
A Python Package to

Assist Macroframework

Forecasting
Concepts and Examples

Sakai Ando, Shuvam Das, Sultan Orazbayev

WP/25/172

IMF Working Papers describe research in

progress by the author(s) and are published to

elicit comments and to encourage debate.

The views expressed in IMF Working Papers are

those of the author(s) and do not necessarily

represent the views of the IMF, its Executive Board,

or IMF management.

2025
AUG

* We thank Mingmei Xiao, Yuki Sato, and Doga Bilgin for their earlier contributions.

© 2025 International Monetary Fund WP/25/172

IMF Working Paper

Research Department

A Python Package to Assist Macroframework Forecasting: Concepts and Examples

Prepared by Sakai Ando, Shuvam Das, and Sultan Orazbayev *

Authorized for distribution by Emine Boz

August 2025

IMF Working Papers describe research in progress by the author(s) and are published to elicit

comments and to encourage debate. The views expressed in IMF Working Papers are those of the

author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management.

ABSTRACT: In forecasting economic time series, statistical models often need to be complemented with a

process to impose various constraints in a smooth manner. Systematically imposing constraints and retaining

smoothness are important but challenging. Ando (2024) proposes a systematic approach, but a user-friendly

package to implement it has not been developed. This paper addresses this gap by introducing a Python

package, macroframe-forecast, that allows users to generate forecasts that are both smooth over time and

consistent with user-specified constraints. We demonstrate the package’s functionality with two examples

about forecasting US GDP and fiscal variables.

RECOMMENDED CITATION: Ando, Sakai, Shuvam Das, and Sultan Orazbayev (2025), “A Python Package to

Assist Macroframework Forecasting: Concepts and Examples,” IMF Working Paper.

JEL Classification Numbers: C53, E17

Keywords: Forecast Reconciliation; Python Package; Macroframework

Author’s E-Mail Address: sando@imf.org; sdas7@imf.org; sorazbayev@imf.org

mailto:sando@imf.org
mailto:sdas7@imf.org
mailto:sorazbayev@imf.org

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 3

WORKING PAPERS

A Python Package to Assist

Macroframework Forecasting
Concepts and Examples

Prepared by Sakai Ando, Shuvam Das, Sultan Orazbayev

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 4

1. Introduction

In forecasting economic time series, statistical models often need to be supplemented with procedures that

impose constraints while preserving smoothness over time. For example, GDP forecasts generated using

models such as autoregressions or decision trees may not align with the long-term growth rates anticipated by

forecasters. In such cases, forecasters aim to adjust the time series so that it converges smoothly to the

desired long-term growth path. However, ad hoc constraint imposition, such as manually altering only the

terminal value in a long time series, can introduce undesirable discontinuities between the penultimate and

terminal values. Similar challenges arise when forecasting aggregate variables and their subcomponents, such

as fiscal balance, revenue, and expenditure. Relying solely on statistical models may fail to ensure that

forecasts satisfy accounting identity constraints, and imposing these constraints in an ad hoc manner, such as

treating one variable as a residual, can result in forecasts that lack the desired smoothness since the residual

variable absorbs the forecast errors of the rest. In general, adjusting the forecasts to satisfy constraints often

breaks the smoothness, and vice versa.

Systematically imposing constraints while retaining smoothness is important but challenging. Constraints often

stem from accounting identities and expert judgment, making their incorporation essential for internal

consistency. Smoothness is equally critical, as optimal forecasts typically exhibit less volatility than historical

data. For instance, in a random walk, historical data are volatile, but the optimal forecast is constant over time,

equal to the last observed value. Achieving both objectives manually is resource-intensive, especially when

dealing with numerous variables and constraints, raising the question of how to systematically impose

constraints and smoothness.

Ando (2024) proposes a systematic approach to impose constraints and maintain smoothness, but a user-

friendly package to implement it has not been developed. Building on the forecast reconciliation literature,

notably reviewed by Athanasopoulos et al. (2024) and the smoothing method of Hodrick and Prescott (1997),

Ando (2024) defines a quadratic programming problem that can impose both the constraints and temporal

smoothness in a close form, applicable to a large system of time series. Ando (2024) then provides three

examples to illustrate how to combine statistical models with the proposed smooth reconciliation method, a la

Ando and Kim (2023). Although Ando (2024) provides the replication code for the examples used in the paper,

a user-friendly package to implement the method remains a gap.

Existing packages in R and Python assist forecast reconciliation and smoothing separately but not jointly. For

instance, the hts (Hyndman et al., 2021) and FoReco (Girolimetto and Di Fonzo, 2023) packages in R support

reconciliation, but the reconciled forecast may not be smooth over time. This is also the case

for hierarchicalforecast (Olivares et al., 2024) package in Python. On the other hand, packages, such as

smooth (Svetunkov, 2024) and forecast (Hyndman et al., 2024) for R and statsmodels (Seabold and

Perktold, 2010) for Python, provide methods to generate smooth forecasts but do not have the functionality to

impose constraints. To our knowledge, no package supports the simultaneous application of both reconciliation

and smoothing.

This paper introduces macroframe-forecast, a Python package that enables users to generate forecasts that

are temporally smooth and meet user-defined constraints. The package produces forecasts in two steps a la

Ando and Kim (2023) and Ando (2024). The framework is model agnostic in its first step, allowing users to

produce unconstrained forecasts using any preferred forecasting model in the sktime package (Loning et al.,

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 5

2019), including machine learning pipelines or traditional econometric methods. Compatibility with the rich

machine learning packages is one of the benefits of writing a package in Python. In the second step, these

forecasts undergo a reconciliation process a la Ando (2024) that enforces equality or inequality constraints

while smoothing the forecast trajectory over time. The two-step approach contrasts with Chan et al. (2025),

who jointly conduct forecasting and reconciliation but require all variables to follow a Gaussian distribution.

The package features plug-and-play simplicity and flexibility to fine-tune the details. The interface is designed

so that forecasters can use the package’s main class MFF without explicitly providing various mathematical

inputs for the reconciliation problem. For example, users can specify constraints using strings, rather than

inputting matrices as required by other packages. By understanding the conceptual framework and internal

structure, however, forecasters can fine-tune the first and second steps independently. For example,

forecasters can either use sophisticated machine learning models in the first step or provide the first step

forecasts exogenously. Forecasters can then fine-tune the reconciliation step by experimenting with different

constraints or smoothness. Such flexibility could be useful for practitioners who want to experiment with

different target values, inequality constraints, or smoothness before settling on the final forecasts.

We demonstrate the package’s functionality with two examples. The first example focuses on a simple case in

which a single variable, U.S. GDP, is forecasted subject to the constraint that the growth rate at the end of the

forecast horizon matches a predefined value. The second example illustrates a multivariable scenario,

forecasting fiscal variable, namely revenue, expenditure, and interest expense, subject to the accounting

identity, with the path of the primary balance given exogenously.

The rest of the paper is structured as follows. Section 2 outlines the conceptual framework of the methods

implemented in the package. Section 3 provides instructions for installing and using the package, with

illustrative examples. Section 4 concludes the paper.

2. Conceptual framework

This section presents the conceptual framework behind the Python package. The framework consists of two

steps, where the first step provides users with a flexible choice of forecasting models, and the second step

allows users to adjust the first-step forecasts so that the forecasts are smooth over time and satisfy various

constraints, such as accounting identities and prespecified targets. For the theoretical properties and examples

of the reconciliation process in the second step, see Ando (2024).

2.1. First-step forecast

The first step of the forecasting process is to generate unconstrained forecasts for all unknown variables across

all time horizons. Formally, for each variable 𝑖 = 1,… ,𝑀, the first-step forecast using information up to time 𝑡 for

ℎ ≥ 1 periods ahead can be written as

𝑦̂𝑖,𝑡+ℎ|𝑡 = 𝔼[𝑦𝑖,𝑡+ℎ
∗ |𝜃𝑖,ℎ], (1)

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 6

where 𝜃𝑖,ℎ refers to the estimated parameters for variable 𝑦𝑖,𝑡+ℎ
∗ ∈ ℝ. The model used for each variable can be

different across 𝑖 and ℎ and can be parametric or non-parametric, such as Ordinary Least Squares (OLS) or

other machine-learning models. In the Python package, users can specify their own models or use the default

model.

It is important to note that the first-step forecast is unconstrained. While users have the flexibility to apply any

forecasting model, the resulting forecasts may not satisfy essential requirements, such as accounting identities

or inequality constraints. Depending on the chosen model, the unconstrained forecast might also exhibit sharp

fluctuations or patterns inconsistent with the imposed constraints. The purpose of the second step is to

reconcile the first-step forecast, ensuring that the final forecasts are both smoother over the forecast horizon

and fully compliant with the specified constraints.

2.2. Second-step reconciliation

Suppose that the first step generates the forecast of 𝑀 variables, where each variable 𝑖 = 1,… ,𝑀 has forecast

horizon of ℎ = 1,… , 𝑇𝑖. Let 𝑦̂ denote the column vector that stacks 𝑀 variables and 𝑁 denote the size of the

vector

𝑦̂ ≔ [𝑦̂1,𝑡+1, … , 𝑦̂1,𝑡+𝑇1 , … , 𝑦̂𝑀,𝑡+1, … , 𝑦̂𝑀,𝑇+𝑇𝑀]
′
∈ ℝ𝑁 , (2)

The second step 𝑦̃ ∈ ℝ𝑁 adjusts the first-step forecast by (1) smoothing it over time and (2) ensuring that it

satisfies the predefined constraints. Let the constraints be denoted by

𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0, 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0, (3)

where 𝐶𝑒𝑞, 𝑑𝑒𝑞, 𝐶𝑖𝑛𝑒𝑞, 𝑑𝑖𝑛𝑒𝑞 are of size 𝐾𝑒𝑞 × 𝑁, 𝐾𝑒𝑞 × 1, 𝐾𝑖𝑛𝑒𝑞 × 𝑁, and 𝐾𝑖𝑛𝑒𝑞 × 1. The second-step forecast 𝑦̃

solves

𝑦̃ ≔ arg min
𝑦 ∈ ℝ𝑁

(𝑦 − 𝑦̂)′𝑊−1(𝑦 − 𝑦 ̂) + 𝑦′Φ𝑦 𝑠. 𝑡. 𝐶𝑒𝑞𝑦 = 𝑑𝑒𝑞 , 𝐶𝑖𝑛𝑒𝑞𝑦 ≤ 𝑑𝑖𝑛𝑒𝑞 , (4)

where 𝑊 is an estimator of the forecast error covariance 𝑉(𝑦∗ − 𝑦̂). Since the weight 𝑊 reflects forecast error,

accurately forecasted variables tend to be changed less in the second step than the less accurately forecasted

variables. Φ is the smoothness matrix

Φ = [
𝜆1𝐹1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑀𝐹𝑀

] , 𝐹𝑖 =

[

1 −2 1 0
−2 5 −4 1
1 −4 6 −4
0 1 −4 6

⋱
6 −4 1 0
−4 6 −4 1
1 −4 5 −2
0 1 −2 1]

, (5)

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 7

where the matrix 𝐹𝑖 is the degenerate penta-diagonal matrix used in the calculation of the Hodrick- Prescott

filter (1997). The matrix 𝐹𝑖 suggests that each 𝜆𝑖 controls the smoothness, defined by how small the difference

in difference {(𝑦𝑖,𝑡+1 − 𝑦𝑖,𝑡) − (𝑦𝑖,𝑡 − 𝑦𝑖,𝑡−1)}
2
 is, as in the HP filter.

Intuitively, the second-step forecast 𝑦̃ tries to be as close as possible to the first-step forecast 𝑦̂ subject to the

constraints. The distance is measured by the inverse of the weight 𝑊, and jumps over time are punished by the

smoothness matrix Φ.The problem is quadratic programing, and it has a closed-form solution if inequality

constraints are slack.

2.2.1. Choice of weight matrix 𝑾

Theoretically, the optimal weight is the forecast error covariance 𝑊 = 𝑉(𝑦∗ − 𝑦̂). (Wickramasuriya et al., 2019;

Ando and Narita, 2024) In practice, when the matrix is large relative to the sample size, the sample covariance

matrix Σ̂ may not be invertible. Thus, by default, the weight matrix 𝑊 uses the Oracle Shrinkage Approximating

estimator (OAS) à la Chen et al. (2010), which shrinks the sample covariance matrix of the forecast error Σ̂

towards the diagonal matrix where all diagonal elements are the average of diagonal elements 𝑡𝑟(Σ̂)/𝑁.

Specifically, suppose the sample size to estimate the matrix is 𝑠 based on time series cross-validation of

historical data. The weight matrix 𝑊 based on OAS is

𝑊𝑂𝐴𝑆 = (1 − 𝜌𝑂𝐴𝑆)Σ̂ + 𝜌𝑂𝐴𝑆
𝑡𝑟(Σ̂)

𝑁
𝐼𝑁×𝑁 , 𝜌𝑂𝐴𝑆 = min

{

(1 −
2
𝑁)

𝑡𝑟(Σ̂2) + 𝑡𝑟(Σ̂)
2

(𝑠 + 1 −
2
𝑁)

[𝑡𝑟(Σ̂2) −
𝑡𝑟(Σ̂)

2

𝑁
]

, 1

}

. (6)

Alternatively, the weight matrix can use the Oracle Shrinkage Approximating estimator with Diagonal target

(OASD) as in Ando and Xiao (2023), which provides robust estimates when different timeseries have different

units.

𝑊𝑂𝐴𝑆𝐷 = 𝜌𝑂𝐴𝑆𝐷Σ̂ + (1 − 𝜌𝑂𝐴𝑆𝐷)𝑑𝑖𝑎𝑔 (Σ̂), 𝜌𝑂𝐴𝑆𝐷 = min {
1

𝑠𝜙
, 1} , 𝜙 =

𝑡𝑟(Σ̂2) − 𝑡𝑟 (𝑑𝑖𝑎𝑔(Σ̂)
2
)

𝑡𝑟(Σ̂2) + 𝑡𝑟(Σ̂)
2
− 2𝑡𝑟 (𝑑𝑖𝑎𝑔(Σ̂)

2
)
. (7)

Users can also use the identity matrix as the weight matrix 𝑊 = 𝐼𝑁×𝑁 or provide custom weights.

2.2.2. Choice of smoothness parameters 𝝀

By default, the 𝑀 smoothness parameters {𝜆𝑖}𝑖=1
𝑀 are calculated by

𝜆𝑖 =
𝜆𝑖
∗

𝜎𝑖
2 , 𝜎𝑖

2 = min
𝑡
(𝑊𝑖)𝑡𝑡 , 𝑖 = 1, … ,𝑀, (8)

where 𝜆𝑖
∗ is the standard smoothness parameter of HP filter for the corresponding frequency, like 1600 for the

quarterly frequency, and 𝑊𝑖 is a 𝑇𝑖 × 𝑇𝑖 submatrix of the weight matrix 𝑊 that corresponds to variable 𝑖.

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 8

Intuitively, the standard HP filter parameter 𝜆𝑖
∗ is used to smooth each time series, but the parameter is

normalized so that the objective function (4) is independent of each time series’ unit.

When the frequency of the time series is not available, the package chooses 𝜆𝑖 for each time series 𝑖 by

minimizing the mean squared forecast error from time-series cross validation. Users can also provide custom

values.

2.3. Discussion

To highlight the benefits and limitations of the conceptual framework, this section makes three observations.

First, the model selection in the first step is flexible, and it is important to choose the right one. Any model can

be used as the first-step forecast. It is important to note, however, that any shortcomings in the initial model

specification may be carried forward into the reconciliation process through the first step forecast 𝑦̂ and the

forecast error covariance matrix 𝑊. Thus, it is important to select a model with high forecast accuracy in the

first step.

Second, the choice of constraints and smoothness in the second step is flexible, and it is important to choose

the right ones. The constraints can reflect systematic relationships, like accounting identities and non-negativity

of certain variables, or come from ad-hoc sources, such as expert judgement. Imposing the right constraints

tends to improve the first-step forecast by providing additional information that the statistical models couldn’t

infer in the first step, but imposing wrong constraints could worsen it. Similarly, imposing the right smoothness

can remove noises in the first step forecast, and vice versa.

Third, the macroframe-forecast package currently supports only point forecasts. Forecasters can, however,

construct confidence intervals by using the forecast errors generated during the first-step forecasting process.

One can draw from these forecast errors across all horizons and variables, add them to the point forecasts, and

then carry out the reconciliation process. Repeating this procedure generates a distribution of second-step

reconciled forecasts, from which confidence or prediction intervals can be derived. This simulation-based

approach to generating reconciled forecast distributions aligns with methods used in the reconciliation literature

(e.g., Girolimetto et al., 2024).

3. Python package

This section outlines how to use the Python package macroframe-forecast. The documentation and Github

repository are available online: https://sakaiando.github.io/macroframe-forecast/index.html and

https://github.com/sakaiando/macroframe-forecast. They are both live documents and could evolve from this

paper.

The primary class within the package is MFF, which produces forecasts based on input data and specified

constraints. The basic syntax for invoking this class is:

>>> df2 = MFF(df, equality_constraints)

https://sakaiando.github.io/macroframe-forecast/index.html
https://github.com/sakaiando/macroframe-forecast

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 9

where df is a dataframe with missing values to be forecasted and constraints is a list of strings that

represents the linear constraints to be satisfied by the variables. In the subsequent sections, we will explain the

functionalities of the MFF class in detail, covering essential inputs, optional parameters, and advanced features

with simple examples.1

3.1. Installation

This package is available through pip and via GitHub. The following command on the command line installs

the macroframe-forecast package:

pip install macroframe-forecast

This will install the package and all dependency packages. In case a previous or incompatible version of a

dependency is already installed, this will update these packages to the required version as well. We

recommend using Python version 3.11.9 or later to ensure compatibility and optimal performance.

3.2. Inputs

The MFF class requires one essential input to generate forecasts, followed by several optional parameters.

3.2.1 Essential inputs

• df: A pandas dataframe. The dataframe must be in a long format, with each row being a time period, and

each column being a variable. The observations to be forecasted are NaN in the dataframe. Island values

are known values for variables which are preceded by unknown values. For example, if a forecaster

expects the GDP growth rate for a country to be 4 percent at the end of a period of, say 5 years from the

current time period, but has no view on the growth rate during the interim years, the 4 percent is an island

value following four NaN values as the table below.

Table 1. Example of island value

period GDP

growth

0 3.00

1 NaN

2 NaN

3 NaN

4 NaN

5 4.00

1 This exploration will include discussions on handling data with a single frequency, although the macroframe-forecast package

includes an experimental MFF_mixed_frequency class, which accommodates multiple frequencies pending the resolution of a

bug in the pandas library (GitHub issue 59775).

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 10

3.2.2 Optional inputs

• forecaster: Users can provide a descendant of BaseForecaster class in the sktime package, including

the pipeline with pre-processing steps and models for generating the first-step forecast. When no

forecasting pipeline is defined by the user, the function DefaultForecaster() is called.

DefaultForecaster() is a pipeline that uses a time-series cross validation algorithm with five folds to

select the best performing model among the following standard forecasting models:

1. Naïve forecaster;

2. Elastic Net;

3. Ordinary Least Squares (OLS) with features created by Primary Component Analysis (PCA);

4. Ordinary Least Squares (OLS) using the first feature.

In the extreme cases where the number of non-NaN observations is too small for Grid Search algorithm,

DefaultForecaster() is NaiveForecaster() from sktime.

• equality_constraints: A list of equality constraints expressed as strings. These constraints can either

be specified to bind at a certain period or can be defined with wildcards that extend the constraint to all

forecast horizons. The constraints are specified as a list of strings using the column names of df and time

periods. If no input is provided, no constraints will be imposed, and the second-step forecast will be as the

smoothed version of the first-step forecast. If an island value is provided in df as in Table 1, users do not

need to specify it in equality_constraints.

• inequality_constraints: A list of inequality constraints, analogous to the equality_constraints.

• parallelize: A Boolean indicator of whether dask’s parallel computing is utilized for generating forecasts.

• n_forecast_error: The number of time series cross validationsplits to generate the first-step forecast

error covariance matrix Σ̂. By default, this value is set to be 5.

• shrinkage_method: The method used for shrinking the sample covariance matrix estimated from first-step

forecasts. By default, the Oracle Approximating Shrinkage (OAS) Estimator (Chen et al., 2010) is used for

the shrinkage step. Other options are Oracle Approximating Estimator with Diagonal target (OASD) as laid

out in Ando and Xiao (2023), identity matrix, or the monotone diagonal method.

• default_lam: The value of lambda 𝜆𝑖 in to be used for smoothing forecasts for the second step. By

default, this value is set to be -1, which means that the value of lambda is to be selected by minimizing the

mean-squared error from time-series cross validation. When it is 0, no smoothing will be applied.

• max_lam: The maximum value that the lambda parameter 𝜆𝑖 can take if it is being estimated optimally

(default_lam is set to -1). By default, this is set to 129600.

3.3. Outputs

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 11

Since the macroframework forecast is produced in two steps, and the second step generates the smoothed

forecasts that satisfy constraints, the main output is denoted by df2.

• df2: A dataframe with the same size as df, with NaN replaced by the forecasts that satisfy specified

constraints.

Apart from this, the following attributes store information on the intermediate steps of the forecasting process:

• df0: The original input dataframe, with all island values set to NaN.

• df1: A dataframe with first-step forecasts filled in the NaN cells of dataframe df0.

• df1_model: A dataframe where each cell corresponds to the model used for generating the

corresponding forecasted value in df1.

• pred: A dataframe with predicted values from in-sample predictions generated using pseudo-historical

datasets. This is used for generating the first-step forecast errors.

• true: A dataframe with actual values of variables corresponding to the predicted values in pred. The

first step forecast errors are produced by subtracting true from pred.

• model: A dataframe containing the models used for generating in-sample forecasts stored in pred.

• C_eq: The left side of the equality constraint equation 𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0 in matrix form from equation (3).

• d_eq: The right side of the equality constraint equation 𝐶𝑒𝑞𝑦 − 𝑑𝑒𝑞 = 0 in matrix form from equation (3).

• C_ineq: The left side of the inequality constraint equation 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0 in matrix form from

equation (3).

• d_ineq: The right side of the equality constraint equation 𝐶𝑖𝑛𝑒𝑞𝑦 − 𝑑𝑖𝑛𝑒𝑞 ≤ 0 in matrix form from

equation (3).

• W: The weight matrix implied by the first step forecast error.

• Phi: Smoothing matrix used for generating smooth second-step forecasts.

• shrinkage: The shrinkage parameter 𝜌 associated with the second-step adjustment, corresponding to

𝜌𝑂𝐴𝑆 when OAS is used and 𝜌𝑂𝐴𝑆𝐷 when OASD is used. np.nan when identity option is used.

• smoothness: A series containing the smoothing variable 𝜆𝑖
∗ used for each variable 𝑖.

3.4. Examples

In this section, we illustrate how to use the package using two examples. The first example is kept simple,

illustrating the plug-and-play aspect of the package. The second example illustrates how the package can

handle more complicated situations with multiple variables, as well as equality and inequality constraints.

3.4.1. Single variable example

In this section, we use US nominal GDP data in trillion US dollars from the World Economic Outlook database.

We use the historical data from 1950-2024 and generate forecasts for 2025-2030. The dataframe has only one

column, with data up to 2024. Rows 2025-2030 are all NaN to be forecasted.

>>> df0

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 12

year GDP

1950 0.30

1951 0.35

... ...

2024 28.18

2025 NaN

2026 NaN

2027 NaN

2028 NaN

2029 NaN

2030 NaN

Suppose we want to constrain the growth rate for GDP for the year 2030 around 4 percent. This can be written

as

𝐺𝐷𝑃2030 − 𝐺𝐷𝑃2030
𝐺𝐷𝑃2030

× 100 = 4 ⇔ 𝐺𝐷𝑃2030 − 1.04 × 𝐺𝐷𝑃2029 = 0. (9)

The forecast with this constraint on long-term growth can be made by

>>> m = MFF(df =df0,

>>> equality_constraints = ['GDP_2030 - 1.04 * GDP_2029'])

>>> m.fit()

The output from executing the fit command is stored inside the object m. The first- and second-step forecasts

are stored as df1 and df2 respectively. The first-step forecast may not be smooth, and the annual GDP growth

may not be 4 percent at the end of the period. The second step forecast, however, satisfies the imposed growth

rate constraint, as is evident in Figure 1(b). If the forecaster wants to only reconcile the first step forecasts to

the constraint but does not want to smooth the forecast, they can do so by setting the parameter default_lam

to 0 in the MFF call. Figure 1 (c) shows that, in this case, the growth rates in 2029 and 2030 are not smooth.

Figure 1. Forecast of US Annual GDP

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 13

(a)

(b)

(c)

Source: IMF April 2025 World Economic Outlook database and authors’ calculations.
Note: Panel (a) shows the forecast of annual US GDP in trillion USD. Panel (b) shows the growth rates

computed from the level forecasts. Panel (c) shows the output when no smoothing is applied.

As discussed, it is not necessary that all horizons in the first step were forecasted using the same model. The

models that are used for each first-step forecast can be accessed by using the following command:

>>> m.df1_model

For example, we can see the model used for forecasting the 2028 GDP value as

>>> m.df1_model.loc[‘2028’, ‘GDP’]

3.4.1.1. Customizing second step reconciliation

What if users want to fine tune the second step reconciliation after running the example in the previous section

3.4.1? For example, users may want to provide an exogenous first-step forecast, weight matrix, or the

smoothness parameters. Such experiments can be conducted by using the Reconciliation function. It

requires knowledge about the conceptual framework and internal structure of the MFF class, but it provides

additional flexibility in the forecasting exercise, so we illustrate a potential use in this section.

Suppose the user wants to replace the first step forecast by

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 14

>>> GDP_forecasts_external = pd.DataFrame({"GDP": [29.0, 31.5, 33, 30.2, 36.8, 39]},

 index = [2025, 2026, 2027, 2028, 2029, 2030])

After running the example in the previous section 3.4.1, the user can extract and replace the corresponding

object with this alternative first step forecast.

>>> y1_exo = m.y1

>>> y1_exo[:] = GDP_forecasts_external['GDP']

Similarly, the weight matrix can be changed to an identity matrix as below.

>>> W_exo = m.W

>>> W_exo.iloc[:,:] = np.eye(len(m.y1))

If the user wants to halve the smoothness parameter 𝜆∗, GenSmoothingMatrix() can be used to update the

corresponding smoothing matrix Φ.

>>> from macroframe_forecast.utils import GenSmoothingMatrix

>>> smoothness_exo = m.smoothness * .5

>>> Phi_exo = GenSmoothingMatrix(m.W, smoothness_exo)

>>> from macroframe_forecast.utils import Reconciliation

>>> alternative_y2 = Reconciliation(y1= y1_exo,

>>> W = W_exo,

>>> Phi = Phi_exo,

>>> C = m.C, d = m.d,

>>> C_ineq = m.C_ineq, d_ineq = m.d_ineq)

3.4.2. Multivariable example

In this section, we analyze fiscal data for the United States, focusing on revenue, expenditure, interest

payments, and primary balance from the April 2025 WEO. They satisfy:

Primary balance = revenue – expenditure + interest payments.

These fiscal variables are expressed as ratios to nominal GDP and are used going forward for the forecasting

exercise. The April 2025 WEO provides historical data up to 2024 and projections for 2025-30. We assume that

the forecaster takes the WEO forecast on primary balance to GDP ratio as given over the entire forecast

horizon, but expenditure, revenue, and interest payments to GDP are unknown, so we want to forecast these

three variables up to 2030. The input dataframe for the MFF is structured as follows:

>>> fiscal_data

year exp rev int_payments pb

2001 32.80 32.26 3.26 2.71

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 15

year exp rev int_payments pb

2002 33.70 29.88 2.89 -0.93

2003 34.04 29.27 2.66 -2.11

2004 33.72 29.48 2.56 -1.68

2005 33.93 30.85 2.70 -0.37

...

2024 37.59 30.33 4.20 -3.06

2025 NaN NaN NaN -2.16

2026 NaN NaN NaN -1.06

2027 NaN NaN NaN -0.90

2028 NaN NaN NaN -1.25

2029 NaN NaN NaN -1.14

2030 NaN NaN NaN -1.32

One constraint we impose is that the fiscal identity holds for the entire forecast horizon. In addition, we assume

that the forecaster wants the expenditure to GDP ratio to be 37 percent in 2030. Instead of specifying the fiscal

identity constraint separately for each horizon, we can use the wildcard functionality to write the constraint as

follows:

>>> fiscal_constraint = ['pb? - rev? + exp? - int_payments?',

 'exp_2030 - 37']

The question mark “?“ is a wildcard that expands the constraint across all forecast horizons in one go. The

constraint on expenditure in 2030, exp_2030 = 37, is written explicitly, but forecasters can also set the

corresponding cell of the dataframe to be 37. Such an island value will be automatically treated as an equality

constraint.

To illustrate how to impose inequality constraints, suppose the forecaster also believes that the interest

payments to GDP ratio always stay between 2.5 and 3.5 percent. Such inequality constraints can be expressed

as following.

>>> int_constraint = ['int_payments? - 3.5', '2.5 - int_payments?']

We describe how to use a user-defined model to generate the first step forecast instead of relying on the

default forecasting pipeline. Suppose that the forecaster wants to use a linear regression model for making

predictions. We can use the LinearRegression class in sklearn package and wrap it in

DirectReductionForecaster from sktime to make the model compatible with the sktime forecasting

pipeline.

>>> from sktime.forecasting.compose import ForecastingPipeline

>>> from sktime.forecasting.compose import DirectReductionForecaster

>>> ols_model = ForecastingPipeline(steps=[

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 16

>>> (‘ols’,DirectReductionForecaster(LinearRegression()))])

The forecaster can add additional steps in the pipeline before the model is applied, such as taking logs and first

differences. Once this is defined, we can call MFF in the following manner:

>>> m = MFF(df = fiscal_data,

>>> equality_constraints = fiscal_constraint,

>>> inequality_constraints = int_constraint,

>>> forecaster = ols_model)

>>> m.fit()

From the first- and second-step forecasts of expenditure, revenues, and interest payments in Figures 2 (a), (b)

and (c), we see that the second-step forecasts are smoother than the first step. We also see that the

expenditure forecast in the second step is equal to the target in the equality constraint, and interest payments

always remain within the predefined bounds. Figure 2 (d) compares the primary balance derived from the first-

and second-step forecasts. We see that, while the first-step forecast does not satisfy the accounting identity,

the second-step forecast does.

Figure 2. Forecasts of Annual US fiscal variables

(a)

(b)

(c)

(d)

Source: IMF April 2025 World Economic Outlook database and authors’ calculations.

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 17

Note: Panel (a), (b), and (c) show the forecasts for the US annual expenditure, revenue, and interest

expense to GDP ratio, respectively. Panel (d) shows the implied primary balance from the first- and second-

step forecasts.

4. Conclusion

This paper introduces a forecasting framework and accompanying Python package that enables users to

generate forecasts exhibiting temporal smoothness while adhering to user-specified constraints. The package

distinctly separates model estimation from the imposition of constraints and smoothness adjustments, allowing

users to employ any statistical or machine learning models to produce the initial forecasts. This structure

provides forecasters with flexibility in their modeling choices, while ensuring that the final forecasts remain

internally consistent and smooth.

The macroframe-forecast package, however, is a beta version, and the internal structure and the user

interface will continue to be improved. Extending support to mixed-frequency time series, speeding up parallel

processing, and Excel add-in would be interesting directions for future development.

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 18

References

Ando, Sakai (2024), “Smooth Forecast Reconciliation,” IMF Working Paper 24/66.

Ando, Sakai and Taehoon Kim (2023), “Systematizing Macroframework Forecasting: High-Dimensional

Conditional Forecasting with Accounting Identities,” IMF Economic Review, Vol. 72, pp 1386-1410.

Ando, Sakai and Mingmei Xiao (2023), “High-Dimensional Covariance Matrix Estimation: Shrinkage Toward a

Diagonal Target,” IMF Working Paper 23/257.

Ando, Sakai and Futoshi Narita (2024), “An Alternative Proof of Minimum Trace Reconciliation,” Forecasting,

Vol. 6(2), pp 456-461.

Athanasopoulos, George, Rob J Hyndman, Nikolas Kourentzes, Anastasios Panagiotelis (2024), “Forecast

reconciliation: A review,” International Journal of Forecasting, Vol. 40(2), pp 430-456.

Chan, Joshua, Davide Pettenuzzo, Aubrey Poon, Dan Zhu (2025), “Conditional forecasts in large Bayesian

VARs with multiple equality and inequality constraints,” Journal of Economic Dynamics and Control, Vol.

173, 105061.

Chen, Yilun, Ami Wiesel, Yonina Eldar, Alfred Hero (2010), “Shrinkage Algorithms for MMSE Covariance

Estimation,” IEEE Transactions on Signal Processing, Vol. 58, pp 5016-5029.

Girolimetto, Daniele and Tommaso Di Fonzo (2023), “FoReco: Point Forecast Reconciliation,” R package

version 2.6.

Girolimetto, Daniele and Tommaso Di Fonzo (2023), “Point and Probabilistic Forecast Reconciliation for

General Linearly Constrained Multiple Time Series,” Statistical Methods & Applications, Vol. 39(1), pp 39-

57.

Girolimetto, Daniele, George Athanasopoulos, Tommaso Di Fonzo, and Rob Hyndman (2024), “Cross-temporal

probabilistic forecast reconciliation: Methodological and practical issues,” International Journal of

Forecasting, Vol. 40(3), pp 1134-1151.

Hyndman, Rob, Roman A. Ahmed, George Athanasopoulos, Han Lin Shang (2011), “Optimal combination

forecasts for hierarchical time series,” Computational Statistics & Data Analysis, Vol. 55(9), pp 2579-2589.

IMF WORKING PAPERS

INTERNATIONAL MONETARY FUND 19

Hyndman, Rob, Alan Lee, Earo Wang, Shanika Wickramasuriya (2021), “hts: Hierarchical and Grouped Time

Series,” R package version 6.0.2.

Hyndman, Rob, George Athanasopoulos, Christoph Bergmeir, Gabriel Caceres, Leanne Chhay, Mitchell

O'Hara-Wild, Fotios Petropoulos, Slava Razbash, Earo Wang, Farah Yasmeen (2024), “forecast:

Forecasting functions for time series and linear model,” R package version 8.22.0.

Hodrick, Robert and Edward Prescott (1997), “Postwar U.S. Business Cycles: An Empirical Investigation,”

Journal of Money, Credit and Banking, Vol. 29(1), pp 1-16.

Olivares, Kin G., Azul Garza, David Luo, Cristian Challú, Max Mergenthaler, Souhaib Ben Taieb, Shanika L.

Wickramasuriya, Artur Dubrawski (2024), “HierarchicalForecast: A Reference Framework for Hierarchical

Forecasting in Python,” arXiv:2207.03517.

Loning, Markus, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz Kiraly (2019),

“sktime: A Unified Interface for Machine Learning with Time Series.”

Seabold, Skipper, and Josef Perktold (2010), “statsmodels: Econometric and statistical modeling with

python,” Proceedings of the 9th Python in Science Conference.

Svetunkov, Ivan (2024), “smooth: Forecasting Using State Space Models,” R package version 4.0.1.

Wickramasuriya, Shanika, George Athanasopoulos, and Rob Hyndman (2019), “Optimal Forecast

Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization,” Journal of the

American Statistical Association, Vol. 114(526), pp 804-819.

A Python Package to Assist Macroframework Forecasting

Working Paper No. WP/2025/172

