
From Servers to Rates: 
AI, ICT Capital, and the 
Natural Rate 
Giovanni Melina and Stefania Villa 

WP/25/224 

IMF Working Papers describe research in 
progress by the author(s) and are published to 
elicit comments and to encourage debate. 
The views expressed in IMF Working Papers are 
those of the author(s) and do not necessarily 
represent the views of the IMF, its Executive Board, 
or IMF management. 

2025 
OCT



* The views expressed in this paper are those of the authors and do not necessarily represent those of the International Monetary
Fund or IMF policy or those of the Bank of Italy. Part of this work was completed when Stefania Villa was visiting the IMF, whose 
hospitality is gratefully acknowledged. The authors thank Florence Jaumotte, Rahim Kanani, Jeff Kearns, Yosuke Kido, Stefano
Neri, Anh Nguyen, Marianna Riggi, Tiziano Ropele and Giordano Zevi for useful comments and suggestions. The usual disclaimer
applies.

© 2025 International Monetary Fund WP/25/224

IMF Working Paper 
Research Department 

From Servers to Rates: AI, ICT Capital, and the Natural Rate 
Prepared by Giovanni Melina and Stefania Villa* 

Authorized for distribution by Florence Jaumotte 
October 2025 

IMF Working Papers describe research in progress by the author(s) and are published to elicit 
comments and to encourage debate. The views expressed in IMF Working Papers are those of the 
author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management. 

ABSTRACT: This paper investigates the macroeconomic implications of the rising wave of investment in 
information and communication technology (ICT)—including AI-related hardware and software—in the U.S. 
economy. The analysis uses a structural macroeconomic model that treats ICT as a distinct type of capital and 
explores the degree to which ICT complements or substitutes for labor. The findings reveal three key insights. 
First, labor and ICT have historically been only moderately substitutable. Second, technological innovations 
that make it easier to turn ICT investment into productive capital act like demand shocks, boosting output and 
inflation. Third, given the uncertainty surrounding the interaction between AI-driven ICT capital and labor, the 
paper presents scenarios of possible trajectories for ICT investment under alternative assumptions. When ICT 
tends to complement labor, the economy experiences strong gains in output, but also inflationary pressure; the 
natural interest rate increases, requiring tighter monetary policy. Conversely, if ICT tends to replace labor, the 
same ICT investment path warrants a looser monetary policy stance. 

RECOMMENDED CITATION: Melina, G. and S. Villa (2025). “From Servers to Rates: AI, ICT Capital, and the 
Natural Rate,” IMF Working Paper No. 25/224, International Monetary Fund, Washington, D.C. 

JEL Classification Numbers: E22; E32; E52; E43; O33 

Keywords: 
Artificial Intelligence; Generative AI; ICT investment; Natural rate of 
interest; Monetary policy; DSGE modeling 

Author’s E-Mail Address: gmelina@imf.org; stefania.villa@bancaditalia.it 



IMF WORKING PAPERS From Servers to Rates: AI, ICT Capital, and the Natural Rate 

INTERNATIONAL MONETARY FUND 3 

WORKING PAPERS 

From Servers to Rates: AI, ICT 
Capital, and the Natural Rate

Prepared by Giovanni Melina and Stefania Villa1 

1 The views expressed in this paper are those of the authors and do not necessarily represent those of the International Monetary 
Fund or IMF policy or those of the Bank of Italy. Part of this work was completed when Stefania Villa was visiting the IMF, whose 
hospitality is gratefully acknowledged. The authors thank Florence Jaumotte, Rahim Kanani, Jeff Kearns, Yosuke Kido, Stefano 
Neri, Anh Nguyen, Marianna Riggi, Tiziano Ropele and Giordano Zevi for useful comments and suggestions. The usual disclaimer 
applies. 



Contents

1 Introduction 6

2 Model 8

2.1 Features Related to ICT Investment . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Linearized Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Central Bank and Equilibrium . . . . . . . . . . . . . . . . . . . . . . 14

3 Estimation 14

3.1 Data and Measurement Equations . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Calibration, Priors and Posteriors . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Variance Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Model-Implied Natural Rate of Interest . . . . . . . . . . . . . . . . . . . . . 21

4 The E!ects of ICT Investment-Specific Technology Shocks 24

4.1 Comparing ICT and Non-ICT Shocks . . . . . . . . . . . . . . . . . . . . . . 24
4.2 The Role of the Complementarity between ICT Capital and Labor . . . . . . 27

5 Scenarios for ICT Investment 29

5.1 Evolution of ICT Investment and Scenarios . . . . . . . . . . . . . . . . . . . 29
5.2 Macroeconomic Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Policy Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusions 34

A Data 35

B Additional Results 35

List of Tables

1 Calibrated Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Prior-Posterior Distributions and Posterior Means of Parameters (95 Percent

Credible Intervals in Square Brackets) . . . . . . . . . . . . . . . . . . . . . . 18
3 Conditional Variance Decomposition for Selected Variables (Percent) at Var-

ious Time Horizons (Quarters) . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4



4 Average Annual Impact over a Five-Year Horizon (Percentage Points) . . . . 33
B.1 Prior-Posterior Distributions and Posterior Means of Parameters over a more

Recent Sample–2000Q1-2024Q2 (95 Percent Credible Intervals in Square Brack-
ets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.2 Prior-Posterior Distributions and Posterior Means of Parameters in the pre-
COVID Period–1980Q1-2019Q4 (95 Percent Credible Intervals in Square Brack-
ets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

List of Figures

1 Prior and Posterior Distributions of Key Estimated Parameters . . . . . . . 19
2 Model-Implied Natural Rate of Interest . . . . . . . . . . . . . . . . . . . . . 22
3 Historical Shock Decomposition of the Model-Implied Natural Rate of Interest 23
4 Bayesian Impulse Responses of Selected Macroeconomic Variables to ICT and

non-ICT Investment-Specific Technology Shocks . . . . . . . . . . . . . . . . 25
5 Impulse Responses of Selected Macroeconomic Variables to an ICT Investment-

Specific Technology Shock under Alternative Parametrizations of the Elastic-
ity of Substitution between ICT Capital and Labor . . . . . . . . . . . . . . 28

6 ICT Investment Scenarios (Percent of GDP) . . . . . . . . . . . . . . . . . . 30
7 Impulse Responses of Selected Macroeconomic Variables to a Sequence of ICT

Investment-Specific Technology Shocks Consistent with a Conservative Path
of the ICT-Investment-to-GDP Ratio . . . . . . . . . . . . . . . . . . . . . . 32

B.1 Bayesian Impulse Responses of Selected Macroeconomic Variables to All Shocks 38
B.2 Historical Shock Decomposition of Selected Variables . . . . . . . . . . . . . 39

5



1 Introduction

Digital investment has entered a new phase fueled by the rapid rise of generative artificial
intelligence (AI). While earlier waves of innovation—such as cloud computing and widespread
mobile broadband—laid the foundation, it is the widespread di!usion of AI applications that
is now prompting firms to rethink their capital allocation strategies. In 2024, U.S. corpo-
rations already allocated over four percent of GDP to information- and communication-
technology (ICT) assets, including high-performance servers, specialized software, and ad-
vanced network infrastructure. Recent sectoral analyses by Deloitte (Raskovich et al., 2024)
and Gartner (2025) indicate that investment in “AI enablement” is accelerating at a pace
unprecedented since the late-19990s technology boom, signaling a broad-based shift in cor-
porate digital strategies.

Shifts in digital capital spending have important macroeconomic implications (Korinek,
2024; Korinek and Stiglitz, 2025), influencing labor demand, wages, prices and the natural
rate of interest that plays a significant role in setting monetary policy (see, e.g., Obstfeld,
2025). In light of the limited empirical evidence and the substantial uncertainty surround-
ing the pace and nature of AI integration into production processes (see, e.g. Cazzaniga
et al., 2024), this paper develops a dynamic stochastic general equilibrium (DSGE) model
à la Smets and Wouters (2007) to investigate first how AI-driven ICT capital influences
aggregate output, inflation, and the natural rate of interest. And second, how alterative
future trajectories of AI-related ICT investment shape macroeconomic outcomes and a!ect
the conduct of monetary policy. Key distinct features of the model are the separation of ICT
from non-ICT capital, distinct adjustment costs for ICT investment, and a flexible degree
of substitutability between ICT capital and labor. The model is estimated using Bayesian
methods on U.S. quarterly data from 1980Q1 to 2024Q2.

The main result is that the macroeconomic consequences of AI adoption—and the result-
ing implications for monetary policy—depend critically on whether ICT capital complements
or substitutes for labor.

Historically, estimates point to mild gross substitutability between ICT capital and la-
bor. The model-implied natural rate shows a downward trend, and ICT investment specific
technology (IST) shocks have historically played a modest but positive role in its fluctua-
tions. Such shocks trigger a gradual rise in ICT investment, boosting output, raising labor
in a hump-shaped pattern, pushing up inflation, and leading the central bank to gradually
increase the policy rate. The natural rate of interest first falls, as households expect higher
future income and initially increase savings, then rises above its steady state as productive
capacity expands and expected returns increase.
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Counterfactual simulations are conducted because the elasticity of substitution between
ICT and labor is highly uncertain in light of the rapid AI adoption. Easier substitution
leads to higher ICT investment but results in smaller employment and wage gains. Stronger
complementarity dampens investment but strengthens employment, wage and consumption,
thus pushing up the natural rate of interest.

Finally, scenarios assess two possible trajectories of AI-driven ICT investment over a five-
year horizon. A conservative projection assumes a gradual rise in the ICT-to-GDP ratio,
whereas an ambitious scenario foresees a significant increase surpassing the peak reached
during the dot-com era. These cases are studied under various assumptions regarding fac-
tor substitutability. Across scenarios, annual GDP growth rises by 0.1 to 0.9 percentage
point, inflation by 0.1 to 0.8 percentage point, and the natural rate of interest by up to 0.7
percentage point.

These findings carry important implications for monetary policy. As AI-related ICT
investment accelerates, central banks will need to monitor not only the volume of investment
but also how it interacts with labor markets. The degree of complementarity between labor
and new technologies plays a central role in shaping wage dynamics, inflation pressure, and
the trajectory of the natural rate. In settings where ICT adoption tends to boost labor
demand, failing to recognize a structural rise in the natural rate may lead to an overly
accommodative stance, fueling persistent inflation. Conversely, if ICT tends to displace
labor, excessive monetary tightening may unnecessarily slow the economy.

This analysis should be interpreted with some caveats. First, while in the model the
accumulation of ICT capital generates productivity gains in the other factors of production
that help mitigate inflationary pressures, ICT—particularly with the growing adoption of
AI—may also exert a direct impact on TFP (Cerutti et al., 2025), with ambiguous implica-
tions for inflation (Aldasoro et al., 2024). For simplicity, this channel is abstracted from, as
the output e!ects already captured are quantitatively sizable. Second, although the e!ects
of AI are likely to be heterogeneous across workers (Cazzaniga et al., 2024), the focus of
the paper is on aggregate macroeconomic outcomes, which makes it possible to examine the
transmission mechanisms of ICT IST shocks at the macro level within a simple framework.

The paper connects four strands of macroeconomic research. First, it builds on the DSGE
tradition of Smets and Wouters (2007), by incorporating two types of capital (see Krusell
et al., 2000; Bhattarai et al., 2022). Second, it contributes to the burgeoning literature on
the labor market implications of AI, which often adopts a task-based approach to assess how
occupations are exposed to automation or may benefit from productivity gains (Acemoglu
and Restrepo, 2018, 2022; Webb, 2020; Felten et al., 2021, 2023; Pizzinelli et al., 2023; Caz-
zaniga et al., 2024; Eloundou et al., 2024; Korinek, 2024; Korinek and Stiglitz, 2025; Rockall
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et al., 2025).1 Third, the paper relates to a growing literature on AI’s macroeconomic and
productivity impacts (e.g., Aldasoro et al., 2024). In this context, Acemoglu (2025) suggests
modest gains and heightened inequality risks, while Aghion and Bunel (2024) emphasize
productivity-enhancing channels through automation and innovation. Fourth, the paper
contributes to the natural rate literature, building on empirical and model-based estimates
and its structural drivers, including capital deepening, demographics, risk preferences, and
productivity dynamics (Laubach and Williams, 2003; Edge et al., 2008; Justiniano and Prim-
iceri, 2010; Barsky et al., 2014; Cúrdia et al., 2015; Del Negro et al., 2017; Holston et al.,
2017; Neri and Gerali, 2019; Barrett et al., 2023; Berger et al., 2023; Holston et al., 2023;
Nuño, 2025).

This paper contributes to the four strands in interrelated ways. It analyzes the transmis-
sion of ICT IST shocks within the broader role of structural shocks in explaining business
cycle fluctuations, allowing for varying degrees of substitution between ICT capital and la-
bor. It complements the literature on AI and labor markets by o!ering a macroeconomic
framework in which the degree of factor complementarity can shape aggregate outcomes.
In doing so, the paper also adds to the literature on AI’s macroeconomic impacts. Fi-
nally, it contributes to the literature on the natural rate by highlighting how shifts in ICT
investment—conditional on labor-technology interactions—can a!ect the equilibrium inter-
est rate.

The remainder of the paper proceeds as follows. Section 2 lays out the model. Section
3 describes the data, calibration, and the main results of the Bayesian estimation. Section
4 analyses impulse-response functions, leveraging counterfactuals to disentangle important
transmission channels. Section 5 constructs projections for AI-driven ICT investment. Fi-
nally, Section 6 concludes. Details on the data and additional results are appended to the
paper.

2 Model

The framework builds on the Smets and Wouters (2007) dynamic stochastic general
equilibrium (DSGE) model, which has been shown to replicate key features of business
cycles. The model economy consists of households, labor unions, labor packers, retailers,
final good firms, intermediate goods firms and a policymaker. This model is extended to
explicitly include investment in ICT. ICT investment is subject to adjustment costs, modeled

1While most empirical evidence focuses on advanced economies, particularly the U.S., recent cross-country
studies highlight significant heterogeneity in AI’s labor market e!ects across regions and demographic groups
(OECD, 2023; Albanesi et al., 2024; Briggs and Kodnani, 2023; Gmyrek et al., 2023; Korinek and Juelfs,
2023; Brollo et al., 2024; Berg et al., 2025; Cerutti et al., 2025).
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analogously to those for standard capital, and accumulates into a separate ICT capital stock.
This ICT capital is used in production alongside labor and non-ICT capital, the two standard
inputs. A similar distinction between capital structures and capital equipment was originally
introduced by Krusell et al. (2000) to explain the observed variations in the skill premium.
For the sake of simplicity, variable capital utilization is not included, given the presence of
two types of capital and two sources of investment adjustment costs. Subsection 2.1 details
the novel features of the model related to ICT investment, while Subsection 2.2 presents the
full set of linearized model equations.

2.1 Features Related to ICT Investment

The distinction between ICT and non-ICT capital a!ects the optimality conditions faced
by households and firms. To identify the contribution of ICT investment to macroeconomic
dynamics, both its depreciation rate and adjustment costs are allowed to di!er from those
associated with non-ICT capital.

Each household owns both types of capital—ICT and non-ICT—which it rents to inter-
mediate goods producers. Households can increase the supply of capital services by investing
in ICT capital, IICT , and in non-ICT capital, It. The law of motion for the ICT capital
stock, KICT

t , is given by:

KICT
t =

(
1→ ωICT

)
KICT

t→1 + exp
(
ex

ICT

t

)[
1→ SICT

(
IICT
t

IICT
t→1

)]
IICT
t . (1)

Here, ωICT denotes the depreciation rate of ICT capital, exICT

t is a shock to the marginal
e"ciency of ICT investment and SICT (·) represents the adjustment cost function, which
satisfies standard properties: SICT (1) = SICT ↑(1) = 0, and SICT ↑↑ = εICT > 0. Maximization
of households’ intertemporal utility yields the following first-order conditions with respect
to KICT

t and IICT
t respectively:

QICT
t = ϑEt

{
!t+1

!t

[
RICT

t+1 +QICT
t+1

(
1→ ωICT

)]}
, (2)

1 = QICT
t exp

(
ex

ICT

t

)[
1→ SICT

(
IICT
t

IICT
t→1

)
→ SICT ↑

(
IICT
t

IICT
t→1

)(
IICT
t

IICT
t→1

)]

+ Et

{
!t+1

!t

[
QICT

t+1 exp
(
ex

ICT

t+1

)
SICT ↑

(
IICT
t+1

IICT
t

)(
IICT
t+1

IICT
t

)2
]

, (3)

where QICT
t denotes the Tobin’s Q for ICT capital, and RICT

t+1 is the real gross rental rate
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households receive for renting ICT capital to intermediate goods producers.
From the perspective of firms, ICT capital is an input to production. The model explicitly

captures the degree of substitutability or complementarity between KICT
t and labor, Lt.

This extension of the Smets-Wouters model is particularly pertinent in the highly-debated
context of emerging technologies such as AI, where the interaction between human labor
and technological enhancements could significantly reshape shock transmission mechanisms
and policy responses. These two inputs enter the production function through a constant-
elasticity-of-substitution (CES) aggregator, Et, which is then used alongside traditional (non-
ICT) capital, Kt, in a Cobb-Douglas production function:

Yt = exp (eat )K
ω
t Et

1→ω, (4)

Et =

ϖICT

(
KICT

t

) ω→1
ω + ϖL (Lt)

ω→1
ω

 ω
ω→1

, (5)

where Yt denotes output, eat is a TFP shock, ϖ is the non-ICT capital share of income, ϱ is the
elasticity of substitution between ICT capital and labor, and ϖICT and ϖL are distribution
parameters. Krusell et al. (2000) use a similar, though more elaborate, CES specification to
account also for the distinction between skilled and unskilled labor. A simpler CES functional
form for the production function has also been adopted by Cantore et al. (2014) and Di Pace
and Villa (2016).

The CES aggregator nests several familiar functional forms: Cobb-Douglas when ϱ ↑ 1;
the Leontief (fixed proportions) when ϱ ↑ 0; and linear (perfect substitutes) when ϱ ↑ ↓.
When 0 < ϱ < 1, ICT capital and labor are gross complements; when ϱ > 1, they are gross
substitutes.

Cost minimization by intermediate goods producers yields the following optimality con-
ditions governing the demand for non-ICT capital, labor and ICT capital, respectively:

Rk
t = ”tϖ

Yt

Kt
, (6)

Wt = ”t (1→ ϖ)ϖL
Yt

E
ω→1
ω

t L
1
ω

t

, (7)

RICT
t = ”t (1→ ϖ)ϖICT

Yt

E
ω→1
ω

t (KICT
t )

1
ω

, (8)

where ”t denotes the Lagrange multiplier associated with the production function and equals
the marginal cost, Rk

t is the rental rate of non-ICT capital and Wt is the nominal wage.
Equation (6) equates the marginal product of non-ICT capital to its rental rate, ensuring
that firms hire capital up to the point where its contribution to output matches its cost.
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Equation (7) determines labor demand, linking the marginal contribution of labor—adjusted
for its role in the CES composite input, Et—to the real wage. Similarly, equation (8) governs
the demand for ICT capital, showing that its marginal product (also expressed via the CES
aggregator) must equal the real return on ICT capital. Together, these conditions highlight
how the degree of substitutability between ICT capital and labor (governed by ϱ) a!ects the
relative demand for each factor and, ultimately, the transmission of shocks in the economy.

To facilitate the calibration, the CES distribution parameters can be re-parametrized
based on the steady-state income shares of ICT capital and labor, SKICT and SL, and the
elasticity of substitution, ϱ, so that ϖICT = SkICT

(1→ω)

(
E

KICT

) ω→1
ω and ϖL = SL

(1→ω)

(
E
L

) ω→1
ω . The

terms E, KICT and L represent steady-state values of the corresponding variables.

2.2 Linearized Model Equations

This subsection reports the full set of model equilibrium conditions in log-linear form
organized by agents, that is, households, firms, and monetary authority and equilibrium.
Variables with a ‘hat’ denote percentage deviations from their respective steady state, while
a variable without a time subscript denotes its steady-state value.

2.2.1 Households

Households maximize expected lifetime utility by choosing consumption, labor supply,
and investment in both ICT and non-ICT capital, subject to budget and capital accumulation
constraints. Utility depends on consumption, Ct, which exhibits habit formation—captured
by parameter h—and labor, and specializes as Ut (·) = ln (Ct → hCt→1)→ L1+ε

t
1+ε , where ς is the

inverse of the Frisch elasticity of labor supply. Their decisions give rise to the Euler equation,
wage-setting behavior, and non-ICT and ICT investment and Tobin’s Q dynamics:

1 + h

1→ h
Ĉt =

1

1→ h
Et


Ĉt+1


+

h

1→ h
Ĉt→1 →

(
R̂t → Et [φ̂t+1]

)
+ ebt , (9)

Ŵt =
ϑ

1 + ϑ
Et


Ŵt+1


+

1

1 + ϑ
Ŵt→1 +

ϑ

1 + ϑ
Et


#̂t+1


→ 1 + ϑ↼wi

1 + ϑ
#̂t +

↼wi

1 + ϑ
#̂t→1

+
1

1 + ϑ
· (1→ ϑ↼w)(1→ ↼w)

(1 + ↽wς)↼w

[
ςL̂t →

h

1→ h
Ĉt→1 +

1

1→ h
Ĉt → Ŵt

]
+ ewt ,

(10)

Ît =
1

1 + ϑ
Ît→1 +

ϑ

1 + ϑ
Et


Ît+1


+

1

ε(1 + ϑ)
Q̂t + ext , (11)

ÎICT
t =

1

1 + ϑ
ÎICT
t→1 +

ϑ

1 + ϑ
Et


ÎICT
t+1


+

1

εICT (1 + ϑ)
Q̂ICT

t + ex
ICT

t , (12)
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K̂t+1 = (1→ ω)K̂t + ω
(
Ît + εext

)
, (13)

K̂ICT
t+1 = (1→ ωICT )K̂ICT

t + ωICT
(
ÎICT
t + εICT ex

ICT

t

)
, (14)

Q̂t =
Rk

Rk + (1→ ω)
Et


R̂k

t+1


+

(1→ ω)

Rk + (1→ ω)
Et


Q̂t+1


→
(
R̂t → Et [φ̂t+1]

)
+

1 + h

1→ h
ebt , (15)

Q̂ICT
t =

RICT

RICT + (1→ ωICT )
Et


R̂ICT

t+1


+

(1→ ωICT )

RICT + (1→ ωICT )
Et


Q̂ICT

t+1


→

(
R̂t → Et [φ̂t+1]

)
+

1 + h

1→ h
ebt .

(16)

Equation (9) is the consumption Euler equation, which captures intertemporal consumption
choices under habit formation. Consumption today, Ĉt, depends on past and expected future
consumption, the real interest rate—given by the nominal interest rate, R̂t, minus expected
inflation, Et[#̂t+1]— and a risk premium shock, ebt , that a!ects intertemporal consumption-
saving decisions.

Equation (10) characterizes wage setting under Calvo-style nominal rigidity with index-
ation. Here Ŵt is the real wage and L̂t is hours worked. The households’ discount factor
is denoted by ϑ, while ↼w and ↼wi capture the degree of wage stickiness and indexation,
respectively. The term ewt is a wage mark-up shock, reflecting shifts in wage-setting power.
The wedge between the marginal rate of substitution between consumption and leisure and
the real wage—referred to as the wage mark-up—is given by ςL̂t → h

1→hĈt→1 +
1

1→hĈt → Ŵt.
Non-ICT and ICT investment dynamics are described by equations (11) and (12), respec-

tively. The parameters ε and εICT represent the elasticities of the investment adjustment
costs, while Q̂t and Q̂ICT

t are the Tobin’s Q for each capital type. Investment responds grad-
ually to its driving forces due to these adjustment costs. The shocks ext and ex

ICT

t capture
variations in the marginal e"ciency of investment, interpreted as IST shocks.

The laws of motion for non-ICT and ICT capital are defined by equations (13) and (14),
respectively. Capital accumulates according to standard dynamics, with ω and ωICT denoting
the depreciation rates of each capital type.

Finally, the value of non-ICT and ICT capital today, equations (15) and (16), is positively
influenced by its expected future value and the expected real rental rate, while it is negatively
a!ected by the anticipated real interest rate. The risk premium disturbance is represented
by variable ebt . This shock is meant to broadly capture frictions in the financial markets, by
representing a wedge between the policy rate and the return on household assets. A positive
shock raises the required asset return, curbing current consumption, while also increasing
capital costs and lowering the value of capital and investment. Di!erently from the discount
factor shock, Smets and Wouters (2007) emphasize that this shock generates the observed
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co-movement between consumption and investment.

2.2.2 Firms

This subsection presents the equilibrium conditions associated with firms’ behavior, in-
cluding production, factor demand, and price-setting decisions. These conditions are derived
from firms’ profit maximization under nominal and real rigidities:

Ŷt = eat + ϖK̂t + (1→ ϖ)Êt, (17)

Êt = ϖICT

(
KICT

E

) ω→1
ω

K̂ICT
t + ϖL

(
L

E

) ω→1
ω

L̂t, (18)

R̂ICT
t = →1

ϱ

(
K̂ICT

t → L̂t

)
+ Ŵt, (19)

R̂k
t = →

(
K̂t →

ϱ → 1

ϱ
Êt →

1

ϱ
K̂ICT

t

)
+ R̂ICT

t , (20)

#̂t =
↼pi

1 + ↼piϑ
#̂t→1 +

ϑ

1 + ↼piϑ
Et


#̂t+1



→ (1→ ϑ↼p)(1→ ↼p)

(1 + ↼piϑ)↼p

[
Ŷt →

ϱ → 1

ϱ
Êt →

1

ϱ
L̂t → Ŵt

]
+ ept .

(21)

Equations (17) and (18) are the log-linearized versions of the production function and
the CES aggregator, originally defined by equations (4) and (5) in Subsection 2.1.

Equation (19) is derived by combining firms’ optimality conditions with respect to labor
and ICT capital, as given in equations (7) and (8). It expresses the rental rate of ICT capital
as a function of the relative use of ICT capital to labor and the real wage.

Similarly, equation (20) results from combining the optimality conditions for non-ICT
capital and ICT capital, equations (6) and (8), and reflects how the rental rate of non-ICT
capital responds to changes in the ratio between traditional and ICT capital, relative to the
composite input, and adjusts with the return on ICT capital.

Finally, equation (21) represents the New Keynesian Phillips curve, which describes in-
flation dynamics under Calvo pricing with indexation. Parameter ↼p governs the degree of
price stickiness, while ↼pi captures the extent of price indexation to past inflation. Inflation
responds to expected and lagged inflation, the marginal cost—expressed as a function of
output, the CES input, labor, and the real wage—and a price mark-up shock, ept .
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2.2.3 Central Bank and Equilibrium

The central bank follows a Taylor rule:

R̂n
t = ⇀iR̂

n
t→1 + (1→ ⇀i)


⇀ϑ#̂t + ⇀y

(
Ŷt → Ŷ ↓

t

)

+ ⇀!y


Ŷt → Ŷ ↓

t →
(
Ŷt→1 → Ŷ ↓

t→1

)
+ ert ,

(22)

where ⇀i, ⇀ϑ, ⇀y and ⇀!y are policy parameters governing interest-rate smoothing, the re-
sponsiveness of the nominal interest rate to inflation deviations, to the output gap and to
changes in the output gap, respectively. The term Ŷ ↓

t represents the level of potential output.
This measure is obtained in a parallel model featuring flexible prices and wages without the
two mark-up shocks. Such a model is also used to compute the natural rate of interest, R↓

t ,
as in Woodford (2003). Variable ert is a monetary policy shock.

The resource constraint completes the model:

Ŷt =
C

Y
Ĉt +

I

Y
Ît +

IICT

Y
ÎICT
t +

G

Y
egt , (23)

where Gt is government spending and egt is a government spending shock.2

The eight exogenous variables, eϖt , with ⇁ = {a, b, g, p, r, x, xICT , w} follow AR(1) pro-
cesses, with autoregressive parameters ⇀ϖ and i.i.d. exogenous shocks ↽ϖ with zero mean
and standard deviations ↼ϖ, except for the price and wage mark up shocks, which follow
ARMA(1,1) processes with MA coe"cients µp and µw as standard in the literature.3

3 Estimation

This section reports the details and results of the Bayesian estimation. Subsection 3.1
presents the data and the measurement equations, Subsection 3.2 discusses the calibrated
parameters and the posterior estimates, Subsection 3.3 describes the role of shocks in the
variance of key macroeconomic variables, and Subsection 3.4 analyzes the evolution of the
model-implied natural rate of interest.

2The model abstracts from explicit debt dynamics, thus shutting the debt-supply channel for interest rates
(see, e.g., Mian et al., 2022; Campos et al., 2024). Although convenience yields are not explicitly modeled,
they are partly captured by the risk-premium shock. In future research, fiscal tools (grants, R&D credits,
digital infrastructure) could be incorporated to model their impact on ICT investment, with financing feeding
through to debt issuance and the natural rate.

3In principle, ICT and non-ICT IST shocks could be correlated. Yet, when an alternative model allowing
for such correlation is estimated, the resulting correlation is found to be negligible and does not improve the
marginal log-likelihood.
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3.1 Data and Measurement Equations

The model is estimated using quarterly data from 1980Q1 to 2024Q2. The starting date
corresponds to a quarter when the ratio of ICT investment over GDP is above 2 percent so
that the sample includes a period during which ICT investment constitutes a non-negligible
share of economic activity. This allows for a meaningful analysis of its macroeconomic
e!ects while avoiding potential distortions associated with the very early di!usion phase of
ICT technologies. In addition, this sample ensures that this ratio evolves within a relatively
narrow and gradually increasing range—reaching about 4 per cent by the end of the sample—
which is beneficial for the Bayesian estimation of the parameters of interest. For the sake of
comparison, estimates are also computed over a more recent sample, from 2005Q1 to 2024Q2,
and over a sample that excludes the COVID years, from 1980Q1 to 2019Q4 (Appendix B).

The observable variables include: (i) real GDP, (ii) real non-ICT investment, (iii) real
ICT investment, (iv) real private consumption, (v) hours worked, (vi) the GDP deflator, (vii)
the real wage, and (viii) the shadow nominal interest rate. These variables align with the
canonical Smets and Wouters (2007) observables, except for distinguishing between non-ICT
and ICT investment and replacing the federal funds rate with the shadow nominal interest
rate. This latter choice allows standard Bayesian estimation techniques to be applied even
when the nominal interest rate is at the zero lower bound—as it was for part of this sample—
and when unconventional monetary policies are in use, as in Melina and Villa (2023).

Except for the shadow nominal interest rate, which is borrowed from Wu and Xia (2016),
the data are extracted from the ALFRED database.4 All series are seasonally adjusted by
their sources. GDP, consumption, non-ICT investment, ICT investment, the real wage and
the GDP deflator are logged and expressed in first di!erences. Consistently, the shadow
nominal interest rate is expressed in quarterly terms. Finally, hours worked are logged
and demeaned. More granular details on data sources and transformations are reported in
Appendix A.

The following set of measurement equations show the link between the observables in the
dataset (denoted by o) and the endogenous variables of the DSGE model:

4The shadow nominal interest rate is complemented by the federal funds rate prior to 1990Q1 and after
2023Q2.
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(24)

where γ is the common quarterly trend growth rate of GDP, consumption, non-ICT invest-
ment, ICT investment and wages; L̄ is the average of hours worked; and φ̄ and r̄n are the
steady states of the quarterly inflation rate, and the interest rate, respectively.

3.2 Calibration, Priors and Posteriors

The parameters that cannot be identified in the data and are related to steady-state
values of endogenous variables are calibrated, as shown in Table 1. The time period in the
model corresponds to one quarter in the data.

Most parameters are assigned very standard values taken from the DSGE literature: the
discount factor, ϑ, is set to 0.99 to target an annual risk-free rate of 4 percent; the non-ICT
capital depreciation rate, ω, is set to 0.025, corresponding to an annual depreciation rate of 10
percent; the labor share, SL, is equal to two thirds of income; the elasticities of substitution
in goods and labor markets, ↽ and ↽w, are equal to 6 in order to target a gross steady-state
mark-up of 1.20. Finally, the government spending to GDP ratio, gy, is set equal to 20
percent.

The remaining two parameters pertain to ICT investment. The ICT capital depreciation
rate, ωICT , is calibrated at 0.057 in line with BEA tables on fixed assets,5 computed as
a weighted average of the depreciation rates of computers, communication equipment and
software, using their shares in total ICT investment during the estimation period as weights.
The ICT capital share, SkICT , is set to 0.067, which corresponds to 20 percent of the total
capital share (which is equal to 0.33), in line with the average share of ICT investment in
total investment over the sample period.

The mean of the estimated parameters is computed with two chains of the Metropolis-
Hastings algorithm, each with a sample of 500,000 draws. Table 2 reports information on the
parameters’ prior distribution and their posterior mean along with 95 percent probability
intervals in parentheses.

5These tables are available at https://www.bea.gov/itable/fixed-assets.
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Table 1: Calibrated Parameters

Parameters Value Steady-state target/reference
Discount factor ω 0.99 4% risk-free real rate p.a. (standard)
Non-ICT capital depr. rate ε 0.025 10% non-ICT depreciation rate p.a. (standard)
Labor share SL 0.67 labour share 2/3 of income (standard)
Elasticity of substitution goods ϑ 6 mark-up of 20%(Christiano et al., 2014)
Elasticity of substitution labor ϑw 6 mark-up of 20%(Christiano et al., 2014)
Government spending to GDP gy 0.2 NIPA tables data
ICT capital depr. rate εICT 0.057 BEA tables on fixed assets
ICT capital share SkICT 0.067 BEA table on share of ICT inv. over total inv.

The locations of the prior means correspond to a large extent to those in previous studies
on the U.S. economy, for example, Smets and Wouters (2007). The Inverse Gamma (IG)
distribution is used for the standard deviation of the shocks and a loose prior with 2 degrees
of freedom is adopted. The Beta distribution is used for all parameters bounded between 0
and 1. For the unbounded parameters the Normal distribution is adopted. In addition, the
prior means of the constants in the measurement equations are set equal to average values
in the dataset. As regards the parameters related to ICT investment, the prior mean of ICT
investment adjustment costs is set to be equal to that of non-ICT investment. The prior
distribution of the parameter measuring the elasticity of substitution between labor and ICT
capital is on purpose loose. In fact, as shown in Figure 1, a prior mean of 1 and a standard
deviation of 0.50 enable the prior distribution to encompass a range of values below or above
unity, i.e. implying gross factor complementarity or substitutability, respectively.

Posterior estimates of standard parameters are broadly in line with previous studies. It
is worth noting that the Calvo parameter for price stickiness is higher than that for wage
stickiness. However, the di!erence is small, considering that both their values imply that
firms adjust both prices and wages about every year and a half. The model exhibits low habit
persistence, with a mean estimate of 0.21. The impulse responses of output and consumption
(Figure 5 in Subsection 4.2), though, show a high degree of smoothness, implying that
the model is able to generate endogenous persistence of these variables instead of relying
entirely on additional features such as habit persistence. The estimated value of the Frisch
elasticity of labor supply, 1/ς, implies a relatively low adjustment of labor supply to wage
changes. As regards the Taylor rule parameters, in line with many other studies, estimates
capture nominal interest rate inertia and that, during this period which includes the Great
Moderation, monetary policy was aggressive on inflation, with an estimated coe"cient of
1.92. Similarly to Smets and Wouters (2007), there is evidence of a weak response to the
output gap, with an estimated coe"cient of 0.04, and of a stronger response to changes in
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Table 2: Prior-Posterior Distributions and Posterior Means of Parameters (95 Percent Cred-
ible Intervals in Square Brackets)

Prior distribution Posterior mean
Parameters Distr Mean Std./df
Structural parameters
Calvo prices ϖp Beta 0.5 0.05 0.85 [0.83;0.88]
Calvo wages ϖw Beta 0.5 0.05 0.81 [0.76;0.86]
Price indexation ϖpi Beta 0.5 0.15 0.20 [0.08;0.32]
Wage indexation ϖwi Beta 0.5 0.15 0.68 [0.49;0.87]
Habit parameter h Beta 0.7 0.1 0.21 [0.16;0.26]
Inv. of Frisch elasticity ϱ Gamma 2.00 0.75 2.91 [2.33;3.50]
Non-ICT Inv. adj. costs ς Normal 4 0.5 3.12 [2.18;4.02]
ICT Inv. adj. costs ςICT Normal 4 0.5 7.20 [5.39;8.99]
Elasticity of substitution φ Gamma 1.0 0.5 1.51 [0.94;2.07]
Inflation - Taylor rule ↼ω Normal 1.7 0.15 1.92 [1.73;2.11]
Output - Taylor rule ↼y Gamma 0.125 0.05 0.04 [0.02;0.06]
Taylor rule changes in y ↼!y Normal 0.0625 0.05 0.16 [0.12;0.21]
Taylor rule smoothing ↼i Beta 0.75 0.1 0.81 [0.78;0.85]
Constants
Trend ↽̄ Normal 0.4 0.2 0.34 [0.29;0.38]
Inflation ⇀̄ Gamma 0.5 0.1 0.59 [0.47;0.72]
Interest rate R̄ Normal 0.8 0.2 0.94 [0.72;1.15]
Hours ⇁̄ Normal 0.0 2.0 0.06 [-0.27;0.39]
Exogenous processes
Technology ↼a Beta 0.5 0.2 0.97 [0.96;0.99]

ϖa IG 0.1 2 0.58 [0.52;0.63]
Price mark-up ↼p Beta 0.5 0.2 0.99 [0.97;1.00]

ϖp IG 0.1 2 0.13 [0.10;0.15]
µp Beta 0.5 0.2 0.79 [0.70;0.88]

Wage mark-up ↼w Beta 0.5 0.2 0.48 [0.17;0.78]
ϖw IG 0.1 2 0.56 [0.49;0.62]
µw Beta 0.5 0.2 0.50 [0.21;0.78]

ICT Inv. specific ↼xICT Beta 0.5 0.2 0.98 [0.97;1.00]
ϖxICT IG 0.1 2 0.45 [0.33;0.57]

Non-ICT Inv. specific ↼x Beta 0.5 0.2 0.98 [0.97;1.00]
ϖx IG 0.1 2 0.43 [0.34;0.53]

Preference ↼b Beta 0.5 0.2 0.88 [0.84;0.92]
ϖb IG 0.1 2 0.27 [0.21;0.32]

Monetary policy ↼m Beta 0.5 0.2 0.17 [0.06;0.28]
ϖm IG 0.1 2 0.27 [0.23;0.30]

Government spending ↼g Beta 0.5 0.2 0.92 [0.89;0.95]
ϖg IG 0.1 2 2.66 [2.42;2.90]
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Figure 1: Prior and Posterior Distributions of Key Estimated Parameters
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the output gap, with a posterior estimate of 0.16. Turning to the exogenous shock processes,
all shocks are very persistent except for the wage mark-up and the monetary policy shocks.

Figure 1 shows the prior and posterior densities of the elasticity of substitution between
ICT capital and labor, ϱ, and of the ICT and non-ICT investment adjustment cost param-
eters, εICT and ε, respectively. All three parameters are well identified by the data, as
evidenced by posterior distributions markedly departing from their priors. This is especially
important for the elasticity of substitution. Although its 95 percent credible interval does
not rule out the Cobb-Douglas case (ϱ = 1), the posterior mean of ϱ = 1.51 and a distribu-
tion concentrated around values above unity—despite a loose prior—favor moderate gross
substitutability. This result contributes to the ongoing debate about the substitutability
versus complementarity between labor and ICT capital, particularly in the context of AI dif-
fusion (Pizzinelli et al., 2023; Cazzaniga et al., 2024). Importantly, the estimated elasticity
reflects an economy-wide average over a period in which AI adoption was still not prominent.
This motivates the counterfactual analysis presented later in the paper, which explores how
di!erent assumptions about ϱ a!ect the transmission of ICT-specific shocks.

Turning to the adjustment cost parameters, the posterior distributions for ςICT and
ς diverge significantly from their shared prior. The mass of the posterior for ςICT shifts
toward much higher values, with an estimated mean of 7.20, whereas that for ς moves
toward lower values, with a mean of 3.12. The higher adjustment costs for ICT investment
likely reflect the substantial complementary inputs required to adopt new technologies—such
as organizational restructuring, employee training, and process reengineering. These findings
are in line with recent studies emphasizing the persistent frictions and firm-level heterogeneity
associated with ICT adoption, reinforcing the view that ICT is a general-purpose technology
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with high implementation costs (e.g., DeStefano et al., 2025).
Estimates for a more recent period, 2000Q1-2024Q2, are reported in Table B.1 of Ap-

pendix B. Most of the deep parameters are very similar, with overlapping probability bands
between the full sample and the recent sample. The standard deviations and persistence
parameters of shocks vary to a larger extent.

Because the full sample includes the COVID years—which introduced unusual volatility
into the macro time series—Appendix B also reports estimates for a pre-COVID subsample,
1980Q1-2019Q4. Most estimated parameters are comparable across the two samples, with
the pre-COVID posterior means that lie within the full-sample credible intervals.6 Notably,
the ICT-specific parameters used in the simulations later in the paper are very similar across
the two samples.

Impulse response functions (IRFs) to all shocks are reported in Figure B.1 of Appendix
B. The dynamics of the IRFs of output, inflation and the monetary policy rate have the
expected sign and shape, as well as relatively narrow confidence bands (at a 95-percent
confidence level). While the shocks to ICT and non-ICT IST, risk premium, government
spending and monetary policy behave as demand shocks, the responses to shocks to TFP,
price and wage mark-up display dynamics in line with a supply shock.

3.3 Variance Decomposition

The estimated model can be used to assess the relative importance of shocks in explaining
the fluctuations in output, inflation and the natural rate of interest. Table 3 reports the con-
ditional variance decomposition. At a 1-year horizon demand shocks account for two thirds
of output fluctuations, with risk premium shocks playing the largest role. The importance
of ICT IST shocks increases over time, explaining 15.5 percent of output movements in the
longer run. In contrast, the role of government and monetary policy shocks decay over time.
Moreover, ICT IST shocks play a larger role for the variance of output than that of inflation.
While, on impact, supply shocks—specifically the price mark-up shock—play a dominant
role in a!ecting inflation dynamics, in the medium-to-long run demand disturbances are its
main drivers.

Fluctuations in the natural rate of interest are driven primarily by the risk premium
shocks both in the short and in the medium-to-long term, in line with the results by Gerali

6The main exceptions are the volatility and persistence of the monetary-policy shock; the volatility of the
wage mark-up shock; habit formation; the non-ICT investment adjustment cost; price stickiness; and the
parameters governing the monetary-policy response to the output gap. Including COVID quarters intuitively
lowers the estimated habit persistence and the non-ICT investment adjustment cost while increasing the
volatility of the monetary policy and wage mark-up shocks.
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Table 3: Conditional Variance Decomposition for Selected Variables (Percent) at Various
Time Horizons (Quarters)

Horizon

Structural shocks

TFP Price Wage Risk Non-ICT ICT inv. Gov. Mon.
mark-up mark-up premium inv. specific specific spend. policy

Output
4 19.1 10.0 4.3 37.0 1.4 1.4 3.9 23.1
20 22.9 21.8 5.6 17.7 14.8 10.0 0.7 6.4
40 19.5 21.5 3.6 10.8 25.2 15.5 0.4 3.6

Inflation
4 5.1 34.6 12.6 28.7 7.4 1.5 0.8 9.3
20 3.9 25.5 9.8 32.7 15.3 2.9 0.9 8.9
40 4.1 26.7 9.5 31.8 15.4 2.9 0.9 8.7

Natural rate of interest
4 19.1 * * 51.0 11.9 1.3 16.7 *
20 11.1 * * 61.6 14.7 2.5 10.1 *
40 10.8 * * 59.8 16.8 2.9 9.8 *

Notes. * The price mark-up, wage mark-up and the monetary policy shocks have zero e!ects on the natural
rate of interest by construction.

et al. (2018).7 TFP shocks are more relevant in the short run and their importance decays
over time, contrary to the ICT and non-ICT IST shocks, the importance of which increases
over time. Price mark-up, wage mark-up and monetary policy shocks have zero contributions
by construction.

The drivers of the natural rate are debated in the literature. Some papers argue that it
depends exclusively on structural factors, such as productivity growth and demographics (see,
e.g. Del Negro et al., 2017; Gagnon et al., 2021). More recently, Nuño (2025) has emphasized
the relevance of precautionary savings motives for the dynamics of the natural rate. The
results on the importance of the risk premium shock in both the variance decomposition
(Table 3) and the historical decomposition (Figure 3, discussed in the following subsection)
confirm that shifts in households’ preferences on savings are indeed relevant for explaining
movements in the natural rate of interest.

3.4 Model-Implied Natural Rate of Interest

The model-implied natural rate of interest—defined as the mean of the marginal posterior
distribution of the smoothed natural rate—broadly aligns with previous findings in the DSGE

7The risk premium shock may capture households’ preference for safe assets, either due to increased
riskiness in the economy or aging of the population.
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Figure 2: Model-Implied Natural Rate of Interest
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literature (Edge et al., 2008; Justiniano and Primiceri, 2010; Barsky et al., 2014; Cúrdia et al.,
2015; Del Negro et al., 2017; Neri and Gerali, 2019; Martínez-García, 2021). Across the
periods covered by these studies, the estimated levels and turning points are comparable.
The main innovation of the present estimate lies in the use of more recent data within a
framework that explicitly distinguishes between ICT and non-ICT investment.

As shown in Figure 2(a), the natural rate reached a peak of 8.4 percent in 1981, then
followed a persistent downward trend interspersed with cyclical fluctuations of varying mag-
nitudes. This trend continued into negative territory—hitting -5.2 percent in 2020—before
moving back above zero and reaching an estimated 2.3 percent in 2023. Consistent with most
DSGE-based approaches, the estimated natural rate represents a short-run equilibrium con-
cept and is therefore more volatile than medium-term estimates derived from semi-structural
or statistical models (Berger et al., 2023; Laubach and Williams, 2003; Holston et al., 2017,
2023; Barrett et al., 2023). However, these medium-term approaches are not immune to
limitations. As emphasized by Wieland (2018), these estimates are often highly uncertain
and have tended to hover near zero.

Figure 2(b) illustrates the resulting interest rate gap, defined as the di!erence between
the model-based real interest rate (the nominal rate adjusted for expected inflation) and
the model-implied natural rate. Periods in which the interest rate gap is negative indicate
that the real rate falls below its equilibrium, suggesting an accommodative monetary policy
stance; conversely, positive gaps signal a tighter policy posture. Historically, the gap turned
positive during the early 1980s, aligning with a policy environment focused on containing high
inflation. In more recent decades, episodes of negative gaps—including those preceding and
following the global financial crisis and during the initial phases of the COVID-19 pandemic—
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Figure 3: Historical Shock Decomposition of the Model-Implied Natural Rate of Interest
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Notes: The bold line represents the annual average of quarterly deviations of the model-implied natural rate
of interest from its steady-state value. Colored bars represent the contributions of structural shocks to these
deviations as indicated in the legend. Price mark-up, wage mark-up and monetary policy shocks have zero
contributions by construction.

have mirrored e!orts to stimulate demand. The transition to a positive gap in the post-
pandemic period reflects the shift toward tightening, prompted by a resurgence in inflationary
pressures.

Figure 3 decomposes the estimated deviations of the natural rate of interest from its
steady-state level across structural shocks.8 Several insights emerge. First, risk premium
shocks account for a sizable share of deviations, with negative contributions during periods
associated with heightened uncertainty. This finding is consistent with the view that a
growing preference for safe assets, whether driven by increased economic risk or an aging
population, places downward pressure on the equilibrium rate (Del Negro et al., 2017; Jones,
2023).9

Second, TFP shocks display variability, partially o!setting or amplifying the e!ects of
risk premium shocks. In the mid 1980s, TFP contributions were negative likely due to weaker
productivity after the oil crises. By the early 1990s, contributions turned positive with the
rise of information technology. The early 2000s dot-com collapse and the aftermath of the

8Price mark-up, wage mark-up and monetary policy shocks have a zero contribution by construction.
9The model allows for a significant contribution of the risk premium shock in the variance of the natural

rate of interest, given that that the shock appears in the equations directly governing the dynamics of this
rate, that is, the flexible-price/wage version of equations (9), (15) and (16).
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global financial crisis saw consistently negative TFP contributions, reflecting technological
slowdown.

Third, although ICT investment has steadily grown in importance, it remains a smaller
fraction of total investment relative to its non-ICT counterpart, helping to explain why ICT
IST shocks appear modest. Yet, their contribution is consistently positive throughout.

Fourth, the larger non-ICT component of investment leads to more sizable contributions
from non-ICT IST shocks, which bolstered the natural rate in the early 1980s amid robust
capital deepening, turned negative in the 1990s and early 2000s as manufacturing o!shored
and slowed, and returned to a positive contribution in the late 2010s alongside renewed
capital spending, for example in sectors such as advanced manufacturing, automotive, and
aerospace.

Finally, government spending shocks show more sporadic e!ects, likely reflecting their
role as a residual category in a closed-economy DSGE framework, capturing disturbances
not accounted for by other structural disturbances.10

4 The E!ects of ICT Investment-Specific Technology Shocks

This section focuses on how AI-driven ICT capital influences aggregate output, inflation,
and the natural rate of interest. Subsection 4.1 provides a comparison between ICT and
non-ICT IST shocks, while Subsection 4.2 examines the role of complementarity between
ICT capital and labor in the transmission mechanism of ICT IST shocks.

4.1 Comparing ICT and Non-ICT Shocks

A positive IST shock reduces the relative price of investment goods, inducing firms to
expand investment to accumulate productive capacity for future periods. Figure 4 presents
the Bayesian impulse responses of selected macroeconomic variables to positive ICT and non-
ICT IST shocks, each of a size equal to their estimated standard deviations. All responses
are reported over a five-year horizon (20 quarters) as percent deviations from the steady
state, together with 95 percent credible intervals.

Under both ICT and non-ICT shocks, the responses of their respective investment exhibit
a pronounced hump-shaped pattern due to the presence of investment adjustment costs.

10For the sake of completeness, Figure B.2 in Appendix B reports the historical shock decomposition of
GDP growth, inflation rate, non-ICT and ICT investment growth. Just like in the historical decomposition
of the natural rate, the ICT IST shock has a positive but small contribution to GDP growth and the inflation
rate. As expected, the contribution is almost negligible in the fluctuations of non-ICT investment growth
and very large in those of ICT investment growth.
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Figure 4: Bayesian Impulse Responses of Selected Macroeconomic Variables to ICT and
non-ICT Investment-Specific Technology Shocks
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Following a positive ICT-specific shock, ICT investment rises, whereas non-ICT investment
initially declines as resources are reallocated toward ICT. However, the initial decline of non-
ICT investment is quantitatively small relative to the expansion in ICT investment. Over a
five-year horizon, both types of investment lie above their respective steady states, reflecting
that the new capital of a given type boosts the marginal product of the other type of capital.
A parallel mechanism operates under a non-ICT IST shock, with non-ICT investment rising
initially and ICT investment responding negatively in the short run but ultimately remaining
above steady state after the first 3-4 years. Labor also rises in a hump-shaped fashion in the
wake of both shocks, due to an increase in labor demand to meet higher production in an
environment of gross substitutability. As the stock of each type of capital accumulates, the
marginal product of labor increases.

IST shocks behave much like demand shocks by raising both real output and inflation.
Given the high persistence estimated for these shocks—and the persistent responses of both
types of investment and labor—output remains on an increasing trajectory above steady
state for at least five years. Inflation also follows a hump-shaped path, peaking relatively
quickly and subsequently declining over the medium term; nonetheless, its credible band
remains above zero for the five-year horizon.

From a quantitative perspective, a typical ICT IST shock generates a peak increase in
ICT investment of almost 10 percent, with output rising by around 0.6 percent over a five-
year horizon. Inflation climbs by around 0.025 percentage points (10 basis points annually)
in the first year before gradually easing. In contrast, a typical non-ICT IST shock triggers a
5 percent peak increase in non-ICT investment. Although smaller in its e!ect on investment,
the larger weight of non-ICT capital in the overall economy leads to a larger medium-term
output gain of about 0.8 percent and a higher inflation peak of around 0.06 percentage points
(24 basis points annually). Despite the expansion of aggregate demand, the overall increase
in inflation remains modest because of the monetary policy tightening and the increase in
aggregate supply—determined by the accumulation of both ICT and non-ICT capital—that
mitigates upward price pressures. More broadly, it is debated whether an AI-related shock
should be viewed as a demand or a supply shock (Aldasoro et al., 2024): it can stimulate
demand by boosting investment, while also raising supply through productivity gains. In this
model, the demand-side channel dominates, yet second-round supply-side e!ects—stemming
from the expansion of productive capacity—still dampen inflationary pressures.

The monetary policy rate tightens in response to higher inflation and output but does so
gradually–producing a hump-shaped pattern–because of the estimated inertia in the Taylor
rule. In contrast, the natural rate of interest drops initially and then rises persistently above
its steady-state level after both ICT and non-ICT shocks. The immediate decline reflects
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the economy’s internal resource-reallocation dynamics: as the relative price of investment
goods falls and firms redirect resources toward building capital, housesholds’ short-run sav-
ings increase (and consumption demand slows, as shown in Figure 5) motivated by future
higher returns on investment, which puts downward pressure on the equilibrium real interest
rate. Over time, however, the accumulating capital boosts income and aggregate demand
su"ciently to drive the natural rate above its steady state.

4.2 The Role of the Complementarity between ICT Capital and
Labor

Figure 5 reports impulse responses to the ICT IST shock under three alternative elas-
ticities of substitution between the two inputs. The solid blue line depicts the baseline
calibration, with the elasticity (ϱ) fixed at its estimated posterior mean of 1.51. The dashed
red line is obtained with a lower ϱ of 0.5, representing stronger factor complementarity, where
boosting ICT capital requires a relatively stronger increase in labor. The dotted black is
generated by raising ϱ to 3, illustrating stronger factor substitutability, where ICT capital
can more readily stand in for labor. These numbers are illustrative to gauge how sensitive
the results are to the degree to which labor can be replaced with ICT capital.

With greater factor substitutability, ICT capital can more readily replace labor, so its
marginal product surges to a larger extent after the shock. Firms therefore channel resources
more aggressively into ICT investment, which peaks at 18.1 percent above steady state—
more than two thirds higher than in the baseline—while non-ICT investment experiences a
deeper short-run dip before entering positive territory after the first three years. The mirror
image emerges when ICT and labor are more complementary: the same shock elicits a much
more muted ICT-investment response (a peak of less than 4 percent) but spurs a rise in
non-ICT investment that reaches almost 1 percent after five years.

Output inherits these patterns. When ICT capital can readily substitute for labor, the
resulting capital deepening lifts output to more than 0.8 percent above steady state after
five years, whereas stronger complementarity caps the medium-term gain at about 0.4 per-
cent. Labor-market responses move in the opposite direction. Complementarity raises the
marginal product of labor to a larger extent, drawing more hours into production and pushing
real wages well above their baseline path; high substitutability, by contrast, dampens labor
demand and wage growth as ICT capital takes over a larger share of production inputs.
These divergent wage and employment e!ects shape household income and consumption:
the complementarity scenario turns the baseline’s initial consumption dip into a sustained
rise, while the substitutability case delivers the strongest consumption dip and its weakest
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Figure 5: Impulse Responses of Selected Macroeconomic Variables to an ICT Investment-
Specific Technology Shock under Alternative Parametrizations of the Elasticity of Substitu-
tion between ICT Capital and Labor
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recovery.
Price dynamics scale with the strength of the shift in aggregate demand due to the

investment surge. Inflation peaks at roughly 0.04 percentage points when substitutability
is high, at almost 0.03 points in the baseline, and at slightly above 0.01 points under more
complementarity.

The natural rate of interest tracks the way the shock reshu#es consumption versus sav-
ing across scenarios. When ICT capital can readily substitute for labor, the high marginal
product of ICT capital makes consumption contract initially because households channel the
freed-up income into savings. The extra savings push the natural rate down by roughly 0.1
percentage point before a stronger rebound sets in once higher future earnings materialize.
The baseline shows the same pattern on a smaller scale. Under strong factor complementar-
ity, consumption rises from the outset; the natural rate therefore hovers at or slightly above
steady state throughout, erasing the initial dip and curbing the subsequent overshoot. In
short, the depth of the natural-rate trough and the height of its rebound scale directly with
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the temporary shift of income from consumption to saving induced by the shock.

5 Scenarios for ICT Investment

There is mounting evidence that AI is reshaping corporate technology priorities with a
scale and intensity reminiscent of the late-1990s digital boom, raising the prospect of re-
newed ICT capital deepening with potentially significant macroeconomic implications. This
section first computes two scenarios for U.S. ICT investment based on available data and
projections. Then, it incorporates these scenarios in the model to assess how the ongo-
ing surge in AI adoption could influence the medium-term trajectories of output, inflation,
and the natural rate of interest. Two ICT investment paths are simulated under alterna-
tive parameterizations of the elasticity of substitution between ICT capital and labor, to
reflect the uncertainty about whether future advances in AI will make ICT capital primarily
complement or substitute for labor.

5.1 Evolution of ICT Investment and Scenarios

A striking signal of the AI transformation is the sharp upswing in corporate technology
budgets. According to recent survey evidence by Deloitte (Raskovich et al., 2024), in 2024
U.S. firms allocated 7.5 percent of revenue to digital transformation, with 5.4 percent directed
specifically through IT departments—nearly double the share from just four years earlier—
largely in response to the rapid uptake of generative AI. Global forecasts reinforce this trend:
Gartner (2025) projects worldwide IT spending to grow by 9.8 percent in 2025, reaching
U.S. $5.6 trillion, with U.S. firms contributing disproportionately to this expansion. Much
of the increase is attributed to investments aimed at enabling and operationalizing AI across
business functions. These developments point to a renewed phase of ICT capital deepening,
making it a timely and relevant focus for macroeconomic analysis.

Figure 6 displays ICT investment as a share of GDP from 1985 to 2024, along with two
illustrative projections over a five-year horizon, from 2025 to 2029. The ratio rose steeply
during the 1990s, fueled by the rapid di!usion of personal computing, enterprise software,
and internet infrastructure. This surge culminated in a peak of approximately 4.5 percent
of GDP in 2000, just before the dot-com crash. Afterwards, the share of ICT investment
declined, reflecting the unwinding of the tech boom, but eventually settled into a slower but
steady upward trend over the following two decades.

From the early 2000s through the mid-2010s, growth in ICT investment was sustained by
the gradual expansion of cloud computing, mobile technologies, and digital services. While

29



Figure 6: ICT Investment Scenarios (Percent of GDP)
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less pronounced than the boom of the 1990s, this steady progress reflected the ongoing
integration of digital tools into business operations. More recently, a clear uptick has taken
shape since 2023, driven by the rapid adoption of generative AI and a renewed corporate focus
on digital transformation. This emerging momentum raises the prospect of a new phase of
ICT capital deepening, one that, much like the surge of the 1990s, could significantly influence
productivity growth, investment dynamics, and the broader macroeconomic environment.

A conservative scenario extends the linear trend observed since 2003, implying a gradual
rise in the ICT-investment-to-GDP ratio to 4.3 percent by 2029. Based on the IMF’s World
Economic Outlook projections (April 2025) for nominal GDP, this trajectory corresponds to
average nominal ICT investment growth of approximately 6.3 percent per year, consistent
with gradual increases in AI-related spending, but still below the peak reached in 2000.

An ambitious scenario assumes that the momentum identified by industry analysts trans-
lates into a steeper trajectory, pushing the ICT-to-GDP ratio to 5.0 percent by 2029 and
thereby surpassing its historical high. Reaching this level would require nominal ICT invest-
ment growth of about 9.4 percent annually, capturing the rapid expansion of AI-optimized
servers, enterprise software, cloud infrastructure, and advanced data center capabilities.

5.2 Macroeconomic Implications

The two ICT investment paths are fed into the model by simulating sequences of ICT
IST shocks that replicate the targeted trajectories for ICT investment in real per capita
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terms under each scenario. In other words, these simulations are conducted by holding
the ICT investment path constant across calibrations and adjusting the ICT IST shocks
accordingly.11 This approach—rather than fixing the shock and allowing investment to vary
(as done, e.g., in Figure 5)—ensures that di!erences in macroeconomic outcomes reflect
the structural properties of the model, not variations in the investment response. It also
aligns the exercise with the motivating scenarios, which are defined in terms of observable
investment trajectories.12

As previously in the paper, three alternative calibrations of the elasticity of substitution
between ICT capital and labor are motivated by the uncertainty surrounding the extent to
which AI will replace or complement human labor. The baseline scenario adopts a calibration
consistent with the posterior mean of the estimated model parameters, including an elasticity
of substitution, ϱ, equal to 1.51—suggesting moderate gross substitutability between ICT
capital and labor. Two alternative assumptions allow exploring how the labor-technology
relationship influences macroeconomic outcomes. The first assumes greater complementarity,
with ϱ = 0.50, reflecting a scenario in which ICT capital tend to enhance, rather than
substituting for, labor input. The second assumes greater substitutability, with ϱ = 3.00,
capturing a setting where AI and related technologies can more easily displace human labor.

Figure 7 shows the responses of key macroeconomic variables to the sequence of shocks
that reproduce the same conservative path of ICT investment under the three assumptions
on ϱ. This exercise is di!erent from the impulse responses reported in Figure 5, where
responses are computed in response to the same ICT IST shock. Here, under greater factor
complementarity, the macroeconomic e!ects are markedly larger reflecting the fact that,
when ICT capital and labor are strong complements, the same increase in ICT investment
requires a proportionally larger increase in the labor input. This acts as a constraint on
investment dynamics (as discussed in Section 4.2). Therefore, to deliver the same real per
capita ICT investment path as in the baseline, the model requires larger ICT IST shocks
in the complementarity case, resulting in a stronger macroeconomic impulse. The opposite
occurs under greater factor substitutability. Here, ICT capital can more readily replace

11To convert the nominal growth rates into real per capita terms, the scenarios are adjusted using pro-
jections of the GDP deflator from the IMF World Economic Outlook and recent historical averages of U.S.
population growth. After accounting for expected inflation and demographic trends, the conservative scenario
implies real per capita ICT investment growth of approximately 3.3 percent per year, while the ambitious
scenario corresponds to a faster pace of 6.4 percent annually.

12The literature remains divided on whether AI will deliver a significant boost to total factor productivity
(TFP) (Acemoglu, 2025; Aghion and Bunel, 2024), potentially amplifying GDP e!ects beyond those gen-
erated by ICT IST shocks. Given the considerable uncertainty around the magnitude of the TFP impact
(Cerutti et al., 2025), the simulations below deliberately exclude any TFP shock. Even without this channel,
the resulting GDP e!ects are substantial. Including a positive TFP shock would shift the results upward
but would not alter the qualitative conclusions.
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Figure 7: Impulse Responses of Selected Macroeconomic Variables to a Sequence of ICT
Investment-Specific Technology Shocks Consistent with a Conservative Path of the ICT-
Investment-to-GDP Ratio
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Notes: Baseline simulations are obtained with the estimated posterior mean of φ equal to 1.51. Greater
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labor, so achieving the same investment path requires smaller IST shocks, leading to more
muted aggregate e!ects.

Table 4 highlights the quantitative di!erences for GDP growth, inflation and the natural
rate across the conservative and aggressive scenarios. Under the baseline calibration, the
conservative scenario raises average annual GDP growth over a five-year horizon by 0.13
percentage point, with modest e!ects on inflation (0.12 percentage point) and a very small
impact on the natural rate of interest (0.01 percentage point), in line with the historical shock
decomposition (Figure 3). The ambitious scenario produces stronger e!ects, increasing GDP
growth by 0.25 percentage point annually, inflation by 0.23 percentage point, and the natural
rate by 0.02 percentage point.

Substantial di!erences emerge when alternative values of ϱ are considered. Under greater
factor complementarity, in the conservative case, GDP growth rises by 0.44 percentage point,

32



Table 4: Average Annual Impact over a Five-Year Horizon (Percentage Points)
GDP Growth Inflation Nat. Rate

Conservative Scenario
Baseline calibration 0.13 0.12 0.01
Greater factor complementarity 0.44 0.44 0.37
Greater factor substitutability 0.11 0.09 -0.02

Ambitious Scenario
Baseline calibration 0.25 0.23 0.02
Greater factor complementarity 0.86 0.85 0.73
Greater factor substitutability 0.22 0.17 -0.03

Notes: Baseline simulations are obtained with the estimated posterior mean of φ equal to 1.51. Greater
factor complementarity is achieved with φ equal to 0.50, while greater factor substitutability is obtained
with φ equal to 3.00. The conservative scenario implies a gradual rise in the ICT-investment-to-GDP ratio
to 4.3 percent by 2029, while the ambitious scenario assumes a steeper trajectory for this ratio, reaching 5.0
per cent by 2029.

inflation by 0.44 percentage point, and the natural rate by 0.37 percentage point. Under
the ambitious scenario, the corresponding impacts are 0.86, 0.85, and 0.73 percentage point,
respectively. Greater factor substitutability leads to more muted e!ects.

5.3 Policy Implications

Taken together, these results highlight the critical role that the relationship between
ICT capital and labor plays in shaping the macroeconomic consequences of an AI-driven
investment surge, particularly for monetary policy. While increased ICT investment tends
to support higher output across scenarios, its implications for inflation and the natural rate
of interest di!er substantially depending on whether technology complements or substitutes
for labor.

Under greater factor complementarity, the economy requires a larger increase in labor
input to fully utilize the additional ICT capital, resulting in stronger upward pressure on
wages, inflation, and aggregate demand and pushing the natural rate of interest significantly
higher. In the ambitious investment scenario, for example, the natural rate rises by almost
three quarters of a percentage point annually, with important implications for monetary
policy.

Conversely, in the case of greater factor substitutability, ICT capital can more easily
displace labor, easing capacity constraints and dampening wage and price pressures. In this
case, the natural rate rises only marginally or may even decline slightly, reflecting weaker
demand-side dynamics. For monetary policymakers, this di!erence implies that the same ob-
servable increase in ICT investment could warrant very di!erent policy responses, depending

33



on the underlying labor-technology elasticity.
More broadly, the findings suggest that accurately assessing the trajectory of the natural

rate in the AI era will require judgment on the nature of the technological change, not just
real-time output and inflation data. A key question, beyond the scope of this paper, is
whether the AI revolution will lead to a structurally higher natural rate of interest. Such
a development would have significant implications for monetary policy, as a higher natural
rate would imply that the central bank operates further away from the e!ective lower bound.

6 Conclusions

Expanding AI-ready ICT capital has direct implications for monetary policy. This paper
demonstrates that the scale and integration of ICT investment into production—particularly
when driven by generative-AI adoption—shape the macroeconomic environment in which
monetary policy operates. By embedding a distinct ICT capital channel and its interaction
with labor into an otherwise standard DSGE framework, the analysis maps improvements
in ICT-investment e"ciency into movements in output, inflation, and the natural rate of
interest.

Several findings stand out. First, estimates point to moderate gross substitutability
between ICT capital and labor historically. Second, counterfactual simulations show that the
transmission mechanism of ICT IST shocks crucially depends on the elasticity of substitution
between these two inputs, in particular concerning the dynamics of ICT investment, real
wages and the natural rate of interest. These simulations are especially important given the
wide uncertainty on how AI adoption will unfold.

Third, scenarios calibrated to conservative and ambitious AI adoption profiles underscore
the macroeconomic stakes. Across assumptions about scale of the ICT investment surge and
labor-technology substitution, annual GDP growth rises by 0.1-0.9 percentage point, inflation
by 0.1-0.8 percentage point, and the natural rate by up to 0.7 percentage point. The same
ICT investment leads to amplified inflation pressures, and a greater lift in the natural rate
under strong complementarity; strong substitutability yields the opposite pattern.

From a monetary policy perspective, the interaction between new capital and labor mar-
ket conditions critically shapes inflation dynamics and the level of the natural rate of interest.
Misjudging that structural nexus risks either falling behind a rising natural rate or needlessly
restraining the economy when AI dampens labor demand. Future research could extend the
analysis by incorporating international spillovers, firm heterogeneity in adoption, and co-
ordinated fiscal measures aimed at smoothing the transition to an AI-intensive production
landscape.
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Appendix

A Data

This section discusses the sources and transformation of the variables used in the es-
timation. Most of the data are extracted from the ALFRED database. ICT investment
is defined as private fixed investment in information processing equipment and software
(A679RC1Q027SBEA). Non-ICT investment is made of all the remaining components of
private fixed investment (PNFI). The shadow nominal interest rate is borrowed from Wu
and Xia (2016) and is complemented by the federal funds rate prior to 1990Q1 and after
2023Q2.

Following Smets and Wouters (2007), GDP, consumption, ICT and non-ICT investment
are transformed in per-capita terms by dividing their real values by the labor force. Real
wages are computed by dividing compensation per hour by the GDP deflator. As shown in
the measurement equations in Subsection 3.1, the observable variables of GDP, consumption,
ICT investment, non-ICT investment and wages are logged and expressed in first di!erences.
The inflation rate is measured as a quarterly log-di!erence of GDP deflator. Hours worked
are multiplied by a civilian employment index, expressed in per capita terms and demeaned.
All series are seasonally adjusted by their sources.

B Additional Results

Table B.1 reports the posterior means of the estimated parameters over a more recent
sample, from 2000Q1 to 2024Q2, while Table B.2 shows the posteriors of the parameters and
shocks, based on a sample that excludes the COVID period, from 1980Q1 to 2019Q4. Figure
B.1 shows Bayesian impulse response functions to all shocks in the full sample. Figure B.2
reports the historical shock decomposition of important macroeconomic variables beyond
the natural rate of interest.
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Table B.1: Prior-Posterior Distributions and Posterior Means of Parameters over a more
Recent Sample–2000Q1-2024Q2 (95 Percent Credible Intervals in Square Brackets)

Prior distribution Posterior mean
Parameters Distr Mean Std./df
Structural parameters
Calvo prices ϖp Beta 0.5 0.05 0.83 [0.78;0.87]
Calvo wages ϖw Beta 0.5 0.05 0.74 [0.67;0.81]
Price indexation ϖpi Beta 0.5 0.15 0.21 [0.07;0.35]
Wage indexation ϖwi Beta 0.5 0.15 0.48 [0.23;0.74]
Habit parameter h Beta 0.7 0.1 0.22 [0.15;0.28]
Inv. of Frisch elasticity ϱ Gamma 2.00 0.75 2.06 [1.05;3.13]
Non-ICT Inv. adj. costs ς Normal 4 0.5 3.85 [2.66;5.00]
ICT Inv. adj. costs ςICT Normal 4 0.5 8.23 [6.36;10.04]
Elasticity of substitution φ Gamma 1.0 0.5 1.12 [0.48;1.77]
Inflation - Taylor rule ↼ω Normal 1.7 0.15 1.71 [1.46;1.97]
Output - Taylor rule ↼y Gamma 0.125 0.05 0.13 [0.05;0.22]
Taylor rule changes in y ↼!y Normal 0.0625 0.05 0.03 [0.01;0.05]
Taylor rule smoothing ↼i Beta 0.75 0.1 0.90 [0.87;0.93]
Constants
Trend ↽̄ Normal 0.4 0.2 0.30 [0.27;0.34]
Inflation ⇀̄ Gamma 0.5 0.1 0.63 [0.50;0.78]
Interest rate R̄ Normal 0.8 0.2 0.50 [0.26;0.74]
Hours ⇁̄ Normal 0.0 2.0 -0.10 [-0.42;0.23]
Exogenous processes
Technology ↼a Beta 0.5 0.2 0.78 [0.67;0.90]

ϖa IG 0.1 2 0.57 [0.49;0.65]
Price mark-up ↼p Beta 0.5 0.2 0.88 [0.79;0.97]

ϖp IG 0.1 2 0.16 [0.12;0.20]
µp Beta 0.5 0.2 0.60 [0.35;0.84]

Wage mark-up ↼w Beta 0.5 0.2 0.33 [0.06;0.57]
ϖw IG 0.1 2 0.83 [0.68;0.97]
µw Beta 0.5 0.2 0.46 [0.24;0.81]

ICT Inv. specific ↼xICT Beta 0.5 0.2 0.86 [0.75;0.96]
ϖxICT IG 0.1 2 0.31 [0.24;0.37]

Non-ICT Inv. specific ↼x Beta 0.5 0.2 0.74 [0.60;0.89]
ϖx IG 0.1 2 0.48 [0.34;0.62]

Preference ↼b Beta 0.5 0.2 0.81 [0.74;0.89]
ϖb IG 0.1 2 0.56 [0.31;0.80]

Monetary policy ↼m Beta 0.5 0.2 0.53 [0.40;0.67]
ϖm IG 0.1 2 0.13 [0.10;0.16]

Government spending ↼g Beta 0.5 0.2 0.88 [0.81;0.94]
ϖg IG 0.1 2 2.38 [2.05;2.70]
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Table B.2: Prior-Posterior Distributions and Posterior Means of Parameters in the pre-
COVID Period–1980Q1-2019Q4 (95 Percent Credible Intervals in Square Brackets)

Prior distribution Posterior mean
Parameters Distr Mean Std./df
Structural parameters
Calvo prices ϖp Beta 0.5 0.05 0.93 [0.86;0.96]
Calvo wages ϖw Beta 0.5 0.05 0.80 [0.75;0.86]
Price indexation ϖpi Beta 0.5 0.15 0.21 [0.08;0.33]
Wage indexation ϖwi Beta 0.5 0.15 0.51 [0.26;0.76]
Habit parameter h Beta 0.7 0.1 0.35 [0.29;0.41]
Inv. of Frisch elasticity ϱ Gamma 2.00 0.75 3.46 [2.65;4.50]
Non-ICT Inv. adj. costs ς Normal 4 0.5 4.25 [2.83;5.63]
ICT Inv. adj. costs ςICT Normal 4 0.5 6.46 [4.65;8.30]
Elasticity of substitution φ Gamma 1.0 0.5 1.51 [0.94;2.09]
Inflation - Taylor rule ↼ω Normal 1.7 0.15 1.91 [1.69;2.14]
Output - Taylor rule ↼y Gamma 0.125 0.05 0.08 [0.04;0.11]
Taylor rule changes in y ↼!y Normal 0.0625 0.05 0.34 [0.30;0.38]
Taylor rule smoothing ↼i Beta 0.75 0.1 0.79 [0.74;0.83]
Constants
Trend ↽̄ Normal 0.4 0.2 0.34 [0.30;0.39]
Inflation ⇀̄ Gamma 0.5 0.1 0.63 [0.54;0.73]
Interest rate R̄ Normal 0.8 0.2 0.09 [-0.23;0.41]
Hours ⇁̄ Normal 0.0 2.0 0.94 [0.75;1.13]
Exogenous processes
Technology ↼a Beta 0.5 0.2 0.98 [0.97;1.00]

ϖa IG 0.1 2 0.53 [0.48;0.58]
Price mark-up ↼p Beta 0.5 0.2 0.85 [0.75;0.99]

ϖp IG 0.1 2 0.10 [0.08;0.12]
µp Beta 0.5 0.2 0.71 [0.55;0.88]

Wage mark-up ↼w Beta 0.5 0.2 0.68 [0.39;0.95]
ϖw IG 0.1 2 0.46 [0.40;0.53]
µw Beta 0.5 0.2 0.66 [0.36;0.97]

ICT Inv. specific ↼xICT Beta 0.5 0.2 0.98 [0.97;1.00]
ϖxICT IG 0.1 2 0.35 [0.27;0.44]

Non-ICT Inv. specific ↼x Beta 0.5 0.2 0.97 [0.96;1.00]
ϖx IG 0.1 2 0.46 [0.33;0.59]

Preference ↼b Beta 0.5 0.2 0.87 [0.84;0.91]
ϖb IG 0.1 2 0.24 [0.19;0.28]

Monetary policy ↼m Beta 0.5 0.2 0.05 [0.01;0.09]
ϖm IG 0.1 2 0.21 [0.19;0.23]

Government spending ↼g Beta 0.5 0.2 0.93 [0.91;0.96]
ϖg IG 0.1 2 2.55 [2.31;2.79]
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Figure B.1: Bayesian Impulse Responses of Selected Macroeconomic Variables to All Shocks
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Notes: The shock size is equal to the estimated standard deviation. The responses of endogenous variables,
reported on the Y-axes, are shown as percent deviations from their respective steady-state values. The time
horizon on X-axes is measured in quarters. Dotted lines represent the 95 percent credible interval.
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Figure B.2: Historical Shock Decomposition of Selected Variables

(a) GDP Growth
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(b) Inflation rate
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(c) Non-ICT Investment Growth
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(d) ICT Investment Growth
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Notes: The bold lines represent the annual average of demeaned quarter-on-quarters growth rates of the
variables, except for inflation which represents the demeaned annualized rate. Colored bars represent the
contributions of structural shocks to these deviations as indicated in the legend.
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