0. Next, suppose that 
properties have been classified according to the number of 
bathrooms m in the structure where the maximum number 
of bathrooms is six. If property n in period t has i bath-
rooms, then define the dummy variable d1i,tn for observa-
tion n in period t to equal 1, and if property n in period t 
does not have i bathrooms, then define the dummy vari-
able d1i,tn for observation n in period t to equal 0. Finally, 
suppose that the properties have been classified according 
to the number of bedrooms k in the structure where the 
number of bedrooms ranges from three to seven. If prop-
erty n in period t has k bedrooms, then define the dummy 
variable d2k,tn for observation n in period t to equal 1, and 
if property n in period t does not have k bedrooms, then 
define the dummy variable d2k,tn for observation n in period 
t to equal 0. Now consider the following generalization of 
the hedonic regression model defined by (142):

lnRtn = ρt + αlnLtn + βlnStn + γAtn 
 + Σj=1

6 ωjdj,tn + Σi=1
6 ηid1i,tn 

  + Σk=3
7 θkd2k,tn + εtn; t = 0,1, . . .,T; n∈S(t). (148)

The ωj parameters affect the quality of the land component 
of property value, while the last two sets of dummy vari-
ables affect the quality of the structure component of prop-
erty value. Not all of the parameters ρt, ωj, ηI, and θk can be 
identified; that is, there is exact multicollinearity associated 
with the dummy variables associated with these parameters. 
Thus, to identify all of the remaining parameters, we make 
the following normalizations:

 ω4 ≡ 0; η3 ≡ 0; θ5 = 0. (149)

The model defined by (148) was applied to sales of proper-
ties in a suburb of Vancouver Canada, and it gave reason-
able results for the implied structure depreciation rate; 
see Diewert, Huang, and Burnett-Issacs (2017). variants of 
this model should also work well for rentals of properties.

The results of the present section and the previous section 
can be summarized as follows:

generated by the previous window. Krsinich (2016) suggested that the 
movement of the indices generated by the new window over the entire new 
window period be linked to the previous window index value for the sec-
ond period in the previous window. Krsinich called this a window splice 
as opposed to the IDF movement splice. De Haan (2015, 27) suggested 
that perhaps the linking period should be in the middle of the old window 
which the Australian Bureau of Statistics (2016, 12) termed a half splice. 
Finally IDF and Diewert and Fox (2020) suggested taking the geometric 
mean of all possible ways of linking the results of the new window to 
the results of the previous window. Diewert and Fox called this the mean 
splice and they thought that this would be the “safest” method of linking.

• The repeat rents model studied in the previous section can 
be applied provided that some adjustment for the aging of 
the rental structure is made.

• Hedonic regressions that regress the logarithms of rents 
on the characteristics of the rental properties plus a time 
dummy variable can be run for various segments of the 
rental market. The estimated time dummy coefficients 
can be converted into period-by-period price levels that in 
turn can be converted into rental property price indices.

The underlying economic structure of the hedonic regres-
sion approach can be explained as follows. All renters in the 
segment of the rental market in scope have the same util-
ity function, u = f(S,L,A,X,Y,Z), where S, L, and A are the 
floor space area, land area, and age of the rental property 
and X, Y, and Z are the other characteristics of the prop-
erty. In period t, renters compete with each other to equalize 
the observed rent to utility ratio for each property. Thus, 
we have the following approximate equalities for each rental 
property n in period t:

  Rtn/f(Stn,Ltn,Atn,Xtn,Ytn,Ztn) ≈ Pt; t = 0,1, . . . .,T; n∈S(t), (150)

where Pt is the common period t rent-to-utility ratio across 
the rental properties in scope. As was seen earlier, Pt can be 
interpreted as the period t price level for the properties in 
scope. It can be seen that equation (150) can be turned into 
the following (possibly nonlinear) regression model:

lnRtn = lnPt + ln f(Stn,Ltn,Atn,Xtn,Ytn,Ztn) + etn;
t = 0,1, . . . .,T; n∈S(t), (151)

where etn are the error terms.
In the following section, we turn our attention to the 

problems associated with valuing the services of OOH.

16. Owner-Occupied Housing: The 
User Cost Perspective
Owner-occupied housing (OOH) is a consumer durable 
good, so the opportunity cost approach to the valuation of 
the services of a consumer durable that was explained in 
Section 5 could be applied to this valuation problem. Recall 
that the opportunity cost valuation of an owned consumer 
durable is simply the maximum of the foregone rental or 
leasing price for the services of the durable during a period 
of time and the corresponding user cost for the durable. In 
the previous two sections, the focus was on generating price 
indices for rental dwelling units. One approach to the valu-
ation of the services of an owned dwelling unit is to impute 
a rent to it using the rent of a comparable rented unit. This 
is the rental equivalence approach to the valuation of the 
services of an owned dwelling unit. A second approach to 
this valuation problem is to construct user costs for owned 
dwelling units. The second approach will be explored in this 
section.

There are a number of difficulties in applying the usual 
durables user cost theory to housing:
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Stn and St + 1n
* ≡ (1 – δ)A(t,n) + 1 Stn; that is, the imputed con-

stant quality amount of structure constant quality quan-
tity declines as time increases. The corresponding constant 
quality amount of land rent, Ltn, remains constant over all 
periods. To form a constant quality overall price index for 
user costs, calculate Laspeyres, Paasche, or Fisher indices 
where the price data for periods t and t + 1 are the vec-
tors [uLt1, . . .,uLtN; uSt1, . . .,uStN] and [uLt + 11, . . .,uLt + 1N; uSt + 

11, . . .,uSt + 1N] and the quantity data for periods t and t + 1 
are the vectors [Lt1, . . .,LtN; (1 – δ)A(t,1)St1, . . .,(1 – δ)A(t,N)StN] 
and [Lt1, . . .,LtN; (1 – δ)A(t,1) + 1St1 , . . ., (1-d)A(t,N) + 1 StN]. Adjust-
ments for new housing and demolitions can be made as well.

It can be seen that it is not a simple matter to implement 
the user cost approach to valuing the services of OOH. 
However, at the national level, it may be possible to use 
national balance sheet estimates for the value of OOH and 
for the value of OOH structures. Thus, the value of OOH 
land can be obtained by subtracting the value of OOH 
structures from the total OOH property value. A rough 
approximation to the price of OOH land can be obtained 
as the OOH value of land since the quantity of land in use 
for housing purposes will not change much from period 
to period.144 Aggregate price and quantity indices for 
structures used by homeowners may be available from 
the national accounts of the country if the country has a 
system of total factor productivity accounts.145 However, 
this information may only be available on a quarterly 
or annual basis and on a delayed basis, which limits the 
usefulness of this information for the construction of a 
monthly CPI.

However, monthly information on housing sales is often 
collected by private companies (such as real estate associa-
tions). This information usually includes information on 
housing characteristics. Thus, it becomes possible to imple-
ment hedonic regression models along the lines explained in 
Sections 11 and 12, and the information from these regres-
sions can be used in order to implement simplified user cost 
approaches. It should be noted that Iceland has used a sim-
plified user cost approach to value the services of OOH in its 
CPI for many years without encountering opposition to the 
use of user costs.146

17. Valuing the Services of  
OOH: User Costs versus  
Rental Equivalence
In this section, the various factors that cause the user cost 
of an owned dwelling unit to differ from a rental price for 
a comparable property are examined.147 In addition, other 

period t to generate very smooth estimates for the expected land inflation 
rate in their user costs for land in the United States.
144 For an example of this methodological approach to obtaining housing 
land price indices, see Knoll, Schularick, and Steger (2017).
145 The use of user costs to measure capital input in production accounts 
can be traced back to Dale Jorgenson and his coauthors; see Hall and Jor-
genson (1967), Christensen and Jorgenson (1969), and Jorgenson (1989).
146 See Guðnason and Jónsdóttir (2011). Simplified user costs are also dis-
cussed in Diewert (2005a), Verbrugge (2008), and Hill, Steurer, and Waltl 
(2020).
147 Our discussion here is similar to that of Hill, Steurer, and Waltl (2020) 
who note that the services a household obtains from renting a dwelling 
are not necessarily the same as the services obtained by an owner-occu-

• Each owned dwelling unit is a unique good due to its 
unique location and the fact that the structure depreciates 
over time (and renovations may be undertaken over time).

• Each owned dwelling unit does not trade in each time 
period. Thus, precise period-by-period market opportu-
nity costs are not readily available.

• An owned dwelling unit is a composite commodity made 
up of separate land and structure components. In general, 
the price trends in these two components will be different.

In order to deal with the aforementioned difficulties, typi-
cally, some form of econometric modeling will be required. 
Thus, suppose that some form of hedonic regression on sales 
of owned dwelling units in scope has been undertaken, such 
as the various builder’s models explained in Sections 11 and 
12. Suppose that we have information on a sample of owned 
properties in scope for periods t and t + 1 and there are N 
properties in the sample. We assume asset prices, PLtn and 
PStn,

141 can be assigned to the land and structure areas, Ltn 
and Stn, that can be imputed for rental dwelling n in period 
t. The aggregate user cost Utn is approximated by the sum 
of the (end-of-period) user cost components for land and 
structures, uLtn and uStn, respectively. The geometric model 
of depreciation for structures is used, and the one-period 
depreciation rate is 0 < δ < 1. The depreciation rate for land 
is 0. The age of the structure for rental unit n in period t is 
A(t,n) periods. Setting the overall user cost value of unit n in 
period t and t + 1 to the sum of the corresponding land and 
structure user costs leads to the following equations:

Utn = uLtnLtn + uStn(1 – δ)A(t,n)Stn; n = 1, . . .,N 
   = [rt – iLt]PLtnLtn + [rt – iSt + (1 + iSt)δ]PStn (1 – δ)A(t,n)Stn; (152)

Ut + 1n = uLt + 1nLtn + uSt + 1n(1 – δ)A(t,n) + 1 Stn; n = 1, . . .,N
= [rt + 1 – iLt + 1]PLt + 1nLtn + [rt + 1 – iSt + 1 

 + (1 + iSt + 1)δ]PSt + 1n (1 – δ)A(t,n) + 1Stn, (153)

where rt is the opportunity cost of capital for the owners 
of the owned properties in period t and iLt and iSt are the 
land and structure price inflation rates that owners expect 
at the beginning of period t. Note that the land and struc-
ture areas for unit n, Ltn and Stn, typically do not change 
over time. It is well known in the housing literature that 
user costs for dwelling units are much more volatile than 
the corresponding rents for the same units.142 Thus, in  
order for the user costs Utn and Ut + 1n to approximate their 
market rents (if they were rented), it is necessary to use a 
nominal smoothed value for the nominal interest rates rt 
and particularly for the expected asset inflation rates, iLt 
and iSt.

143 Note that the quantity of constant quality struc-
ture for property n in periods t and t + 1 are Stn

* ≡ (1 – δ)A(t,n) 

141 PStn is the price of a square meter of new structure of the type used by 
owned unit n at the beginning of period t.
142 On this point, see Genesove (2003), Verbrugge (2008), Shimizu, 
Nishimura, and Watanabe (2010b), Diewert and Nakamura (2011), Gar-
ner and Verbrugge (2011), and Suzuki, Asami, and Shimizu (2018).
143 The expected land inflation rate iLt should be an average of land price 
inflation over the past 15 to 25 years to reflect the long holding periods 
that investors have for rental properties and the high transaction costs 
of buying and selling properties. Diewert and Fox (2018) used a rolling 
window annualized 25 year inflation rate for land for the 25 years prior to 
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factors that affect user costs for house in general will be 
discussed.148

• Utilities such as electricity, water, and natural gas may 
be included in the rent for a dwelling unit that is similar 
to an owned unit. The user cost of an owned unit should 
exclude these costs since these expenditures are covered 
in other categories of a CPI.

• When calculating the user cost of the owner of a dwelling 
unit of renting the unit, there is the problem of determin-
ing what is the correct market rental opportunity cost. It 
turns out that all rents paid in say period t for comparable 
units to an owned unit can be classified into three cat-
egories: (i) the rental agreement is not being renegotiated 
during this period, (ii) the rental agreement is renegoti-
ated during this period with the same tenants, and (iii) the 
rental agreement is a new one with new tenants. Typically, 
there are no escalations of rents for continuing tenants 
during the leasehold period, and often, renegotiated rents 
with continuing tenants are also sticky; that is, there is 
not much change in these renegotiated rents.149 For pur-
poses of measuring the user cost of an owner of renting 
an owned unit, category (iii) rents should be used as the 
appropriate comparable market rent.150

• Property taxes will be included in market rents, and they 
should also be included in an owner’s user cost.

• Normal maintenance expenditures on the structure will 
be part of market rents. These expenditures should not be 
included in an owner’s user cost for a dwelling unit that 
is being used by the owner since these expenditures by 
homeowners should already be included in other expendi-
ture categories in the CPI. Landlords may also have con-
siderable overhead expenses that are associated with the 
management of rental properties. These expenses can per-
haps be grouped together with maintenance expenditures.

• The structure depreciation rate for rented dwelling units 
may be higher than the rate for comparable owned dwell-
ing units, since owners are likely to take better care of 
their property and will avoid property damage. This 
expected difference in the value of depreciation should be 

pier. One difference between our analysis and their analysis it that their 
user cost formula is a single user cost formula that applies to the entire 
property. However, depreciation affects only the structure part of rents 
and if one attempts to adjust a market rent for this aging factor, it is nec-
essary to apply the depreciation adjustment only to the structure part of 
rents.
148 There are many papers that compare user costs with equivalent rents. 
For US studies see Verbrugge (2008, 2012), Garner and Verbrugge (2009, 
2011), and Adams and Verbrugge (2021). For comparisons, for Belgium, 
see Goeyvaerts and Buyst (2019) and for Ireland, see Coffey, McQuinn, 
and O’Toole (2020).
149 On the stickiness of rents, see Shimizu, Nishimura and Watanabe 
(2010b), Lewis and Restieaux (2015, 72–75), Gallin and Verbrugge (2019), 
Coffey, McQuinn and O’Toole and Suzuki, Asami and Shimizu (2021). 
Lewis and Restieaux label their three categories as (i) Occupied Let, (ii) 
Renewal, and (iii) New Let. Their category (i) is a stock measure that 
includes all occupied rental units while their categories (ii) and (iii) match 
up with categories (ii) and (iii) in the text above. Rents in categories (ii) 
and (iii) may be subject to rent controls which means that rents in these 
categories do not reflect current opportunity costs. The problems caused 
by rent controls are discussed by Díaz and Luengo-Prado (2008) and Cof-
fey, McQuinn and O’Toole (2020).
150 However, when constructing a rental price index for renters, rents for 
all 3 categories should be used.

deducted from the market rent that is applied to a compa-
rable owned home.

• The owners of rental properties need to charge a small 
premium to the rents that they receive from rented units 
in order to cover the loss of rental income due to vacan-
cies. This vacancy premium does not apply to the user 
cost of an owned unit, and thus the comparable market 
rent for an owned unit should be adjusted downward to 
account for this vacancy factor.

• Insurance payments are included in market rents. How-
ever, in the CPI, insurance payments made by owner 
occupiers of their dwelling units will typically be included 
in another category, so in this case, the imputed insurance 
premiums should be deducted from the market rent that 
is applied to a comparable owned home.

• The opportunity cost of capital for a landlord and for an 
owner living in a dwelling unit may be different. A land-
lord who rents properties to tenants may include a risk 
premium in his or her cost of capital to account for pos-
sible downturns in the rental market.

• It is likely that there is an owner’s premium to owning 
rather than renting. A poor person may not qualify for 
a mortgage loan to purchase a dwelling unit so he or she 
is forced to rent rather than to purchase. A richer per-
son has the choice between renting or owning a dwelling 
unit of the same quality. If the richer person is risk averse, 
he or she will probably prefer to own the same quality 
dwelling unit rather than renting to eliminate the trans-
action costs of moving if evicted. The risks of unforeseen 
increases in rents demanded by the landlord are also 
eliminated by owning rather than renting. This factor 
may help explain why property investors do not purchase 
high-end properties for rental purposes: There is a lack of 
demand to rent expensive properties, and thus user costs 
for the landlord cannot be covered by market rents for 
high-end properties.

Recall that the total user cost of dwelling unit n in period 
t was Utn defined by (152).151 Define period t property value 
of the same property n, Vtn, as the sum of its land value and 
structure value:

 Vtn ≡ PLtnLtn + PStn(1 – δ)A(t,n)Stn; n = 1, . . .,N, (154)

where PLtn is the price per square meter of a unit of land and 
PStn is the price per square meter of a unit of new structure 
of the type on property n for period t. Define the period t 
property n land and structure shares of total property value as

  sLtn ≡ PLtnLtn/Vtn; sStn ≡ PStn (1 – δ)A(t,n)Stn/Vtn; n = 1, . . .,N. (155)

Then using (152) and the preceding definitions, the ratio of 
total user cost to property value for property n in period t 
can be written as follows:

Utn/Vtn = [rt – iLt]sLtn + [rt – iSt + (1 + iSt)δ]sStn; 
n = 1, . . .,N. (156)

151 For convenience, we repeat this formula: Utn = [rt – iLt]PLtnLtn + [rt – iSt 
+ (1 + iSt)δ]PStn (1 – δ)A(t,n)Stn.
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Recall that rt is a smoothed longer-term opportunity cost 
of capital for period t, iLt is the long-term expected land 
price inflation rate, iSt is a long-term expected structure 
price inflation rate, and δ is the geometric structure depre-
ciation rate. The rent to capital value ratio or capitaliza-
tion rate152 defined by (156) does not take into account the 
complications that were discussed earlier; that is, the user 
cost Utn that would apply to an owner occupier of dwelling 
unit n in period t is not equal to the rent Rtn that a landlord 
would charge to a tenant for the same dwelling unit. Thus, 
it is necessary to modify (156) to take into account these 
complications. Define vt as the period t rate of expected 
loss of rental income due to vacancies (as a fraction of 
period t capital value), define mtn as expected period t 
maintenance and overhead expenditures for property n 
divided by the corresponding period t structure value,153 
define the land tax rate tLtn as the ratio of land taxes paid 
by the owners of property n in period t to the imputed land 
value PLtnLtn and the structure tax rate τStn as the ratio of 
structure property taxes paid in period t for property n to 
imputed structure value PStn (1 – δ)A(t,n)–1Stn. Finally, define 
πtn as the ratio of insurance payments made in period t by 
property n to imputed structure value PStn (1 – δ)A(t,n)–1Stn. 
Using the preceding discussion on complications to the 
standard user cost model, it can be seen that a more mean-
ingful rent to value ratio decomposition for property n in 
period t is given by the following modification of (156) for 
n = 1, . . .,N:

 Rtn/Vtn = [rt – iLt + vt + τLtn]sLtn + [rt – iSt + (1 + iSt)δ 
 + vt + τStn + mtn + πtn]sStn. (157)

If property tax payments are not a separate category in the 
CPI, then the appropriate user cost for an owner of property 
n in period t, Utn, as a fraction of property value, Vtn, is equal 
to the following expression:

 Utn/Vtn = [rt – iLt + tLtn]sLtn + [rt – iSt 
 + (1 + iSt)δ + τStn]sStn (158)

Note that the terms vt, mtn, and πtn have been dropped from 
(158). Thus, the differences between (157) and (158) are equal 
to the following expressions for n = 1, . . .,N:

 Rtn/Vtn – Utn/Vtn = vt + [mtn + πtn]sStn. (159)

It can be seen that simply applying the rent of a compara-
ble rented dwelling unit to an owned unit will overstate the 
appropriate user cost that should be applied to the owned 
unit. The preceding computations did not take into account 

152 Crone, Nakamura, and Voith (2000) used hedonic techniques to esti-
mate both a rent index and a selling price index for housing in the United 
States. They also suggested that capitalization rates (that is, the ratio of 
the market rent of a housing property to its selling price) can be applied to 
an index of housing selling prices in order to obtain an imputed rent index 
for OOH. As will be shown below, capitalization rates are functions of 
many variables, some of which can change considerably over time. Also, 
it will be seen that capitalization rates for rented houses are not exactly 
appropriate as estimators for capitalization rates for owned houses.
153 Older structures will probably have higher mtn ratios.

the possibility that the depreciation rate for a rental prop-
erty is greater than the corresponding depreciation rate for 
a similar owned property.

The user cost formulae defined by (157)–(159) look rather 
complicated, and they require information that may not be 
available to the statistician. Thus, additional assumptions 
may have to be made that allow approximate user costs for 
owned dwelling units to be calculated. In situations where 
equivalent rental prices are not available, this may be the 
only feasible method to value the services of OOH. For 
example, the European Union issued the following regu-
lation in 2005 that gives guidance in forming estimates of 
the services of OOH when equivalent rental prices are not 
available:

Under the user-cost method, the output of dwelling 
services is the sum of intermediate consumption, 
consumption of fixed capital (CFC), other taxes less 
subsidies on production and net operating surplus 
(NOS). For owner occupied dwellings, no labour 
input is recorded for work done by the owners (1). 
Experience suggests that CFC and NOS are the two 
largest items, each representing 30 to 40 % of output.

CFC should be calculated based on a perpetual 
inventory model (PIM) or other approved methods. 
A separate estimate for the owner-occupied residen-
tial buildings should be available. The net operating 
surplus should be measured by applying a constant 
real annual rate of return of 2.5% to the net value 
of the stock of owner-occupied dwellings at current 
prices (replacement costs). The real rate of return of 
2.5% is applied to the value of the stock at current 
prices since the increase in current value of dwellings 
is already taken account of in the PIM. The same 
rate of return should be applied to the value of the 
land at current prices on which the owner-occupied 
dwellings are located.

The value of land at current prices may be difficult 
to observe annually. Ratios of land value to the value 
of buildings in different strata may be derived from 
an analysis of the composition of the costs of new 
houses and associated land.

Eurostat (2005).

To value the services of OOH in Iceland, the highly simpli-
fied user cost formula Ut = (rt

* + δ)Pt was used, where Ut is 
the period t property user cost, rt

* is a real interest rate (that 
varied between 3.6 and 4.3 percent), δ is an annual prop-
erty depreciation rate (set equal to 1.25 percent), and Pt is a 
period t constant quality property price index.154

The Office for National Statistics in the United Kingdom 
used the user cost formula Ut = (r + m + δ – i)Pt to value the 
services of OOH, where r is a rate of return that includes a risk 
premium, δ is a depreciation rate, m is the maintenance rate, i 
is the expected capital appreciation rate of the unit, and Pt is  

154 See Guðnason and Jónsdóttir (2011, 148). Note that as in the case of 
Iceland, the depreciation rate is applied to the total property value and 
not just to the structure value. This may be an acceptable approximation if 
the shares of land and structure in the total property value remain roughly 
constant over time. However, the empirical results of Knoll, Schularick, 
and Steger (2017) on house price inflation in 14 advanced economies indi-
cate that the share of land has increased substantially in recent years.
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a period t property price index.155 For other simplified user cost 
formulae, see Verbrugge (2008) and Garner and Verbrugge 
(2009). When they set i equal to expected CPI inflation, reported 
rents approximated the corresponding user costs fairly well.

Returning back to the user cost formulae defined by (157) 
and (158), there is another factor that will tend to make the 
user cost valuation of the services of an owned dwelling unit 
much bigger than the corresponding actual rental price: 
Households that rent tend to be poorer than households that 
own. Thus, renters simply cannot afford to rent high-end hous-
ing units. High-end dwelling units that do rent will tend to rent 
for prices that are much less than their long-run user costs.156 
In advanced countries, the rent-to-property-value ratio for the 
more expensive properties tends to be about one half the rent-
to-property-value ratio for the least expensive properties.157 
Thus, it is likely that the widespread use of the rental equiva-
lence approach to the valuation of the services of OOH results 
in a measure of the value of housing services that are much 
lower than valuations based on long-run user costs.

There is one additional troublesome issue that has not 
been discussed thus far, and that is the issue of what to do 
with transfer costs. Transfer costs are the costs associated 
with the purchase of a dwelling unit. These costs include 
transaction taxes, legal fees, and real estate agent fees. 
These costs can be substantial. Thus, when a household pur-
chases a dwelling unit, the final cost of the purchase should 
include all of the associated transfer costs. According to 
user cost theory, the appropriate valuation of the property 
at the end of the period should be the value of the sale of 
the house after transfer costs. This viewpoint suggests that 
the transaction costs of the purchaser should be immedi-
ately expensed in the period of purchase. However, from the 
viewpoint of a landlord who has just purchased a dwelling 
unit for rental purposes, it would not be sensible to charge 
the tenant the full cost of these transaction fees in the first 
month of rent. The landlord would tend to capitalize these 
costs and recover them gradually over the time period that 
the landlord expects to own the property. Thus, take the 
capitalized transfer costs that are charged to property n in 
period t and divide by the total property value Vtn to obtain 
the imputed property transfer cost ratio, λtn. The new rental 
cost formula for rented unit n in period t, the counterpart to 
(157), becomes the following formula:

Rtn = [rt – iLt + vt + τLtn + λtn]PLtnLtn + [rt – iSt + (1 + iSt)δ 
 + vt + τStn + mtn + ptn + λtn]PStn(1 – δ)A(t,n)–1Stn. (160)

From the viewpoint of an owner of a newly purchased 
dwelling unit, the owner does not actually sell the unit in 
the next period; the owner holds on to the dwelling unit for 

155 See Lewis and Restieaux (2015, 156). We have changed their notation 
to match up with our notation.
156 Often high-end houses that are not being used by their owners are 
rented out at prices that are far below their user costs just so someone 
will be in the house to maintain it and deter theft and vandalism. This is 
the “caretaker” explanation for falling ratios of rents to property value as 
property values increase.
157 See Heston and Nakamura (2009, 2011). Aten (2018) found similar 
results for the United States. Shimizu, Diewert, Nishimura, and Wata-
nabe (2012) found that user cost valuations for OOH in Tokyo were about 
1.7 times as large as the equivalent rent estimates.

periods that range from 10 to 20 years on average. Thus, it 
is probably best to regard the transfer costs as a fixed cost 
that should be amortized over the expected holding period 
before the dwelling unit is sold again. If this amortization 
is appropriate, then the new user cost formula that is the 
counterpart to (158) is the following formula, which should 
be used to value the services of the owned unit if it is not 
rented out to tenants:

 Utn = [rt – iLt + τLtn + λtn]PLtnLtn + [rt – iSt + (1 + iSt)δ 
 + τStn + λtn]PStn (1–δ)A(t,n)–1Stn. (161)

The preceding discussion indicates that it is not a straight-
forward matter to determine the conceptually correct 
rental equivalent price to value the services of an owned 
dwelling unit.158

18. The Payments Approach and  
the Household Costs Index
A fifth possible approach to the treatment of OOH in a 
CPI, the payments approach, was described by Goodhart as 
follows:

The second main approach is the payments ap-
proach, measuring actual cash outflows, on down 
payments, mortgage repayments and mortgage in-
terest, or some subset of  the above. . . . Despite its 
problems, such a cash payment approach was used 
in the United Kingdom until 1994 and still is in 
Ireland. 

Charles Goodhart (2001, F350–F351)

Thus, the payments approach to OOH is a modified cash 
flow approach to the costs of operating an owner-occupied 
dwelling.159 It consists mainly of mortgage interest and prin-
cipal payments along with property taxes. Imputations for 
capital gains, for the cost of capital tied up in house equity 
and depreciation, are ignored in this approach. This leads to 
the following objections to this approach; that is, it ignores 
the opportunity costs of holding the equity in the owner-
occupied dwelling, it ignores depreciation, and it uses nomi-
nal interest rates without any offset for anticipated changes 
in the price of land and the structure over the accounting 
period. In general, due to its omission of depreciation, the 
payments approach will tend to lead to smaller monthly 
expenditures on OOH than the rental equivalence, user cost, 
and opportunity cost approaches, except during periods of 

158 For a more comprehensive decomposition of the user cost formula 
for an owned dwelling unit with a mortgage on the unit, see Díaz and 
Luengo-Prada (2008), Diewert, Nakamura, and Nakamura (2009), Diew-
ert and Nakamura (2011), and Goeyvaerts and Buyst (2019).
159 It is not a true cash flow approach because it omits the outlays for the 
purchase of a dwelling unit and it omits the potential benefits from the 
eventual sale of the unit. The Office for National Statistics (ONS) in the 
United Kingdom correctly labels this class of index as a Household Costs 
Index (HCI). The ONS describes this type of index as follows: “More 
specifically, they will aim to measure how much the nominal disposable 
income of different household groups would need to change, in response 
to changes in costs, to enable households to purchase the same quantity 
of goods and services of the same quality. Put simply, the broad approach 
of the HCI is to measure the outgoings of households” (ONS, 2017, 2).
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high inflation, when the nominal mortgage rate term may 
become very large without any offsetting item for pos-
sible house price inflation.160 This feature of the payments 
approach makes it unsuitable for measuring the services of 
OOH in a cost of living index.

The payments approach (like the acquisitions approach) 
is not a suitable approach if the goal of consumer price mea-
surement is to measure the flow of consumption services. 
The rental equivalence, user cost, and opportunity cost 
approaches are useful for measuring the flow of consump-
tion services. The acquisitions approach is useful for central 
bank monitoring of marketplace consumer price inflation 
due to its avoidance of imputations (except imputations for 
quality change are allowed).

The current corona virus pandemic has created an 
important use for the payments approach, which as indi-
cated earlier, is essentially a cash flow approach; that is, 
how much money is required to allow a homeowner to 
cover the out-of-pocket costs associated with homeowner-
ship. For households who own their own home and lose 
their sources of income due to government-mandated 
lockdowns of sectors of the economy, it would be useful 
for the government to have estimates of the cash costs of 
keeping pandemic-affected homeowners in their dwelling 
units. However, note that what is required to meet this pur-
pose are estimates of actual household costs rather than an 
index of their costs.

Another rationale for the payments approach has been 
developed by Astin and Leyland, and we outline it here.

Astin and Leyland (2015, 1) labeled their index version of 
the payments approach as a Household Inflation Index (HII), 
and they described it as a measure of “inflation as perceived 
and experienced by households in their role as consumers.” 
Thus, broadly speaking, they wanted to produce a CPI that 
would more closely reflect consumer experience and percep-
tions of the inflation that they are experiencing. On page 3 
of their paper, they outlined more specifically how their HII 
would differ from say the European Union’s HICP, which 
Astin was instrumental in setting up:

• The HII would be a democratic index rather than a pluto-
cratic index.161

160 See the comparison of alternative OOH price indices for the United 
Kingdom using the rental equivalence approach and the payments 
approach made by the ONS (2017, 10) (2018, 3). The latter publication 
also implements the acquisitions approach and compares the three indi-
ces for the United Kingdom. The payments approach index is much more 
volatile than the other two indices.
161 This terminology dates back to Prais (1959). In practical terms, what 
the authors suggested is that national statistical agencies should con-
struct separate CPIs for different groups of households that are demo-
graphically homogeneous. This is sensible advice. The demographic 
groups should be further classified into at least two subgroups depend-
ing on whether the households are renters or owners of dwelling units. 
The owners of dwelling units could be further decomposed into groups 
depending on the size of their mortgage debt. Owners of houses with no 
outstanding mortgages do not require the same compensation to main-
tain their level of housing service consumption as renters. As cash trans-
actions become obsolete, banks and other financial institutions that issue 
household credit and debit cards will have information on household 
purchases at the individual household level. Thus in the future, it will 
become easier to construct CPIs for groups of households classified by 
their demographic characteristics and location.

• Interest paid on car loans, student loans, and credit cards 
are household expenditures that would be in scope for 
their index.

• The HII would include domestic household tourist expen-
ditures abroad and exclude the consumption expenditures 
of foreign tourists in the home country.162

• The HII would include gross insurance premiums paid by 
households for cars, travel, and health.163

Astin and Leyland (2015) suggest that if the main purpose of 
a CPI is for the national indexation of pensions and only one 
CPI is available for this purpose, then a democratic CPI is 
better for this purpose than the usual plutocratic CPI.164 Note 
that interest paid on car loans would be explicitly included 
in a user cost approach to household vehicle services and 
interest on capital tied up would be implicitly included in the 
monthly or annual fee for a leased car. Thus, interest pay-
ments made explicitly or implicitly by households appear in 
the non-payment approaches to the treatment of durables.

Astin and Leyland (2015, 3, 22) also made the following 
specific suggestions on how expenditures on OOH should 
be treated in their proposed HII; their proposed HII should 
include the following categories of household expenditure:

• Total mortgage payments (interest and principal) for the 
dwelling

• The transaction costs associated with the purchase of a house 
(transaction taxes, legal fees, and real estate agent fees)

• State and local property taxes
• Insurance
• Spending on renovations and extensions
• Minor repairs and maintenance

162 Including expenditures made by foreign visitors in a CPI is called the 
domestic treatment of household transactions and excluding foreign visi-
tor expenditures while including national expenditures made by national 
residents abroad is called the national treatment. Thus, Astin and Ley-
land argued for the national treatment of tourist expenditures in their 
CPI concept. On the other hand, Astin (1999, 6–7) argued for the domes-
tic treatment of tourist expenditures for the HICP, which is satisfactory if 
one wants an inflation index which is suitable for central bank monitoring 
of inflation. Diewert (2002, 595–596) argued that the domestic perspec-
tive was appropriate if one wanted a measure of consumer price inflation 
from a domestic producer perspective but the national perspective was 
preferred for a measure of consumer inflation faced by residents in the 
country under consideration.
163 The gross premiums approach simply uses the total premium amount 
as the value of a property insurance policy held by a household. The net 
premium approach subtracts either actual claims or the expected value of 
payments for claims on the policies in force for the period under consider-
ation. From a national accounts perspective, the net claims approach can 
be justified. But the gross claims approach can be justified on a consumer 
theory basis; see Diewert (1993, 415–423). However, in either case, the 
separation of the net or gross premium payments into price and quan-
tity components is a complex matter where standard practice has not yet 
emerged. For example, suppose the risk associated with a claim increases 
over time. Should the price of the policy be quality adjusted downward 
which would be consistent with insurance services as a payment per unit 
risk?
164 A plutocratic CPI implicitly gives a higher expenditure weight to the 
CPI of a well off household. In theory, a democratic CPI should give an 
equal weight to all households when forming the aggregate CPI. How-
ever, rather than producing a democratic CPI, if enough information on 
the spending habits of different groups is available, then it may be prefer-
able to apply a separate CPI that reflected the spending habits of the par-
ticular group under consideration; that is, it may be preferable to publish 
CPIs for different demographic groups.
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Typically, the payments approach applied to OOH would 
not include the principal component of mortgage payments, 
but Astin and Leyland properly note that these payments 
are experienced by households and hence they advocated 
including total mortgage payments in their HII.

The transaction costs associated with the purchase of a 
house should be in scope for an acquisitions CPI as well as 
in a CPI that was based on the user cost approach.165 If the 
OOH component of the CPI were based on the rental equiv-
alence approach, these transaction costs may be partially 
included in the imputed rent applied to the owned dwelling 
unit.166

State and local property taxes paid by homeowners on 
a continuing basis are definitely part of the costs of the 
services of owned housing and should be included in the 
user cost approach to housing. These costs are implicitly 
included in the rental equivalence approach.

Property insurance costs are imbedded in rents, and so 
these costs are included in market rents. Thus, using the 
rental equivalence approach to OOH, housing insurance 
payments should not be added to the equivalent rent. How-
ever, if the user cost approach is used for valuing the ser-
vices of OOH, then housing insurance payments should be 
included in the user cost formula (along with property taxes). 
If insurance payments are a separate elementary category in 
the CPI, housing insurance payments could be included in 
the insurance subindex; that is, it is necessary to avoid double 
counting of household expenditures in constructing a CPI.

Household expenditures on renovations and extensions of 
an owned dwelling unit should be taken into account in a 
CPI. If a user cost approach is being used, then these expen-
ditures should be applied to the structure component of the 
overall property user cost; that is, these expenditures should 
be deflated and added to the owned structure stock for the 
following period. Thus, a renovation to an owned property 
should lead to an increase in the real quantity of the struc-
ture on the property, but it may be difficult to capture this 
quality improvement using the rental equivalence approach. 
Depending on the details of how the rental equivalence 
approach to OOH is being implemented, it may be neces-
sary to treat household expenditures on renovations of an 
owned dwelling unit as a separate category in the CPI. These 
expenditures should be amortized, but it may be acceptable 
to simply treat these expenditures as current expenditures 
instead of recognizing that the benefits of these renovation 
expenditures extend over time. Minor repairs and mainte-
nance also have benefits that extend over time, but the time 
horizon of these benefits will tend to be relatively short, and 
so immediate expensing of these expenditures is an accept-
able approximation.

The previous discussion of the Astin and Leyland pro-
posal shows that many aspects of their suggested index 
are reasonable and not entirely inconsistent with the other 
approaches to the treatment of durables that we have 

165 Conceptually, these transaction costs should be amortized over the 
expected holding period for a house purchase if one uses the user cost 
approach.
166 However, the transaction costs of purchasing a rental property could 
have a longer amortization period if the rental property were held by the 
landlord for a longer time period than the average holding period for 
an owner of a property using the property to provide personal housing 
services.

considered in this chapter.167 However, while their proposed 
HII is a reasonable index that can reflect household experi-
ence and perceptions of inflation, it is not an index that can 
measure household consumption of the services of durable 
goods because it focuses on the immediate costs associ-
ated with the purchase of durable goods and ignores pos-
sible future benefits of these purchases. Thus, the payments 
approach does not lead to indices which are suitable for 
indexation purposes.

The Office for National Statistics (ONS) in the United 
Kingdom has basically implemented much of the Astin and 
Leland proposed HII on an ongoing basis168 and compared 
their new index with traditional acquisition and rental 
equivalence type CPIs; see the ONS (2018). However, the 
ONS (properly) recognized that the HII is focused on costs, 
and so they renamed the index as a Household Costs Index 
(HCI). The ONS describes their HCI in a methodology 
paper as follows:

The Household Costs Indices (HCIs) are a set of 
 experimental measures, currently in development 
1, that aim to more closely reflect UK households’ 
experience of changing prices and costs. More spe-
cifically, they will aim to measure how much the 
nominal disposable income of different household 
groups would need to change, in response to changes 
in costs, to enable households to purchase the same 
quantity of goods and services of the same quality. 
Put simply, the broad approach of the HCIs is to 
measure the outgoings of households. 

Office for National Statistics (2017, 2)

The ONS (2017, 2) noted that its HCI differs from a tra-
ditional CPI169 that uses the rental equivalence approach to 
the treatment of OOH in the following four ways:

• The use of democratic weighting
• The use of a payments approach for measuring owner 

occupiers’ housing costs (OOH)
• The inclusion of a measure of interest costs on credit card 

debt
• The use of gross expenditure to calculate the weight for 

insurance premiums

These dot points show that the ONS HCI is very similar to 
the Astin and Leyland HII. Both indices are versions of the 
payments approach. One major difference is that the ONS 
treatment of the payments approach includes mortgage 
interest on owned dwellings but excludes repayment of prin-
cipal (whereas the HHI includes repayment of principal).170

167 For a more complete discussion of the Astin and Leyland proposals, 
see ONS (2017).
168 See the Office for National Statistics (2018).
169 The traditional CPI that the ONS uses for comparison purposes 
(which they call the CPIH) is identical to Eurostat’s HICP except that the 
services of OOH are measured by the rental equivalence approach plus 
local property taxes (Council Taxes); see ONS (2016, 3). The HICP simply 
omits the services of OOH.
170 See ONS (2017, 8–9). The ONS payments approach to OOH is com-
pared to the rental equivalence approach for the United Kingdom over 
the years 2006–2016. In the future, the ONS intends to produce HCIs with 
and without principal payments.
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The ONS cautions users that there are problems with the 
use of the payments approach:

Using a payments-based approach is commonly con-
sidered to be the best construct for assessing changes 
in net money incomes over time. This is in line with 
the stated aims of the HCIs, as briefly set out in 
section 1 of this article. However, the inclusion of 
nominal interest payments on mortgage debt is not 
without its problems conceptually. Its inclusion has 
been criticised as the treatment of interest flows is 
not consistent across persons (or households). For 
example, Charles Goodhart (2001) describes that if  
a borrower is worse off in some way when interest 
rates rise, then equivalently a lender owning an inter-
est bearing asset is better off, and it may be analyti-
cally unsound to include one but not the other. 

Office for National Statistics (2017, 10)

The Goodhart objection to the payments approach is simi-
lar to our major objection: The approach measures the costs 
facing households but does not always recognize possible off-
setting benefits that may accrue to households. However, a 
payments-type index can be useful as an index of household 
outlays and hence perceptions of inflation, which was the rea-
son why Astin and Leyland introduced their version of the pay-
ments approach to the measurement of household inflation.

The ONS compares its versions of the rental equivalence, 
acquisitions, and payments approaches to the measurement 
of the services of owner-occupied dwellings on a regular 
ongoing basis; see ONS (2018, 3) for a chart of the three types 
of index for the United Kingdom over the years 2005–2018 
on a quarterly basis. This chart shows the volatility of the 
payments-based index as compared to the other two indices. 
The rental equivalence index shows a steady upward growth 
with the net acquisitions index being slightly more volatile 
and finishing above the rental equivalence index. The pay-
ments index finished up far below the other two indices. This 
work by the ONS shows that the choice of methodology for 
the treatment of OOH in a CPI matters.

The ONS has provided a number of publications that 
explain in some detail both the rationale for the four main 
approaches to the treatment of OOH and data sources and 
methods; see ONS (2016, 2017, 2018). These publications 
should be useful for statistical agencies that are planning 
to offer alternative analytical indices for the treatment of 
OOH in a CPI. However, some comments on how the ONS 
constructs its rental equivalence and acquisitions indices for 
OOH may be useful.

The ONS (2016, 33) explains that it constructs its net 
acquisitions approach index for OOH as follows: Prices are 
based on a price index for new house sales, but the weights 
for these prices are set equal to the value of residential 
construction during the time period under consideration. 
The underlying price concept that the ONS would like to 
implement for its net acquisitions index is the price of the 
structure component of new dwelling unit sales to owners 
of houses who live in them. In other words, the land com-
ponent of the selling price is to be stripped out of the sale 
price. The ONS recognizes that its empirical measures of 
price and expenditure are flawed for this treatment of OOH: 
The prices collected are sales of new dwelling units to all 

purchasers (purchasers who intend to live in the dwelling 
unit and hence are in scope and purchasers who plan to 
rent the dwelling unit to tenants and hence are not in scope 
for OOH), and more importantly, the selling prices of new 
dwelling units include a land component that is supposed 
to be excluded. The residential investment weights are also 
flawed because the investment includes investments in new 
rental units that should be excluded. The reason for the 
preceding desired treatment of the acquisitions approach 
applied to new dwelling units is that Eurostat would like 
to implement this net approach171 to new house sales for 
its HICP.172 A possible better solution to implementing this 
pricing concept is to simply use the deflator for residential 
building investments, which is already constructed by coun-
tries as part of their national accounts. This deflator could 
be improved if the residential building price index could be 
decomposed into two strata: one stratum for sales intended 
for purchasers who plan to live in the new residential struc-
ture and another stratum for investments in rental proper-
ties. But even if this latter decomposition of the residential 
construction price index were not made, using an overall 
residential construction price index along with estimates 
for the value of new rental buildings and for total residen-
tial construction173 would lead to a price index that should 
be much closer to the desired (by Eurostat) price index for 
OOH. These limitations of the ONS acquisitions price index 
for OOH should be kept in mind when looking at their chart 
for the acquisitions, rental equivalence, and payments indi-
ces for OOH in the United Kingdom; see ONS (2018, 3).174

There are also problems with the ONS (2018, 3) rental 
equivalence price index series. ONS (2016, 21–23) explains 
how to construct its rental equivalence index. A sample of 
rental prices is collected across the United Kingdom, and 
then the prices are stratified based on the (i) type of dwell-
ing unit,175 (ii) postal code’ (iii) number of bedrooms, and 
(iv) whether furnished or unfurnished. Given our earlier 
discussion of the application of hedonic regression models 
to the construction of house price indices and rental indices, 
it can be seen that the list of stratifying characteristics is 
not ideal. The number of bedrooms can act as a proxy for 
floor space area, but there is no information on land plot 
area and no information on the age of the structure. The 
latter omission is particularly important. The evidence from 
hedonic regressions for both selling prices and rental prices 

171 It is a net approach because the gross purchase price of a new dwelling 
unit is to be net of the land price component of the selling price. It is also 
a net approach because it excludes intra-household sales of residential 
housing units.
172 There is already an EU regulation that requires member countries to 
produce such a monthly acquisitions-type index for OOH but since not 
all EU countries are yet able to comply with the regulation, the current 
HICP still ignores OOH.
173 The OOH expenditure weight could be obtained by subtracting the 
value of rental residential investment from total residential investment 
value. A possible reason for not implementing this version of the net 
acquisitions approach to OOH is that national statistical agencies are not 
in a position to produce a monthly construction cost index in a timely 
manner.
174 It is likely that the ONS (2018, 3) acquisitions index has an upward bias 
relative to the Eurostat target net acquisitions index because the ONS 
price index has a substantial land price component in it which will reflect 
rapidly increasing land prices in the UK over the sample period.
175 The four categories are (i) detached house, (ii) semi-detached house, 
(iii) terraced house, and (iv) flat or maisonette.



368

CONSUMER PRICE INDEX MANUAL

indicates that the aging of the structure leads to a quality 
decline in structure service of about 1percent per year for a 
residential property. Thus, if the land and structure compo-
nents of property value are equal, the neglect of structure 
depreciation could lead to a downward bias of about 0.5 per-
cent per year in a rental price index that does not take into 
account the quality decline due to aging of the property. 
This is a substantial bias. The ONS should stratify rental 
properties according to the age of the structure in order to 
take this bias into account (or move to a hedonic regression 
framework with the age of the structure as an explanatory 
variable).

There is another potential bias in the ONS rental equiva-
lence index for OOH. The rental equivalence approach to 
valuing the services of OOH is an opportunity cost approach. 
The choice to live in an owned dwelling unit rather than rent 
it out means that the owner of the structure is giving up the 
current market rent that the owner of the unit could get if the 
unit were rented. This is the appropriate opportunity cost 
from the viewpoint of the rental equivalence approach to 
valuing the services of an owned dwelling unit. Thus, the 
appropriate opportunity cost is the current rent for a prop-
erty that is similar to the owned property to a new tenant, 
but the opportunity cost that the ONS (2016) uses is the 
average of all existing rental prices for similar properties.176 
The latter average will tend to be lower than new rents if 
there is rental price inflation and higher if there is rental 
price deflation.177 Thus, the ONS procedures undervalue the 
rental opportunity costs of living in an owned dwelling unit 
under conditions of general inflation.178

Recall the discussion in the previous section that com-
pared the rental equivalence approach to the opportunity 
cost approach to the valuation of owned housing services. 
The opportunity cost approach sets the true opportunity 
cost of living in an owned dwelling unit as the maximum of 
its market rental price and its user cost. In many countries, 
the ratio of house rent to property value approximately dou-
bles as we move from less expensive to more expensive prop-
erties.179 This means that, in general, the rental equivalence 
approach to the valuation of OOH will give a much smaller 
expenditure weight to the services of OOH as compared to 
the user cost and opportunity cost approaches.

The preceding limitations of the ONS rental equivalence 
price index for OOH should be kept in mind when looking at 
the ONS charts for the acquisitions, rental equivalence, and 
payments indices for OOH in the United Kingdom; see the 
charts in ONS (2018, 3).

We conclude this section by reviewing some issues con-
cerning the timing of payments made by households for the 

176 Existing (contractual) rental prices are appropriate for valuing rental 
properties in a CPI. But they are not appropriate for use in the rental 
equivalence approach (except as an approximation): the rental equiva-
lence approach requires the use of current opportunity costs, not histori-
cal costs.
177 The ONS is well aware of this difference: “There is an important dif-
ference between newly let properties and existing tenants; price rises are 
highest when properties are newly let compared with existing tenants 
renewing a lease” (Office for National Statistics, 2016, 50).
178 The use of all contract rents instead of renewal contract rents to value 
the services of a house will lead to a lower weight in the CPI (under condi-
tions of general inflation) but it may not affect the corresponding rate of 
change in the price index.
179 See footnotes 157 and 158 in the previous section.

consumption of durable goods. Consider the following quo-
tation from the ONS:

Consumption expenditure can be measured in 
three ways which it is important to distinguish. 
These ways are:

Acquisition means that the total value of all goods 
and services delivered during a given period is taken 
into account, whether or not they were wholly paid 
for during the period.

Use means that the total value of all goods and 
services consumed during a given period is taken into 
account.

Payment means that the total payments made for 
goods and services during a given period is taken 
into account, whether or not they were delivered.

For practical purposes, these three concepts can-
not be distinguished in the case of non-durable items 
bought for cash, and they do not need to be distin-
guished for many durable items bought for cash. 
The distinction is, however, important for purchases 
financed by some form of credit, notably major 
durable goods, which are acquired at a certain point 
of time, used over a considerable number of years, 
and paid for, at least partly, some time after they 
were acquired, possibly in a series of instalments. 
Housing costs paid by owner-occupiers are an obvi-
ous example. 

Office for National Statistics (2010, 6)

In what follows, we will look at the problems associated 
with the three methods of valuation in a number of specific 
cases.180

Case 1: The payment period coincides with the acquisition 
period. Let P1 be the acquisition price for such a unit 
of a durable good in period 1. Then the acquisition 
price in period 1 is obviously P1, the payments price 
is also P1, and the period 1 user cost price is p1, and its 
exact form depends on the model of depreciation that 
is applicable for this particular durable good. In other 
words, there are no problems in sorting out the three 
methods of valuation in this case.

Case 2: The initial payment period coincides with the 
acquisition period but payments for the purchase of the 
durable continue on for subsequent periods. Suppose 
that payments must be made for T periods and the 
sequence of monetary payments is p1,π2,  .  .  .,pT. Sup-
pose also that the sequence of expected one-period 
financial opportunity costs of capital for the purchas-
ing household is r1,r2,  .  .  .,rT–1. Then the discounted 
stream of payments, P1, is the period 1 (expected) cost 
of purchasing the good, where P1 is defined as follows:

 P1 ≡ π1 + (1 + r1)
–1π2 + (1 + r1)

–1(1 + r2)
–1π3 + . . . 

 + (1 + r1)
–1(1 + r2)

–1 . . . (1 + rT–1)
–1πT. (162)

180 We will address the problems from the viewpoint of the approach to 
intertemporal consumption theory that dates back to Hicks (1946).
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In this case, the acquisitions price for the durable good in 
period 1 is defined to be P1, the payments price is π1, and the 
user cost will be determined using the appropriate depre-
ciation model, where P1 is taken to be the beginning of the 
period price for the durable good. In a subsequent period t 
≤ T, the acquisitions price for the used durable good will be 
0, the payments price will be πt, and the period t user cost 
value vt will be determined using the appropriate deprecia-
tion model for this type of durable good. If the useful life 
of the durable good happens to equal T and if the period 
t payment is equal to the corresponding period t user cost 
valuation vt for t = 1,2,  .  .  .,T, then obviously, the period t 
user cost valuation vt will be equal to the observable period 
t payment πt.

181

There are problems associated with the computation of 
P1 defined by (162); that is, in order to compute P1 when the 
durable good is purchased during period 1, the sequence of 
future payments πt has to be known, and guesses will have 
to be made on the magnitudes of the sequence of expected 
nominal interest rates rt. However, the important point to 
be made here is that P1 defined by (162) will be less than the 
simple sum of πt, Σt=1

T πt, provided that the nominal interest 
rates rt are positive.

Case 3: The full payment for the good (or service) is made 
in period 1 but the services of the commodity are not 
delivered until period t. Let the period 1 payment be π1 
as usual. Thus, the sequence of payments associated 
with the purchase of the commodity under consider-
ation is π1 for period 1 and 0 for all subsequent periods. 
The acquisition of the commodity does not take place 
until period t, but the appropriate acquisition price Pt 
is not the period 1 payment, π1, but the following esca-
lated period 1 price:

 Pt ≡ (1 + r1)(1 + r2) . . . (1 + rt–1)π1. (163)

The logic behind this valuation is the following one. Dur-
ing period 1 when the product was paid for, the payment 
could have been used to pay down debt (at the interest rate 
r1) or the payment could have been used to invest in an asset 
that earned the rate of return r1. Thus, after one period, the 
opportunity cost of the investment in the pre-purchased 
product has grown to π1(1 + r1); after two periods, the oppor-
tunity cost has grown to π1(1 + r1)(1 + r2), . . . ; and by period 
t, when the good or service is acquired, the opportunity cost 
has grown to π1(1 + r1)(1 + r2) . . . (1 + rt–1), which is (163). The 
important point to be made here is that Pt will be greater 
than the period 1 prepayment, π1, provided that the nomi-
nal interest rates rt are positive. Since the product has not 
been acquired by the household for periods 1,2, . . .,t–1, the 
corresponding user cost valuations, v1,v2, . . .,vt–1, should be 
set equal to 0. However, when period t is reached, “normal” 
user costs can be calculated for durable goods using the Pt 

181 The period t user cost valuation vt for a unit of the durable good that is 
t periods old can be converted into an equivalent amount of a new unit of 
a durable good if the geometric or one-hoss-shay model of depreciation 
is applicable for the durable good under consideration. Otherwise, units 
of the durable goods of different ages at the same point in time need to be 
aggregated using an index number formula.

defined by (163) as the beginning of period t price of the 
durable, assuming that the form of depreciation is known.

Prepayment for services or durable goods is widespread; 
for example, trip and hotel reservations made in advance 
and paid for in advance are service examples, and prepay-
ment for condominium units that are under construction is 
a durable good example.

Case 4: The good or service is acquired in period 1 but is not 
paid for until period 2. In this case, the sequence of pay-
ments is 0, π2, 0, . .  .,0. The commodity is acquired in 
period 1 and the appropriate period 1 acquisition price 
is P1 defined as follows:

 P1 ≡ (1 + r1)
–1π2. (164)

The justification for this acquisition price runs as follows: 
The purchasing household lays aside the amount of money 
P1 to buy the product in period 1. This money is invested and 
earns the one-period rate of return r1. Thus, when period 2 
comes along, the household has P1(1 + r1) = π2, which is just 
enough money to complete the purchase in period 2. Thus, 
P1 is an appropriate period 1 acquisitions price. If the com-
modity is a durable good, then assuming that the form of 
depreciation is known, P1 defined by (164) can be used as the 
beginning of period 1 price for the period 1 user cost, and 
the entire sequence of user costs can be calculated.

This form of pricing is used as a way of offering lower 
prices for a wide variety of products. A particular applica-
tion of this model to a service is the use of credit cards to 
purchase consumption items. A household that pays its bal-
ance owed on time can avoid interest charges and thus can 
postpone payment for its household purchases for up to one 
month in many cases.182

If interest rates are very low, then statistical agencies 
may well find it is not worth taking into account the pre-
ceding refinements. However, if nominal interest rates are 
high, it may be necessary to make some of the preceding 
adjustments.183

It can be seen that the durability of housing creates a host 
of measurement problems that statistical agencies are not 
well equipped to handle.

19. The Treatment of Household 
Monetary Balances in a CPI
The treatment of financial services in a CPI is a controver-
sial topic. The academic literature has not come to a gen-
eral consensus on how to model many financial services 
provided to households. However, given the importance of 
financial services in all economies, it may be useful to out-
line some of the issues surrounding this topic.

We will concentrate on household banking services in this 
section.184 It is clear that many services that banks provide 
to households are reasonably simple to model; that is, it is 

182 However, a household that does not pay off its balance owed in a timely 
fashion will find itself in Case 3.
183 We note that the above adjustments for the timing of payments have 
implications for the system of national accounts that have not been fully 
worked out.
184 There are also important controversies surrounding the treatment of 
insurances services in a CPI.
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straightforward to collect prices on the costs of using the ser-
vices of a safety deposit box. It is not so straightforward to 
measure the services of bank household deposit services or 
bank loans to households. However, it is possible to adapt 
the basic user cost theory explained in Section 4 to model 
the services of household transferable deposits185 and time or 
savings deposits held in banks or other financial institutions.

Recall from Section 4 that r0 was the household’s oppor-
tunity cost of financial capital at the beginning of period 
0. In the national accounts banking literature, r0 is called 
the household reference rate of return on safe assets for the 
period under consideration. We assume that the bank pro-
viding household deposit services pays the deposit holder 
an interest rate of rD

0 on its holdings of bank deposits of 
the type under consideration at the end of the accounting 
period. For a checking account, rD

0 will typically be equal to 
zero. For a savings or time deposit account, rD

0 will typically 
be a number that is less than r0.186 Then the beginning of the 
period user cost uD

0 of holding a dollar of deposits (on aver-
age) throughout period 0 is187

 uD
0 ≡ 1 – (1 + rD

0)/(1 + r0) = (r0 – rD
0)/(1 + r0). (165)

This user cost looks at the opportunity cost of holding a 
dollar of bank deposits at the beginning of the account-
ing period (as opposed to investing the dollar at the rate of 
return of r0 or to paying off outstanding debts at the inter-
est rate of r0), but at the end of the accounting period, the 
deposit holder gets the dollar back plus interest rD

0 earned in 
tying up that dollar for the period, but this amount, equal to 
1 + rD

0, needs to be discounted by one plus the opportunity 
cost of capital, 1 + r0.

As usual, instead of discounting costs and benefits to the 
beginning of the accounting period, the costs and benefits 
can be anti-discounted to the end of the accounting period, 
which leads to the following end-of-period user cost uD

0* of 
holding a dollar of deposits throughout the period:

 uD
0* ≡ (1 + r0)uD

0 = (r0 – rD
0). (166)

Define the household’s nominal asset value of bank deposits 
held at the beginning of period 0 as VD

0, and define the cor-
responding nominal value of deposit services for period 0 as 
vD

0. Given the end-of-period user cost for a bank deposit, 
pD

0, and the (asset) value of household bank deposits at the 
beginning of period 0, VD

0, the imputed (nominal) value of 
bank deposit services from the household perspective, vD

0, is 
defined as the product of pD

0 and VD
0:

 vD
0 ≡ uD

0*VD
0 = (r0 – rD

0)VD
0. (167)

The end-of-period user cost of holding a dollar’s worth of 
bank deposits defined by (166) and the corresponding value 

185 Before internet banking became popular, these deposits were called 
checking deposits.
186 Under current conditions, for some countries, rD could be a small nega-
tive number. For most countries that exhibit low inflation, rD will be a 
small positive number.
187 This user cost of money dates back to Diewert (1974), who did not 
include the deposit interest rate term, rD

0. This extra term was introduced 
by Donovan (1978) and Barnett (1978, 1980).

of total deposit services defined by (167) are derived using a 
household opportunity cost perspective.

The question that now arises is: “What is the real value 
of deposit services to the household?”; that is, what is the 
appropriate deflator for the nominal service flow vD

0 defined 
by (167)? The answer to this question is not clear cut.

In order to answer this question, it is necessary to ask 
what the purpose of the deposit holdings is. Feenstra (1986) 
and others provide an answer to this purpose question: Cash 
balances or their deposit equivalents are held in order to buy 
consumer goods and services. The idea here is that consum-
ers receive income flows from selling their labor services or 
from dividend and bond interest payments at regular inter-
vals. These income flows are converted into cash or bank 
deposits at the beginning of the payment period and then 
are spent over the course of the payment period in order 
to purchase consumer goods and services. This is termed 
a cash in advance model. Thus, if the household purpose in 
holding bank deposits is to buy consumer goods and ser-
vices, then it seems reasonable to deflate VD

0 by the corre-
sponding period 0 aggregate consumer price level (excluding 
financial services), say PC

0, to obtain the equivalent amount 
of real consumption that the nominal value of deposit bal-
ances, VD

0, could purchase; that is, define the consumption 
equivalent of the household’s nominal deposit balances, qD

0, 
as follows:188

 qD
0 ≡ VD

0/PC
0. (168)

Now deflate the value of household deposit services, vD
0 

defined by (167), by qD
0 in order to obtain the price for bank 

deposit services from the household perspective pD
0 defined as 

follows:

pD
0 ≡ vD

0/qD
0 (169)

 = [(r0 – rD
0)VD

0]/[VD
0/PC

0] using (167) and (168)
= (r0 – rD

0)PC
0.

Note that the price level for deposit services for period 0, 
pD

0, is proportional to the consumer price level for goods 
and services in period 0, PC

0. The corresponding real value 
of deposit services for period 0, qD

0, is set equal to the period 
0 nominal household stock of monetary balances, VD

0, 
deflated by the consumer price level for period 0, PC

0.189 We 
note that the data variables which appear in equations (167) 
–(169) are all relatively easy to measure, with the exception 
of the reference rate or opportunity cost of financial capital 

188 Feenstra (1986) provided a formal model of a cash in advance economy 
that justifies the deflation of nominal household bank balances by a CPI. 
Alternatively, we can make a simple opportunity cost argument to justify 
deflating VD by PC: by holding deposits, the household gives up current 
consumption. Note that the conceptually correct CPI to do the deflation 
should be based on the acquisition approach to the construction of a CPI.
189 This user cost approach to modeling the price, quantity, and value of 
household monetary services was developed by Donovan (1978), Barnett 
(1978, 1980), Fixler (2009), and Barnett and Chauvet (2011). For discus-
sions on how the user cost approach to modeling monetary services in 
both the household and production accounts, see Fixler and Zieschang 
(1991, 1992, 1999), Diewert, Fixler, and Zieschang (2011, 2016), Diewert 
(2014), and Diewert and Fox (2018, 2019).
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interest rate, r0. There is no easy answer on how exactly to 
measure this interest rate.190

The cash in advance approach to modeling the demand 
for monetary services can be applied to the household 
demand to hold currency and transferable deposits. Since 
many time deposit bank accounts also allow households to 
use these deposits to buy goods and services, the preced-
ing model could also be applied to these accounts. To get a 
rough idea of the relative size of these two types of monetary 
accounts and their relationship to total annual purchases of 
consumer goods and services, the data from the Integrated 
Macroeconomic Accounts for the United States for the year 
2019 can be used; see the Bureau of Economic Analysis 
(2020). For 2019, final consumption expenditures were 14.56 
trillion dollars; household holdings of currency and trans-
ferable deposits were 1.26 trillion dollars and holdings of 
time and savings deposits were 10.16 trillion dollars. It can 
be seen that these holdings of household monetary assets 
are much larger than the amounts that cash in advance 
models would predict. Thus, households are holding large 
amounts of bank deposits for reasons other than for the pur-
pose of funding their normal purchases of consumer goods 
and services.

Monetary theory suggests several additional reasons for 
consumers to hold currency and bank deposits:

• As a store of value; that is, to save up funds for future 
major purposes such as buying an automobile or a house

• For precautionary purposes; that is, as a form of self-
insurance against future income shocks

• For portfolio balancing purposes

These purposes reflect the fact that a large fraction of con-
sumer holdings of currency and bank deposits are probably 
held for investment purposes broadly speaking, rather than 
as a means of facilitating current period purchases of con-
sumer goods and services. Thus, statistical agencies con-
structing a CPI may want to rule holdings of currencies and 
deposits as being out of scope. On the other hand, it would 
be useful for statistical agencies to produce a supplementary 
CPI that includes the services of monetary deposits along 
the lines indicated previously because household holdings 
of monetary deposits have a direct opportunity cost in fore-
gone consumption and including monetary services in a 
broader measure of consumption would be useful for some 
analytic purposes.

It should be mentioned that not all economists subscribe 
to the preceding user cost approach for modeling the house-
hold demand for monetary services. The Basu, Fernald, 
Inklaar, and Wang approach to modeling bank outputs and 
inputs is critical of the preceding deflation-based user cost 
approach to modeling the price and quantity of financial 
services presented in this section.191 Rather than defining the 
real quantity of financial services as being proportional to 
suitably deflated stocks of financial assets held by banks or 
households, the aforementioned authors suggest that direct 

190 See the discussion between Fixler (2009), Basu (2009), and Wang, 
Basu, and Fernald (2009).
191 See Wang (2003), Wang, Basu, and Fernald (2009), Basu (2009), Basu, 
Inklaar, and Wang (2011), Inklaar and Wang (2010), and Colangelo and 
Inklaar (2012).

measures of the services rendered by consuming financial 
services be constructed (such as the number of transactions) 
and then the nominal service flows would be deflated by 
these direct measures, yielding an implicit price index for 
the services as an alternative to deflating nominal asset 
holdings by a price index.192 We have two responses to this 
methodology:

• Direct transaction fees are taken into account separately 
in our suggested user cost approach (although some free 
services may be omitted in this approach)

• The transaction fee approach seems to be a cost of pro-
duction approach that is not necessarily relevant for con-
sumers of the service

However, economists have not settled on a universally 
accepted methodology for modeling the household demand 
to hold bank deposits, so statistical agencies need to keep 
this fact in mind.

20. Summary and Conclusion
It is clear that constructing constant quality price indices 
for consumer durables is not as conceptually simple as con-
structing price indices for nondurables and services where 
the matched model approach can guide index construction. 
The fundamental problem of accounting arises when con-
structing a price index for the services of a durable good: 
Imputations will have to be made in order to decompose the 
initial purchase cost into period-by-period  service flow com-
ponents over the life time of the durable good. The method 
of imputation will involve assumptions, which may not be 
accepted by all interested parties. In spite of this difficulty, it 
will be useful for statistical agencies to construct analytical 
series for the services of long-lived consumer durables that 
can be made available to the public. This will meet the needs 
of different users.193

When constructing property price indices based on 
sales of properties, there is another factor that reinforces 
the argument for multiple price indices: When transactions 
are sparse, property indices based on the sparse data can 
be very volatile. Thus, for some purposes, it may be useful 
to construct a smoothed index (that is revised for a cer-
tain number of months) in addition to a volatile real-time 
index.194

For non-housing consumer durables, at present, sta-
tistical agencies produce CPI based on the acquisitions 
approach. This type of index is useful for measuring con-
sumer price inf lation based on market transactions, with 
minimal imputations (except for possible quality change). 
In addition to this standard index, statistical agencies 
should produce supplementary indices based on the  

192 See Inklaar and Wang (2010) and Colangelo and Inklaar (2012) for 
empirical estimates of the differences between the demand-side deflation 
approach and an approach incorporating “engineering” indicators of 
financial service delivery.
193 Hill, Steurer, and Waltl (2020), using Australian data, found substan-
tial differences using the three main approaches to the valuation of OOH. 
This emphasizes the need for statistical agencies to produce estimates for 
all three approaches if possible.
194 See Rambaldi and Fletcher (2014) on various smoothing methods 
that could be used. Diewert and Shimizu (2020) suggested a very simple 
method which worked well in their empirical application.
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user cost approach in order to more accurately measure the 
flow of services generated by stocks of consumer durables.195

The valuation of the services of housing is very difficult 
due to the fact that housing services are unique: The loca-
tion of each dwelling unit is unique and the location affects 
the land price component of the property and thus affects 
rents and user costs. Moreover, the structure component of 
housing does not remain constant over time due to deprecia-
tion of the structure and to renovation expenditures. various 
methods that can deal with these difficulties (to some degree 
at least) were explained in Sections 11–17. The details of the 
methods are too complex to summarize here, but the sug-
gested methods based on various hedonic regression models 
have been applied and offer possible ways forward.

For OOH, the three main approaches should be imple-
mented by statistical agencies to serve the needs of different 
users. There are two possible versions for the acquisitions 
approach depending on how the new dwelling purchase is 
treated: (i) construct a price index for the purchase of new 
dwelling units in an inclusive basis, including the price of 
land, or (ii) exclude land cost from the purchase cost. The 
latter index should be well approximated by a construction 
cost index (with appropriate margins added for developer 
margins). The inclusive index will be useful for new house 
buyers, who have to pay for the land plot as well as the new 
structure. A rental equivalence price index for the services 
of OOH should also be constructed. For many countries, 
such an (implicit) index is already available as part of the 
national accounts valuation for the services of OOH.196 A 
user cost index for the services of OOH should also be con-
structed since the user cost valuation for the services of a 
high-end dwelling unit will typically be much greater than 
the corresponding price that the unit could rent for.197 If the 
rental equivalent rent and user cost for an owned unit are 
constructed and are of the same quality, then applying the 
opportunity cost approach to the valuation of the services of 
the owned unit is appropriate.

For rented housing, the measurement problems are per-
haps not so severe; monthly or weekly rents can be observed 
for the same rental unit, and so it would seem that the usual 
matched model methodology could be applied in this situa-
tion. However, an index based on the matched model meth-
odology and normal index number theory will generally 
have an upward bias because of the neglect of depreciation 
or a lowering of quality due to the aging of the structure. 
In order to deal with this bias, it will in general require a 
hedonic regression approach with age as one of the explana-
tory variables.

We will conclude by noting some specific recommenda-
tions that emerge from this chapter:

195 The rental equivalence approach could be used for durables that are 
rented or leased but typically, most consumer durables are not rented. 
Depreciation rates will in most cases be based on educated guesses. 
Durable stock estimates can be made once depreciation rates have been 
determined. The current value of household stocks of consumer durables 
should also be constructed and added to household balance sheets.
196 However, if possible, the equivalent rents should be based on new con-
tract rents in order to provide a current opportunity cost for using the 
services of an owned dwelling unit; recall the discussion on this point in 
Section 17.
197 Recall the evidence on this point in Heston and Nakamura (2009, 2011) 
and others.

• There are three main approaches for the treatment of 
consumer durables in a CPI: the acquisitions approach, 
the rental equivalence approach, and the user cost 
approach.

• The acquisitions approach is suitable (for most purposes) 
for durable goods with a relatively short expected useful 
life.

• The acquisitions approach is particularly useful for cen-
tral bankers who want consumer inflation indices that are 
largely free from imputations.

• The acquisitions approach provides an index for pur-
chases of a durable good, and this index is a required 
input into the construction of a user cost index.

• The remaining two approaches are useful for measuring 
the flow of services yielded by consumer durables over 
their useful lives.

• At present, only the flow of services for OOH is estimated 
by national statistical agencies (using the rental equiva-
lence or user cost approaches) because this informa-
tion is required for the international System of National 
Accounts; that is, the flow of services for other durable 
goods is not measured at present.

• The acquisitions approach will substantially understate 
the value of the service flow from consumer durables that 
have relatively long lives. Hence, at least one of the rental 
equivalence or user cost approaches should be imple-
mented by statistical agencies for durables with long 
lives.198 Examples of long-lived durables are automobiles 
and household furnishings.

• The rental equivalence approach to the valuation of the 
services provided by consumer durables is the preferred 
method of valuation (with the exception of OOH) when 
rental or leasing markets for the class of durables exist 
because, in principle, no imputations are required to 
implement this method.199

• However, when rental markets for the durable good under 
consideration are thin or do not exist, then the user cost 
approach should be used to value the services of the dura-
ble good.

• The user cost approach requires the construction of a 
price index for new acquisitions of the durable. It also 
requires a model of depreciation and assumptions about 
the opportunity cost of capital and about expected asset 
inflation rates. Thus, the user cost approach necessarily 
involves imputations.

• In order to avoid unnecessary volatility in the user costs, 
long-run expected asset inflation rates should be used in 
the user cost formula.200

198 If the acquisitions approach is used in the headline CPI, the alternative 
approaches can be published as experimental or supplementary series.
199 However, for housing, the “comparable” rental property may not be 
exactly the same as the owned unit. Moreover, the observed rents may 
include insurance services and the services of some utilities and possibly 
furniture. It will be difficult to extract these costs from the observed rent.
200 The long-run asset inflation rate over the past 20 or 25 years or the 
long-run rate of inflation in housing rents could be used to predict future 
asset inflation rates. Many other prediction methods could be used; see, 
for example, Verbrugge (2008). However, the focus should be on predict-
ing long-run asset inflation rather than period-to-period inflation.
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• Rental markets for high-end dwelling units are generally 
nonexistent or very thin and hence, it may not be pos-
sible to use the rental equivalence approach for high-end 
OOH. Even if some rental information on high-end hous-
ing units is available, usually these rents are far below the 
corresponding user costs.

• The “true” opportunity cost for using the services of a 
consumer durable is the maximum of its rental price (if 
it exists) and its user cost. Thus, the use of the rental 
equivalence approach to value the services of a high-end 
housing unit will understate the “true” service flow by a 
substantial amount.201

• In order to construct national balance sheets and to 
measure national multifactor productivity, it is neces-
sary to decompose the selling prices of dwelling units 
into structure and land components. This can be done 
for both detached housing and condominium units using 
hedonic regression techniques; see Sections 11 and 12. 
This decomposition is also required in order to construct 
accurate user costs for housing units since depreciation 
applies to the structure but not to the land component of 
the property.

• When constructing price indices for rental housing, sta-
tistical agencies need to make an adjustment to observed 
rents for the same unit for depreciation of the structure 
and possible improvements to the structure.

• When using observed rents to measure the service flow for 
comparable owned properties, statistical agencies should 
use new contract rents to evaluate the service flow for the 
owned units since rents for continuing tenants may be 
sticky and not reflect current opportunity costs.

• When constructing user costs for OOH, statistical agen-
cies need to avoid double counting of some housing-
related costs that may appear elsewhere in the CPI such as 
insurance costs. Similar double counting problems may 
arise with housing rents, which may include the services 
of some utilities or furniture and of course, the housing 
rent will include insurance costs. In principle, these asso-
ciated costs should be deducted from the observed rent 
and placed in the appropriate classification of the CPI. In 
practice, this is a difficult imputation problem.

201 Long-run user costs and rents will tend to be approximately equal to 
each other for lower-end housing units since this type of housing unit will 
be built by property developers who provide rental housing and they need 
to set rents that are approximately equal to their long-run user costs. 
However, short-run dynamics can cause user costs and rents to diverge 
even for lower-end housing units.

• A variant of the acquisitions approach is sometimes 
applied to OOH. This variant excludes the land compo-
nent of the purchase of a new house. As mentioned ear-
lier, this variant reduces to a construction cost index for 
housing with some allowance made for builders’ profit 
margins. This variant generates valuations for OOH that 
may be far below the comparable rental equivalent and 
user cost valuations. It is difficult to justify the use of this 
variant in a CPI.202

• A more comprehensive measure of the flow of consump-
tion services would include estimates for the flow of ser-
vices from storable goods and for household holdings of 
currency and transferable deposits.

Which of the three main methods for valuing the purchase 
of a consumer durable should be used for indexing pensions 
or indexing salaries for consumer inflation? This is a diffi-
cult question to answer. If we start out with the idea that we 
want a national CPI, then if there were no durable goods, a 
national acquisitions price index would be the target index. 
But it is not clear that this is the “correct” price index once 
we recognize the existence of consumer durables: An acqui-
sitions index does not recognize the imputed costs of previ-
ously purchased consumer durable goods. Thus, in order to 
deal with this difficulty, we need to move to a rental equiv-
alence index or a user cost index if rental markets are thin. 
But if a national index based on say the rental equivalence 
approach were used to determine pension payments for vet-
erans or retired civil servants or for employees in an industry, 
the resulting payments do not take into account that differ-
ent households have different holdings of consumer durables 
(housing in particular), and they do not need to be compen-
sated for their consumption of existing holdings. There are 
additional complications that need to be addressed:

• If the goal is to maintain the purchasing power of a cer-
tain group of households (such as retirees or veterans), 
then an appropriate index needs to be constructed for the 
relevant group.

• The relevant group may live in different regions of the 
country and so, in principle, separate indices need to be 
constructed for each region by group. 

202 It is not a “true” acquisitions price that is observed in the marketplace 
since it involves imputations to subtract the land value from the property 
sale. The resulting acquisitions price obviously does not reflect the total 
services provided by the purchase.
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Annex: Adjusting Housing 
Rental Price Indices for New and 
Disappearing Units
A problem with the simple repeat rents model that was pro-
posed in Section 14 is that the model that extended the mod-
ified repeat rents index to deal with new and disappearing 
units was highly simplified. In this annex, this simple model 
is generalized to allow for multiple overlapping products 
and for many new and disappearing rental units.203

Suppose that there are M rental properties in scope for 
the rental price index that are present in periods 0 and 1. 
Suppose further that for rental property n in period t that 
has a structure on it of age A(t,m), its utility or real quantity 
qtm as a function of the structure age is defined as follows:

 qtm ≡ (1–Δ)A(t,m); t = 0,1; m = 1, . . .,M, (A.1)

where Δ is the assumed common to all rental units geometric 
property depreciation rate that is due to structure deprecia-
tion. As in Section 14, the observed rent for property m  in 
period t is Rtm. The constant quality price for property m 
in period t, ptm, is defined as the observed rent Rtm divided by 
the corresponding real quantity qtm:

 ptm ≡ Rtm/qtm = Rtm/(1 – Δ)A(t,m); t = 0,1; m = 1, . . .,M. (A.2)

In period 0, there are also J rental properties that disap-
pear in period 1. The observed rents, structure ages, and 
constant quality prices and quantities for period 0 for these 
disappearing rental units are RD0j, A°(0,j), pD0j, and qD0j, 
respectively, for j = 1, . . .,J. The constant quality prices and 
quantities for these units satisfy the following relationships: 

 qD0j ≡ (1 – Δ)A°(0,j); j = 1, . . .,J; (A.3)
 pD0j ≡ RD0j/qD0j = RD0j/(1 – Δ)A°(0,j); j = 1, . . .,J. (A.4)

In period 1, there are also K newly occupied rental proper-
ties that appear in period 1. The observed rents, structure 
ages, and constant quality prices and quantities for period 
1 for these new rental units are RN1k, A*(1,k), pN1k, and qN1k, 
respectively, for k = 1, . . .,K. The constant quality prices and 
quantities for these units satisfy the following relationships:204

 qN1k ≡ (1 – Δ)A*(1,k); k = 1, . . .,K; (A.5)
 pN1k ≡ RN1k/qN1k = RN1k/(1 – Δ)A*(1,k); k = 1, . . .,K. (A.6)

Thus, for each rental unit m that is rented in periods 0 and 
1, the tenant occupying rental unit m experiences a utility 
decline going from period 0 to 1 that is equal to

q1m/q0m = (1 – Δ)A(0,m) + 1/(1 – Δ)A(0,m) 
= 1 – Δ; m = 1, . . .,M. (A.7)

203 This more general model is based on Section 4 in Diewert (2021).
204 If the new period 1 rental unit has a new structure, then A*(1,k) is set 
equal to 0; if the “new” rental unit consists of an old structure that was 
not rented in period 0, then A*(1,k) is set equal to the age of the structure 
in months if the index is a monthly index.

Using definitions (A.2), the corresponding rates of price 
change are given by

p1m/p0m = [R1m/(1 – ∆)A(0,m) + 1]/[R0m/(1 – Δ)A(1,m)] 
= [R1m/R0m]/(1 – Δ); m = 1, . . .,M. (A.8)

The maximum overlap Laspeyres rent index, PMOL, is defined 
as follows:

 PMOL ≡ Σm=1
M p1mq0m/Σm=1

M p0mq0m (A.9)
= Σm=1

M [R1m/(1 – Δ)A(0,m) + 1][(1 – Δ)A(0,m)]/

Σm=1
M R0m using (A.1) and (A.2)

= Σm=1
M [R1m/(1 – Δ)]/Σm=1

M R0m

= [Σm=1
M R1m/Σm=1

M R0m]/(1 – Δ)
= PRR/(1 – Δ),

where PRR is the repeat rent index defined as

 PRR ≡ Σm=1
M R1m/Σm=1

M R0m. (A.10)

The maximum overlap Paasche rent index, PMOP, is defined 
as follows:

PMOP ≡ Σm=1
M p1mq1m/Σm=1

M p0mq1m (A.11)
= Σm=1

M R1m/ Σm=1
M [R0m/(1 – Δ)A(0,m)][(1 – Δ)A(0,m) + 1]

using (A.1) and (A.2)

= Σm=1
M R1m/Σm=1

M R0m(1 – Δ)

= [Σm=1
M R1m/Σm=1

M R0m]/(1 – Δ)
= PRR/(1 – Δ) using definition (A.10).

The maximum overlap Fisher rent index, PMOF, is defined as 
the geometric mean of the maximum overlap Laspeyres and 
Paasche indices:

 PMOF ≡ [PMOLPMOP]1/2 (A.12)
 = PRR/(1 – Δ) using (A.9) and (A.11).

Thus, the maximum overlap Laspeyres, Paasche, and Fisher 
rent indices are all equal to the repeat rent index PRR divided 
by (1 – Δ), where Δ is the property rental geometric deprecia-
tion rate.

The property depreciation rate allows us to adjust the 
observed rent for each rental unit for quality changes due to 
the aging of the structure, but it does not allow us to com-
pare the utility of each rental unit with an alternative rental 
unit. In order to form overall price and quantity indices that 
take into account the new and disappearing rental units, it 
is necessary to make some stronger assumptions. Thus, we 
assume that tenants evaluate the relative utility of the vari-
ous rental units that are available according to the following 
utility function:

f(q1, . . .,qM; qD1, . . .,qDJ; qN1, . . .,qNK) 
 ≡ Σm=1

M αmqm + Σj=1
J βjqDj + Σk=1

K γkqNk, (A.13)
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where αm, βj, and γk are the positive parameters that reflect 
the relative utilities of the various rental properties that are 
available in any given period. The “observed” quantities, 
q0m, q1m, qD0j, and qN1k, for the various available rental prop-
erties in periods 0 and 1 are defined by (A.1), (A.3), and (A.5).

In period t, a tenant occupying rental unit m incurs the 
rental cost Rtm = ptmqtm. The utility benefit to the tenant Btm 
= αmqtm. Since it is assumed that each tenant has the same 
preferences, the cost benefit ratios, Rtm/Btm = ptmqtm/amqtm = 
ptm/am should be approximately equal to a constant that we 
can interpret as an aggregate price level Pt; that is, utility-
maximizing tenants should bid up rents for units m, where 
Rtm/Btm is low and avoid rental units, where Rtm/Btm is rela-
tively high. Thus, for period 0, the following approximate 
equalities should hold:

 R0m/αmq0m ≈ P0; m = 1, . . .,M; (A.14)
 RD0j/βjqD0j ≈ P0; j = 1, . . .,J. (A.15)

Now use definitions (A.1) and (A.3) to eliminate q0m and qD0j 
from (A.14) and (A.15). After suitable rearrangement, we 
obtain the following approximate equalities:

 R0m ≈ P0αm(1 – Δ)A(0,m); m = 1, . . .,M; (A.16)
 RD0j ≈ P0βj(1 – Δ)A°(0,j); j = 1, . . .,J. (A.17)

The same logic can be applied to the rental units that are 
available in period 1. Thus, for period 1, the following 
approximate equalities should hold:

 R1m/αmq1m ≈ P1; m = 1, . . .,M; (A.18)
 RN1k/γkqN1k ≈ P1; k = 1, . . .,K. (A.19)

Again use definitions (A.1) and (A.3) to eliminate q1m and 
qN1k from (A.18) and (A.19) in order to obtain the following 
approximate equalities:

 R1m ≈ P1αm(1 – Δ)A(1,m); m = 1, . . .,M; (A.20)
 RN1k ≈ P1γk(1 – Δ)A*(1,k); k = 1, . . .,K. (A.21)

If we take logarithms of both sides of equations (A.16), 
(A.17), (A.20), and (A.21), define ϕ ≡ 1 – Δ, and add error 
terms to the resulting equations, it can be seen that we have 
an adjacent period time dummy hedonic regression model, 
which can be used to obtain estimates for the M unknown 
αm, the J unknown βj, the K unknown gk, and the three 
unknown parameters, P0, P1, and Δ. There are 2M + J + K 
+ 3 degrees of freedom in the regression. However, it can be 
seen that not all parameters can be identified; it will be nec-
essary to impose a normalization on the parameters such 
as P0 = 1 or α1 = 1. The age of the structure on each rental 
property is the only rental property characteristic that is 
required to run the hedonic regression.205

205 But typically, the properties in scope will have some similar character-
istics; for example, they will be classified based on the type of property, 
whether furnished or unfurnished, and the presence in local neighbor-
hood. The adequacy of the model should be judged by the fit of the 
regression.

Suppose the normalization P0 = 1 is used in the hedonic 
regression. Denote the estimates for P1 and Δ by P1* and 
Δ*. We need to define the resulting aggregate real rental 
quantities for the two periods under consideration. We first 
define some sub-aggregate rental values. Define the value 
of rents for units that are present in both periods as the 
continuing aggregate rents, RC

0 and RC
1, for periods 0 and 

1 as follows:

 RC
0 ≡ Σm=1

M R0m; RC
1 ≡ Σm=1

M R1m. (A.22)

Define the aggregate rents for the units that are present in 
one period but absent in the other period as follows:

 RD
0 ≡ Σj=1

J RD0j; RN
1 ≡ Σk=1

K RN1k. (A.23)

Denote the aggregate price levels for the rental units in 
scope for periods 0 and 1 by P0 and P1 and the correspond-
ing aggregate quantity levels by Q0 and Q1. These aggregates 
are defined as follows:

 P0 ≡ 1; P1 ≡ P1*; Q0 ≡ RC
0 + RD

0; Q1 ≡ (RC
1 + RN

1)/P1*. (A.24)

In order to justify the definitions for the period 0 and 1 
aggregates, suppose the approximate equalities (A.14) and 
(A.15) hold exactly. Then it can be seen that

Q0 ≡ RC
0 + RD

0 (A.25)
= Σm=1

M R0m + Σj=1
J RD0j using (A.22) and (A.23)

 = Σm=1
M P0αmq0m + Σj=1

J P0βjqD0j using (A.14) and (A.15)
= Σm=1

M αmq0m + Σj=1
J βjqD0j using P0 ≡ 1.

Thus, Q0 is equal to period 0 aggregate utility Σm=1
M αmq0m 

+ Σj=1
J βjqD0j. Now suppose the approximate equalities (A.18) 

and (A.19) hold exactly. Using (A.24), we have

Q1 ≡ (RC
1 + RN

1)/P1* (A.26)
= (Σm=1

M R1m + Σk=1
K RN1k)/ P1* 

using (A.22) and (A.23)

= (Σm=1
M P1*αmq1m + Σk=1

K P1*γkqN1k)/P1* 

using (A.18) and (A.19)
= Σm=1

M αmq1m + Σk=1
K γkqN1k.

Thus, Q1 is equal to period 1 aggregate utility Σm=1
M αmq1m + 

Σk=1
K γkqN1k.

It is useful to analyze the factors that influence the growth 
of real aggregate rents. Using definitions (A.24), we have the 
following decomposition that is a counterpart to the decom-
position (137) for real rents in Section 14 of the main text:

 Q1/Q0 = [(RC
1 + RN

1)/P1*]/[RC
0 + RD

0] (A.27)
using definitions (A.24)

= [1/P1*][RC
1/RC

0][1 + (RN
1/RC

1)]/[1 + (RD
0/RC

0)]
= PRR[1/P1*][1 + (RN

1/RC
1)]/[1 + (RD

0/RC
0)],
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where PRR ≡ RC
1/RC

0 is the repeat rent price index for the rental 
properties that are occupied in both periods.

If a reasonable estimate for the rental property depre-
ciation rate Δ* is available to the statistical agency, then 
there is an alternative to running the hedonic regression 
defined by the logarithms of equations (A.16), (A.17), 
(A.20), and (A.21). This alternative approach simply sets 
P1*, which plays a crucial role in definitions (A.24), equal 
to the maximum overlap Fisher index PMOF defined by 
(A.12). Thus, the definitions (A.24) are replaced by the fol-
lowing definitions:

P0 ≡ 1; P1* ≡ PMOF ≡ PRR/(1 – Δ*); Q0 ≡ RC
0 

 + RD
0; Q1 ≡ (RC

1 + RN
1)/P1*. (A.28)

Under these conditions, the decomposition of Q1/Q0 becomes

Q1/Q0 = PRR[1/P1*][1 + (RN
1/RC

1)]/[1 + (RD
0/RC

0)]  (A.29)
using (A.27)

 = [1 – Δ*][1 + (RN
1/RC

1)]/[1 + (RD
0/RC

0)] using (A.28),

which is analogous to (137) in the main text.
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LOWE, YOUNG, AND SUPERLATIVE INDICES: 
EMPIRICAL STUDIES* 11
1. Introduction
This chapter summarizes the results of calculations of Lowe, 
Young, and superlative price indices based on data from the 
Danish CPI. Section 2 lists the Lowe and Young indices for 
2014–2019. Section 3 presents estimates for annual superla-
tive indices for 2012–2018, and Section 4 compares annual 
superlative indices with the corresponding Lowe and Young 
indices for 2014–2018. Section 5 provides an overview of this 
and other empirical studies on Lowe, Young, and superlative 
indices. Lowe and Young indices are the “practical” indices 
that are used by most National Statistical Offices to produce 
their CPIs . They utilize current monthly price indices for the 
main categories of household consumption (called elemen-
tary indices) and annual household expenditure weights for 
the same categories from a previous year. These data can be 
used retrospectively to construct annual superlative indices. 
A superlative index is approximately free from substitution 
bias. Thus, taking the difference between a superlative index 
and the “practical” index is a measure of upper-level substitu-
tion bias for the practical index.

The data set consists of the weights and price indices for 
402 elementary aggregates used for calculating the Danish 
CPI for the period 2012–2019. The elementary price indices 
cover the period January 2012–December 2019. The annual 
expenditure weights are available for the years 2010–2018. 
The data set excludes elementary indices that were not com-
piled throughout the period. The weight of the excluded 
elementary indices amounts to approximately 5 percent of 
the total weighting basis.

The annex uses the Danish data to compute some addi-
tional indices, including several multilateral indices that use 
bilateral superlative indices as building blocks.

2. Lowe and Young Price Indices
Most countries calculate the CPI as an expenditure-
weighted arithmetic average of the elementary aggregate 
indices that make up the CPI. Expenditure weights usually 
are only available with a time lag so that the weight refer-
ence period precedes the price reference period when the 
weights are introduced into the CPI. If the weights are price-
updated from the weight reference period to the price refer-
ence period, the resulting index will correspond to a Lowe 
price index. If the weights are used without price-updating, 
it will correspond to a Young price index.1

1 See definitions (1)–(3). The Lowe, Young, and geometric Young indices 
will be defined in more detail in the annex. Diewert (2021) provides a 
detailed discussion of these indices and their properties.

Figure 11.1 shows the monthly Lowe, Young, and geo-
metric Young price indices for 2014–2019. They are defined 
below by (1)–(3). The indices are calculated as annually 
chained indices with December as the link month.2 Expen-
diture weights are introduced with a lag of two years so 
that indices for year t are based on expenditure weights for 
year t − 2.3 Hence, indices for 2014 are based on weights 
for 2012; indices for 2015 are based on weights for 2013, 
and so on.

Table 11.1 shows the annual Lowe and Young price indices 
for 2014–2019 and the annual rates of change. The annual 
price indices are calculated as the arithmetic average of 
the monthly series. The annual rate of change is the rate of 
change between the annual indices.

From 2014 to 2019, the average annual rate of change 
of the Young index is 0.63 percent against 0.69 percent for 
Lowe index. Hence, the price-updating of weights from 
t − 2 to December t − 1 on average increases the annual 
rate of change of the index by 0.06 percentage points. The 
geometric Young index (GeoYoung) is below the Lowe and 
Young indices, showing an annual rate of change of 0.51 
percent.

The Lowe price index is calculated by weighting together 
the elementary indices, Pi, with the price-updated weights:

  P t
Lo
0,   ≡ ∑i=1

402 wb
i
( )0 P t

i
0, , where wb

i
( )0   

≡ wb
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i
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i
( )0  are the weights from the weight reference period (b) 

price-updated to the price reference period (0), when the 
weights are introduced into the Lowe index. The weights 
are price-updated from average of year t − 2 to December 
t − 1 and applied for the index calculations for year t. For 
example, the Lowe index from January to December 2014 
is calculated based on the weights from 2012 price-updated 
from average 2012 to December 2013.4

2 In the annex, January is used as the link month.
3 The annex also computes “true” Lowe and Young indices as well as 
Lowe and Young indices that use weights that are lagged one and two 
years.
4 Basically, the Lowe index is a fixed basket index that uses approxima-
tions to annual quantities as the “basket” in the numerator and denomi-
nator of the index. The basket is priced out at the prices of the current 
month in the numerator of the index and at the prices of the base period 
month in the denominator of the index. The price updating procedure 
deflates the annual weights by an annual price in order to obtain the 
annual “quantity” basket up to a factor of proportionality. The details of 
the updating procedure are explained more fully in the annex.

*The authors thank Ning Huang and Shaoxiong Wang for their 
helpful comments.
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In Table 11.1, the index labeled Young* is based on the 
weights from year t – 2 price-updated from average year t – 1 
to December t –1. For instance, weights from 2014 are price-
updated from average of 2015 to December 2015 and used 
for the calculation of the index from January to December 
2016. The Young* index lies between the Young and Lowe 
indices, as could be expected. This approach is applied for 
calculating the Danish CPI. From 2014 to 2019, the Dan-
ish CPI increased by 3.47 percent over the six years with an 
average annual increase of 0.68 percent, compared to 3.42 
percent and 0.67 percent for the Young* index calculated in 
this analysis.

The Young index and the geometric Young index are cal-
culated as the expenditure-weighted arithmetic and geomet-
ric averages of the elementary price indices:

 P w P tt
Yo

i b
i i

0 1
402
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i t
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0 1
402
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Both the Young index and the geometric Young index are 
calculated based on the weights from year t – 2 as they stand, 
without price-updating.

The index links from December to December are chained 
(multiplied) annually onto each other using the overlapping 
December as link month to obtain chained index series 
with a fixed index reference period. For example, the Young 
index for May 2017 with 2014 as the index reference period 
is calculated as

Figure 11.1 Monthly Lowe and Young Indices That Are Chained Annually, 2014–2019 (2014 = 100)

Table 11.1 Lowe and Young Annual Price Indices, 2014–2019
Annual chained indices (2014 = 100) % change

  2015 2016 2017 2018 2019 2014–2019

Lowe 100.43 100.65 101.79 102.67 103.48 3.48
Young 100.40 100.51 101.66 102.45 103.21 3.21
Young* 100.44 100.65 101.81 102.64 103.42 3.42
GeoYoung 100.24 100.21 101.19 101.91 102.59 2.59
Annual rate of change (%) Av. annual % change

  2015 2016 2017 2018 2019 2014–2019

Lowe 0.43 0.22 1.13 0.87 0.79 0.69
Young 0.40 0.11 1.15 0.78 0.74 0.63
Young* 0.44 0.21 1.15 0.82 0.76 0.67
GeoYoung 0.24 −0.03 0.98 0.71 0.66 0.51
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Table 11.2 shows the annual Fisher, Walsh, and Törnqvist 
price indices for 2012–2018. The three indices give almost 
identical results; all three show an average annual rate of 
change of 0.50 percent over the period 2012–2018, which is 
approximately 0.1 to 0.2 percentage points per year below 
the “practical” indices that were calculated in the previ-
ous section. Thus, annual upper-level substitution bias for 
the practical Danish indices was fairly low over the sample 
period.

The Fisher, Walsh, and Törnqvist price indices are esti-
mated using the following formulae, where wi are the weights 
and Pi are the price indices for the elementary aggregates:
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When calculating the superlative indices, the monthly ele-
mentary indices are aggregated into annual averages (by 
taking the arithmetic mean)8 to align with the annual weight 
reference periods. The chained superlative indices are cal-
culated by multiplying the annual links of the indices.9 For 
example, the chained Walsh index from 2012 to 2015 is cal-
culated as

 P P P PW W W W
1215 1213 1314 1415= x x .  (8)

The direct superlative indices in Table 11.2 are calculated 
based on the expenditure weights for 2012 and 2018 and the 
chain-linked annual elementary indices with 2012 = 100.

8 In the annex, there is some discussion on the problems associated with 
aggregating monthly price indices into annual indices.
9 The details associated with forming the annual Fisher indices are 
explained in the annex.

The Young* index follows the requirement for the HICP 
of the European Union.5 The HICP is defined as an annu-
ally chain-linked Laspeyres-type index using December as 
the link month. The weights should reflect the consumption 
pattern of year t – 1. However, in practice, year t – 1 expen-
diture data are not available for the calculation of the index 
from January year t. To obtain the best possible estimate 
of the weights for year t – 1, these should be derived from 
consumption data for year t – 2, the weight reference period. 
It is up to countries to decide whether to price-update the 
weights from t – 2 to t – 1, depending on which approach 
is considered to give the best estimate of the expenditure 
shares in year t – 1. In either case, the weights must be price-
updated from year t – 2 to December t – 1.

3. Superlative Price Indices
Following the 2004 CPI Manual, the Fisher, Walsh, and 
Törnqvist price indices are the preferred target indices for 
the CPI and usually give very similar results:

Fisher, Walsh and Törnqvist price indices approxi-
mate each other very closely using “normal” time se-
ries data. This is a very convenient result since these 
three index number formulae repeatedly show up as 
being “best” in all the approaches to index number 
theory. Hence, this approximation result implies that 
it normally will not matter which of these indices is 
chosen as the preferred target index for a consumer 
price index.6

Fisher, Walsh, and Törnqvist are superlative price indices7 
that require weights from both the price reference period 
and the current period. When annual weights become avail-
able, it is possible to estimate a superlative CPI by aggregat-
ing the elementary indices using weights from both periods.

5 See the Harmonized Index of Consumer Prices (HICP) Methodological 
Manual, Section 3.5.
6 ILO/IMF/OECD/UNECE/Eurostat/The World Bank (2004): Consumer 
Price Index Manual: Theory and Practice. International Labour Office, 
Geneva, p. 313.
7 The theory and advantages of superlative indices were developed by 
Diewert (1976).

Table 11.2 Annual Superlative Price Indices, 2012–2018
  Annual chained indices (2012 = 100) Direct index1

  2013 2014 2015 2016 2017 2018 2012–18

Fisher 100.67 101.14 101.33 101.43 102.41 103.06 103.31
Walsh 100.67 101.14 101.32 101.43 102.41 103.07 103.40
Törnqvist 100.66 101,14 101.32 101.42 102.41 103.06 103.38
  Annual rate of change (%) Av. annual % change

  2013 2014 2015 2016 2017 2018 2012–18

Fisher 0.67 0.47 0.18 0.10 0.97 0.64 0.50
Walsh 0.67 0.47 0.18 0.10 0.97 0.64 0.50
Törnqvist 0.66 0.47 0.18 0.10 0.97 0.64 0.50
1 Direct Paasche and Laspeyres indices for 2012–2018 are 102.9 and 104.23, respectively.
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• The arithmetic Young index exceeds the geometric Young 
index.

• The Fisher, Walsh, and Törnqvist indices give very simi-
lar results under normal conditions.

• The Lowe and Young indices are biased upward com-
pared to a superlative price index, with the Lowe index 
being more biased than the Young index. There is one 
exception (New Zealand, 2006–2008), where the Young 
index is below the superlative index.

• The geometric Young is biased downward compared to 
a superlative index, with one exception (Denmark, 2014–
2018) where it equals the superlative indices.

(1) Recalculations of the Danish CPI,  
1996–2006. Carsten Boldsen Hansen.  
Paper Presented at the 2007 Ottawa G 
roup Meeting
This study uses the elementary indices and weights for the 
Danish CPI to calculate the Lowe, Young, and superlative 
indices. The Fisher, Walsh, and Törnqvist indices are almost 
identical. Over the period 1996–2003, the Walsh and Törnqvist 
indices showed an average annual rate of change of 2.28 per-
cent, while the Fisher annual rate was 2.27 percent. For the 
Lowe and Young indices, the weights were updated every third 
year; new weights were introduced with a varying lag of two 
to three years. Based on the series for 1996–2003, the annual 
Lowe index exceeded the corresponding Young index by 0.06 
percentage points on average. The Lowe and Young indices, on 
average, exceeded the annual rate of change of the Walsh index 
by 0.11 percentage points and 0.05 percentage points, respec-
tively. The geometric Young index underestimated the annual 
rate of change of the Walsh index by 0.07 percentage points.

(2) Impact of the Price-Updating Weights 
Procedure on the Canadian Consumer Price 
Index. Ning Huang, Statistics Canada. Room 
Document at the 2011 Ottawa Group Meeting
This study was based on data from the Canadian CPI for 
the period 1996–2005. In this period, the Canadian CPI was 
calculated as a chained index where weights were updated 
with intervals of four and five years with lags in the weight 
reference period of two years. For the period 1996–2005, the 
average annual rates of change for the Fisher, Walsh, and 
Törnqvist indices were 1.77 percent, 1.86 percent, and 1.90 

4. Comparing Lowe, Young, and 
Superlative Indices
Table 11.3 shows the superlative and Lowe and Young price 
indices for the period 2014–2018. The Fisher, Walsh, and 
Törnqvist indices are almost identical, all with an aver-
age annual rate of change of 0.47 percent over this period. 
The Lowe and Young indices are calculated, as explained 
earlier, as annually chained indices with December as the 
link month and with a two-year lag in the weight reference 
period, that is, indices for year t are based on consumption 
expenditure data for year t – 2.

Over the period 2014–2018, the Lowe index exceeds the 
Young index, but the differences are small. The average 
annual rate of change of the Young index is 0.61 percent 
against 0.66 percent for the Lowe index.

Compared to a superlative index, the Lowe index shows 
an upward bias of 0.19 percentage points per year, and the 
Young index shows an upward bias of 0.14 percentage points 
per year. The geometric Young index gives similar results 
to the superlative indices; that is, for the particular data set 
used in this chapter, the geometric Young index essentially 
eliminates upper-level substitution bias. Since this index 
can be compiled using the same information that is used in 
compiling the Lowe and Young indices, it would be of inter-
est for other National Statistical Offices to carry out similar 
comparisons in order to determine whether upper-level sub-
stitution bias was substantially reduced using the geomet-
ric Young index formula. The results to be presented in the 
following section indicate that there is a tendency for the 
geometric Young index formula to underestimate inflation 
as measured by a superlative index.

5. Overview of Empirical Studies on 
Substitution Bias
Table 11.4 summarizes the results of this and six other stud-
ies of retrospective calculations comparing superlative price 
indices to the Lowe and Young indices. More details about 
these studies are provided here.10

Based on the studies presented in Table 11.4 some general 
conclusions may be drawn:

• Lowe exceeds Young – price-updating expenditure shares 
increases the rate of change of the CPI.

10 Papers from the Ottawa Group are available from www.ottawagroup.
org

Table 11.3 Comparing Superlative, Lowe, and Young Indices, 2014–2018
Annual chained indices (2014 = 100) % change Av. annual % 

change

  2015 2016 2017 2018 2014–2018 2014–2018

Fisher 100.18 100.28 101.26 101.90 1.90 0.47
Walsh 100.18 100.28 101.26 101.90 1.90 0.47
Törnqvist 100.18 100.28 101.25 101.90 1.90 0.47
Lowe 100.43 100.65 101.79 102.67 2.67 0.66
Young 100.40 100.51 101.66 102.45 2.45 0.61
GeoYoung 100.24 100.21 101.19 101.91 1.91 0.47

http://www.ottawagroup.org
http://www.ottawagroup.org
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(5) Post-Laspeyres: The Case for a New 
Formula for Compiling Consumer Price 
Indices. Paul Armknecht and Mick Silver. 
Paper Presented at the 2013 Ottawa Group 
Meeting
Based on data from the US Urban CPI, this study cal-
culated superlative indices and alternative formulae for 
2002–2010. In this period, the US CPI was calculated with 
biannual links. The weights covered two-year periods, 
were updated every second-year, and were two years old 
when introduced into the CPI. The Fisher and the Törn-
qvist tracked each other very closely. Over the period 
2002–10, the Fisher price index increased by an annual 
average rate of change of 2.31 percent, compared with 2.49 
percent for the Lowe index and 2.35 percent for the Young 
index (page 13).

(6) New Zealand 2006 and 2008 Consumers 
Price Index Reviews: Price Updating. Chris 
Pike et al. Room document at the 2009 
Ottawa Group Meeting
The study was based on quarterly New Zealand CPI data 
for June 2006 to June 2008 with weights of  2003/04 and 
2006/07, respectively, implemented in June 2006 and June 
2008 quarters. For this period the average annual rate of 
change of  the Lowe index was 3.08 percent against 2.76 
percent for the Young index and 2.39 percent for geometric 
Young index (as shown in Table 11.4). A Fisher index for 
the same period showed an average annual rate of  change 
of  2.83 percent (page 24). This is the only study in which 
the Young index underestimated the superlative index.

The overall conclusion that can be drawn from this chap-
ter is that it would be useful for National Statistical Offices 
to undertake similar retrospective studies in order to obtain 
approximate numerical estimates of the upper-level substitu-
tion bias that might have been present in their CPIs.
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percent, respectively (Table 11.4). The significant difference 
between the Fisher and the two other indices was explained 
to be caused by the sub-index for computers. When this sub-
index was removed from the calculations, the three superla-
tive indices gave similar results. For the same period, the 
average annual rate of change of the Lowe index was 2.08 
percent against 1.99 percent for the Young index and 1.80 
percent for the geometric Young index (Table 11.4).11

(3) Choice of Index Number Formula 
and the Upper-Level Substitution Bias in 
the Canadian CPI. Ning Huang, Waruna 
Wimalaratne, and Brent Pollard. Paper 
Presented at the 2015 Ottawa Group Meeting
Based on Canadian data for 2003–2011, this chapter exam-
ines superlative indices and other symmetrically weighted 
indices. Lowe and Young indices are also compiled and the 
effect of different lags in the implementation of the expen-
diture weights in the calculation of the CPI are analyzed. 
Table 5.4 of the chapter compares a chained annual Fisher 
index to the chained annual Lowe and Young indices, 
compiled with a lag of one year in the introduction of the 
expenditure weights. The results of these calculations are 
reproduced in Table 11.4.

(4) Reconsideration of Weighting and 
Updating Procedures in the US CPI. John S. 
Greenlees and Elliot Williams. BLS Working 
Paper 431, 200912

The study was based on the data from the US Urban CPI 
for 2001–2007. In this period, the Urban CPI was calculated 
with biannual links and with a two-year lag in the weight 
reference period. Based on data for the US Urban CPI 
for 2001–2007, the annual rate of change of the Törnqvist 
index was 2.24 percent. For the same period, the Young 
index showed an annual rate of change of 2.42 percent and 
the Lowe rate was 2.50 percent (Table 11.4). The geometric 
Young index showed an annual rate of change of 2.12 per-
cent, and hence it was well below the superlative index.

11 For the follow up-studies on the Canadian CPI, see Huang, Wima-
laratne, and Pollard (2015, 2017).
12 https://www.bls.gov/pir/journal/gj14.pdf.

Table 11.4 Comparing the Empirical Studies of the Superlative, Lowe, and Young Indices
  Average annual rate of change (%) Differences in annual rate of change (% point)

  Lowe Young geometric 
Young

Superlative 
index

Lowe–
Young

Lowe– 
superlative index

Young–
superlative index

geometric Young–
superlative index

Denmark 2014–2008 0.66 0.61 0.47 0.47 0.05 0.19 0.14  0.00
Denmark 1996–2003 (1) 2.39 2.33 2.21 2.28 0.06 0.11 0.05 −0.07
Canada 1996–2005 (2) 2.08 1.99 1.80 1.86 0.09 0.21 0.12 −0.06
Canada 2003–2011 (3) 1.84 1.81 1.65 1.70 0.03 0.15 0.12 −0.05
USA 2001–2007 (4) 2.50 2.42 2.12 2.24 0.08 0.26 0.18 −0.12
USA 2002–2010 (5) 2.49 2.35 2.15 2.31 0.14 0.18 0.04 −0.16
New Zealand 2006–2008 (6) 3.08 2.76 2.39 2.83 0.32 0.25 −0.07 −0.44
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Annex: Supplementary Indices for 
Denmark
W. Erwin Diewert, University of British Columbia and Uni-
versity of New South Wales

A.11.1 Introduction
The main text of this chapter used monthly price indices for 
402 monthly elementary aggregates that are components 
of the Danish CPI for the seven years 2012–2018. Annual 
expenditure weights for these 402 aggregates were also 
available for these years. various monthly chained Young 
and Lowe indices were calculated using annual weights lag-
ging one or two years since these types of indices are used 
by National Statistical Offices to calculate their CPIs. The 
monthly price data were aggregated into yearly price data, 
and then, along with the annual expenditure information, 
the annual Lowe and Young indices along with the annual 
superlative Fisher, Törnqvist, and Walsh indices were cal-
culated. It was found that the three superlative indices were 
very close to each other, which is typically the case if the 
price and quantity data do not fluctuate too much.13 The 
difference between these superlative indices and the Lowe 
or Young indices was used to form estimates of upper-level 
substitution bias for a national CPI that is based on the use of 
these monthly indices that use lagged annual weights. The 
main text also reviewed recent studies on the magnitude of 
upper-level substitution bias.14

The present annex uses the same data set to calculate 
various supplementary indices. In Section A.2, various 
monthly indices that aggregate the 402 elementary indices 
without using the annual weights are calculated. Thus, these 
indices use only monthly price information. It is of inter-
est to calculate these unweighted indices to see if weight-
ing really matters. If unweighted indices can adequately 
approximate an appropriate-weighted index, then National 
Statistical Offices would not have to go to the expense of col-
lecting household expenditure information. The three main 
unweighted indices that are used at lower levels of aggre-
gation by statistical offices in recent times are the Jevons, 
Dutot, and Carli indices.15 These indices will be defined here 
along with other indices that will be discussed subsequent-
ly.16 Comparing these indices that do not use expenditure 
weights with indices that do use weights will give readers 
some idea of the importance of weighting.

13 See Diewert (1978), who showed that these superlative indices numeri-
cally approximate each other to the second order around an equal price 
and quantity point.
14 A path-breaking study on types of bias that might be associated with 
the Lowe-type CPIs and the possible magnitude of these types of bias 
was the Boskin Report; see Boskin et al. (1996). See Diewert (1998) 
for a follow-up study on possible methods for measuring the various 
sources of bias.
15 National Statistical Offices use unweighted indices (which are called 
elementary indices by NSOs) at the initial stages of aggregation. At the 
final stage of aggregation, NSOs always use price and expenditure weight 
information. In this annex, unweighted indices are computed purely for 
illustrative purposes in order to see how close indices that are computed 
using only price information can approximate various weighted indices 
which are considered in the main text and in this annex.
16 The history and properties of these indices are discussed in Diewert 
(2021a).

In Section A.3, the monthly price indices are aggregated 
into annual price indices for the 402 classes of consumer 
goods and services. The annual expenditure shares for 
the 402 products are divided by the corresponding annual 
prices in order to generate 402 annual “quantities” or vol-
umes for the seven years of annual data. Using these 402 
annual “prices” and “quantities,” annual standard fixed-
base and chained Laspeyres, Paasche, and Fisher indices are 
calculated. Two multilateral indices are also calculated: the 
GEKS and the Relative Price Similarity-Linked Predicted 
Share indices.17

Sections A.4 and A.5 calculate various weighted month-
to-month using the same Danish data set. As was noted in 
the main text, National Statistical Offices cannot calculate 
month-to-month CPIs in real time using annual weights for 
the current year since these weights are only available with a 
lag of one or two years. However, annual weights for the cur-
rent year can be used in retrospective index number studies, 
so in Section A.4, Lowe, Young, and geometric Young indices 
are calculated using (i) current year expenditure weights; (ii) 
weights lagged one year; and (iii) weights lagged two years. 
These indices that use lagged expenditure weights are “prac-
tical” CPIs.

Finally, in Section A.5, the assumption is made that 
the annual expenditure shares can provide an approxima-
tion to monthly expenditure shares. Using this (problem-
atic) assumption, monthly “quantities” or “volumes” can 
be computed and can be combined with the monthly price  
information to produce approximate month-to-month fixed-
base and chained Laspeyres, Paasche, and Fisher indices. 
These indices can then be compared with the “practical” 
indices calculated in Section A.4. We also compute some 
multilateral indices using the monthly price indices and vol-
ume indices.

Section A.6 draws some tentative conclusions from these 
computations.

A.11.2 Month-to-Month Aggregate 
Unweighted Indices
The monthly CPIs for 402 aggregate product classes for 
Denmark for the years 2012–2018 were provided by Statis-
tics Denmark. These indices were normalized so that the 
price for each product class for January of 2012 was set 
equal to unity; that is, each price index was divided by the 
corresponding index value for January of 2012. The result-
ing normalized price for product class n in month t is denoted 
by pt,n for t = 1,  .  .  . ,84. Thus, t = 1 identifies the data for 
January of 2012, t = 2 corresponds to the data for February 
of 2012, and so on. Statistics Denmark also provided annual 
expenditure shares for each product class for the years 2012–
2018, but this information will not be used in this section.

In the following definitions, N = 402 in our particular 
application. The Jevons index for month t, PJ

t, is defined as 
follows:

17 These indices are defined and discussed in Diewert (2021b).
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   PJ
t ≡ Πn=1

N (pt,n/p1,n)1/N  t = 1, . . .,84 (A1)
     = Πn=1

N (pt,n)
1/N,

where the second equality follows from the fact that 
all prices have been normalized so that p1,n = 1 for n = 
1,  .  .  .,N. Thus, the Jevons fixed-base index for month t 
is defined to be the geometric mean of the price ratios 
pt,n/p1,n. Since there are no missing products in this Dan-
ish data set, the fixed-base and chained Jevons indices are 
identical.

The fixed-base Dutot index for month t, PD
t, is defined as 

the arithmetic average of the prices in month t divided by 
the arithmetic average of the prices in month 1:

PD
t ≡ Σn=1

N (1/N)pt,n/Sn=1
N (1/N)p1,n  t = 1, . . .,84 (A2)

= Σn=1
N (1/N)pt,n/Sn=1

N (1/N)1 since p1,n = 1 for all n
= Σn=1

N (1/N)pt,n.

Again, since there are no missing products in the data set, 
the fixed-base and chained Dutot index are identical.

The third commonly used elementary index is the Carli 
index. The fixed-base version of this index for month t, PC

t, 
is defined as the arithmetic mean of the long-term relative 
prices, pt,n/p1,n:

PC
t ≡ Σn=1

N (1/N)(pt,n/p1,n)  t = 1, . . .,84 (A3)
= Σn=1

N (1/N)(pt,n) since p1,n = 1 for all n
= PD

t using the third line in (A2).

Thus, if there are no missing prices for the window of data 
under consideration and all prices are normalized to equal 1 
in the base month, then the fixed-base Carli index for month 
t, PC

t, is equal to the fixed-base (and chained) Dutot index, 
PD

t.
The definition of the chained Carli index for month t, PCCh

t, 
is more complicated. First, define the Carli chain link index 
between months t – 1 and t, PCLink

t, as follows:

PCLink
t ≡ Σn=1

N (1/N)(pt,n/pt–1,n)  t = 2,3, . . .,84. (A4)

Using definition (A4), the Carli chain linked indices for all 
months t in scope, PCCh

t, are defined as follows:

PCCh
1 ≡ 1; PCCh

t ≡ PCCh
t–1×PCLink

t;  t = 2,3, . . .,84. (A5)

The indices PJ
t, PD

t, and PCCh
t for t = 84 are 1.04091, 1.05581, 

and 1.09678, respectively.18 Figure A11.1 indicates that the 
chained Carli index finishes substantially above the Dutot 
index and the Dutot index finishes above the Jevons index. 
The choice of an elementary index number formula does 
matter.

It is not surprising that the chained Carli index finishes 
above the Jevons index (which is also a chained Jevons 
index) because the geometric mean of N price ratios will 
always be equal to or less than the arithmetic mean of the 
same N price ratios.19 It is also the case that the geomet-
ric mean of N prices will always be equal to or less than 
the corresponding arithmetic mean of the same N prices, 
and this explains why the Jevons index is less that the Dutot 
index when all prices are normalized to equal one in the 
base period.

The Jevons, Dutot, and chained Carli indices for our 
Danish CPI data are plotted in Figure A11.1.

When there are no missing prices, the Jevons and Dutot 
indices both satisfy Walsh’s (1901, 389, 1921, 540) multiperiod 
identity test. This test is explained as follows: if the prices in 
period t are identical to the prices in period 1, then the index 
number formula should register a value of 1 to indicate that 
there is no change in the price level going from period 1 to t. The 
fixed-base Carli index also satisfies this  test, but the chained  

18 The corresponding annualized average geometric growth rates for 
these indices are as follows: (PJ84)1/6 = 1.00671, (PD

84)1/6 = 1.00909, and 
(PCCh

84) = 1.0155.
19 This follows from Schlömilch’s inequality; see Hardy, Littlewood, and 
Pólya (1934, 26) or Diewert (2021a).
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Carli index does not. Thus, the chained Carli index number 
formula is said to suffer from a chain drift problem.20

The economic approach to index number theory can be 
applied to bilateral indices that utilize both price and quan-
tity information; it cannot be applied if only price infor-
mation is available. Thus, the economic approach cannot 
determine which elementary index that utilizes only price 
information is the “best.” However, the test or axiomatic 
approach to index number theory can be applied to elemen-
tary indices that utilize only price information. Since the 
chained Carli index does not satisfy the multiperiod iden-
tity test but the Jevons and Dutot indices do satisfy this 
important test, the Jevons and Dutot indices are favored 
over chained Carli indices. However, since the Jevons index 
is invariant to changes in the units of measurement, while 
the Dutot index does not satisfy this important test, the 
Jevons index probably emerges as a “best” index from the 
viewpoint of the test approach to index number theory when 
only price information is available.21

In addition to showing that the choice of an index number 
formula matters, Figure A11.1 shows that the Danish CPI 
data indicates the presence of a considerable amount of sea-
sonality in the pattern of prices. Prices are generally very 
low in January and very high in October or November of 
each year.22

A.11.3 Standard Annual Indices
Statistics Denmark has provided estimated annual expendi-
ture shares for the 402 elementary aggregates for the years 
2012–2018. We will denote these years as years y = 1–7 in 
what follows. Denote the annual expenditure share for prod-
uct class n in year y as Sy,n for y = 1, . . .,7 and n = 1, . . .,N 
= 402. We need to define annual prices for the 402 prod-
ucts, py,n

*, that will match up with these annual expenditure 
shares. It turns out that it is not a trivial matter to construct 
annual prices from monthly prices.

If monthly price and quantity (or volume) information is 
available and there is seasonality in prices and quantities, 
then Mudgett (1955) and Stone (1956) recommended that an 
annual index should treat each product in each season as 
a separate product in the annual index number formula.23 
Diewert et al. (2022) showed how this suggestion could be 
implemented for various index number formulae, provided 
that monthly price and quantity information is available.24 
Since monthly quantity or expenditure information on the 

20 For additional material and references to the literature on the chain 
drift problem, see Diewert (2021b).
21 See Diewert (2021a, 2021b) for more complete discussions of the test 
approach to index number theory.
22 However, other European countries (such as Belgium, Italy, and 
the Netherlands) also have CPIs which exhibit similar amounts of 
seasonality.
23 Diewert (1983) showed how this approach to the construction 
of Mudgett Stone annual indices could be extended to provide an 
annualized price comparison of the data for a current rolling year (12 
consecutive months of data) to a base year.
24 Using their Israeli data set, these authors showed that different 
methods of aggregation over months gave rise to substantially different  
annual indices. The Mudgett-Stone approach to forming annual 
indices is our preferred approach from a theoretical point of view. 
However, this approach needs some modification if  there is substantial 
price change within the year as might be caused by a hyperinflation; see 
Hill (1996).

402 product classes is not available, this suggestion cannot 
be implemented using the Danish data.

Another approach to the problem of aggregating data over 
months to form annual indices is to form annual unit value 
prices for each product. Purchases of a product over a time 
period may take place at different prices, so the following 
question arises: How should these possibly different prices 
be aggregated into a single price that is representative of all 
transaction prices made during the period? Walsh (1901, 96; 
1921, 88) was the first to provide an answer to this question: 
He suggested that the appropriate price was the unit value 
price, which is equal to the total value of transactions for 
the product under consideration divided by the total quan-
tity transacted. The advantage of using a unit value price 
as the representative price is that the corresponding aggre-
gate quantity is equal to the total quantity transacted during 
the period. This same aggregation strategy can be applied 
to the problem of aggregating over months. Thus, let py,m,n 
be the monthly unit value price for product n in month m 
of year y and let qy,m,n be the corresponding monthly total 
quantity transacted for product n in month m of year y. Then 
the corresponding annual unit value price for product n in 
year y, py,n, is defined as follows:

 Py,n ≡ Σm=1
12 py,m,nqy,m,n/Σm=1

M qy,m,n = Σm=1
12 py,m,nqy,m,n/Qy,n; 

    y = 1, . . .,7; n = 1, . . .,402. (A5)

The aggregate annual quantity for product n in year y is 
defined as

Qy,n ≡ Σm=1
12 qy,m,n;  y = 1, . . .,7; n = 1, . . .,402. (A6)

(A5) and (A6) define theoretical annual prices and quanti-
ties for each year y and each product n. Define the annual 
price and quantity vectors for year y as Py ≡ [Py,1, . . .,Py,] and 
Qy ≡ [Qy,1, . . .,Qy,N] for N = 402. Define total consumption for 
year y as Py·Qy ≡ Σn=1

N Py,nQy,n, and define the annual share for 
product n of total consumption in year y as

Sy,n ≡ Py,nQy,n/P
y·Qy;  y = 1, . . .,7; n = 1, . . .,402. (A7)

Using definitions (A5)–(A7), it can be seen that if we divide 
each annual expenditure share Sy,n by the correspond-
ing annual unit value price Py,n defined by (A5), we obtain 
the annual quantity Qy,n defined by (A6) divided by total 
year y consumption, Py·Qy; that is, we have the following 
relationships:

Sy,n/Py,n = [Py,nQy,n/P
y·Qy]/Py,n = Qy,n/P

y·Qy;
y = 1, . . .,7; n = 1, . . .,402. (A8)

This algebra shows that deflating an annual expenditure 
share by an appropriate annual price will lead to a “quan-
tity” that is equal to the “true” annual quantity trans-
acted divided by total annual consumption. The problem 
with the aforementioned algebra starts at definition (A5), 
which defined the annual unit value price for each prod-
uct. In order to actually calculate these annual prices, Py,n, 
it is necessary to have information on the corresponding 
annual quantities transacted, Qy,n. But this information is 
not available.
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In order to form approximations to the “true” annual 
product prices and quantities, some additional assump-
tions must be made. Our first additional assumption is that 
for each product, purchases are distributed evenly over each 
month in each year. This assumption implies the following 
equations:

qy,m,n/Qy,n = 1/12;
 y = 1, . . .,7; m = 1, . . .,12; n = 1, . . .,402. (A9)

Upon substituting assumptions (A9) into definitions (A5), 
we obtain the following equations:

Py,n = Σm=1
12 py,m,nqy,m,n/Qy,n;

  y = 1, . . .,7; n = 1, . . .,402 (A10)
= Σm=1

12 (1/12)py,m,n.

Thus, under assumption (A9), the annual unit value price 
for product n is simply the arithmetic average of the monthly 
unit value prices.

Our second additional assumption is that the monthly 
elementary price indices that have been constructed by Sta-
tistics Denmark (the observable py,m,n) are adequate approxi-
mations to the monthly unit value prices (normalized to 
equal unity in month 1).25 This assumption along with our 
previous assumption (A9) that implied equations (A10) 
means that taking the arithmetic average of the monthly 
Danish elementary indices is an appropriate annual price 
index. In fact, many statistical agencies (including Statistics 
Denmark) use simple averages of their monthly elementary 
indices as appropriate annual elementary indices. Our dis-
cussion here simply indicates to readers that these annual 
indices are not necessarily accurate approximations to 
“true” annual indices that are based on alternative method-
ologies. In any case, in this section, we will construct annual 
product prices using the prices py,n

* defined by the second line 
(A10). Thus, define the year y annual price for product n, 
py,n

*, as follows:

py,n
* ≡ Σm=1

12 (1/12)py,m,n; y = 1, 7; n = 1, . . .,402. (A11)

The corresponding annual product quantities (or volumes) 
qy,n

* that will be used in this section are defined as follows:

qy,n
* ≡ Sy,n/py,n

*  y = 1, . . .,7; n = 1, . . .,402. (A12)

Using equations (A8) and our assumptions, it can be seen 
that these annual “quantities” qy,n

* defined by (A12) are 
approximately equal to the true quantities transacted in 
year y divided by total consumption in year y, Py·Qy.26

In the indices and tables that follow, the underlying 
annual price and quantity data used to generate the indices 
will be py,n

* and qy,n
* defined by (A11) and (A12). The year  

25 These normalizations simply change the units of measurement for the 
product groups.
26 Note that the annual share vectors that are generated by the price and 
quantity vectors py* and qy* are equal to the Statistics Denmark share 
vectors Sy ≡ [Sy,1, . . .,Sy,402] for y = 1, . . .,7.

y price and quantity vectors are defined as py* ≡ [py,1
*,  .  .  ., 

py,402
*] and qy* ≡ [py,1

*, . . .,qy,402
*] for y = 1, . . .,7.

In making a price comparison between two periods, the 
Laspeyres and Paasche indices are fundamental because 
they simply do a ratio comparison of the cost of a fixed 
reference quantity vector at the prices of the comparison 
period in the numerator and at the base period prices in 
the denominator. The Laspeyres index chooses the quan-
tity vector that was consumed in the base period as the 
reference quantity vector, and the Paasche index chooses 
the comparison period quantity vector. These indices 
are both meaningful and easy to explain to the public. In 
general they will give different answers. If it is necessary 
to give a single estimate for inflation over the two peri-
ods being compared, then it is useful to take a symmetric 
average of the Laspeyres and Paasche indices as the single 
estimate. It turns out that the geometric average of these  
two indices has the “best” properties from the viewpoint 
of the test approach to index number theory, which is the 
Fisher (1922) ideal index.27 The Fisher index also has good 
properties from the viewpoint of the economic approach to 
index number theory. Thus, in this section, we use the Dan-
ish CPI data to calculate annual Laspeyres, Paasche, and 
Fisher indices using py

* and qy
* as the underlying price and 

quantity data.28

The fixed-base Laspeyres, Paasche, and Fisher indices for 
year y, PL

y, PP
y, and PF

y are defined as follows:

 PL
y ≡ py*·q1*/p1*·q1*;  y = 1, . . .,7; (A13)

 PP
y ≡ py*·qy*/p1*·qy*;  y = 1, . . .,7; (A14)

 PF
y ≡ [PL

y PP
y]1/2;  y = 1, . . .,7. (A15)

These indices are listed in Table A2.
In order to define chained indices, it is useful to define the 

following Laspeyres, Paasche, and Fisher bilateral annual 
indices that compare the prices of year y relative to the base 
year z as follows:

PL(y/z) ≡ py*·qz*/pz*·qz*; y = 1, . . .,7; z = 1, . . .,7; (A16)
PP(y/z) ≡ py*·qy*/pz*·qy*; y = 1, . . .,7; z = 1, . . .,7; (A17)
PF(y/z) ≡ [PL(y/z)PP(y/z)]1/2; y = 1, . . .,7; z = 1, . . .,7. (A18)

The annual chained Laspeyres, Paasche, and Fisher indices 
for year 1 are defined as follows:

 PLCH
1* ≡ 1; PPCH

1* ≡ 1; PFCH
1* ≡ 1. (A19)

For years y following year 1, these indices are defined recur-
sively using the bilateral maximum overlap annual indices 
defined earlier by (A16)–(A19) as follows:

 PLCH
y ≡ PLCH

y–1 PL(y/(y–1);  y = 2, . . .,7; (A20)

27 See Diewert (1997, 138).
28 Since the underlying price and quantity data are not actual annual 
unit value prices or actual total annual quantities, it is more correct to 
say that we are calculating various annual indices using py* and qy* as 
the underlying price and quantity data and the Laspeyres, Paasche, and 
Fisher formulae applied to these data.



391

LOWE, YOUNG, AND SUPERLATIVE INDEXES

 PPCH
y ≡ PPCH

y–1 PP(y/(y–1);  y = 2, . . .,7; (A21)
 PFCH

y ≡ PFCH
y–1 PF(y/(y–1);  y = 2, . . .,7. (A22)

The chained Laspeyres, Paasche, and Fisher indices are also 
plotted in Figure A11.2.

A problem with the chained indices is that in general,  
they will not satisfy Walsh’s multiperiod identity test, and 
hence they may be subject to a certain amount of chain 
drift. On the other hand, fixed-base indices compare the 
prices of all periods with the prices of period 1, and hence 
the prices of period 1 play an asymmetric role. Gini (1924, 
1931) showed how to solve these problems with fixed-base 
and chained indices by introducing the GEKS index. This 
index is equal to the normalization of all possible “star” 
indices; that is, each period is chosen as the base period, 
and the final index is the geometric mean of the star indices. 
Formally, the annual GEKS price levels, pGEKS

y, are defined 
as follows:

 pGEKS
y ≡ [Πz=1

7 PF (y/z)]1/7;  y = 1, . . .,7. (A23)

The annual GEKS price index PGEKS
y* is defined as the fol-

lowing normalization of the above GEKS price levels:

 PGEKS
y ≡ pGEKS

y/pGEKS
1;  y = 1, . . .,7. (A24)

The GEKS index is also shown in Figure A11.2.
The final annual “standard” index that will be calcu-

lated in this section is another multilateral index: the pre-
dicted share relative price similarity-linked price index, PS

y. 
The idea behind this index is to use the Fisher index to 
link any two periods in the available data sample. How-
ever, rather than picking the first year in the sample as 
the base year and computing fixed-base Fisher indices 
or using chained Fisher indices, a set of bilateral links is 
chosen to link pairs of observations that have the most 
similar structure of relative prices. The most similar price 
pairs of observations are combined to construct an overall 
price index. If prices in any two years are equal or propor-
tional to each other, then any “reasonable” bilateral index 
number will register the value 1 if prices are equal and 
will register the proportionality factor if prices are pro-
portional to each other. But if prices are not proportional, 
then how exactly should the lack of price proportionality 
be measured?

Recall that Sy,n is the Statistics Denmark annual share of 
household consumption for product class n in year y. The 

annual prices and quantities for year y, py,n
* and qy,n

* defined 
by (A11) and (A12), satisfy the following equations:

Sy,n = py,n
*qy,n

*/py*·qy*; 
 y = 1, . . .,7; n = 1, . . .,402. (A25)

Now think of using the prices of year z, pz*, and the quantities 
of year y, qy*, to predict the actual year y, product n expendi-
ture share Sy,n given by (A25) for n = 1, . . .,402. Denote this 
predicted share by Sz,y,n, which is defined as follows:

Sz,y,n ≡ pz,n
*qy,n

*/pz*·qy*; z = 1, . . .,7; 
 y = 1, . . .,7; n = 1, . . .,402. (A26)

If the prices in year y are proportional to the prices of year 
z so that pz* = λpy*, where λ is a positive number, then it can 
be verified that the predicted shares defined by (A26) will be 
equal to the actual expenditure shares defined by (A25) for 
year y; that is, for the two years defined by y and z, we will 
have Sy,n = Sz,y,n for n = 1, . . .,N. The following predicted share 
measure of relative price dissimilarity between the prices of 
year y and the prices of year z, ΔPS(pz*,py*,qz*,qy*), is well 
defined even if some product prices and shares in the two 
years being compared are equal to 0:29

ΔPS(pz*,py*,qz*,qy*) ≡ Σn=1
402 [Sy,n – Sz,y,n]

2  
  + Σn=1

402 [Sz,n – Sy,z,n]
2 (A27)

= Σn=1
402 [(py,n

*qy,n
*/py*·qy) – (pz,n

*qy,n
*/pz*·qy)]2

 + Σn=1
402 [(pz,n

*qz,n
*/pz*·qz) – (py,n

*qz,n
*/py*·qz)]2

In general, ΔPS(pz*,py*,qz*,qy*) takes on values between 0 and 
2. If ΔPS(pz*,py*,qz*,qy*) = 0, then it must be the case that rela-
tive prices are the same for years z and y; that is, we have pz* = 
λpy* for some λ > 0. A bigger value of ΔPS(pz*,py*,qz*,qy*) gener-
ally indicates bigger deviations from price proportionality.

To see how this predicted share measure of annual rela-
tive price dissimilarity turned out for our Danish annual 
data, see Table A1.

This matrix is used to construct PS
y, the real-time similarity-

linked price index for the Danish annual data. This index 
is constructed as follows. Set PS

1 ≡ 1. The bilateral Fisher  

29 For information on the properties of this measure of relative price dis-
similarity, see Diewert (2021b).

Table A1 Predicted Share Measures of Price Dissimilarity for Denmark for Years 1–7
Year y = 1 y = 2 y = 3 y = 4 y = 5 y = 6 y = 7

z = 1 0.000000 0.000033 0.000090 0.000209 0.000363 0.000482 0.000575
z = 2 0.000033 0.000000 0.000023 0.000111 0.000234 0.000322 0.000403
z = 3 0.000090 0.000023 0.000000 0.000049 0.000137 0.000202 0.000265
z = 4 0.000209 0.000111 0.000049 0.000000 0.000033 0.000081 0.000134
z = 5 0.000363 0.000234 0.000137 0.000033 0.000000 0.000021 0.000058
z = 6 0.000482 0.000322 0.000202 0.000081 0.000021 0.000000 0.000016
z = 7 0.000575 0.000403 0.000265 0.000134 0.000058 0.000016 0.000000
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index linking year 2 to year 1, PF(2/1)30 is set equal to PS
2. 

Now look down the y = 3 column in Table A1. We need 
to link year 3 to either year 1 or year 2. The dissimilarity 
measures for these two years are 0.000090 and 0.000023, 
respectively. The degree of relative price dissimilarity is 
far smaller for the link to year 2 than it is to year 1 (year 
3 prices are much closer to being proportional to year 2 
prices than to year 1 prices), so we use the Fisher link from 
period 2 to period 3, PF

1(3/2), to link period 3 to period 2. 
Thus, the final year 3 similarity-linked index for y = 3 is PS

3 
≡ PS

2×PF(3/2). Now we need to link year 4 to year 1, 2, or 3. 
Look down the y = 4 column in Table A1 to find the low-
est dissimilarity measure above the main diagonal of the 
matrix. The smallest of the 3 numbers 0.000209, 0.000111, 
and 0.000049 is 0.00049. Thus, we link the year 4 data to 
the year 3 data using the Fisher link from year 3 to year 4, 
PF

1(4/3), and the year 4 similarity-linked final index value 
is PS

4 ≡ PS
1 × PF

1(4/3). Thus, for each year, as the new data 
become available, we use the Fisher bilateral index that links 

30 PF(2/1) is defined by (A18), PF(y/z) ≡ [PL(y/z)PP(y/z)]1/2, with y = 2 and  
z = 1.

the new period to the previous period that has the lowest mea-
sure of relative price dissimilarity. The final two bilateral 
links are year 5 to year 4 and year 6 to year 5. The result-
ing year 5 and 6 similarity-linked index values are PS

5, ≡ 
PS

4×PF(5/4) and PS
6 ≡ PS

6×PF(6/5). The optimal set of bilat-
eral links for the real-time similarity-linked indices can be 
summarized as follows:

1 – 2 – 3 – 4 – 5 – 6.

Thus, for the Danish annual data, the real-time similarity-
linked indices coincide with the Fisher chained indices; that is, 
we have PS

y = PFCh
y for y = 1, . . .,7.

The annual fixed-base Laspeyres, Paasche, and Fisher 
indices, PL

y, PP
y, PF

y, the chained Laspeyres, Paasche, and 
Fisher indices, PLCh

y, PPCh
y, PFCh

y, the GEKS index PGEKS
y, 

and the predicted share similarity-linked index PS
y are listed 

in Table A1 and are plotted in Figure A11.2.
The last row in Table A2 lists the geometric average rate 

of growth of the relevant index over the seven-year period; 
that is, the average geometric growth rate for the fixed-base 
Laspeyres index, PL

y, was 1.00693 = 1.042301/6, which trans-
lates into an average inflation rate of 0.693 percent per year.

Table A2 Annual Fixed-Base and Chained Laspeyres, Paasche, and Fisher Indices, GEKS Indices and Real-Time 
Similarity-Linked Indices
Year y PL

y PP
y PF

y PLCh
y PPCh

y PFCh
y PGEKS

y PS
y

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00672 1.00659 1.00666 1.00672 1.00659 1.00666 1.00688 1.00666
3 1.01253 1.01033 1.01143 1.01209 1.01075 1.01142 1.01226 1.01142
4 1.01727 1.01186 1.01456 1.01466 1.01191 1.01329 1.01459 1.01329
5 1.02198 1.01195 1.01695 1.01606 1.01255 1.01430 1.01621 1.01430
6 1.03302 1.01974 1.02636 1.02645 1.02181 1.02413 1.02615 1.02413
7 1.04230 1.02390 1.03306 1.03338 1.02791 1.03064 1.03292 1.03064
G. Rate 1.00693 1.00394 1.00544 1.00549 1.00460 1.00504 1.00541 1.00504
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Figure A11.2 Annual Fixed-Base and Chained Laspeyres, Paasche, and Fisher Indices and the GEKS Index
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The similarity-linked index PS
y turned out to equal the 

chained Fisher index PFCh
t. PS

y is a preferred index since it 
satisfies the multiperiod identity test, and it (theoretically) 
can be implemented in real time provided that household 
expenditure information is available in real time. The 
GEKS index PGEKS

y also satisfies the multiperiod identity 
test, and it also does not depend on the choice of a base 
period. It cannot be implemented in real time, but roll-
ing window versions of this index can be implemented in 
real time.31 Note that PS

y lies in the middle of the vari-
ous indices that are plotted in Figure A11.2, and PGEKS

y 
lies slightly above PS

y. The Fisher fixed-base index PF
y can 

hardly be distinguished from PGEKS
y. The outlier indices 

are the fixed-base Laspeyres and Paasche indices; PL
y is on  

average 0.693 – 0.504 = 0.189 percentage points above our 
preferred chained Fisher and similarity-linked indices, 
while PP

y is on average 0.110 percentage points below PFCh
y 

and PS
y.

The average difference between the growth rates for the 
fixed-base Laspeyres and the chained Fisher indices is 0.189 
percentage points, while the difference between the chained 
Laspeyres and the chained Fisher indices is only 0.045 per-
centage points. Thus, substitution bias using the fixed-base 
Laspeyres formula is much larger than the substitution bias 
using the chained Laspeyres index.

Finally, note that the average difference between the fixed-
base Laspeyres and Paasche annual growth rates is 0.299 
percentage points, while the average difference between 
the chained Laspeyres and Paasche growth rates is only 
0.089 percentage points. Thus, for the Danish data, chain-
ing reduces the spread between the Laspeyres and Paasche 
formulae. This is an indication that it is probably preferable 
to use chained Fisher indices rather than fixed-base Fisher 
indices.32

To conclude this section, we use the annual price data 
py,n

* to calculate annual fixed-base Jevons, Dutot, and Carli 
indices, PJ

y, PD
y, and PC

y. Since there are no missing obser-
vations, the fixed-base Jevons and Dutot indices coincide 
with their chained counterparts. However, since the annual 
average product prices no longer equal 1 for year 1, it is no 

31 See Ivancic, Diewert, and Fox (2011) on rolling window GEKS. The 
pros and cons of various multilateral index number formulae are dis-
cussed by Diewert (2021b).
32 Chaining tends to be the preferred option if  the underlying data have 
smooth trends; see Diewert (1978, 2021b) and Hill (1988).

longer the case that PD
y = PC

y. Thus, the fixed-base annual 
Carli index, PC

y, must be calculated separately. The chained 
annual Carli index for year y is denoted by PCCh

y. These indi-
ces are listed in Table A3 and are plotted (along with PS

y for 
comparison purposes) in Figure A11.3.

It can be seen that the growth rate for the annual Jevons 
index PJ

y is on average 0.074 percentage points below the 
growth rate of our preferred similarity-linked index PS

y, 
while the growth rates for the Dutot index PD

y and the 
fixed-base Carli index PC

y are about 0.12 percentage points 
above the growth rate for PS

y on average.33 The growth rate 
for the chained Carli index is only about 0.03 percentage 
points above the PS

y growth rate on average. However, 
for several years, the chained Carli differed substantially 
from the similarity-linked index. Thus, it can be seen 
that weighting does matter: The unweighted indices are 
not completely reliable, but they can approximate trend 
inflation.

As was noted in Section A.2, the month-to-month Jevons 
index ended up at 1.04091, and as shown in Table A3, the 
annual Jevons index ended up much lower at 1.02608, a gap 
of 1.5 percentage points. This large difference is due to the 
substantial seasonality in the monthly prices: The January 
prices were always unusually low relative to average prices 
for the year, and this seasonality in prices is what explains 
the large difference.

It can be seen that all four elementary indices capture 
the trend in the similarity-linked indices PS

y fairly well. It 
also can be seen that the Dutot indices are quite close to 
the fixed-base Carli indices; this is to be expected since 
the year one annual prices for the 402 products are fairly 
close to unity. While none of the annual elementary indi-
ces were very close to our best-weighted index PS

y (which 
was also equal to the chained Fisher index) for all years, it 
can be seen that the Jevons index is reasonably close at the 
end of the sample period and probably provides the best 
approximation to PS

y.
In the following section, we return to the construction of 

month-to-month indices that use the annual expenditure 
shares to weight the 402 elementary prices.

33 Since the annual prices were not normalized to equal one in the first 
year, the fixed-base Carli index is no longer exactly equal to the Dutot 
index. However, since the annual product prices for the first year are 
approximately equal to one, the fixed-base Carli index is approximately 
equal to the fixed-base (and chained) Dutot index.

Table A3 Annual Jevons, Dutot, Fixed-Base, and Chained Carli Indices and the Annual Predicted Share Index
Year y PJ

y PD
y PC

y PCCh
y PS

y

1 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.00495 1.00650 1.00595 1.00595 1.00666
3 1.00418 1.00682 1.00631 1.00590 1.01142
4 1.00999 1.01462 1.01376 1.01302 1.01329
5 1.01478 1.02252 1.02171 1.01917 1.01430
6 1.02543 1.03520 1.03446 1.03094 1.02413
7 1.02608 1.03815 1.03758 1.03240 1.03064
G. rate 1.00430 1.00626 1.00617 1.00533 1.00504
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A.11.4 Month-to-Month Indices 
Using Annual Weights
National  Statistical Offices in general do not calculate their 
CPI using the standard index number formulae that are listed 
in the previous sections. They use annual expenditure shares 
Sy,n or annual “quantities” qy,n

* like those defined by (A11) in 
the previous section along with monthly prices. They use these 
prices and quantities in modifications of what are called Lowe 
(1823) or Young (1812) indices in the index number literature. 
The modifications involve a mixture of the use of fixed-base 
and chained indices as was explained in the main text. In this 
Annex, we will explain in more detail how exactly these “prac-
tical” indices are constructed.

The basic Lowe index is similar to the Laspeyres index in 
that it prices out a basket of goods and services at the prices 
of month t in the numerator of the index and divides by the 
value of the same basket valued at the prices of month 1. It 
is different from the Laspeyres index because the quantity 
basket is not necessarily equal to the basket that was con-
sumed in month 1.

Recall that the price of product n in month t for the 
Danish data was denoted by pt,n for t = 1,  .  .  .,84 and n = 
1, . . .,402, and the vector of month t prices was defined as pt 
≡ [pt,1, . . .,pt,402] for t = 1, . . .,84. The expenditure share for 
product n in year y was defined as Sy,n for y = 1, . . .,7 and n 
= 1, . . .,402. In the previous section, Sy,n was deflated by the 
corresponding annual price py,n

* to form the annual “quan-
tity” qy,n

*. Define the annual quantity vector for year y as qy* 
≡ [qy,1

*, . . ., qy,402] for years y = 1, . . .,7.
The monthly Lowe price index, PLo

t, for the first 13 months 
in the data set is defined as follows:34

 PLo
t = pt·q1*/p1·q1*; t = 1, . . .,13. (A27)

34 Note that these Lowe indices can be interpreted as weighted Dutot 
indices.

Thus, the cost of the year 1 annual basket of commodities q1* 
valued at the prices of month t, pt·q1*, is divided by the cost of 
the year 1 annual basket valued at the prices of January in 
year 1, p1·q1*, to give us the Lowe index for month t, PLo

t, for 
the first 13 months in the data window.35

In earlier years, many National Statistical Offices did not 
change the annual basket for their Lowe indices for many 
years. However, in recent times, most countries using the 
Lowe index methodology for their CPIs update their annual 
baskets every year. Thus, their Lowe indices are a mixture 
of fixed-base and chained Lowe indices. For the version of 
the Lowe index used in this Annex, the annual basket will 
be changed in January of each year. Thus, (A27) defines 
our Lowe index for Denmark for the first 13 months in our 
data window. For the remaining months, PLo

t is defined as 
follows:

 PLo
t = PLo

13 pt·q2*/p13·q2* t = 13, . . .,25; (A28)
 PLo

t = PLo
25 pt·q3*/p25·q3*; t = 25, . . .,37;

 PLo
t = PLo

37 pt·q4*/p37·q4*; t = 37, . . .,49;

 PLo
t = PLo

49 pt·q5*/p49·q5*; t = 49, . . .,61;

 PLo
t = PLo

61 pt·q6*/p61·q6* t = 61, . . .,73;
 PLo

t = PLo
73 pt·q7*/p73·q7*; t = 73, . . .,84.

35 The Lowe index is not as fundamental as the Laspeyres or Paasche indi-
ces: households in month t do not (in general) consume the annual basket; 
they consume an appropriate monthly basket. If seasonality in prices and 
quantities is moderate and if consumption growth over the year is rela-
tively even, then the Lowe index can provide an adequate approximation 
to the Laspeyres and Paasche indices between months 1 and t. However, 
as was seen in the main text and in Section A.2 above, there is a great deal 
of seasonality in the Danish price data, and so it is likely that there is a 
considerable amount of seasonality in consumption as well, and hence 
the Lowe index may not provide a very good approximation to the under-
lying monthly Laspeyres and Paasche indices.
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Figure A11.3 Jevons, Dutot, Carli, Chained Carli, and Similarity-Linked Indices
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These Lowe indices could be constructed by national offices 
retrospectively, but they cannot be calculated in real time. 
Thus, in practice, the annual baskets used in the Lowe for-
mula are lagged one or two years. For illustrative purposes, 
we will use the year 1 basket as in definitions (A27) for the 
first year of our data set and then lag the annual basket by 
one year in subsequent years. Thus, our Lowe indices using 
one-year lagged annual weights, PLo1

t, are defined as follows:

 PLo1
t = pt·q1*/p1·q1*; t = 1, . . .,13; (A29)

 PLo1
t = PLo1

13 pt·q1*/p13·q1*; t = 13, . . .,25;

 PLo1
t = PLo1

25 pt·q2*/p25·q2*; t = 25, . . .,37;

 PLo1
t = PLo1

37 pt·q3*/p37·q3*; t = 37, . . .,49;

 PLo1
t = PLo1

49 pt·q4*/p49·q4*; t = 49, . . .,61;

 PLo1
t = PLo1

61 pt·q5*/p61·q5*; t = 61, . . .,73;
 PLo1

t = PLo1
73 pt·q6*/p73·q6*; t = 73, . . .,84.

Our illustrative Lowe indices using two-year lagged annual 
weights, PLo2

t, are defined as follows:

 PLo2
t = pt·q1*/p1·q1*;     t = 1, . . .,13; (A30)

 PLo2
t = PLo2

13 pt·q1*/p13·q1*; t = 13, . . .,25;

 PLo2
t = PLo2

25 pt·q1*/p25·q1*; t = 25, . . .,37;

 PLo2
t = PLo2

37 pt·q2*/p37·q2*; t = 37, . . .,49;

 PLo2
t = PLo2

49 pt·q3*/p49·q3*; t = 49, . . .,61;

 PLo2
t = PLo2

61 pt·q4*/p61·q4*; t = 61, . . .,73;
 PLo2

t = PLo2
73 pt·q5*/p73·q5*; t = 73, . . .,84.

For years 1 and 2, the annual weights of year 1 are used in 
these definitions. Starting at year 3, the annual weights are 
lagged by two years. The Lowe indices PLo

t, PLo1
t, and PLo2

t 
defined above by (A27)–(A30) are plotted in Figure A11.4.36

The Young index PY
t for the first 13 months uses the annual 

expenditure shares of year 1, S1,n for n = 1, . . .,402 as weights 
for the monthly prices of month t divided by the price of 
month t for each product n, the pt,n/p1,n, as follows:37

 PY
t ≡ Σn=1

402 S1,n(pt,n/p1,n); t = 1, . . .,13. (A31)

Thus, for the first 13 month in our window of observations, 
the Young price index is equivalent to a weighted fixed-base 
Carli index. For the version of the Young index used in this 
annex, the annual share weights will be changed in January 
of each year. Thus, (A31) defines our Young index for Den-
mark for the first 13 months in our data window. For the 
remaining months, PY

t is defined as follows:

 PY
t = PY

13 Σn=1
402 S2,n(pt,n/p13,n) t = 13, . . .,25; (A32)

36 These partially chained Lowe indices are chained every January. As 
was explained in the main text, Statistics Denmark does the annual 
chaining every December. Thus, the Lowe indices in this annex will not 
be equal to the Lowe indices computed in the main text.
37 Note that these Young indices can be interpreted as weighted Carli 
indices.

PY
t = PY

25 Σn=1
402 S3,n(pt,n/p25,n); t = 25, . . .,37;

PY
t = PY

37 Σn=1
402 S4,n(pt,n/p37,n); t = 37, . . .,49;

PY
t = PY

49 Σn=1
402 S5,n(pt,n/p49,n); t = 49, . . .,61;

PY
t = PY

61 Σn=1
402 S6,n(pt,n/p61,n); t = 61, . . .,73;

PY
t = PY

73 Σn=1
402 S7,n(pt,n/p73,n); t = 73, . . .,84.

As was the case with the Lowe index, the Young index can-
not be calculated in real time. Thus, real-time Young indices 
cannot use current year expenditure weights but must use 
weights that are lagged one or two years. In order to calcu-
late Young indices using one-year lagged weights, we will 
use the year 1 basket as in definitions (A30) for the first year 
of our data set and then lag the annual basket by one year in 
subsequent years. Thus, our Young indices using one-year 
lagged annual weights, PY1

t, are defined as follows:

PY1
t = Σn=1

402 S1,n(pt,n/p1,n);  t = 1, . . .,13; (A33)
PY1

t = PY1
13 Σn=1

402 S1,n(pt,n/p13,n); t = 13, . . .,25;

PY1
t = PY1

25 Σn=1
402 S2,n(pt,n/p25,n); t = 25, . . .,37;

PY1
t = PY1

37 Σn=1
402 S3,n(pt,n/p37,n); t = 37, . . .,49;

PY1
t = PY1

49 Σn=1
402 S4,n(pt,n/p49,n); t = 49, . . .,61;

PY1
t = PY1

61 Σn=1
402 S5,n(pt,n/p61,n); t = 61, . . .,73;

PY1
t = PY1

73 Σn=1
402 S6,n(pt,n/p73,n); t = 73, . . .,84.

Our illustrative Young indices using two-year lagged annual 
weights, PY2

t, are defined as follows:

PY2
t = Σn=1

402 S1,n(pt,n/p1,n); t = 1, . . .,13; (A34)
PY2

t = PY2
13 Σn=1

402 S1,n(pt,n/p13,n); t = 13, . . .,25;

PY2
t = PY2

25 Σn=1
402 S1,n(pt,n/p25,n); t = 25, . . .,37;

PY2
t = PY2

37 Σn=1
402 S2,n(pt,n/p37,n); t = 37, . . .,49;

PY2
t = PY2

49 Σn=1
402 S3,n(pt,n/p49,n); t = 49, . . .,61;

PY2
t = PY2

61 Σn=1
402 S4,n(pt,n/p61,n); t = 61, . . .,73;

PY2
t = PY2

73 Σn=1
402 S5,n(pt,n/p73,n); t = 73, . . .,84.

For years 1, 2, and 3, the annual weights of year 1 are used in 
these definitions. Starting at year 3, the annual weights are 
lagged by two years. The Young indices PY

t, PY1
t, and PY2

t 
defined by (A31)–(A33) are plotted in Figure A11.4.

In the main text, the Lowe and Young indices using expen-
diture weights lagged two years were calculated since these 
indices are frequently used by national statistical agencies. 
The geometric Young index has also been used by some 
Caribbean countries using lagged expenditure weights, so 
this index was also considered in the main text. The loga-
rithm of the geometric Young index, lnPGY

t, using current 
annual expenditure weights for year 1, is defined as follows:38

 lnPGY
t ≡ Σn=1

402 S1,n ln(pt,n/p1,n); t = 1, . . .,13. (A35)

38 Note that these geometric Young indices can be interpreted as weighted 
Jevons indices.



396

CONSUMER PRICE INDEX MANUAL

For the version of the geometric Young index used in this 
annex, the annual share weights will be changed in January 
of each year. Thus, (A35) defines the logarithm of our geo-
metric Young index for Denmark for the first 13 months in 
our data window. For the remaining months, lnPY

t is defined 
as follows:

lnPGY
t = lnPGY

13 + Σn=1
402 S2,nln(pt,n/p13,n);

  t = 13, . . .,25; (A36)

lnPGY
t = lnPGY

25 + Σn=1
402 S3,nln(pt,n/p25,n); t = 25, . . .,37;

lnPGY
t = lnPGY

37 + Σn=1
402 S4,nln(pt,n/p37,n); t = 37, . . .,49;

lnPGY
t = lnPGY

49 + Σn=1
402 S5,nln(pt,n/p49,n); t = 49, . . .,61;

lnPGY
t = lnPGY

61 + Σn=1
402 S6,nln(pt,n/p61,n); t = 61, . . .,73;

lnPGY
t = lnPGY

73 + Σn=1
402 S7,nln(pt,n/p73,n); t = 73, . . .,84.

As was the case with the Lowe and Young indices, the geo-
metric Young index cannot be implemented in real time. Our 
illustrative version of the geometric Young index that uses 
expenditure weights lagged one year, PGY1, has logarithms that 
are defined by (A35) and (A36) except the expenditure share 
weights in lines 1–6 of equations (A36) are replaced by the 
following annual weights: S1,n, S2,n, S3,n, S4,n, S5,n, and S6,n. Our 
version of the geometric Young index that uses expenditure 
weights lagged two years, PGY2 has logarithms that are defined 
by (A35) and (A36) except the expenditure share weights in 
lines 1–6 of equations (A36) are replaced by the following 
annual weights: S1,n, S1,n, S2,n, S3,n, S4,n, and S5,n. The geometric 
Young indices PGY

t, PGY1
t, and PGY2

t are listed in Table A4 and 
are plotted in Figure A11.4. In addition to these nine indi-
ces, real-time similarity-linked monthly price indices, PS

t, 
are also listed in Table A4 and are plotted in Figure A11.4. 
These indices are an approximation to “true” month-to-
month similarity-linked indices, which have good axiomatic  

Table A4 Lowe, Young, geometric Young, and Similarity-Linked Monthly Indices
Month PLo

t PLo1
t PLo2

t PY
t PY1

t PY2
t PGY

t PGY1
t PGY2

t PS
t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.01157 1.01157 1.01157 1.01208 1.01208 1.01208 1.01171 1.01171 1.01171 1.01171
3 1.01484 1.01484 1.01484 1.01577 1.01577 1.01577 1.01513 1.01513 1.01513 1.01514
4 1.01422 1.01422 1.01422 1.01540 1.01540 1.01540 1.01457 1.01457 1.01457 1.01458
5 1.01468 1.01468 1.01468 1.01595 1.01595 1.01595 1.01506 1.01506 1.01506 1.01507
6 1.01295 1.01295 1.01295 1.01427 1.01427 1.01427 1.01336 1.01336 1.01336 1.01337
7 1.01209 1.01209 1.01209 1.01310 1.01310 1.01310 1.01213 1.01213 1.01213 1.01211
8 1.01547 1.01547 1.01547 1.01666 1.01666 1.01666 1.01574 1.01574 1.01574 1.01573
9 1.01791 1.01791 1.01791 1.01953 1.01953 1.01953 1.01823 1.01823 1.01823 1.01823
10 1.01671 1.01671 1.01671 1.01830 1.01830 1.01830 1.01707 1.01707 1.01707 1.01707
11 1.01578 1.01578 1.01578 1.01728 1.01728 1.01728 1.01615 1.01615 1.01615 1.01616
12 1.01289 1.01289 1.01289 1.01432 1.01432 1.01432 1.01311 1.01311 1.01311 1.01312
13 1.01030 1.01030 1.01030 1.01117 1.01117 1.01117 1.00986 1.00986 1.00986 1.01059
14 1.02195 1.02152 1.02152 1.02369 1.02303 1.02303 1.02176 1.02115 1.02115 1.02252
15 1.02224 1.02268 1.02268 1.02453 1.02473 1.02473 1.02233 1.02251 1.02251 1.02309
16 1.02008 1.02022 1.02022 1.02255 1.02231 1.02231 1.02017 1.01991 1.01991 1.02092
17 1.02167 1.02190 1.02190 1.02404 1.02394 1.02394 1.02177 1.02165 1.02165 1.02253
18 1.02114 1.02132 1.02132 1.02336 1.02305 1.02305 1.02124 1.02091 1.02091 1.02200
19 1.01826 1.01809 1.01809 1.02044 1.01954 1.01954 1.01806 1.01714 1.01714 1.01879

20 1.01796 1.01854 1.01854 1.02054 1.02036 1.02036 1.01790 1.01768 1.01768 1.01864
21 1.02156 1.02218 1.02218 1.02460 1.02441 1.02441 1.02148 1.02123 1.02123 1.02222
22 1.02238 1.02269 1.02269 1.02535 1.02488 1.02488 1.02240 1.02188 1.02188 1.02314
23 1.02025 1.02104 1.02104 1.02311 1.02301 1.02301 1.02023 1.02010 1.02010 1.02097
24 1.01949 1.02031 1.02031 1.02221 1.02215 1.02215 1.01945 1.01936 1.01936 1.02019
25 1.01863 1.01926 1.01926 1.02080 1.02076 1.02076 1.01835 1.01828 1.01828 1.01830
26 1.02623 1.02669 1.02641 1.02875 1.02842 1.02798 1.02598 1.02563 1.02523 1.02593
27 1.02745 1.02650 1.02678 1.03037 1.02835 1.02846 1.02734 1.02541 1.02553 1.02730
28 1.02928 1.02804 1.02782 1.03237 1.02994 1.02948 1.02916 1.02682 1.02635 1.02912
29 1.02833 1.02787 1.02778 1.03135 1.02973 1.02945 1.02822 1.02665 1.02638 1.02818
30 1.02814 1.02773 1.02719 1.03115 1.02964 1.02880 1.02795 1.02639 1.02556 1.02791
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Month PLo
t PLo1

t PLo2
t PY

t PY1
t PY2

t PGY
t PGY1

t PGY2
t PS

t

31 1.02534 1.02678 1.02646 1.02817 1.02860 1.02795 1.02474 1.02522 1.02457 1.02470
32 1.02378 1.02450 1.02463 1.02668 1.02631 1.02617 1.02353 1.02312 1.02297 1.02349
33 1.02850 1.02723 1.02740 1.03179 1.02926 1.02918 1.02839 1.02590 1.02584 1.02835
34 1.02911 1.02779 1.02811 1.03237 1.02972 1.02973 1.02898 1.02639 1.02640 1.02895
35 1.02590 1.02513 1.02586 1.02909 1.02685 1.02727 1.02572 1.02352 1.02394 1.02568
36 1.02321 1.02273 1.02381 1.02635 1.02434 1.02507 1.02251 1.02055 1.02127 1.02251
37 1.01632 1.01743 1.01871 1.01909 1.01863 1.01955 1.01474 1.01432 1.01521 1.01494
38 1.02765 1.02772 1.02860 1.03123 1.03024 1.03071 1.02614 1.02516 1.02567 1.02633
39 1.03179 1.03253 1.03281 1.03597 1.03564 1.03527 1.03056 1.03022 1.02997 1.03077
40 1.03287 1.03427 1.03368 1.03721 1.03737 1.03620 1.03164 1.03176 1.03077 1.03184
41 1.03313 1.03448 1.03400 1.03749 1.03752 1.03645 1.03194 1.03194 1.03101 1.03214
42 1.03252 1.03375 1.03348 1.03698 1.03672 1.03584 1.03135 1.03106 1.03031 1.03156
43 1.03021 1.03074 1.03264 1.03440 1.03321 1.03474 1.02868 1.02753 1.02897 1.02887
44 1.02672 1.02724 1.02958 1.03087 1.02952 1.03137 1.02542 1.02410 1.02591 1.02561
45 1.03037 1.03172 1.03222 1.03486 1.03411 1.03396 1.02918 1.02840 1.02832 1.02939
46 1.02990 1.03150 1.03199 1.03432 1.03358 1.03336 1.02866 1.02789 1.02774 1.02887
47 1.02751 1.02902 1.02964 1.03186 1.03109 1.03076 1.02629 1.02549 1.02524 1.02649
48 1.02642 1.02835 1.02924 1.03073 1.02996 1.02987 1.02502 1.02424 1.02420 1.02522
49 1.02196 1.02387 1.02561 1.02549 1.02441 1.02514 1.02009 1.01903 1.01971 1.02010
50 1.03064 1.03161 1.03280 1.03504 1.03258 1.03283 1.02896 1.02657 1.02677 1.02897
51 1.03045 1.03203 1.03341 1.03524 1.03342 1.03401 1.02902 1.02727 1.02777 1.02903
52 1.03163 1.03349 1.03509 1.03650 1.03490 1.03561 1.03020 1.02867 1.02929 1.03021
53 1.03337 1.03510 1.03653 1.03836 1.03667 1.03754 1.03192 1.03030 1.03107 1.03193
54 1.03360 1.03579 1.03719 1.03853 1.03728 1.03793 1.03223 1.03102 1.03161 1.03224
55 1.02907 1.03126 1.03285 1.03407 1.03218 1.03249 1.02737 1.02553 1.02580 1.02733
56 1.02793 1.03001 1.03139 1.03328 1.03133 1.03181 1.02647 1.02455 1.02495 1.02644
57 1.02942 1.03174 1.03343 1.03496 1.03316 1.03381 1.02801 1.02625 1.02681 1.02798
58 1.03154 1.03411 1.03577 1.03712 1.03560 1.03626 1.03006 1.02855 1.02912 1.03003
59 1.02964 1.03301 1.03488 1.03510 1.03426 1.03497 1.02806 1.02723 1.02783 1.02803
60 1.02962 1.03345 1.03522 1.03509 1.03485 1.03543 1.02785 1.02758 1.02805 1.02782
61 1.02877 1.03279 1.03446 1.03375 1.03357 1.03402 1.02657 1.02630 1.02668 1.02666
62 1.03813 1.04260 1.04329 1.04406 1.04403 1.04365 1.03630 1.03617 1.03570 1.03636
63 1.03854 1.04293 1.04382 1.04471 1.04476 1.04468 1.03666 1.03661 1.03640 1.03672
64 1.04039 1.04482 1.04571 1.04685 1.04676 1.04663 1.03862 1.03843 1.03822 1.03869
65 1.03956 1.04376 1.04463 1.04604 1.04576 1.04550 1.03786 1.03749 1.03717 1.03793
66 1.03871 1.04298 1.04360 1.04540 1.04494 1.04432 1.03698 1.03649 1.03578 1.03705
67 1.04230 1.04733 1.04744 1.04910 1.04900 1.04774 1.04006 1.03985 1.03859 1.04007
68 1.04045 1.04510 1.04532 1.04716 1.04684 1.04564 1.03868 1.03830 1.03708 1.03875
69 1.04487 1.04951 1.04997 1.05180 1.05152 1.05061 1.04314 1.04283 1.04193 1.04322
70 1.04603 1.05087 1.05123 1.05306 1.05293 1.05198 1.04423 1.04404 1.04313 1.04432
71 1.04344 1.04805 1.04889 1.05026 1.04987 1.04941 1.04166 1.04120 1.04065 1.04172
72 1.03924 1.04339 1.04535 1.04570 1.04494 1.04545 1.03733 1.03650 1.03694 1.03742
73 1.03497 1.03987 1.04216 1.04085 1.04055 1.04134 1.03268 1.03231 1.03299 1.03286
74 1.04292 1.04782 1.05074 1.04965 1.04939 1.05076 1.04085 1.04050 1.04174 1.04095
75 1.04324 1.04830 1.05064 1.05027 1.05012 1.05101 1.04128 1.04098 1.04172 1.04140
76 1.04847 1.05368 1.05608 1.05575 1.05557 1.05646 1.04659 1.04629 1.04705 1.04671

(Continued )
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Month PLo
t PLo1

t PLo2
t PY

t PY1
t PY2

t PGY
t PGY1

t PGY2
t PS

t

77 1.04946 1.05485 1.05660 1.05688 1.05662 1.05673 1.04744 1.04709 1.04717 1.04756
78 1.04813 1.05382 1.05588 1.05559 1.05537 1.05562 1.04613 1.04589 1.04621 1.04625
79 1.04940 1.05477 1.05850 1.05697 1.05614 1.05763 1.04696 1.04611 1.04743 1.04667
80 1.04699 1.05228 1.05505 1.05457 1.05371 1.05445 1.04506 1.04416 1.04484 1.04477
81 1.04969 1.05519 1.05784 1.05750 1.05690 1.05765 1.04782 1.04713 1.04784 1.04753
82 1.05209 1.05757 1.06093 1.06008 1.05941 1.06078 1.05012 1.04938 1.05066 1.04983
83 1.04951 1.05497 1.05809 1.05718 1.05660 1.05784 1.04765 1.04697 1.04814 1.04735
84 1.04572 1.05119 1.05407 1.05312 1.05265 1.05384 1.04377 1.04322 1.04433 1.04347
G. Rate 1.00748 1.00836 1.00882 1.00866 1.00859 1.00878 1.00716 1.00708 1.00726 1.00712

Table A4 (Continued)

Figure A11.4 Monthly Lowe, Young, geometric Young, and Similarity-Linked Indices
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Looking at Table A4, it can be seen that the average annual 
inflation rate of the three Lowe indices increase as the lag in 
the annual weights increases. The average growth rates of PLo

t, 
PLo1

t, and PLo2
t are 1.00748, 1.00836, and 1.0866. Thus, the 

average annual substitution bias for the Lowe indices increases 
from 0.038 percentage points per year for the current weight 
Lowe index to 0.124 and 0.172 percentage points per year for 
the practical Lowe indices that use weights that are one and 
two years old. The geometric average annual growth rates of 
PY

t, PY1
t, and PY2

t less the corresponding average of the real-
time similarity-linked indices PS

t are 0.154, 0.147, and 0.164 
percentage points, respectively. Finally, the average annual 
geometric growth rates of the geometric Young indices, PGY

t, 
PGY1

t, and PGY2
t, less the corresponding annual average of the  

real-time similarity-linked indices are 0.004, –0.004, and 0.014 
percentage points, respectively. It can be seen that the three 
geometric Young indices are close to each other and have the 
smallest approximate substitution bias.

At the end of the sample period, the highest line corre-
sponds to PLo2

t followed by the three Young indices, PY2
t, PY

t, 

and economic properties. The term PS
t will be defined for-

mally in the following section.
All of these indices capture the trend in Danish CPI infla-

tion reasonably well. However, the three “true” indices that 
use current year annual weights do differ considerably at 
times. If we take the geometric average annual growth rates 
for “true” Lowe, Young, and geometric Young indices, PLo

t, 
PY

t, PGY
t, 1.00748,39 1.00866, and 1.00716 , and subtract the 

average annual growth rate for the similarity-linked indices 
PS

t, 1.00712, we find that the approximate annual substitu-
tion bias in the three “true” indices over the entire sample 
period is 0.038, 0.154, and 0.004 percentage points per year, 
respectively.40

39 To be precise, the geometric annual average growth rate for the “true” 
Lowe index PLot is defined as (PLo

84)1/6 = 1.00748, so PLo
84 = 1.04572 = 

(1.00748)6.
40 The lagged indices are only approximations to the “true” lagged 
indices since we use the year 1 expenditure weights in place of the 
lagged expenditure weights for years 1 and 2.
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and PY1
t. These four high inflation indices are tightly clus-

tered and difficult to distinguish. These indices are followed 
by the Lowe index that uses weights lagged one year, PLo1

t. 
There is a gap between these five indices and the next index, 
which is the “true” Lowe index PLo

t. The final four indices, 
PGY2

t, PGY
t, PS

t, and PY1
t, are tightly clustered and difficult to 

distinguish in Figure A11.4. The seasonality in the monthly 
data is again apparent.

For the Danish data under consideration, there appears to 
be upward substitution biases in the lagged Lowe and Young 
indices, while the lagged geometric Young indices appear to 
be largely free from substitution bias. These results are in 
agreement with the results provided in the main text.

In the following section, the construction of the similarity-
linked indices PS

t will be explained.

A.11.5 Month-to-Month 
Approximate Fisher and Similarity-
Linked Indices
In this section, standard weighted month-to-month price 
indices for Denmark, such as the Laspeyres, Paasche, and 
Fisher indices, are constructed.41 However, as was noted 
in earlier sections of this chapter, monthly information 
on quantities or expenditures on consumer goods and ser-
vices is not available. Thus, we use the available annual 
expenditure information as approximations to actual 
monthly expenditures. Recall that the annual expendi-
ture share on product n in year y was defined as Sy,n for 
y = 1,  .  .  .,7. The approximate monthly expenditure share 
for product n in month t, st,n, is defined as follows:

st,n ≡ S1,n; t = 1, . . .,12; n = 1, . . .,402; (A37)
 st,n ≡ S2,n; t = 13, . . .,24; n = 1, . . .,402;

 st,n ≡ S3,n; t = 25, . . .,36; n = 1, . . .,402;

 st,n ≡ S4,n; t = 37, . . .,48; n = 1, . . .,402;

 st,n ≡ S5,n; t = 49, . . .,60; n = 1, . . .,402;

 st,n ≡ S6,n; t = 61, . . .,72; n = 1, . . .,402;
 st,n ≡ S7,n; t = 73, . . .,84; n = 1, . . .,402.

Recall that the official month t price index for product n 
(normalized to equal 1 in month 1) was defined as pt,n in Sec-
tion 2. This monthly price index is used to deflate the cor-
responding monthly expenditure to form an approximate 
month t, product n “quantity” (or volume), qt,n; that is, we 
have the following definitions:

 qt,n≡ st,n/pt,n; t = 1, . . .,84; n = 1, . . .,402. (A38)

Define the month t price and quantity vectors as pt ≡ [pt,1, . . ., 
pt,402] and qt ≡ [qt,1, . . .,qt,402] for t = 1, . . .,84. Now repeat defini-
tions (A13)–(A24) in Section 3 to define the fixed-base monthly 
Laspeyres, Paasche, and Fisher indices PL

t, PP
t, and PF

t, the 
chained monthly Laspeyres, Paasche, and Fisher indices PLCh

t, 

41 It would be more accurate to call these indices approximations to stan-
dard monthly indices since accurate monthly quantity or expenditure 
information is not available.

PPCh
t, and PFCh

t, and the monthly GEKS index PGEKS
t. In form-

ing these indices using definitions (A13)–(A24), the monthly 
price vector pt replaces the annual price vector py*, the monthly 
quantity vector qt replaces the annual quantity vector qy* and t 
= 1, . . .,84 replaces y = 1, . . .,7. These monthly indices are listed 
in Table A6 and are plotted in Figure A11.5.

The task of defining monthly relative price similarity-
linked indices remains. The definitions for the real-time 
predicted share similarity-linked monthly price index PS

t is 
similar to the earlier definition of these indices for the annual 
indices. We use the prices of month r, pr, and the quantities of 
month t, qt, to predict the actual month t, product n expen-
diture shares st,n defined by (A37) for n = 1, . . .,402. Denote 
this predicted share by sr,t,n, which is defined as follows:

sr,t,n ≡ pr,nqt,n/p
r·qt; r = 1, . . .,84; t = 1, . . .,84;  

 n = 1, . . .,402. (A39)

If the prices in month r are proportional to the prices in 
month t so that pr = λpt, where λ is a positive number, then 
it can be verified that the predicted shares defined by (A39) 
will be equal to the actual expenditure shares defined by 
(A37) for month t; that is, for the two months defined by 
r and t, we have st,n = sr,t,n for n = 1,  .  .  .,402. The follow-
ing predicted share measure of relative price dissimilarity 
between the prices of month r and the prices of month t, 
ΔPS(pr,pt,qr,qt), is defined as follows:

ΔPS(pr,pt qr,qt) ≡ Σn=1
402 [st,n – sr,t,n]

2 + Σn=1
402 [sr,n – st,r,n]

2 (A40) 
 = Σn=1

402 [(pt,nqt,n/p
t·qt) – (pr,nqt,n/p

r·qt)]2

 + Σn=1
402 [(pr,nqr,n/p

r·qr) – (pt,nqr,n/p
t·qr)]2.

To see how this predicted share measure of monthly rela-
tive price dissimilarity for months 1 to 12 turned out for our 
Danish data, refer to Table A5.42

This matrix can be used to construct the real-time similarity-
linked price index for the Danish monthly data PS

t for the 
first 12 months. This index is constructed in the same way 
as the annual indices. Thus, set PS

1 ≡ 1. The bilateral Fisher 
index linking month 2 to month 1, PF(2/1), is set equal to PS

2. 
Now look down the t = 3 column in Table A5. We need to 
link month 3 to either month 1 or month 2. The dissimilar-
ity measures for these two months are 0.00016 and 0.00006, 
respectively. The degree of relative price dissimilarity is far 
smaller for the link to month 2 than for the link to month 1, 
so we use the Fisher link from month 2 to month 3, PF

1(3/2), 
to link month 3 to month 2. The final month 3 similarity-
linked index for t = 4 is PS

3 ≡ PS
2×PF(3/2). The first three mea-

sures of dissimilarity in column 4 of Table A5 are 0.00021, 
0.00012, and 0.00005. Thus, it is optimal to link month 4 to 
month 3 and so on. The optimal set of bilateral links for the 
real-time similarity-linked indices for months 1 to 12 can be 
summarized as follows:

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 - 10 – 11 – 12.

42 In order to fit all 12 columns of dissimilarity measures for months 1–12 
on a single page, the actual dissimilarity measures have been multiplied 
by 10 in Table A5.
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Thus, for the Danish monthly data, the real-time similarity-
linked indices coincide with the Fisher chained indices for 
months 1–12, that is, we have PS

t = PFCh
t for t = 1, . . .,12.

It turns out that using the monthly Danish data, we 
found that most bilateral links were chain links. There 
were only 10 links that were not chained: 31 linked to 26, 
33 linked to 28, 55 linked to 50, 59 linked to 57, 64 linked 
to 62, 67 linked to 55, 68 linked to 66, 74 linked to 68, 79 
linked to 67, and 83 linked to 81. Two of these links (67–55 
and 79–67) were year-over-year links. The real-time similarity-
linked price index PS

t is listed in Table A6 and are plotted 
in Figure A11.5.

There is one more month-to-month similarity-linked 
index that is listed in Table A6: the modified predicted share 
similarity-linked index, PSM

t. This index is an index that 
can be constructed in real time after one year of price and 
quantity data have been collected. Instead of using real-
time linking in the first year, Hill’s (2001) spanning tree 
method of linking the first 12 months is used. Basically, 
this method looks at the first 12 months of data as a whole 
and finds the path linking all 12 months that generates 
the lowest sum of bilateral measures of price dissimilar-
ity. Thus, this method of linking requires that the first 12 
months of data be used as a “training” set of data where 
an initial set of bilateral links is determined simultane-
ously using already available historical data.43 Using the 
information in Table A5, we find that the optimal path that 
makes simultaneous use of the data is the following set of 
bilateral links:

1
|

2 – 3 – 4 – 5 – 6

|
7 – 8 – 9 – 10 – 11 – 12.

43 Hill’s method can be particularly useful if the monthly data exhibit sub-
stantial seasonal fluctuations.

Thus, month 1 is linked to month 3, month 3 is linked to 
months 2 and 4, month 5 is linked to months 6 and 10, month 
10 is linked to months 9 and 11, month 12 is linked to month 
11, month 9 is linked to month 10, month 8 is linked to 
month 9, and finally month 7 is linked to month 8. Once the 
first 12 observations have been linked, we use real-time link-
ing to calculate the remainder of the bilateral links for the 
modified similarity-linked index, PSM

t. The bilateral links 
for months 13 to 84 are exactly the same as the correspond-
ing links for PS

t for t = 13, . . .,84. The modified similarity-
linked index PSM

t is listed in Table A6. It is not shown in 
Figure A11.5 because PSM

t cannot be distinguished from the 
real-time similarity-linked index PS

t defined earlier.
It can be seen that the two similarity-linked indices, PS

t 
and PSM

t, approximate each other to the fourth decimal 
place. These indices end up at 1.0435 (to four decimal places) 
and should have the least amount of upper-level substitution 
bias for the Danish monthly data set. The average annual 
geometric growth of the real-time monthly similarity-linked 
indices PS

t is 1.00712 or 0.712 percentage points per year. 
The fixed-base and chained monthly Laspeyres indices, PL

t 
and PLCh

t, have average annual geometric growth rates equal 
to 1.00961 and 1.01229, respectively, which indicate average 
upward biases of 0.249 and 0.517 percentage points per year 
relative to the preferred similarity-linked index PS

t. Thus, 
the behavior of the monthly chained Laspeyres index is very 
different from the behavior of the annual chained Laspey-
res index: The annual fixed-base and chained Laspey-
res indices, PL

y and PLCh
y, had geometric average annual 

growth rates equal to 1.00693 and 1.00549 compared to  
1.00504, the average annual growth rate for the annual 
similarity-linked indices, which indicate much smaller average 
annual upward biases of 0.189 and 0.045 percentage points, 
respectively, in the annual Laspeyres indices. The monthly 
chained Laspeyres has a very large upward chain drift, 
whereas the annual chained Laspeyres index has a very 
moderate upward chain drift. The monthly fixed-base and 
chained Paasche indices, PP

t and PPCh
t, have annual average 

growth rates equal to 1.00554 and 1.00214, which indicate 
average downward biases of 0.158 and 0.498 percentage 
points, respectively, relative to the growth rate for PS

t. The 

Table A5 Predicted Share Measures of Price Dissimilarity for Denmark for Months 1–12
Month t 1 2 3 4 5 6 7 8 9 10 11 12

1 0.00000 0.00017 0.00016 0.00021 0.00020 0.00024 0.00027 0.00024 0.00027 0.00028 0.00028 0.00036
2 0.00017 0.00000 0.00006 0.00012 0.00014 0.00016 0.00012 0.00017 0.00021 0.00020 0.00022 0.00028
3 0.00016 0.00006 0.00000 0.00005 0.00009 0.00014 0.00015 0.00012 0.00012 0.00013 0.00018 0.00026
4 0.00021 0.00012 0.00005 0.00000 0.00003 0.00008 0.00015 0.00008 0.00007 0.00009 0.00013 0.00019
5 0.00020 0.00014 0.00009 0.00003 0.00000 0.00004 0.00014 0.00009 0.00008 0.00008 0.00008 0.00012
6 0.00024 0.00016 0.00014 0.00008 0.00004 0.00000 0.00010 0.00009 0.00009 0.00007 0.00005 0.00006
7 0.00027 0.00012 0.00015 0.00015 0.00014 0.00010 0.00000 0.00006 0.00012 0.00012 0.00015 0.00018
8 0.00024 0.00017 0.00012 0.00008 0.00009 0.00009 0.00006 0.00000 0.00004 0.00006 0.00010 0.00015
9 0.00027 0.00021 0.00012 0.00007 0.00008 0.00009 0.00012 0.00004 0.00000 0.00002 0.00006 0.00011
10 0.00028 0.00020 0.00013 0.00009 0.00008 0.00007 0.00012 0.00006 0.00002 0.00000 0.00003 0.00007
11 0.00028 0.00022 0.00018 0.00013 0.00008 0.00005 0.00015 0.00010 0.00006 0.00003 0.00000 0.00002
12 0.00036 0.00028 0.00026 0.00019 0.00012 0.00006 0.00018 0.00015 0.00011 0.00007 0.00002 0.00000
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Table A6 Laspeyres, Paasche, Fisher Fixed-Base, and Chained Indices, GEKS Index, and Similarity-Linked Indices
Month t PL

t PP
t PLCh

t PPCh
t PF

t PFCh
t PGEKS

t PS
t PSM

t

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.01208 1.01134 1.01208 1.01134 1.01171 1.01171 1.01193 1.01171 1.01173
3 1.01577 1.01456 1.01586 1.01443 1.01516 1.01514 1.01570 1.01514 1.01516
4 1.01540 1.01381 1.01550 1.01367 1.01460 1.01458 1.01518 1.01458 1.01460
5 1.01595 1.01422 1.01610 1.01403 1.01509 1.01507 1.01569 1.01507 1.01509
6 1.01427 1.01248 1.01463 1.01211 1.01337 1.01337 1.01390 1.01337 1.01339
7 1.01310 1.01116 1.01411 1.01012 1.01213 1.01211 1.01209 1.01211 1.01214
8 1.01666 1.01481 1.01809 1.01337 1.01573 1.01573 1.01580 1.01573 1.01575
9 1.01953 1.01694 1.02095 1.01552 1.01824 1.01823 1.01906 1.01823 1.01826
10 1.01830 1.01587 1.01992 1.01423 1.01708 1.01707 1.01788 1.01707 1.01710
11 1.01728 1.01507 1.01914 1.01319 1.01617 1.01616 1.01696 1.01616 1.01618
12 1.01432 1.01189 1.01622 1.01003 1.01311 1.01312 1.01381 1.01312 1.01314
13 1.01117 1.01012 1.01382 1.00738 1.01064 1.01059 1.01067 1.01059 1.01062
14 1.02286 1.02159 1.02637 1.01868 1.02223 1.02252 1.02282 1.02252 1.02254
15 1.02436 1.02213 1.02734 1.01886 1.02325 1.02309 1.02371 1.02309 1.02312
16 1.02198 1.01975 1.02534 1.01653 1.02087 1.02092 1.02162 1.02092 1.02095
17 1.02360 1.02145 1.02712 1.01796 1.02253 1.02253 1.02310 1.02253 1.02256
18 1.02300 1.02080 1.02678 1.01723 1.02190 1.02200 1.02240 1.02200 1.02202
19 1.01949 1.01727 1.02429 1.01332 1.01838 1.01879 1.01864 1.01879 1.01882
20 1.02019 1.01698 1.02449 1.01282 1.01858 1.01864 1.01882 1.01864 1.01866
21 1.02419 1.02009 1.02842 1.01605 1.02214 1.02222 1.02274 1.02222 1.02224
22 1.02462 1.02126 1.02962 1.01670 1.02294 1.02314 1.02397 1.02314 1.02317
23 1.02277 1.01911 1.02765 1.01433 1.02094 1.02097 1.02172 1.02097 1.02099
24 1.02202 1.01834 1.02701 1.01341 1.02018 1.02019 1.02078 1.02019 1.02022
25 1.02057 1.01739 1.02635 1.01031 1.01898 1.01830 1.01886 1.01830 1.01832
26 1.02791 1.02461 1.03434 1.01759 1.02626 1.02593 1.02653 1.02593 1.02596
27 1.02865 1.02548 1.03619 1.01849 1.02706 1.02730 1.02771 1.02730 1.02733
28 1.02982 1.02700 1.03818 1.02015 1.02841 1.02912 1.02926 1.02912 1.02915
29 1.02972 1.02616 1.03738 1.01906 1.02794 1.02818 1.02850 1.02818 1.02821
30 1.02908 1.02580 1.03750 1.01840 1.02744 1.02791 1.02809 1.02791 1.02793
31 1.02794 1.02257 1.03507 1.01441 1.02525 1.02469 1.02556 1.02470 1.02473
32 1.02616 1.02164 1.03422 1.01285 1.02390 1.02348 1.02433 1.02349 1.02352
33 1.02938 1.02612 1.03966 1.01716 1.02775 1.02835 1.02879 1.02835 1.02838
34 1.03005 1.02655 1.04041 1.01760 1.02830 1.02894 1.02931 1.02895 1.02897
35 1.02775 1.02305 1.03733 1.01414 1.02540 1.02567 1.02621 1.02568 1.02570
36 1.02554 1.01928 1.03473 1.01043 1.02241 1.02251 1.02323 1.02251 1.02254
37 1.01998 1.01314 1.02765 1.00238 1.01655 1.01493 1.01592 1.01494 1.01496
38 1.02982 1.02483 1.03990 1.01293 1.02733 1.02632 1.02714 1.02633 1.02636
39 1.03496 1.02911 1.04502 1.01670 1.03203 1.03076 1.03171 1.03077 1.03079
40 1.03570 1.03018 1.04629 1.01758 1.03293 1.03183 1.03272 1.03184 1.03187
41 1.03621 1.03041 1.04673 1.01775 1.03330 1.03213 1.03307 1.03214 1.03217
42 1.03567 1.02941 1.04637 1.01695 1.03253 1.03156 1.03239 1.03156 1.03159
43 1.03425 1.02645 1.04430 1.01366 1.03034 1.02886 1.03000 1.02887 1.02890
44 1.03176 1.02306 1.04132 1.01013 1.02740 1.02561 1.02687 1.02561 1.02564
45 1.03487 1.02626 1.04566 1.01336 1.03056 1.02938 1.03059 1.02939 1.02941

(Continued )
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Month t PL
t PP

t PLCh
t PPCh

t PF
t PFCh

t PGEKS
t PS

t PSM
t

46 1.03482 1.02545 1.04535 1.01265 1.03012 1.02887 1.03013 1.02887 1.02890
47 1.03261 1.02277 1.04311 1.01013 1.02768 1.02649 1.02763 1.02649 1.02652
48 1.03220 1.02081 1.04199 1.00872 1.02649 1.02522 1.02646 1.02522 1.02525
49 1.02809 1.01841 1.03768 1.00281 1.02324 1.02009 1.02211 1.02010 1.02012
50 1.03660 1.02648 1.04734 1.01092 1.03153 1.02897 1.03060 1.02897 1.02900
51 1.03701 1.02657 1.04774 1.01066 1.03178 1.02903 1.03084 1.02903 1.02906
52 1.03830 1.02765 1.04911 1.01165 1.03296 1.03021 1.03204 1.03021 1.03024
53 1.04025 1.02957 1.05107 1.01314 1.03489 1.03193 1.03385 1.03193 1.03196
54 1.04119 1.02983 1.05160 1.01323 1.03549 1.03224 1.03430 1.03224 1.03227
55 1.03739 1.02355 1.04752 1.00754 1.03045 1.02734 1.02936 1.02733 1.02735
56 1.03645 1.02261 1.04709 1.00622 1.02950 1.02645 1.02843 1.02644 1.02647
57 1.03787 1.02394 1.04886 1.00753 1.03088 1.02799 1.02996 1.02798 1.02800
58 1.03934 1.02599 1.05115 1.00936 1.03264 1.03004 1.03199 1.03003 1.03006
59 1.03935 1.02346 1.04936 1.00715 1.03137 1.02804 1.03025 1.02803 1.02805
60 1.04000 1.02333 1.04936 1.00674 1.03163 1.02783 1.03023 1.02782 1.02785
61 1.03901 1.02218 1.04880 1.00500 1.03056 1.02667 1.02935 1.02666 1.02668
62 1.04704 1.03213 1.05927 1.01397 1.03956 1.03637 1.03875 1.03636 1.03639
63 1.04728 1.03218 1.06001 1.01397 1.03970 1.03674 1.03913 1.03672 1.03675
64 1.04883 1.03405 1.06224 1.01568 1.04142 1.03870 1.04100 1.03869 1.03872
65 1.04851 1.03296 1.06173 1.01468 1.04071 1.03794 1.04021 1.03793 1.03796
66 1.04755 1.03162 1.06109 1.01357 1.03955 1.03706 1.03915 1.03705 1.03707
67 1.05076 1.03365 1.06514 1.01573 1.04217 1.04014 1.04210 1.04007 1.04010
68 1.04944 1.03268 1.06415 1.01398 1.04102 1.03877 1.04074 1.03875 1.03878
69 1.05360 1.03726 1.06904 1.01804 1.04540 1.04323 1.04528 1.04322 1.04324
70 1.05397 1.03821 1.07033 1.01896 1.04606 1.04433 1.04634 1.04432 1.04434
71 1.05210 1.03527 1.06798 1.01614 1.04365 1.04174 1.04372 1.04172 1.04175
72 1.04938 1.03060 1.06388 1.01164 1.03995 1.03743 1.03964 1.03742 1.03744
73 1.04663 1.02558 1.05980 1.00663 1.03605 1.03287 1.03553 1.03286 1.03289
74 1.05304 1.03401 1.06876 1.01403 1.04348 1.04103 1.04346 1.04095 1.04098
75 1.05372 1.03375 1.06962 1.01407 1.04369 1.04148 1.04381 1.04140 1.04142
76 1.05965 1.03894 1.07525 1.01908 1.04925 1.04679 1.04927 1.04671 1.04673
77 1.06088 1.03960 1.07650 1.01955 1.05018 1.04764 1.05004 1.04756 1.04758
78 1.06027 1.03769 1.07542 1.01802 1.04892 1.04633 1.04883 1.04625 1.04628
79 1.06109 1.03763 1.07773 1.01752 1.04930 1.04719 1.04947 1.04667 1.04669
80 1.05888 1.03626 1.07620 1.01527 1.04751 1.04529 1.04741 1.04477 1.04479
81 1.06152 1.03874 1.07939 1.01763 1.05007 1.04806 1.05026 1.04753 1.04755
82 1.06384 1.04138 1.08203 1.01962 1.05255 1.05036 1.05272 1.04983 1.04986
83 1.06199 1.03855 1.07976 1.01694 1.05021 1.04788 1.05024 1.04735 1.04738
84 1.05906 1.03372 1.07603 1.01292 1.04632 1.04400 1.04637 1.04347 1.04350
G. Rate 1.00961 1.00554 1.01229 1.00214 1.00757 1.00720 1.00758 1.00712 1.00712

Table A6 (Continued)

In Figure A11.5, the top line is the monthly chained Laspey-
res index PLCh

t, followed by the fixed-base Laspeyres index 
PL

t. The black line is the fixed-base Fisher index that lies a 
bit above the real-time similarity-linked index PS

t, which 
can barely be distinguished from the chained Fisher index. 
The lowest line corresponds to the monthly chained Paasche  

monthly chained Fisher index, PFCh
t, is very close to the two 

monthly similarity-linked indices with an annual average 
growth rate of 1.00720. The annual average growth rates for 
the monthly fixed-base Fisher index and the monthly GEKS 
index, 1.00757 and 1.00758, respectively, are a bit above the 
chained monthly fixed-base Fisher growth rate.
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index, which lies below the fixed-base Paasche index. The sea-
sonal fluctuations in the Danish data are substantial.

A.11.6 Conclusion
The main findings in Section A.11.2 were as follows:

• In situations where there were no missing prices and no 
expenditure or quantity information was available, the 
monthly Jevons index PJ

t was the preferred index.
• The upper-level monthly price data from Denmark for 

the years 2012 to 2018 exhibited substantial seasonal 
fluctuations.

The main findings in Section A.11.3 were as follows:

• It is not a trivial matter to aggregate monthly consumer 
prices into annual prices. The usual National Statistical 
Office practice of forming annual prices as the arithmetic 
average of monthly prices is not consistent with theoreti-
cal approaches to index number theory and is likely to be 
particularly inaccurate if there are strong seasonal fluctu-
ations in monthly prices and quantities. Since the Danish 
monthly price data does exhibit strong seasonal fluctua-
tions, it is likely that the corresponding monthly expendi-
ture data also exhibits strong seasonal fluctuations.

• In this section, (approximate) Laspeyres, Paasche, and 
Fisher fixed-base and chained annual indices, PL

y, PP
y, 

and PF
y and PLCh

y, PPCh
y, and PFCh

y, were computed for 
the seven years in the sample. The multilateral GEKS 
and predicted share similarity-linked annual indices, 
PGEKS

y and PS
y, were also computed. The similarity-linked 

annual indices PS
y have good properties from the view-

point of both the economic and test approaches to index 
number theory, and so the bias in the remaining indices 
was measured relative to this index. The annual chained 
Fisher indices PF

y were found to be identical to the annual 
similarity-linked indices PF

y.

• The fixed-base annual Laspeyres index PL
y was on aver-

age 0.19 percentage points above our preferred chained 
Fisher and similarity-linked indices, while the fixed-base 
Paasche annual index PP

y was on average 0.045 percent-
age points below PFCh

y and PS
y.

• The average difference between the fixed-base Laspey-
res and the chained Fisher indices was 0.19 percentage 
points, while the difference between the chained Laspey-
res and the chained Fisher indices was only 0.045 per-
centage points. Thus, annual substitution bias using the 
fixed-base Laspeyres formula is much larger than the sub-
stitution bias using the chained Laspeyres index.

The real-time “practical” month-to-month CPIs that 
National Statistical Offices are able to calculate at higher lev-
els of aggregation use annual expenditure shares (or annual 
quantities) from a previous year and their monthly price 
indices. The three main monthly indices of this type that 
are used are the Lowe, Young, and geometric Young indices. 
If current annual expenditure or quantity weights are used, 
these indices are denoted by PLo

t, PY
t, and PGY

t, respectively.44 
If the annual weights are lagged one year, these indices are 
denoted by PLo1

t, PY1
t, and PGY1

t, respectively. If the annual 
weights are lagged two years, these indices are denoted by 
PLo2

t, PY2
t, and PGY2

t, respectively. The upper-level substitu-
tion bias in these indices is measured relative to the monthly 
similarity-linked indices PS

t, which were defined in Section 
A.11.5. The main findings in Section A.4 were as follows:

• The monthly average upward substitution bias for the 
“true” Lowe indices was close to 0.04 percentage points 
per year; for the “true” Young index, it was 0.15 percent-
age points per year, while the “true” geometric Young 
indices had a tiny upward substitution bias equal to 0.004 
percentage points per year on average.

44 Of course, these indices cannot be calculated in real time so they are 
not really “practical.”
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Figure A11.5 Monthly Laspeyres, Paasche, and Fisher Indices, GEKS Index, and Similarity-Linked Indices
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• The means of the three monthly Lowe indices increased 
as the lag in the annual weights increased. The average 
substitution bias for the Lowe indices increased from 
0.04 percentage points per year for the current weight 
Lowe index to 0.17 percentage points per year for the 
practical Lowe index that uses weights that are two 
years old.

• The average substitution bias for the monthly Young indi-
ces increased from 0.15 percentage points per year for the 
Young index that uses current expenditure weights to 0.17 
percentage points per year for the practical Young index 
that uses weights that are two years old.

• The average substitution bias for the monthly geometric 
Young indices increased from 0.004 percentage points 
per year for the geometric Young index that uses current 
expenditure weights to 0.014 percentage points per year 
for the practical geometric Young index that uses weights 
that are two years old.

• The three monthly geometric Young indices were close to 
each other and had the smallest approximate substitution 
bias.

In Section A.11.5, (approximate) Laspeyres, Paasche, and 
Fisher fixed-base and chained monthly indices, PL

t, PP
t, and 

PF
t and PLCh

t, PPCh
t, and PFCh

t, were computed for the 84 months 
in the sample. The multilateral GEKS and predicted share 
similarity-linked monthly indices, PGEKS

t and PS
t, were also 

computed. The main findings in Section A.5 were as follows:

• The monthly chained Fisher indices PF
t were not identical 

to the monthly similarity-linked indices PF
t, but they are 

so close to each other that they cannot be distinguished 
from each other on a chart.

• The monthly fixed-base and chained Laspeyres indi-
ces, PL

t and PLCh
t, had an average upward bias (relative 

to our preferred similarity-linked indices) of 0.25 and 
0.52 percentage points per year over the sample period, 
respectively. Thus, the behavior of the monthly chained 
Laspeyres index is very different from the behavior of the 
annual chained Laspeyres index: The monthly chained 
Laspeyres had a very large upward chain drift, whereas 
the annual chained Laspeyres index had a much smaller 
upward chain drift.

• The monthly fixed-base and chained Paasche indices, PP
t 

and PPCh
t, had an average downward bias of 0.16 and 0.50 

percentage points, respectively.
• The monthly chained Fisher index, PFCh

t, was very close 
to the monthly similarity-linked indices. Thus, chained 
Fisher indices performed well for this particular data set, 
both in the annual context and in the monthly context.

• The monthly fixed-base Fisher index, PF
t, was very close 

to the monthly GEKS index, PGEKS
t, and these indices are 

slightly above our preferred similarity-linked indices.

Some overall conclusions are as follows:

• National Statistical Offices could consider computing 
geometric Young indices for their official CPIs in place 
of the Lowe and Young indices that are presently widely 
used. From the main text and this annex, it appears that 
the lagged Lowe and Young indices have some measur-
able upward substitution bias, while the lagged geometric 

Young index has perhaps a smaller amount of downward 
substitution bias.

• For countries that have substantial seasonal fluctuations 
in prices and quantities, the use of annual expenditure 
weights will lead to inaccurate monthly CPIs. Moreover, 
taking an arithmetic average of monthly prices will lead 
to inaccurate annual prices, which in turn will lead to 
inaccurate estimates of household consumption.45 Thus, 
it would be very useful if countries would attempt to esti-
mate monthly expenditure weights.

• It will not be possible to obtain current expenditure infor-
mation by month for all categories of consumption. But 
typically, some expenditure information can be obtained 
on a delayed basis. Thus, it would be useful for Statistical 
Offices to produce an analytical CPI that could be revised 
as more information becomes available. The US Bureau 
of Labor Statistics produces alternative CPIs on a regular 
basis which indicates that it is possible to produce mul-
tiple CPIs without confusing the public.

The last point is an important one, particularly in recent 
times when all economies have been affected by the COVID 
pandemic and developments in the Ukraine. A Lowe or 
Young CPI is a very useful measure of consumer inflation 
provided that relative quantities grow in a proportional 
manner or provided that consumer expenditure shares are 
approximately constant across recent months and years. 
However, substantial changes in consumer expenditure 
shares can occur rather suddenly, which greatly strength-
ens the case for having alternative, revisable CPIs that make 
use of weight information, which is available on a delayed 
basis.46
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INDEX

absolute index number 39
access charges

alternative approach Fisher indices 142
approach 1 indices 138–140
approach 1 Laspeyres, Paasche, Fisher indices 140
approach 2 Laspeyres, Paasche, Fisher indices 140
approach 2 weighted indices 140–141
approach 3 Laspeyres, Paasche, and Fisher indices 141
approach 3 weighted indices 141
approach 4 Laspeyres, Paasche, and Fisher indices 141
approach 4 unweighted indices 143
approach 4 weighted indices 141–143

AC Nielsen company 128
acquisition 368
acquisition approach 8, 326, 327–328, 371, 372, 373
acquisition costs, relationship between user costs and 337–338
additive quantity levels 172
adjacent period time dummy hedonic regression model 375
adjacent period time dummy model 347
aggregate Allen quantity indices, proposition 108–109
aggregate cost of living indices 105–108
aggregate price level 151, 219
aggregate quantity index 334
aggregate quantity level 219, 220
aggregation

three-stage 32–35
two-stage vs single-stage 27–28

aggregation function 219
aggregator function 222
Allen quantity index 4, 71, 94–96

aggregate 108–109
proposition 95–96

allocation of household time 101
allocation of time 4
alternative approaches, treatment of access charges 135–143
annual average, monthly shares 158
annual basket (AB) indices 295, 295n65
annual expenditures for product 292
annual expenditure share 389
annual GEKS price index 391
annual GEKS price levels 391
annual indices 252

construction of, using carry-forward prices 265–268
construction of, using maximum overlap bilateral indices 268–271

annual indices using carry-forward prices, construction of 265–268
annual inflation, rolling year measures of 296–300
Annual Predicted Shared Price Dissimilarity 267
annual prices 389
annual quantity vector 17
annual standard fixed-base and chained Laspeyres, Paasche, 

and Fisher indices 387, 392
annual unit value price 389
annual weights, indices 204–205
anticipated asset inflation rate 331
approximate rental cost 331
approximation 26
arithmetic average 2, 255
arithmetic mean 16, 130
Armknecht, Paul 385

Artsev, Yevgeny 253
asset appreciation rate 9
asymptotic linear measures of relative price dissimilarity 206
Australian Bureau of Statistics 149, 194, 235
average share price index 159
axiomatic (test) approach to index number theory 1, 39–40

alternative axiomatic approach to bilateral index number 
theory 47–51

circularity test 45–47
defining contributions to overall percentage change for 

bilateral index 52–56
Fisher ideal index and 44–45
test performance of other indices 45
tests for bilateral price indices 41–44
Tornqvist price index and 51–52
using price levels 40–41

axiomatic approach to multilateral price levels 191–193

Backwards Carli index 133
backwards measured inflation rate 133
Baldwin, Andrew 295n65
Balk, Bert M. 55
Bank for International Settlements 354
base period 12
base year expenditure shares 18
basic builder’s model 343
basic index number theory 11–12

decomposition of value aggregates and product test 12–13
Fisher Index as average of Paasche and Laspeyres  

indices 14–15
fixed-base versus chained indices 24–27
Laspeyres and Paasche indices 13–14
Lowe index with monthly prices and annual base year 

quantities 17–21
two-stage aggregation versus single-stage aggregation 27–28
Walsh index and theory of “pure” price index 15–17
Young index 21–23

basket approach, index number theory 1
basket test 68
BCDEF approach 246
Becker’s theory, allocation of time 101–105
bias 7, 180, 180n165
bilateral annual indices 266
bilateral case

weighted time product dummy regression of, with missing 
observations 180–182

weighted time product dummy regressions 177–180
bilateral indices see maximum overlap bilateral indices
bilateral index number 65
bilateral index number formula 1
bilateral index number theory 13n10, 39

alternative axiomatic approach to 47–51
time product dummy approach 65–66
unweighted stochastic approaches to 61–63
weighted time product dummy approach to 66–69

bilateral maximum overlap Laspeyres, Paasche, and Fisher 
indices 261

bilateral price indices 65
tests for 41–44
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bilateral regression model 179n162
Boldsen Hansen, Carsten 384
Bowley, Arthur L. 15
builder’s model 343, 348, 353
Bureau of Economic Analysis 371
Bureau of Labor Statistics 328n16, 404
bytes downloaded, quality adjustment 245

Cambridge University Adam Smith Prize 177n148
Canadian CPI, substitution bias in 385
capitalization rate 363, 363n152
Carli chain linked indices 388
Carli elementary index 133
Carli elementary price index 129
Carli formula 133–134
Carli index 2, 5, 8, 124, 138, 143, 193, 280

additional problems associated with use of 144
annual price data 393, 394
fixed-base and chained 281–282

Carli price index 61, 62, 154–155
chaining 155
fixed-base weighted 154

Carruthers, Sellwood, Ward and Dalén index 129, 131, 134, 138, 139
carry backward prices 305

data listing for month-to-month 311–314
carry forward prices 7n8, 8n10, 186, 253, 302

construction of annual indices using 265–268
data listing for month-to-month 307–309, 311–314
imputed 302
month-to-month fixed-base Fisher indices using 314
year-over-year monthly indices using 253–261, 302–308

case of missing observations, Time Product Dummy 
Regressions 175–177

case of no missing observations, Time Product Dummy 
Regressions 173–175

cash flow approach 364
CCDI index 185
CCDI multilateral indices 162–163
CCDI price index 162
CES see Constant Elasticity of Substitution (CES)
CES functional form 238
CES methodology 247
CES price indices 239
CES utility function 92, 238
chain drift 160, 167, 301

price and quantity levels 190
chain drift problem 5, 6, 24n63, 147–148, 389

to chain or not to chain 160–162
possible real-time solutions to 148–149

chained Carli indices 281–282
annual price data 393, 394
unweighted 201–202

chained indices 5–6, 46, 160
fixed-base versus 24–27

chained Laspeyres, Paasche, and Fisher indices, standard 
annual 390, 392

chained Laspeyres, Paasche, Fisher, and Tornqvist–Theil indices 254
chained Laspeyres price index, weighted index 203, 204
chained Paasche price index, weighted index 203, 204
chained price index 45

prices and quantities for two products 161
chained Young index 292
chain link 254
chain link index 45
change of units test 43
circularity test 25, 26, 27, 45–47, 50, 132, 133

proof of proposition 57–58
proposition 1 46–47

classic time product dummy hedonic regression model 357
Classification of Individual Consumption by Purpose 

(COICOP) 124, 128
clustering approaches, quality adjustment 243–244
Cobb-Douglas function 238
Cobb-Douglas price index 71, 87

proposition and proof 87, 118
Cobb-Douglas traditional model 354
commensurability test 43, 47, 49, 132
commodity, term 12n3
commodity basket 21
commodity price change contribution factors 54
Commodity Reversal Test 42–43, 46–47, 49
conditional cost of living indices 4, 96–98

proposition, 97–98
conditional expenditure shares 262
conditional Laspeyres index 32
conditional Lowe index 34
condominium sales prices, decomposing into land and 

structure components 348–351
Constant Elasticity of Substitution (CES)

comparing CES price levels and price indices 151–154
linear preferences 167
period t price levels 153
price level 151
proposition and proof 152–154
unit cost function 151, 151n29, 153, 157
unweighted price index 201–202
utility function 7

Constant Elasticity of Substitution (CES) preferences 71,  
88–94, 219

estimating reservation prices 238–241
proposition and proof 90–94, 118–119

constant quality indices 342
constant quality measure 237
constant quality price 355, 358
constant quality property price index 352
constant variances 153
consumer, Konüs cost of living index for single 72–75
consumer demand approach 173, 173n128, 223n34
consumer preferences, estimation of 246
consumer price index (CPI) 1, 15, 147, 149, 251, 256, 300, 327, 

365, 366
alternative approaches to treatment of access charges 135–143
elementary indices 123–124
problems associated with Carli index 144
treatment of household monetary balances in 369–371

Consumer Price Index Manual 6, 52, 147, 149, 194
Consumer Price Index Theory 9
consumer’s true cost of living index 80
consumer’s unit cost minimization problem 87
consumption 339
consumption equivalent 370
consumption of fixed capital (CFC) 363
Continuity test 41, 46, 48, 131
contract rent 329
cost function 3
cost of living indices

aggregate 105–108
conditional 96–98
homothetic preferences 75–76
proposition of conditional 97–98

Country Product Dummy model 65–66, 218
covariance 167n102
covariance identity 29

equation 157, 157n57
Covid pandemic 4, 365, 404
current period 12
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Danish CPI 381, 387, 390
recalculations of 384
see also Denmark’s supplementary indices

data listing 196, 199
monthly prices for products 200, 201
“monthly” quantities sold for frozen juice products 198–199
“monthly” unit value prices for frozen juice products 196–198

declining balance method of depreciation 334–335
deflate 13
deflated price 158
deflator 13
demand-side model 343
demolition, depreciation 346
Denmark’s supplementary indices 387

Lowe, Young, Geometric Young and similarity-linked 
monthly indices 396–398

month-to-month aggregate unweighted indices 387–389
month-to-month approximate Fisher and similarity-linked 

indices 399–403
month-to-month indices using annual weights 394–399
standard annual indices 389–393, 394

depreciation, declining balance method of 334–335
depreciation for consumer durables, general model for 332–334
depreciation rate 9
descriptive statistics approach 69
deterioration, depreciation 346
Diewert, W. Erwin 253, 387
Dikhanov elementary index 139
discrete characteristic category 233
divergent linear trends in log prices 159
dominant characteristic quality adjustment 245–246
double differenced error variables 91
double differenced log price variables 90
double differenced log variable 90, 91
double differenced systems of inverse demand estimation 

equations 93
double differencing method 91
downward bias 7, 129, 166, 169
dummy variable functions 234
durability, methods for dealing with 326
durable good(s)

acquisitions approach 327–328
alternative depreciation models 335–337
definition 325
general model of depreciation for consumer durables 332–334
geometric or declining balance depreciation 334–335
opportunity cost approach 332
relationship between user costs and acquisition costs 337–338
rental equivalence approach 328–329
summary of approaches 371–372
treatment of 8–9, 325–327
treatment of purchases of 325n1
user cost approach for pricing services of 329–332

Dutot elementary price index 129
Dutot formula 139
Dutot index 8, 132, 133, 138, 143, 193, 280

annual price data 393, 394
annual weights 204–205
definition 5
fixed-base 388
fixed-base and chained 281–282
unweighted 201–202

Dutot price index 152
Dutot quantity level and quantity index 165
dynamic product universe 192

early retirement depreciation 346
economic approach to index number theory 2–5, 71–72, 167, 194

aggregate Allen quantity indices 108–109
aggregate cost of living indices 105–108
Allen quality index 94–96
Becker’ theory of the allocation of time 101–105
Cobb-Douglas price index 87
conditional cost of living indices 96–98
Constant Elasticity of Substitution (CES) preferences 88–94
Cost of Living Index (COLI) and homothetic preferences 

75–76
Fisher ideal index 78–82
Konüs Cost of Living Index (COLI) for single customer 72–75
matching of prices problem 112–113
modeling changes in tastes 96
numerical approximation properties of superlative indices 

86–87
proofs of propositions 114–119
quadratic means of order r and Walsh index 82–84
reservation prices and new and disappearing products 98–101
social welfare functions and inequality indices 109–112
Törnqvist–Theil index 84–86
Wold’s Identity and Shephard’s Lemma 76–78

economic depreciation rate 330
economic importance 61, 62, 224
economics 71
economic statistics 75
Edgeworth, Francis Ysidro 11
Edgeworth Marshall formula 16
Edgeworth Marshall price index 16
elasticity function 89
elasticity of substitution 89, 153, 154, 238
elementary aggregates 123

dimensions of 126
elementary expenditure aggregates 123
elementary indices 5, 123–124, 134

aggregation and classification problems for 126–129
alternative approaches to treatment of access charges 135–143
Fisher’s rectification procedure and time reversal test 133–134
ideal 124–126
numerical relationships between 130–131
suggestions from over the years 129–130
test approach to 131–133

elementary level of aggregation 217
elementary price indices 123, 280
empirical studies on substitution bias 384–385
environmental vector 96–97
equally weighted geometric average of quality-adjusted price 227
estimation of consumer preferences 246
European Central Bank 354
European Union 53, 363, 365
Eurostat, Harmonized Index of Consumer Prices (HICP) 9, 

53, 130, 327, 328, 365, 367, 383
exact index number formula 3, 87
expected prices 330
expenditure 251
expenditure amounts 178
expenditure share 13, 150, 178, 257
expenditure weights 328n16
experimental economics approaches 246

Factor Reversal Test 44–45
Feenstra methodology 241, 247, 370
Feenstra’s method 7
financial opportunity cost of holding the durable good 8
Finkel, Yoel 253
first stage of aggregation 243
Fisher, Irving 11, 42, 44, 133, 144

approach to index number theory 47–48n41
rectification procedure 133–134
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Fisher aggregate quantity index 113
Fisher fixed-base indices, prices and quantities for two  

products 161
Fisher fixed-base quantity indices 164
Fisher formula 28
Fisher ideal index 51

superlative index 78–82
test approach and 44–45

Fisher ideal price index 17, 41
Fisher ideal quantity index 78, 222
Fisher index 2, 6, 24, 71, 107, 125, 161, 193, 255

alternative approach 142
annual standard fixed-base and chained 387, 392
annual weights 204–205
as average of Paasche and Laspeyres indices 14–15
fixed-base and chain indices 142, 161
month-to-month, and similarity-linked indices 399–403
multilateral indices and, using reservation prices and inflation-

adjusted carry-forward or carry-backward prices 210
prices and quantities for two products 161
relationships between Lowe index and 169–171
Törnqvist index and 161

Fisher price index 1
annual superlative index 383
similarity-linked 185
weighted index 203, 204

Fisher quantity index 4n6
fixed-base Carli indices 281–282

unweighted 201–202
fixed-base Carli price index 154
fixed-base Dutot indices 281–282
fixed-base Fisher indices 272

maximum overlap month-to-month 314, 315–318
month-to-month, using carry forward prices 314

fixed-base Fisher price index 169
fixed-base Geometric Laspeyres price index 155
fixed-base Geometric Paasche price index 155
fixed-base index numbers 5
fixed-base Jevons, Dutot, and Carli indices, annual price data 

393, 394
fixed-base Jevons indices 281–282
fixed-base Laspeyres, Paasche, and Fisher indices 390, 392
fixed-base Laspeyres, Paasche, Fisher, and Törnqvist-Theil 

indices 253–254
fixed-base Laspeyres indices 272
fixed-base Laspeyres price index 155, 171

weighted index 203, 204
fixed-base Laspeyres quantity index 169
fixed-base Paasche indices 272
fixed-base Paasche price index 155, 171

weighted index 203, 204
fixed-base Paasche quantity index 169
fixed-base quantity indices 219
fixed-base system, chained index system versus 24–27
fixed-base Törnqvist Theil price index 231
fixed-base weighted Carli price index 154
fixed-base Young index 292
fixed basket approach 1
fixed basket index 15
Fixed Basket or Constant Quantities Test 41–42, 47
fixed basket test 189–190
fixed basket test for prices 192
fixed basket type index 11
fixed-line UK retail sector 137

normalized prices and quantities for 138
revenues and quantities for telecommunications 137

flexible functional form 79
floor space area, quality adjustment 245

Flux, A. W. 253
footprint, building 349
formula bias 125
fourth stage of aggregation 243
Fox, Kevin J. 128
free products, valuation of 246
functional form symmetry test 44–45
fundamental equations 220
fundamental problem of accounting 8

Geary-Khamis (GK) indices 193, 244
computation of 314, 318–319, 320, 321
GK price levels 318
Weighted Time Product Dummy index 187

Geary-Khamis (GK) multilateral indices 150, 171–173
GEKS index 184–185, 255

relationships between Törnqvist index and 162–163
GEKS price indices 184, 184n186, 255–256, 266
GEKS price levels 162, 255
GEKST price indices 162
general hedonic regression models with characteristics 7
generalized quadratic identity 95
generic drugs, quality adjustment 245
geometric 129
geometric average 2, 23, 255
geometric averaging 23n54
Geometric Laspeyres price index

relationships between price indices 157–158
weighted index 203, 204

geometric mean, Carli and Harmonic elementary indices 133
geometric model of depreciation 335–336
geometric or declining balance depreciation 334–335
geometric Paasche and Laspeyres bounding test 51
Geometric Paasche price index

relationships between price indices 157–158
weighted index 203, 204

Geometric Young index (GeoYoung) 158, 381, 404
annual 382
annual weights 204–205
comparing superlative, Lowe and Young indices 384
monthly 382, 387, 395–398

Gini index of equality 111
Gini index of inequality 111
Goodhart, Charles 327, 364, 367
Greenlees, John S. 385
grouping approaches, quality adjustment 243–244

half splice 235, 256, 347
Handbook on Price and Volume Measures in National 

Accounts (Eurostat) 328
harmonic 129
Harmonic elementary index 133
Harmonic index 130, 138, 143
harmonic mean 18, 178
Harmonized Index of Consumer Prices (HICP) 9, 53, 130, 327, 

328, 365, 367, 383
hedonic imputation indices, hedonics and problem of taste 

change 235–238
hedonic imputation method 235
hedonic price function, derivatives of 173n127, 223n33
hedonic price indices 231
hedonic regression approaches, price indices for rental 

housing 358–360
hedonic regression methods 246
hedonic regression model 66, 66n16, 218, 232, 234, 247, 347, 350

alternative, with characteristics information 231–235
characteristics of N products 219
derivation of 173
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hedonic regressions
demand-side property price 351–354
taste change 246–247

hedonics, problem of taste change and 235–238
hedonic valuation function 226
Hicksian reservation prices 242, 246, 247
Hill, Peter 17, 24, 101
Hill, Robert 25, 124, 144, 280
homogeneity test for quantities 192, 229
homothetic preferences, cost of living index 75–76
household behavior, models of 105
household costs index, payments approach and 364–369
Household Costs Indices (HCIs) 366
household equivalence scales 112
Household Inflation Index (HII) 365
household production 4
household purchases, storable goods 340
household reference rate of return on safe assets 370
household shares of total utility 111
housing 325

adjusting rental price indices for new and disappearing units 
374–376

hedonic regression approaches for rental 358–360
modified repeat rents approach 354–358
price indices for rental 354–360
rental equivalence approach 328–329
treatment of household monetary balances in CPI 369–371
see also owner-occupied housing (OOH)

Huang, Ning 384–385
Hulten, Charles R. 326
hybrid expenditure weights 33
hybrid shares 53, 55
hybrid weights 22

term 16n27

ideal elementary aggregate 124
ideal elementary indices 123, 124–126
ideal index 123
Identity or Constant Prices Test 41, 41n16, 46, 48
identity test 131, 179
implicit quadratic mean of order r price index 82
implicit quantity index 48, 76
implicit Törnqvist quantity index Q 100
imputed carry-forward price 302
imputed land value, condo 348
imputed prices 217–218, 221, 231
incomplete adjustment 161, 161n73
index number theory 1–2, 177n147

axiomatic approach 1
economic approach 2–5, 43n25, 167, 169n109
Fisher describing approach to 47–48n41
fixed basket approach 1
stochastic approach 2
test approach 1
see also axiomatic (test) approach to index number theory; 

basic index number theory
indirect utility function 77
inequality indices, social welfare functions and 109–112
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rolling year measures of annual 296–300
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246, 252n6, 260

indices using 211
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Integrated Macroeconomic Accounts 371
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Invariance to Changes in the Units of Measurement 43, 47, 49, 192
invariance to changes in the units of measurement for quantities 229
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Invariance to Proportional Changes in Base Period Values 48–49
Invariance to Proportional Changes in Base Quantities 42
Invariance to Proportional Changes in Current Period Values 48
Invariance to Proportional Changes in Current Quantities 42
Invariance to Proportional Changes in Quantities 46
inverse consumer demand functions 218
inverse demand functions 92, 173, 241
Inverse Proportionality in Base Period Prices 42, 46, 48, 132
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investment 330
Irrelevance of Price Change with Tiny Value Weights 50–51
Item, term 12n3
item aggregation bias 125
Ivancic, Lorraine 128

Jevon indices
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year-over-year monthly maximum overlap chained 286
year-over-year monthly maximum overlap fixed-base 286

Jevons, W. Stanley 61
Jevons elementary index 133
Jevons elementary price index 129
Jevons elementary test 132
Jevons index 5, 8, 26, 99–100, 129, 138, 139, 175, 193, 195,  

280, 387
annual price data 393, 394
annual weights 204–205
fixed-base and chained 281–282
Time Product Dummy price index 175
unweighted 201–202

Jevons index number formula 2
Jevons price index 61, 152

axiomatic approach 155n51
definition 61–62
relationships between price indices 157–158

Johnson, Paul 144
Jorgenson, Dale 113

KBF function form 241
KBF preferences, case of, estimating reservation prices  

241–243
Keynes, John Maynard 62
Konüs Cost of Living Index (COLI) 71, 72–75, 106
Konüs family of true cost of living indices 3
Konüs price index 4
Kuhn-Tucker conditions 341

lack of matching of prices 5
Lagged One Year Chained Lowe index 292
Lagged Two Year Chained Lowe index 292
Lagged Two Year Chained Young index 293
Lagrangian 341
land counterpart, hedonic regression 348
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annual 390, 392

Laspeyres aggregate Allen quantity index 108
Laspeyres fixed-base quantity indices 164
Laspeyres formula 18, 24, 27, 28
Laspeyres index 11, 18, 20, 21, 135–136 193, 255

annual standard fixed-base and chained indices 387, 392
annual weights 204–205
Fisher index as average of Paasche and 14–15
Paasche index and 13–14
proposition and proof of 74–75, 114
relationship between Lowe index and 30
relationship between Paasche index and 29

Laspeyres-Konüs cost of living index 96, 106, 107
Laspeyres-Pollak conditional cost of living index 97
Laspeyres price index 1, 13–14, 17, 19, 21, 24, 27–28, 45, 136

definition 73
three-stage aggregation 32–33

Laspeyres quantity index 14, 19, 20, 24, 29, 30, 108, 353
Laspeyres type Allen index 4
Laspeyres type true cost of living index 3
leasing equivalence approach 326
least squares minimization problem 65, 173–175
levels approach, index number theory 11
linear aggregator function 220
linear homogeneity test for prices 192, 228
linear homogeneity test in current period prices 64
linear preferences 238
linear regression model 65
linear spline function 234n75
linear trends in shares 159
linear utility function 218, 242
link Young index 292, 293
Lloyd-Moulton index number formula 89
Lloyd Moulton price index 89
logarithm of the quality adjustment factor for product 233
log linear time dummy hedonic regression model 226
Lowe, Joseph 11
Lowe formula 53
Lowe Index 1, 3, 9, 16, 33, 52, 54, 193

alternative, and maximum overlap predicted share indices 
293–294

annual basket, and annual share-weighted Young indices 
291–296

annual weights 204–205
empirical studies on substitution bias 384–385
monthly 387, 396–398
monthly prices and annual base year quantities 17–21
relationship between Laspeyres index and 30
relationship between Young index and 31–32
relationships between Fisher index and 169–171
three-stage aggregation 33–34
Young, and maximum overlap predicted share indices 295

Lowe price index 16, 381–383
annual 382
monthly 382, 394–398
reciprocal of 170
Young and 381–383

Lowe-type quantity indices 54–55
lumens, quality adjustment 245

market rent 329
Marshall, Alfred 325n1
Marshall Edgeworth price index 16
matched products 181
matching of prices problem 112–113
matching of product prices 243
maximum overlap, bilateral Fisher index 189

maximum overlap annual chained Laspeyres, Paasche, Fisher 
and Törnqvist-Theil indices 269

maximum overlap annual fixed-base Laspeyres, Paasche, 
Fisher and Törnqvist-Theil indices 269

maximum overlap annual GEKS price indices 269
maximum overlap annual GEKS price levels 269
maximum overlap bilateral indices 261

alternative month-to-month price indices using 278–279, 280
annual Mudgett Stone indices using 269–271
construction of annual indices using 268–271
month-to-month indexing using, as building blocks 276–280
month-to-month unweighted price indices using 283–291
year-over-year monthly indices using 309–310

maximum overlap bilateral Laspeyres, Paasche, and Fisher 
price indices 276

maximum overlap CCDI price indices 269
maximum overlap CCDI price levels 269
maximum overlap chained Jevons indices, year-over-year 

monthly 286
maximum overlap Fisher index 356
maximum overlap Fisher price index 186
maximum overlap Fisher rent index 374
maximum overlap fixed-base Jevons, Dutot and Carli indices 

283–285
maximum overlap fixed-base Jevons indices, year-over-year 

monthly 286
maximum overlap fixed-base Laspeyres, Paasche, and Fisher 

price indices 276
maximum overlap GEKS price indices 262
maximum overlap GEKS price levels 262
maximum overlap index 98
maximum overlap Jevons, Dutot and Carli chained indices 

283–285
maximum overlap Jevons, Dutot and Carli indices 283–285
maximum overlap Laspeyres price index 355
maximum overlap Laspeyres rent index 374
maximum overlap month-to-month chained Laspeyres, 

Paasche, and Fisher price indices 276
maximum overlap month-to-month fixed-base Fisher indices 

314, 315–318
maximum overlap month-to-month GEKS price indices 277
maximum overlap month-to-month GEKS price level 276–277
maximum overlap Paasche price index 355
maximum overlap Paasche rent index 374
maximum overlap predicted share indices, alternative Lowe 

and Young Indices and 293–294
maximum overlap price index 221, 357
maximum overlap rental index 355
maximum overlap rent value ratio 354
maximum overlap set of products 186
maximum overlap year-over-year monthly indices 261–265
means of order r to aggregate price ratios 154

proposition and proof 154–155
mean splice 235, 256, 347
Mean Value Test 50, 132
Mean Value Test for Prices 43
Mean Value test for Quantities 43–44
measure of product homogeneity 244n116
measure of product matching 244n116
Mehrhoff decomposition 56
min-max test 179
minutes communicating, quality adjustment 245
Mitchell, Wesley C. 251
Modified Predicted Share indices 191
modified repeat rents approach, price indices for rental 

housing 354–358
monetary theory 371
Monotonicity in Base Period Prices, test 131



INDEX

413

Monotonicity in Base Prices 44, 50
Monotonicity in Base Quantities 44
Monotonicity in Current Period Prices, test 131
Monotonicity in Current Prices 44, 50
Monotonicity in Current Quantities 44
monotonicity tests 50
Monthly Average Index of Year-over-Year Monthly Fixed-Base 

Maximum Overlap Fisher indices 300
Monthly Average Index of Year-over-Year Monthly Similarity-

Linked indices 300
monthly commodity price change contribution factors 54
month-to-month carry-backward prices 271
month-to-month carry-forward prices 271
month-to-month chained Laspeyres, Paasche, and Fisher 

indices using carry-forward prices 272
month-to-month fixed-base and chained Laspeyres, Paasche, 

and Fisher indices 387, 399–400, 401–402, 403
month-to-month GEKS price indices 273
month-to-month GEKS price levels 272, 272–273
month-to-month indices 252

alternative, using carry-forward prices 271–275, 274–275, 276
alternative, using maximum overlap bilateral indices  

278–279, 280
maximum overlap bilateral indices as building blocks 

276–280
maximum overlap Fisher Star indices 277
unweighted price indices using carry-forward prices 280–282
unweighted price indices using maximum overlap bilateral 

indices 283–291
month-to-month Predicted Share indices 273
movement splice 235, 256, 347
Mudgett, Bruce D. 265
Mudgett-Stone approach, annual indices 389n24
Mudgett Stone indices 269–271, 295, 298, 299, 300

year-over-year carry-forward prices 267
Mudgett Stone method 7
multicollinearity problem 343
Multifactor Productivity 9
multilateral indices 6, 150, 161, 255

appendices of, 206–208
axiomatic approach to multilevel price levels 191–193
Fisher indices and, using reservation prices and inflation-

adjusted carry-forward or carry-backward prices 210
fixed-base Fisher and Tornqvist indices and 207
Geary-Khamis (GK) 171–173
GEKS multilateral method 184
GEKS price index 184n186
inflation-adjusted carry-forward and carry-backward 

imputed prices 186–187
linking, based on relative price similarity 184–186
linking, on relative price and quantity similarity 187–191
quality-adjusted unit value price and quantity indices 166–169
relationship between Tornqvist, GEKS, and CCDI 162–163
relationships between Jevons, geometric Laspeyres, 

geometric Paasche, and Törnqvist price indices 157–158
relationships between Lowe and Fisher indices 169–171
relationships between share-weighted price indices 155–157
relationships between superlative fixed-base indices and 

geometric indices 158–160
summary of results 193–194
superlative indices and 208
two GEKS, Fisher indices and 208–209
unit value price and quantity indices 163–166

multilateral index number theory 123
multilateral price levels, axiomatic approach to 191–193
Multiperiod Identity test, Walsh’s 6, 26, 147, 160, 254, 388, 389, 

391, 393
multiplicative deviation 130

National Statistical Offices 4, 7, 9, 243, 247, 302, 381, 384, 385, 
387, 394, 403, 404

National Statistics Offices 8
net acquisitions approach index for OOH 367
new and disappearing products, economic approach to index 

number theory 98–101
new and disappearing products bias 126
new goods problem 217
new prices-only multilateral method 8
new product 239n92
new products bias 192
New Zealand, consumer price index reviews 385
nondurable good 325
nonlinear least squares minimization problem 242
nonstochastic method for quality adjustment

complex model 222–223
simple model 220–222

normalized harmonic mean share weights 67, 179, 180
numeraire household 110
numerical approximation properties, superlative indices 86–87

observable expenditure or sales ratios 240
obsolescence depreciation 346
Office for National Statistics (ONS) 363, 364n159, 366, 368
one hoss shay model of depreciation 336
OOH see owner-occupied housing (OOH)
opportunity cost approach 326, 332, 368, 372
overall hedonic valuation function 234
overall Laspeyres price index 32
Owner-Occupied Housing (OOH) 9, 326

acquisitions approach 327–328
decomposing condominium sales prices into land and 

structure components 348–351
decomposing residential property prices into land and 

structure components 342–348
demand-side property price hedonic regressions 351–354
household costs index 364–369
payments approach 326, 364–369
price indices for rental housing 354–358
rental equivalence approach 328–329
summary of approaches 372–373
treatment of 8–9
treatment of household monetary balances in CPI 369–371
user costs vs rental equivalence 361–364
valuing services of 361–364
see also housing

Own Share Price Weighting 50

Paasche aggregate Allen quantity index 108
Paasche and Laspeyres Bounding Test 44, 68
Paasche and Laspeyres indices, proposition and proof of 

74–75, 114
Paasche fixed-base quantity indices 164
Paasche index 11, 21, 135–136, 193, 255

annual standard fixed-base and chained indices 387, 392
annual weights 204–205
Fisher index as average of Laspeyres 14–15
Laspeyres index and 13–14
proposition and proof of 74–75, 114
relationship between Laspeyres index and 29

Paasche-Konüs cost of living index 96, 106, 107
Paasche price index 1, 13–14, 17, 20, 24, 28, 29, 45, 136, 353

reciprocal of 170
Paasche quantity index 14, 108

reciprocal of 168
Paasche type conditional index 4
package size, quality adjustment 245
Palgrave index number formula 64



INDEX

414

partial hedonic valuation function 234
partial log adjustment factor 233
payment 368
payments approach 9, 326

owner-occupied housing 364–369
percentage change for bilateral index, contributions for 52–56
perceptions of inflation 367
perfect substitutes 80, 230
period t equality index 110–111
period t quality-adjusted unit value price index 244
period t quality-adjusted unit value price level 244
period t unit value price 244
period t unit value price level 244
period t utility maximization problem 77
perishable good 325
perpetual inventory model (PIM) 363
piecewise linear spline functions 234
Pike, Chris 385
Pollard, Brent 385
Positivity test 41, 46, 48
postal code dummy variables 344, 348
Predicted Share index, annual indices 393
Predicted Share measure of relative price dissimilarity 187, 

257, 258, 259, 263
annual, using carry-forward prices 267
Denmark 399, 400

predicted share measures of price dissimilarity 289
Denmark 392
month-to-month, using carry-forward prices 273
month-to-month, using zeros for missing pieces 277
month-to-month modified, using zeros for missing prices 289

predicted share measures of relative price and quantity 
dissimilarity 206

predicted share measures of relative price dissimilarity 206
Predicted Share Price Dissimilarity 269

imputation free annual index 269
Predicted Share Relative Price Similarity-Linked Price Index 391
predicted share similarity-linked index 273
predictions 187
preferences, Konüs cost of living index for single 72
price 251
price bouncing behavior 254
price bouncing problem 147
price change 13, 150
price indices 11, 12, 150, 176, 182, 221, 232, 234

rental housing 354–360
superlative, 86–87

price levels 39, 65, 150, 183
test approach to index number theory 40–41

price of ratios 154
Price Permutation Test 132, 133
price ratios 53
Price Reversal Test 43, 68
Price Similarity Linking 195
prices-only situation 8
price vectors 151
product, term 12n3
product aggregation 128
product relaunch problem 244
Product Test 78, 81
product weighting vector 151
property depreciation rate 374
property management companies 329
Proportionality in Current Period Prices test 132
Proportionality in Current Prices 42, 46, 48
proportionality test 42, 256
proportional manner 66
propositions and proofs

circularity test 46–47, 57–58
Cobb-Douglas price index 87, 118
Constant Elasticity of Substitution (CES) 90–94, 118–119
Fisher ideal index 79–82, 114–116
quadratic means of order r and Walsh index 82–84, 116–118
Shephard’s Lemma 77–78, 114
Törnqvist price index 51–52, 58–59
Wold’s Identity 77, 114

pure price index 15

quadratic approximation lemma 85
quadratic mean of order r price index 84
quadratic mean of order r quantity index Q 82–84
quadratic rate 160
quality-adjusted log prices 236
quality-adjusted structure floor space 358
quality-adjusted unit value 245
quality-adjusted unit value index 171, 318
quality-adjusted unit value price 167n101
quality adjusted unit value price index 167, 172

term 167n99
quality adjusted unit value price level 167, 167n101, 220
quality-adjusted unit value quantity indices 166
quality-adjusted unit value quantity levels 166, 167n101
quality adjustment bias 112
quality adjustment factors 65, 65n15, 167, 182, 183, 218, 221, 

225, 226, 233, 236, 318
quality adjustment function 226
quality adjustment methods 6–7, 217–219, 246–247

alternative hedonic regression model with characteristics 
information 231–235

clustering or grouping approaches 243–244
complex model for nonstochastic method 222–223
dominant characteristic 245–246
estimating reservation prices (case of CES preferences) 238–241
estimating reservation prices (case of KBF preferences) 241–243
evaluating quality change in scanner data context 219–220
experimental economics approaches and valuation of free 

products 246
hedonics and problem of taste change 235–238
simple model for nonstochastic method 220–222
time dummy hedonic regression model with characteristics 

information 226–231
weighted time product dummy regressions 223–226

quality adjustment parameters 79
quality adjustment problem 217
quality change 123

scanner data context for evaluating 219–220
quantities sold 150
quantity 21
quantity change 13
quantity index 11, 12, 48

superlative 86–87
Quantity Reversal Test 43, 68
quantity similarity, linking relative price and 187–191
quantity vectors 151
Quantity Weights Symmetry Test 50

ratio approach 11
real quality 359
real-time procedure 185
real-time similarity-linked indices, Fisher chained indices and 392
Real-Time Similarity linked price index, Denmark 400, 401–402, 403
reciprocals 64
regional aggregation 128
relative price and quantity dissimilarity 190
relative price dissimilarity indices 189
relative price similarity



INDEX

415

linking multilateral indices 184–186
quantity and 187–191

relative quantity dissimilarity 190
relative quantity similarity 189
relative similarity of quantities 189
relative utility valuation factors 65n15
rental equivalence approach 8, 326, 328–329, 360, 372

user cost approach versus 361–364
rental housing

adjusting price indices for new and disappearing units 
374–376

hedonic regression approaches 358–360
modified repeat rents approach 354–358
price indices for 354–360
rental equivalence approach 328–329

rental price indices 359
rent to capital value ratio 363
repeat rents index 374
repeat rents price index 376
representative expenditure shares 21
reservation prices 4, 165, 171, 183, 184, 217–218, 239

carry-forward prices versus 211
economic approach to index number theory 98–101
estimating, case of CES preferences 238–241
estimating, case of KBF preferences 241–243
Hicksian 247
indices using 211
multilateral index and Fisher index using 210
multilateral indices and four Fisher indices 210

residential property prices, decomposing into land and 
structure components 342–348

Responsiveness to Changes in Imputed Prices for Missing 
Products Test 192, 229

Responsiveness to Isolated Products Test 192, 229
restricted change of units test 229
restricted expenditure shares 181
restricted shares 181
Retail Price Index (UK) 144
rolling window GEKS and CCDI 194–195
Rolling Window GEKS indices 256
rolling window multilateral index number methods 6
rolling window time dummy hedonic regression model 235, 347
Rolling Year annual indices 252
Rolling Year Fixed-Base Maximum Overlap Fisher indices  

297, 298
Rolling Year Fixed-Base Maximum Overlap Laspeyres indices 

296–297, 298
Rolling Year Fixed-Base Maximum Overlap Paasche indices  

297, 298
rolling year indices 296, 299
rolling year measures, annual inflation 296–300
roll-over rent 329

sampling bias 125
Sato-Vartia Index 239
Sato Vartia price index 90, 118–119
scanner data context 217, 219–220
Schlömilch’s Inequality 14, 155, 225
Schreyer, Paul 113
seasonal products 7–8, 251

alternative price indices 300–302
annual basket Lowe indices and annual share-weighted 

Young indices 291–296
computation of Geary-Khamis indices 314, 318–319, 320, 321
construction of annual indices using carry-forward prices 

265–268
construction of annual indices using maximum overlap 

bilateral indices 268–271

data listing and supplementary tables 302–321
data listing using month-to-month carry-forward and carry-

backward prices 311–314
maximum overlap month-to-month fixed-base fisher indices 

314, 315–318
maximum overlap year-over-year monthly indices 261–265
month-to-month fixed-base Fisher indices using carry-

forward prices 314
month-to-month indices using carry-forward prices  

271–275, 276
month-to-month indices using maximum overlap bilateral 

indices as building blocks 276–280
month-to-month unweighted price indices using carry-

forward prices 280–282
month-to-month unweighted price indices using maximum 

overlap bilateral indices 283–291
problem of 251–253
rolling year measures of annual inflation and measures of 

trend inflation 296–300
strongly 7
year-over-year monthly indices using carry-forward prices 

253–261
year-over-year monthly indices using maximum overlap 

bilateral indices 309–310
year-over-year monthly indices using year-over-year carry-

forward prices, 302, 303–304, 305–309
second stage of aggregation 243
semiflexible functional form 243
share magnification effect 156
shares 187
share-weighted arithmetic mean 21
share-weighted average 55
share-weighted estimator for the period t price level 245
share-weighted geometric average 2
share-weighted harmonic mean 21
share-weighted price indices, relationships between 155–157
Shephard’s Lemma 76–78, 83, 85, 86, 87, 89, 96, 97, 113, 238

proposition and proof of 77–78 114
Shimizu, Chihiro 10
short-term hybrid shares 54
short-term price ratios 54
Silver, Mick 385
Similarity-Linked Fisher price indices 185
Similarity-Linked Indices

maximum overlap Jevons fixed-based and chained indices 
and Time Product Dummy indices 290

month-to-month approximate Fisher and 399–403
using price information only 291

Similarity-Linked Maximum Overlap Jevons index 289–290
similarity-linked price index for Danish annual data 391–392
single estimate 14
single-stage aggregation, two-stage aggregation versus 27–28
social cost of living index 5, 106
social welfare functions, inequality indices and 109–112
spanning tree 190
spanning tree of comparisons 185
SPQ method 193, 194
SPQ multilateral method 190
Statistics Canada 384–385
Statistics Denmark 9, 389
stickiness of rents problem 329
stochastic approaches to index number theory 2, 61, 69, 173, 

173n129
early unweighted 61–63
time product dummy approach to bilateral 65–66
weighted, of Theil 63–65
weighted time product dummy approach to bilateral 66–69

stock piling problem 75



INDEX

416

Stone, Richard 265
storable goods 325, 338

user costs for 338–342
straight line model 335
strong fixed basket test for prices 229
strong identity test 1, 41n16, 189, 190
strong identity test for prices 192, 229
strong identity test for quantities 192, 229
strongly seasonal product 251
strong substitute 157, 157n59
substitution bias 47, 74, 172

empirical studies of 384–385
superlative index 3, 84
superlative indices 17, 381

comparing Lowe, Young, and 384
empirical studies on substitution bias 384–385
Fisher ideal index 78–82
numerical approximation properties of 86–87
Törnqvist Theil index 84–86

superlative index number formula 79
superlative index number formulae 254, 254n17
superlative price indices 383
superlative Törnqvist-Theil index 179
supply-side model 343
symmetric averages 14
symmetric mean 16
symmetric mean index number formulae 65
Symmetric Treatment of Outlets 132
symmetry tests 42
system of inverse demand functions 93
System of National Accounts, 1993 (SNA) 325, 372

target month-to-month index 147
tastes, modeling changes in 96
Taylor series approximation, first-order 52–53
technological change 105
test approach 124

index number theory 1
see also axiomatic (test) approach to index number theory

test of determinateness as to prices 52
theory of the allocation of time, Becker’s 101–105
third reversal test 44
third stage of aggregation 243
three-stage aggregation 32–35
time aggregation bias 125
time difference for the logarithms of quantities 91
time dummy hedonic regression 359
time dummy hedonic regression model 173, 223

characteristics information 226–231
time product dummy hedonic regression model 218
Time Product Dummy (TPD) index 244, 286

blended TPD and Jevons index 287
mixed, and Jevons index 286–287
similarity-linked indices and 290

time product dummy method 286
Time Product Dummy model 176n143
Time Product Dummy multilateral indices 150
time product dummy price level 65
Time Product Dummy Regressions

bilateral case of weighted 177–180
bilateral case with missing observations of weighted 180–182
case of missing observations 175–177
case of no missing observations 173–175
general case of weighted 182–184

time rectification procedure 134
time reversal test 16, 26, 43, 49–50, 64, 129, 132, 134, 179, 281

Fisher’s rectification procedure and 133–134
Törnqvist formula 28

Törnqvist index 26, 50
annual weights 204–205
relationship between GEKS, and CCDI multilateral indices 

162–163
Törnqvist maximum overlap index 99
Törnqvist price index 45, 51–52

annual superlative index 383
proof of proposition 58–59
proposition 51–52
relationships between price indices 157–158
weighted index 203, 204

Törnqvist price index formula 160
Törnqvist Theil index 144

superlative indices 84–86
Törnqvist Theil index number formula 2, 3, 95, 96, 125
Törnqvist Theil price index 4, 51, 51n48, 52, 64, 71, 161
Törnqvist Theil quantity index 101
Total Factor Productivity 9, 141
Transitivity in Prices for Fixed Value Weights 50
translog functional form 85
treatment of access charges, alternative approaches to 135–143
true cost of living, Laspeyres and Paasche bounds 74
true cost of living indices, Konüs family of 73
true expenditure shares 99
true opportunity cost 373
Turvey, Ralph 12n4
two-stage aggregation, single-stage aggregation versus 27–28

Ukraine 404
unequivocal price index 15
unilateral price index 39
unit cost function 3, 76
United Kingdom (UK) see fixed-line UK retail sector
unit value 163
unit value bias 125
Unit Value index

annual weights 204–205
weighted index 203, 204

unit value price 243, 389
unit value price index 230

quality-adjusted 166–169
quantity indices and 163–166

unit value quantity indices
prices indices and 163–166
quality-adjusted 166–169

unweighted price indices 201–203
approach 1 139
approach 4 142
Jevons, Dutot, Fixed-Base and Chained Carli and CES 

201–202
unweighted stochastic approach 61–63
unweighted time product dummy model 179
update factor 256
updating factor 19
upper-level substitution bias 387
upward bias 129, 166
US CPI 385

case for new formula for compiling 385
updating 385

use 368
user cost 338
user cost approach 8, 326, 372

owner occupied housing 360–361
pricing the services of a durable good 329–332
relationship between user costs and acquisition costs 337–338

user cost formula, definition 363
utilitarian social welfare function 110
utility function 219



INDEX

417

valuation function 219
value aggregate, decomposition of 12–13
volume index 12
von Auer, Ludwig 171n73
von der Lippe, Peter 25

Walsh, Correa Moylan 16, 49, 52, 63
Walsh index 3, 24, 71

quadratic means of order r and 82–84
Walsh price index 1, 16, 17, 45, 82, 125

annual superlative index 383
Walsh quantity index 16n31, 84
Walsh’s multiperiod identity test 167
weak fixed basket test for prices 228
weak identity test 1, 41n16
weak identity test for prices 228
weak identity test for quantities 228
weakly seasonal product 251
weak substitute 157, 157n59
wear and tear depreciation 346, 347
weighted asymptotic linear index of relative price dissimilarity 185
weighted by a hybrid value, term 16n27
weighted Cobb-Douglas price level 152, 154
weighted covariance 29
weighted Dutot price index 152, 153, 170
weighted hedonic regression model 233
weighted Jevons index 158
weighted Jevons price index 152, 153, 154
weighted Jevons price level 152
weighted least squares minimization problem 66, 67, 68, 

177–180, 224–225, 232, 236
generalization of 182–184

weighted price indices, commonly used 203, 204
weighted stochastic approach of Theil 63–65
weighted time product dummy approach, bilateral index 

number theory 66–69
weighted time product dummy bilateral price index 67
weighted time product dummy bilateral price index with 

missing observations 180
Weighted Time Product Dummy Index 193

Geary-Khamis index and 187
Weighted Time Product Dummy multilateral indices 150, 172
weighted time product dummy price index 183
Weighted Time Product Dummy price level 183, 224
weighted Time Product Dummy Regressions 223–226

bilateral case 177–180

bilateral case with missing observations 180–182
general cases 182–184

weighted unit value quantity level, definition 169n108
weighting bias 125
weighting factors 52
weight property 43
Williams, Elliot 385
Wimalaratne, Waruna 385
window 256
window splice 235, 256, 347
Wold’s Identity 76–78, 86, 92, 341

equations 103, 104
proposition and proof of 77, 114

World Bank 328

year-over-year indices 251
monthly, using maximum overlap bilateral indices 309–310
for months using carry-forward prices 307–309

year-over-year maximum overlap GEKS index 277
year-over-year maximum overlap GEKS price indices 277
year-over-year monthly indices

alternative indices for January 258
alternative indices for May 259
maximum overlap 261–265
means and variances using carry-forward 259
predicted share measures of price dissimilarity 258, 259
using carry-forward prices 253–261, 268

Young, Arthur 21, 178n155
Young index 9, 21–23, 23n55

alternative, and maximum overlap predicted share indices 
293–294

annual share-weighted, and annual basket Lowe indices 291–296
empirical studies on substitution bias 384–385
Harmonized Index of Consumer Prices (HICP) 383
Lowe, and maximum overlap predicted share indices 295
monthly 387, 395–398
relationship between, and time antithesis 30–31
relationship between Lowe index and 31–32
three-stage aggregation 34–35

Young price index
annual 382
Lowe and 381–383
monthly 382

Yule, G. Udny 253

Zarnowitz, Victor 253



PUBLICATIONS

Consumer Price Index Manual
Theory | 2025


	Cover
	Title Page
	Copyright page
	CONTENTS
	Foreword
	Preface
	Acknowledgments
	1 Introduction
	The Basket, Axiomatic, and Stochastic Approaches to Index Number Theory
	The Economic Approach to Index Number Theory
	Elementary Indices
	The Chain Drift Problem and Multilateral Indices
	Quality Adjustment Methods
	Seasonal Products
	The Treatment of Durable Goods and Owner-Occupied Housing
	Lowe, Young, and Superlative Indices: An Empirical Study for Denmark
	Conclusion

	2 Basic Index Number Theory
	Introduction
	The Decomposition of Value Aggregates and the Product Test
	The Laspeyres and Paasche Indices
	The Fisher Index as an Average of the Paasche and Laspeyres Indices
	The Walsh Index and the Theory of the “Pure” Price Index
	The Lowe Index with Monthly Prices and Annual Base Year Quantities
	The Young Index
	Fixed-Base versus Chained Indices
	Two-Stage Aggregation versus Single-Stage Aggregation
	Annex 1 The Relationship between the Paasche and Laspeyres Indices
	Annex 2 The Relationship between the Lowe and Laspeyres Indices
	Annex 3 The Relationship between the Young Index and Its Time Antithesis
	Annex 4 The Relationship between the Lowe Index and the Young Index
	Annex 5 Three-Stage Aggregation

	3 The Axiomatic or Test Approach to Index Number Theory
	Introduction
	The Test Approach to Index Number Theory Using Price Levels
	Tests for Bilateral Price Indices
	The Fisher Ideal Index and the Test Approach
	The Test Performance of Other Indices
	The Circularity Test
	An Alternative Axiomatic Approach to Bilateral Index Number Theory
	The Törnqvist Price Index and the Alternative Approach to Bilateral Indices
	Defining Contributions to Overall Percentage Change for a Bilateral Index
	Proof of Proposition 2

	4 Stochastic Approaches to Index Number Theory
	Introduction
	Early Unweighted Stochastic Approaches to Bilateral Index Number Theory
	The Weighted Stochastic Approach of Theil
	The Time Product Dummy Approach to Bilateral Index Number Theory
	The Weighted Time Product Dummy Approach to Bilateral Index Number Theory

	5 The Economic Approach to Index Number Theory
	Introduction
	The Konüs Cost of Living Index for a Single Consumer
	The Cost of Living Index When Preferences Are Homothetic
	Wold’s Identity and Shephard’s Lemma
	Superlative Indices: The Fisher Ideal Index
	Quadratic Means of Order r and the Walsh Index
	Superlative Indices: The Törnqvist-Theil Index
	The Numerical Approximation Properties of Superlative Indices
	The Cobb–Douglas Price Index
	Constant Elasticity of Substitution (CES) Preferences
	The Allen Quantity Index
	Modeling Changes in Tastes
	Conditional Cost of Living Indices
	Reservation Prices and New and Disappearing Products
	Becker’s Theory of the Allocation of Time
	Aggregate Cost of Living Indices
	Aggregate Allen Quantity Indices
	Social Welfare Functions and Inequality Indices
	The Matching of Prices Problem

	6 Elementary Indices
	Introduction
	Ideal Elementary Indices
	Aggregation and Classification Problems for Elementary Aggregates
	Some Elementary Indices that Have Been Suggested Over the Years
	Numerical Relationships between Some Elementary Indices
	The Test Approach to Elementary Indices
	Fisher’s Rectification Procedure and the Time Reversal Test
	Conclusion
	Annex A
	Annex B

	7 The Chain Drift Problem and Multilateral Indices
	Introduction
	Comparing CES Price Levels and Price Indices
	Using Means of Order r to Aggregate Price Ratios
	Relationships between Some Share-Weighted Price Indices
	Relationships between the Jevons, Geometric Laspeyres, Geometric Paasche, and Törnqvist Price Indices
	Relationships between Superlative Fixed-Base Indices and Geometric Indices That Use Average Annual Shares as Weights
	To Chain or Not to Chain
	Relationships between the Törnqvist Index and the GEKS and CCDI Multilateral Indices
	Unit Value Price and Quantity Indices
	Quality-Adjusted Unit Value Price and Quantity Indices
	Relationships between Lowe and Fisher Indices
	Geary–Khamis Multilateral Indices
	Time Product Dummy Regressions: The Case of No Missing Observations
	Time Product Dummy Regressions: The Case of Missing Observations
	Weighted Time Product Dummy Regressions: The Bilateral Case
	Weighted Time Product Dummy Regressions: The Bilateral Case with Missing Observations
	Weighted Time Product Dummy Regressions: The General Case
	Linking Based on Relative Price Similarity
	Inflation-Adjusted Carry-Forward and Carry-Backward Imputed Prices
	Linking Based on Relative Price and Quantity Similarity
	The Axiomatic Approach to Multilateral Price Levels
	Summary of Results
	Conclusion
	Annex: Data Listing and Index Number Tables and Charts
	A.7.1. Listing of Data
	A.7.2. Unweighted Price Indices
	A.7.3. Commonly Used Weighted Price Indices
	A.7.4. Indices That Use Annual Weights
	A.7.5. Multilateral Indices
	A.7.6. Multilateral and Fisher Indices Using Reservation Prices versus Carry-Forward Prices
	A.7.7. Conclusion

	8 Quality Adjustment Methods
	Introduction
	A Framework for Evaluating Quality Change in the Scanner Data Context
	A Nonstochastic Method for Quality Adjustment: A Simple Model
	A Nonstochastic Method for Quality Adjustment: A More Complex Model
	Weighted Time Product Dummy Regressions
	The Time Dummy Hedonic Regression Model with Characteristics Information
	Alternative Hedonic Regression Models with Characteristics Information
	Hedonics and the Problem of Taste Change: Hedonic Imputation Indices
	Estimating Reservation Prices: The Case of CES Preferences
	Estimating Reservation Prices: The Case of KBF Preferences
	Other Approaches to Quality Adjustment
	Conclusion

	9 Seasonal Products
	The Problem of Seasonal Products
	Year-over-Year Monthly Indices Using Carry-Forward Prices
	Maximum Overlap Year-over-Year Monthly Indices
	The Construction of Annual Indices Using Carry-Forward Prices
	The Construction of Annual Indices Using Maximum Overlap Bilateral Indices
	Month-to-Month Indices Using Carry-Forward Prices
	Month-to-Month Indices Using Maximum Overlap Bilateral Indices as Building Blocks
	Month-to-Month Unweighted Price Indices Using Carry-Forward Prices
	Month-to-Month Unweighted Price Indices Using Maximum Overlap Bilateral Indices
	Annual Basket Lowe Indices and Annual Share-Weighted Young Indices
	Rolling Year Measures of Annual Inflation and Measures of Trend Inflation
	Conclusion
	Year-Over-Year Monthly Indices Using Year-Over-Year Carry-Forward Prices
	Year-Over-Year Monthly Indices Using Maximum Overlap Bilateral Indices
	Listing of the Data Using Month-to-Month Carry-Forward and Carry-Backward Prices
	Month-to-Month Fixed-Base Fisher Indices Using Carry-Forward Prices
	Maximum Overlap Month-to-Month Fixed-Base Fisher Indices
	Computation of the Geary–Khamis Indices

	10 The Treatment of Durable Goods and Housing
	Introduction
	The Acquisitions Approach
	The Rental Equivalence Approach
	The User Cost Approach for Pricing the Services of a Durable Good
	The Opportunity Cost Approach
	A General Model of Depreciation for Consumer Durables
	Geometric or Declining Balance Depreciation
	Alternative Depreciation Models
	The Relationship between User Costs and Acquisition Costs
	User Costs for Storable Goods
	Decomposing Residential Property Prices into Land and Structure Components
	Decomposing Condominium Sales Prices into Land and Structure Components
	Demand-Side Property Price Hedonic Regressions
	Price Indices for Rental Housing: The Modified Repeat Rents Approach
	Price Indices for Rental Housing: Hedonic Regression Approaches
	Owner-Occupied Housing: The User Cost Perspective
	Valuing the Services of OOH: User Costs versus Rental Equivalence
	The Payments Approach and the Household Costs Index
	The Treatment of Household Monetary Balances in a CPI
	Summary and Conclusion

	11 Lowe, Young, and Superlative Indices: Empirical Studies
	Introduction
	Lowe and Young Price Indices
	Superlative Price Indices
	Comparing Lowe, Young, and Superlative Indices
	Overview of Empirical Studies on Substitution Bias
	A.11.1. Introduction
	A.11.2. Month-to-Month Aggregate Unweighted Indices
	A.11.3. Standard Annual Indices
	A.11.4. Month-to-Month Indices Using Annual Weights
	A.11.5. Month-to-Month Approximate Fisher and Similarity-Linked Indices
	A.11.6. Conclusion

	Index



