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1. Introduction 

In forecasting economic time series, statistical models often need to be supplemented with procedures that 

impose constraints while preserving smoothness over time. For example, GDP forecasts generated using 

models such as autoregressions or decision trees may not align with the long-term growth rates anticipated by 

forecasters. In such cases, forecasters aim to adjust the time series so that it converges smoothly to the 

desired long-term growth path. However, ad hoc constraint imposition, such as manually altering only the 

terminal value in a long time series, can introduce undesirable discontinuities between the penultimate and 

terminal values. Similar challenges arise when forecasting aggregate variables and their subcomponents, such 

as fiscal balance, revenue, and expenditure. Relying solely on statistical models may fail to ensure that 

forecasts satisfy accounting identity constraints, and imposing these constraints in an ad hoc manner, such as 

treating one variable as a residual, can result in forecasts that lack the desired smoothness since the residual 

variable absorbs the forecast errors of the rest. In general, adjusting the forecasts to satisfy constraints often 

breaks the smoothness, and vice versa. 

 

Systematically imposing constraints while retaining smoothness is important but challenging. Constraints often 

stem from accounting identities and expert judgment, making their incorporation essential for internal 

consistency. Smoothness is equally critical, as optimal forecasts typically exhibit less volatility than historical 

data. For instance, in a random walk, historical data are volatile, but the optimal forecast is constant over time, 

equal to the last observed value. Achieving both objectives manually is resource-intensive, especially when 

dealing with numerous variables and constraints, raising the question of how to systematically impose 

constraints and smoothness. 

 

Ando (2024) proposes a systematic approach to impose constraints and maintain smoothness, but a user-

friendly package to implement it has not been developed. Building on the forecast reconciliation literature, 

notably reviewed by Athanasopoulos et al. (2024) and the smoothing method of Hodrick and Prescott (1997), 

Ando (2024) defines a quadratic programming problem that can impose both the constraints and temporal 

smoothness in a close form, applicable to a large system of time series. Ando (2024) then provides three 

examples to illustrate how to combine statistical models with the proposed smooth reconciliation method, a la 

Ando and Kim (2023). Although Ando (2024) provides the replication code for the examples used in the paper, 

a user-friendly package to implement the method remains a gap. 

 

Existing packages in R and Python assist forecast reconciliation and smoothing separately but not jointly. For 

instance, the hts (Hyndman et al., 2021) and FoReco (Girolimetto and Di Fonzo, 2023) packages in R support 

reconciliation, but the reconciled forecast may not be smooth over time. This is also the case 

for hierarchicalforecast (Olivares et al., 2024) package in Python. On the other hand, packages, such as 

smooth (Svetunkov, 2024) and forecast (Hyndman et al., 2024) for R and statsmodels (Seabold and 

Perktold, 2010) for Python, provide methods to generate smooth forecasts but do not have the functionality to 

impose constraints. To our knowledge, no package supports the simultaneous application of both reconciliation 

and smoothing. 

 

This paper introduces macroframe-forecast, a Python package that enables users to generate forecasts that 

are temporally smooth and meet user-defined constraints. The package produces forecasts in two steps a la 

Ando and Kim (2023) and Ando (2024). The framework is model agnostic in its first step, allowing users to 

produce unconstrained forecasts using any preferred forecasting model in the sktime package (Loning et al., 
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2019), including machine learning pipelines or traditional econometric methods. Compatibility with the rich 

machine learning packages is one of the benefits of writing a package in Python. In the second step, these 

forecasts undergo a reconciliation process a la Ando (2024) that enforces equality or inequality constraints 

while smoothing the forecast trajectory over time. The two-step approach contrasts with Chan et al. (2025), 

who jointly conduct forecasting and reconciliation but require all variables to follow a Gaussian distribution. 

 

The package features plug-and-play simplicity and flexibility to fine-tune the details. The interface is designed 

so that forecasters can use the package’s main class MFF without explicitly providing various mathematical 

inputs for the reconciliation problem. For example, users can specify constraints using strings, rather than 

inputting matrices as required by other packages. By understanding the conceptual framework and internal 

structure, however, forecasters can fine-tune the first and second steps independently. For example, 

forecasters can either use sophisticated machine learning models in the first step or provide the first step 

forecasts exogenously. Forecasters can then fine-tune the reconciliation step by experimenting with different 

constraints or smoothness. Such flexibility could be useful for practitioners who want to experiment with 

different target values, inequality constraints, or smoothness before settling on the final forecasts. 

 

We demonstrate the package’s functionality with two examples. The first example focuses on a simple case in 

which a single variable, U.S. GDP, is forecasted subject to the constraint that the growth rate at the end of the 

forecast horizon matches a predefined value. The second example illustrates a multivariable scenario, 

forecasting fiscal variable, namely revenue, expenditure, and interest expense, subject to the accounting 

identity, with the path of the primary balance given exogenously. 

 

The rest of the paper is structured as follows. Section 2 outlines the conceptual framework of the methods 

implemented in the package. Section 3 provides instructions for installing and using the package, with 

illustrative examples. Section 4 concludes the paper. 

 

2. Conceptual framework 

 

This section presents the conceptual framework behind the Python package. The framework consists of two 

steps, where the first step provides users with a flexible choice of forecasting models, and the second step 

allows users to adjust the first-step forecasts so that the forecasts are smooth over time and satisfy various 

constraints, such as accounting identities and prespecified targets. For the theoretical properties and examples 

of the reconciliation process in the second step, see Ando (2024). 

 

2.1. First-step forecast 

 

The first step of the forecasting process is to generate unconstrained forecasts for all unknown variables across 

all time horizons. Formally, for each variable 𝑖 = 1,… ,𝑀, the first-step forecast using information up to time 𝑡 for 

ℎ ≥ 1 periods ahead can be written as 

 

𝑦̂𝑖,𝑡+ℎ|𝑡  = 𝔼[𝑦𝑖,𝑡+ℎ
∗ |𝜃𝑖,ℎ], (1) 
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where 𝜃𝑖,ℎ refers to the estimated parameters for variable 𝑦𝑖,𝑡+ℎ
∗ ∈ ℝ. The model used for each variable can be 

different across 𝑖 and ℎ and can be parametric or non-parametric, such as Ordinary Least Squares (OLS) or 

other machine-learning models. In the Python package, users can specify their own models or use the default 

model. 

 

It is important to note that the first-step forecast is unconstrained. While users have the flexibility to apply any 

forecasting model, the resulting forecasts may not satisfy essential requirements, such as accounting identities 

or inequality constraints. Depending on the chosen model, the unconstrained forecast might also exhibit sharp 

fluctuations or patterns inconsistent with the imposed constraints. The purpose of the second step is to 

reconcile the first-step forecast, ensuring that the final forecasts are both smoother over the forecast horizon 

and fully compliant with the specified constraints. 

 

2.2. Second-step reconciliation 

 

Suppose that the first step generates the forecast of 𝑀 variables, where each variable 𝑖 = 1,… ,𝑀 has forecast 

horizon of ℎ = 1,… , 𝑇𝑖. Let 𝑦̂ denote the column vector that stacks 𝑀 variables and 𝑁 denote the size of the 

vector 

𝑦̂ ≔ [𝑦̂1,𝑡+1, … , 𝑦̂1,𝑡+𝑇1 , … , 𝑦̂𝑀,𝑡+1, … , 𝑦̂𝑀,𝑇+𝑇𝑀]
′
∈ ℝ𝑁 , (2) 

 

The second step 𝑦̃ ∈ ℝ𝑁 adjusts the first-step forecast by (1) smoothing it over time and (2) ensuring that it 

satisfies the predefined constraints. Let the constraints be denoted by 

 

𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0, 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0, (3) 

 

where 𝐶𝑒𝑞, 𝑑𝑒𝑞, 𝐶𝑖𝑛𝑒𝑞, 𝑑𝑖𝑛𝑒𝑞 are of size 𝐾𝑒𝑞 × 𝑁, 𝐾𝑒𝑞 × 1, 𝐾𝑖𝑛𝑒𝑞 × 𝑁, and 𝐾𝑖𝑛𝑒𝑞 × 1. The second-step forecast 𝑦̃ 

solves 

 

𝑦̃ ≔ arg min
𝑦 ∈ ℝ𝑁

(𝑦 − 𝑦̂)′𝑊−1(𝑦 − 𝑦 ̂) + 𝑦′Φ𝑦  𝑠. 𝑡.  𝐶𝑒𝑞𝑦 = 𝑑𝑒𝑞 , 𝐶𝑖𝑛𝑒𝑞𝑦 ≤ 𝑑𝑖𝑛𝑒𝑞 , (4) 

 

where 𝑊 is an estimator of the forecast error covariance 𝑉(𝑦∗ − 𝑦̂). Since the weight 𝑊 reflects forecast error, 

accurately forecasted variables tend to be changed less in the second step than the less accurately forecasted 

variables. Φ is the smoothness matrix 

 

Φ = [
𝜆1𝐹1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑀𝐹𝑀

] , 𝐹𝑖 =

[
 
 
 
 
 
 
 
 
1 −2 1 0
−2 5 −4 1
1 −4 6 −4
0 1 −4 6

⋱
6 −4 1 0
−4 6 −4 1
1 −4 5 −2
0 1 −2 1 ]

 
 
 
 
 
 
 
 

, (5) 
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where the matrix 𝐹𝑖 is the degenerate penta-diagonal matrix used in the calculation of the Hodrick- Prescott 

filter (1997). The matrix 𝐹𝑖 suggests that each 𝜆𝑖 controls the smoothness, defined by how small the difference 

in difference {(𝑦𝑖,𝑡+1 − 𝑦𝑖,𝑡) − (𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1)}
2
 is, as in the HP filter. 

 

Intuitively, the second-step forecast 𝑦̃ tries to be as close as possible to the first-step forecast 𝑦̂ subject to the 

constraints. The distance is measured by the inverse of the weight 𝑊, and jumps over time are punished by the 

smoothness matrix Φ.The problem is quadratic programing, and it has a closed-form solution if inequality 

constraints are slack. 

 

2.2.1. Choice of weight matrix 𝑾 

 

Theoretically, the optimal weight is the forecast error covariance 𝑊 = 𝑉(𝑦∗ − 𝑦̂). (Wickramasuriya et al., 2019; 

Ando and Narita, 2024) In practice, when the matrix is large relative to the sample size, the sample covariance 

matrix Σ̂ may not be invertible. Thus, by default, the weight matrix 𝑊 uses the Oracle Shrinkage Approximating 

estimator (OAS) à la Chen et al. (2010), which shrinks the sample covariance matrix of the forecast error Σ̂ 

towards the diagonal matrix where all diagonal elements are the average of diagonal elements 𝑡𝑟(Σ̂)/𝑁. 

Specifically, suppose the sample size to estimate the matrix is 𝑠 based on time series cross-validation of 

historical data. The weight matrix 𝑊 based on OAS is 

 

𝑊𝑂𝐴𝑆 = (1 − 𝜌𝑂𝐴𝑆)Σ̂ + 𝜌𝑂𝐴𝑆
𝑡𝑟(Σ̂)

𝑁
𝐼𝑁×𝑁 , 𝜌𝑂𝐴𝑆 = min

{
 
 

 
 

(1 −
2
𝑁)

𝑡𝑟(Σ̂2) + 𝑡𝑟(Σ̂)
2

(𝑠 + 1 −
2
𝑁)

[𝑡𝑟(Σ̂2) −
𝑡𝑟(Σ̂)

2

𝑁
]

, 1

}
 
 

 
 

. (6) 

 

Alternatively, the weight matrix can use the Oracle Shrinkage Approximating estimator with Diagonal target 

(OASD) as in Ando and Xiao (2023), which provides robust estimates when different timeseries have different 

units. 

 

𝑊𝑂𝐴𝑆𝐷 = 𝜌𝑂𝐴𝑆𝐷Σ̂ + (1 − 𝜌𝑂𝐴𝑆𝐷)𝑑𝑖𝑎𝑔 (Σ̂), 𝜌𝑂𝐴𝑆𝐷 = min {
1

𝑠𝜙
, 1} , 𝜙 =  

𝑡𝑟(Σ̂2) − 𝑡𝑟 (𝑑𝑖𝑎𝑔(Σ̂)
2
)

𝑡𝑟(Σ̂2) +  𝑡𝑟(Σ̂)
2
− 2𝑡𝑟 (𝑑𝑖𝑎𝑔(Σ̂)

2
)
. (7) 

 

Users can also use the identity matrix as the weight matrix 𝑊 = 𝐼𝑁×𝑁 or provide custom weights. 

 

2.2.2. Choice of smoothness parameters 𝝀 

 

By default, the 𝑀 smoothness parameters {𝜆𝑖}𝑖=1
𝑀  are calculated by 

 

𝜆𝑖 = 
𝜆𝑖
∗

𝜎𝑖
2 , 𝜎𝑖

2 = min
𝑡
(𝑊𝑖)𝑡𝑡 , 𝑖 = 1, … ,𝑀, (8) 

 

where 𝜆𝑖
∗ is the standard smoothness parameter of HP filter for the corresponding frequency, like 1600 for the 

quarterly frequency, and 𝑊𝑖 is a 𝑇𝑖 × 𝑇𝑖 submatrix of the weight matrix 𝑊 that corresponds to variable 𝑖. 
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Intuitively, the standard HP filter parameter 𝜆𝑖
∗ is used to smooth each time series, but the parameter is 

normalized so that the objective function (4) is independent of each time series’ unit. 

 

When the frequency of the time series is not available, the package chooses 𝜆𝑖 for each time series 𝑖 by 

minimizing the mean squared forecast error from time-series cross validation. Users can also provide custom 

values. 

 

2.3. Discussion 

 

To highlight the benefits and limitations of the conceptual framework, this section makes three observations. 

 

First, the model selection in the first step is flexible, and it is important to choose the right one. Any model can 

be used as the first-step forecast. It is important to note, however, that any shortcomings in the initial model 

specification may be carried forward into the reconciliation process through the first step forecast 𝑦̂ and the 

forecast error covariance matrix 𝑊. Thus, it is important to select a model with high forecast accuracy in the 

first step. 

 

Second, the choice of constraints and smoothness in the second step is flexible, and it is important to choose 

the right ones. The constraints can reflect systematic relationships, like accounting identities and non-negativity 

of certain variables, or come from ad-hoc sources, such as expert judgement. Imposing the right constraints 

tends to improve the first-step forecast by providing additional information that the statistical models couldn’t 

infer in the first step, but imposing wrong constraints could worsen it. Similarly, imposing the right smoothness 

can remove noises in the first step forecast, and vice versa. 

 

Third, the macroframe-forecast package currently supports only point forecasts. Forecasters can, however, 

construct confidence intervals by using the forecast errors generated during the first-step forecasting process. 

One can draw from these forecast errors across all horizons and variables, add them to the point forecasts, and 

then carry out the reconciliation process. Repeating this procedure generates a distribution of second-step 

reconciled forecasts, from which confidence or prediction intervals can be derived. This simulation-based 

approach to generating reconciled forecast distributions aligns with methods used in the reconciliation literature 

(e.g., Girolimetto et al., 2024). 

 

3. Python package 

This section outlines how to use the Python package macroframe-forecast. The documentation and Github 

repository are available online: https://sakaiando.github.io/macroframe-forecast/index.html and 

https://github.com/sakaiando/macroframe-forecast. They are both live documents and could evolve from this 

paper. 

 

The primary class within the package is MFF, which produces forecasts based on input data and specified 

constraints. The basic syntax for invoking this class is: 

 

>>> df2 = MFF(df, equality_constraints) 

https://sakaiando.github.io/macroframe-forecast/index.html
https://github.com/sakaiando/macroframe-forecast
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where df is a dataframe with missing values to be forecasted and constraints is a list of strings that 

represents the linear constraints to be satisfied by the variables. In the subsequent sections, we will explain the 

functionalities of the MFF class in detail, covering essential inputs, optional parameters, and advanced features 

with simple examples.1 

3.1. Installation 

This package is available through pip and via GitHub. The following command on the command line installs 

the macroframe-forecast package: 

 

pip install macroframe-forecast 
 

This will install the package and all dependency packages. In case a previous or incompatible version of a 

dependency is already installed, this will update these packages to the required version as well. We 

recommend using Python version 3.11.9 or later to ensure compatibility and optimal performance. 

3.2. Inputs 

 

The MFF class requires one essential input to generate forecasts, followed by several optional parameters. 

 

3.2.1 Essential inputs 

 

• df: A pandas dataframe. The dataframe must be in a long format, with each row being a time period, and 

each column being a variable. The observations to be forecasted are NaN in the dataframe. Island values 

are known values for variables which are preceded by unknown values. For example, if a forecaster 

expects the GDP growth rate for a country to be 4 percent at the end of a period of, say 5 years from the 

current time period, but has no view on the growth rate during the interim years, the 4 percent is an island 

value following four NaN values as the table below. 

 

Table 1. Example of island value 

period GDP 

growth 

0 3.00 

1 NaN 

2 NaN 

3 NaN 

4 NaN 

5 4.00 

    

 

1 This exploration will include discussions on handling data with a single frequency, although the macroframe-forecast package 

includes an experimental MFF_mixed_frequency class, which accommodates multiple frequencies pending the resolution of a 

bug in the pandas library (GitHub issue 59775). 
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3.2.2 Optional inputs 

 

• forecaster: Users can provide a descendant of BaseForecaster class in the sktime package, including 

the pipeline with pre-processing steps and models for generating the first-step forecast. When no 

forecasting pipeline is defined by the user, the function DefaultForecaster() is called. 

DefaultForecaster() is a pipeline that uses a time-series cross validation algorithm with five folds to 

select the best performing model among the following standard forecasting models: 

1. Naïve forecaster; 

2. Elastic Net; 

3. Ordinary Least Squares (OLS) with features created by Primary Component Analysis (PCA); 

4. Ordinary Least Squares (OLS) using the first feature. 

 

In the extreme cases where the number of non-NaN observations is too small for Grid Search algorithm, 

DefaultForecaster() is NaiveForecaster() from sktime. 

 

• equality_constraints: A list of equality constraints expressed as strings. These constraints can either 

be specified to bind at a certain period or can be defined with wildcards that extend the constraint to all 

forecast horizons. The constraints are specified as a list of strings using the column names of df and time 

periods. If no input is provided, no constraints will be imposed, and the second-step forecast will be as the 

smoothed version of the first-step forecast. If an island value is provided in df as in Table 1, users do not 

need to specify it in equality_constraints. 

 

• inequality_constraints: A list of inequality constraints, analogous to the equality_constraints. 

 

• parallelize: A Boolean indicator of whether dask’s parallel computing is utilized for generating forecasts. 

 

• n_forecast_error: The number of time series cross validationsplits to generate the first-step forecast 

error covariance matrix Σ̂. By default, this value is set to be 5. 

 

• shrinkage_method: The method used for shrinking the sample covariance matrix estimated from first-step 

forecasts. By default, the Oracle Approximating Shrinkage (OAS) Estimator (Chen et al., 2010) is used for 

the shrinkage step. Other options are Oracle Approximating Estimator with Diagonal target (OASD) as laid 

out in Ando and Xiao (2023), identity matrix, or the monotone diagonal method. 

 

• default_lam: The value of lambda 𝜆𝑖 in to be used for smoothing forecasts for the second step. By 

default, this value is set to be -1, which means that the value of lambda is to be selected by minimizing the 

mean-squared error from time-series cross validation. When it is 0, no smoothing will be applied. 

 

• max_lam: The maximum value that the lambda parameter 𝜆𝑖 can take if it is being estimated optimally 

(default_lam is set to -1). By default, this is set to 129600. 

 

3.3. Outputs 
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Since the macroframework forecast is produced in two steps, and the second step generates the smoothed 

forecasts that satisfy constraints, the main output is denoted by df2. 

• df2: A dataframe with the same size as df, with NaN replaced by the forecasts that satisfy specified 

constraints. 

 

Apart from this, the following attributes store information on the intermediate steps of the forecasting process: 

• df0: The original input dataframe, with all island values set to NaN. 

• df1: A dataframe with first-step forecasts filled in the NaN cells of dataframe df0. 

• df1_model: A dataframe where each cell corresponds to the model used for generating the 

corresponding forecasted value in df1. 

• pred: A dataframe with predicted values from in-sample predictions generated using pseudo-historical 

datasets. This is used for generating the first-step forecast errors. 

• true: A dataframe with actual values of variables corresponding to the predicted values in pred. The 

first step forecast errors are produced by subtracting true from pred. 

• model: A dataframe containing the models used for generating in-sample forecasts stored in pred. 

• C_eq: The left side of the equality constraint equation 𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0 in matrix form from equation (3). 

• d_eq: The right side of the equality constraint equation 𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0 in matrix form from equation (3). 

• C_ineq: The left side of the inequality constraint equation 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0 in matrix form from 

equation (3). 

• d_ineq: The right side of the equality constraint equation 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0 in matrix form from 

equation (3). 

• W: The weight matrix implied by the first step forecast error. 

• Phi: Smoothing matrix used for generating smooth second-step forecasts. 

• shrinkage: The shrinkage parameter 𝜌 associated with the second-step adjustment, corresponding to 

𝜌𝑂𝐴𝑆 when OAS is used and 𝜌𝑂𝐴𝑆𝐷 when OASD is used. np.nan when identity option is used.  

• smoothness: A series containing the smoothing variable 𝜆𝑖
∗ used for each variable 𝑖. 

 

3.4. Examples 

 

In this section, we illustrate how to use the package using two examples. The first example is kept simple, 

illustrating the plug-and-play aspect of the package. The second example illustrates how the package can 

handle more complicated situations with multiple variables, as well as equality and inequality constraints. 

 

3.4.1. Single variable example 

 

In this section, we use US nominal GDP data in trillion US dollars from the World Economic Outlook database. 

We use the historical data from 1950-2024 and generate forecasts for 2025-2030. The dataframe has only one 

column, with data up to 2024. Rows 2025-2030 are all NaN to be forecasted. 

 

>>> df0 
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year GDP  

1950 0.30 

1951 0.35 

... ... 

2024 28.18 

2025 NaN 

2026 NaN 

2027 NaN 

2028 NaN 

2029 NaN 

2030 NaN 

 

Suppose we want to constrain the growth rate for GDP for the year 2030 around 4 percent. This can be written 

as 

 

𝐺𝐷𝑃2030 − 𝐺𝐷𝑃2030
𝐺𝐷𝑃2030

× 100 = 4 ⇔ 𝐺𝐷𝑃2030 − 1.04 ×  𝐺𝐷𝑃2029 = 0. (9) 

 

The forecast with this constraint on long-term growth can be made by 

 

>>> m = MFF(df =df0, 

>>>         equality_constraints = ['GDP_2030 - 1.04 * GDP_2029']) 

>>> m.fit() 
 

The output from executing the fit command is stored inside the object m. The first- and second-step forecasts 

are stored as df1 and df2 respectively. The first-step forecast may not be smooth, and the annual GDP growth 

may not be 4 percent at the end of the period. The second step forecast, however, satisfies the imposed growth 

rate constraint, as is evident in Figure 1(b). If the forecaster wants to only reconcile the first step forecasts to 

the constraint but does not want to smooth the forecast, they can do so by setting the parameter default_lam 

to 0 in the MFF call. Figure 1 (c) shows that, in this case, the growth rates in 2029 and 2030 are not smooth. 

 

Figure 1. Forecast of US Annual GDP 
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(a)

 

(b) 

 

(c) 

 

 

Source: IMF April 2025 World Economic Outlook database and authors’ calculations. 
Note: Panel (a) shows the forecast of annual US GDP in trillion USD. Panel (b) shows the growth rates 

computed from the level forecasts. Panel (c) shows the output when no smoothing is applied. 

 

As discussed, it is not necessary that all horizons in the first step were forecasted using the same model. The 

models that are used for each first-step forecast can be accessed by using the following command: 

 

>>> m.df1_model 

 

For example, we can see the model used for forecasting the 2028 GDP value as  

 

>>> m.df1_model.loc[‘2028’, ‘GDP’] 

 

3.4.1.1. Customizing second step reconciliation 

 

What if users want to fine tune the second step reconciliation after running the example in the previous section 

3.4.1? For example, users may want to provide an exogenous first-step forecast, weight matrix, or the 

smoothness parameters. Such experiments can be conducted by using the Reconciliation function. It 

requires knowledge about the conceptual framework and internal structure of the MFF class, but it provides 

additional flexibility in the forecasting exercise, so we illustrate a potential use in this section. 

 

Suppose the user wants to replace the first step forecast by 



IMF WORKING PAPERS  

 

INTERNATIONAL MONETARY FUND 14 

 

>>> GDP_forecasts_external = pd.DataFrame({"GDP": [29.0, 31.5, 33, 30.2, 36.8, 39]}, 

                             index = [2025, 2026, 2027, 2028, 2029, 2030]) 

 

After running the example in the previous section 3.4.1, the user can extract and replace the corresponding 

object with this alternative first step forecast. 

 

>>> y1_exo = m.y1 

>>> y1_exo[:] = GDP_forecasts_external['GDP'] 

 

Similarly, the weight matrix can be changed to an identity matrix as below. 

 

>>> W_exo = m.W 

>>> W_exo.iloc[:,:] = np.eye(len(m.y1)) 

 

If the user wants to halve the smoothness parameter 𝜆∗, GenSmoothingMatrix() can be used to update the 

corresponding smoothing matrix Φ. 

 

>>> from macroframe_forecast.utils import GenSmoothingMatrix 

>>> smoothness_exo = m.smoothness * .5 

>>> Phi_exo = GenSmoothingMatrix(m.W, smoothness_exo) 

 

>>> from macroframe_forecast.utils import Reconciliation 

>>> alternative_y2 = Reconciliation(y1= y1_exo, 

>>> W = W_exo, 

>>> Phi = Phi_exo, 

>>>                                 C = m.C, d = m.d, 

>>>                                 C_ineq = m.C_ineq, d_ineq = m.d_ineq) 

 

3.4.2. Multivariable example 

 

In this section, we analyze fiscal data for the United States, focusing on revenue, expenditure, interest 

payments, and primary balance from the April 2025 WEO. They satisfy: 

 

Primary balance = revenue – expenditure + interest payments. 

 

These fiscal variables are expressed as ratios to nominal GDP and are used going forward for the forecasting 

exercise. The April 2025 WEO provides historical data up to 2024 and projections for 2025-30. We assume that 

the forecaster takes the WEO forecast on primary balance to GDP ratio as given over the entire forecast 

horizon, but expenditure, revenue, and interest payments to GDP are unknown, so we want to forecast these 

three variables up to 2030. The input dataframe for the MFF is structured as follows: 

 

>>> fiscal_data 

year exp rev int_payments pb 

2001 32.80 32.26 3.26 2.71 



IMF WORKING PAPERS  

 

INTERNATIONAL MONETARY FUND 15 

 

year exp rev int_payments pb 

2002 33.70 29.88 2.89 -0.93 

2003 34.04 29.27 2.66 -2.11 

2004 33.72 29.48 2.56 -1.68 

2005 33.93 30.85 2.70 -0.37 

... ... ... ... ... 

2024 37.59 30.33 4.20 -3.06 

2025 NaN NaN NaN -2.16 

2026 NaN NaN NaN -1.06 

2027 NaN NaN NaN -0.90 

2028 NaN NaN NaN -1.25 

2029 NaN NaN NaN -1.14 

2030 NaN NaN NaN -1.32 

 

One constraint we impose is that the fiscal identity holds for the entire forecast horizon. In addition, we assume 

that the forecaster wants the expenditure to GDP ratio to be 37 percent in 2030. Instead of specifying the fiscal 

identity constraint separately for each horizon, we can use the wildcard functionality to write the constraint as 

follows: 

 

>>> fiscal_constraint = ['pb? - rev? + exp? - int_payments?', 

    'exp_2030 - 37'] 
 

The question mark “?“ is a wildcard that expands the constraint across all forecast horizons in one go. The 

constraint on expenditure in 2030, exp_2030 = 37, is written explicitly, but forecasters can also set the 

corresponding cell of the dataframe to be 37. Such an island value will be automatically treated as an equality 

constraint. 

 

To illustrate how to impose inequality constraints, suppose the forecaster also believes that the interest 

payments to GDP ratio always stay between 2.5 and 3.5 percent. Such inequality constraints can be expressed 

as following. 

 

>>> int_constraint = ['int_payments? - 3.5', '2.5 - int_payments?'] 

 
We describe how to use a user-defined model to generate the first step forecast instead of relying on the 

default forecasting pipeline. Suppose that the forecaster wants to use a linear regression model for making 

predictions. We can use the LinearRegression class in sklearn package and wrap it in 

DirectReductionForecaster from sktime to make the model compatible with the sktime forecasting 

pipeline. 

 

>>> from sktime.forecasting.compose import ForecastingPipeline 

>>> from sktime.forecasting.compose import DirectReductionForecaster 

>>> ols_model = ForecastingPipeline(steps=[ 
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>>>    (‘ols’,DirectReductionForecaster(LinearRegression()))]) 

 

The forecaster can add additional steps in the pipeline before the model is applied, such as taking logs and first 

differences. Once this is defined, we can call MFF in the following manner: 

 

>>> m = MFF(df = fiscal_data, 

>>>         equality_constraints = fiscal_constraint, 

>>>         inequality_constraints = int_constraint, 

>>>       forecaster = ols_model)  

>>> m.fit() 
 

From the first- and second-step forecasts of expenditure, revenues, and interest payments in Figures 2 (a), (b) 

and (c), we see that the second-step forecasts are smoother than the first step. We also see that the 

expenditure forecast in the second step is equal to the target in the equality constraint, and interest payments 

always remain within the predefined bounds. Figure 2 (d) compares the primary balance derived from the first- 

and second-step forecasts. We see that, while the first-step forecast does not satisfy the accounting identity, 

the second-step forecast does. 

 

Figure 2. Forecasts of Annual US fiscal variables 

(a) 

 

(b) 

 

 

(c) 

  

(d) 

 

Source: IMF April 2025 World Economic Outlook database and authors’ calculations. 
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Note: Panel (a), (b), and (c) show the forecasts for the US annual expenditure, revenue, and interest 

expense to GDP ratio, respectively. Panel (d) shows the implied primary balance from the first- and second-

step forecasts. 

 

 

4. Conclusion 

This paper introduces a forecasting framework and accompanying Python package that enables users to 

generate forecasts exhibiting temporal smoothness while adhering to user-specified constraints. The package 

distinctly separates model estimation from the imposition of constraints and smoothness adjustments, allowing 

users to employ any statistical or machine learning models to produce the initial forecasts. This structure 

provides forecasters with flexibility in their modeling choices, while ensuring that the final forecasts remain 

internally consistent and smooth. 

 

The macroframe-forecast package, however, is a beta version, and the internal structure and the user 

interface will continue to be improved. Extending support to mixed-frequency time series, speeding up parallel 

processing, and Excel add-in would be interesting directions for future development. 
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