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1 Introduction

Many important macroeconomic data series for the United States are available at

monthly frequency. Labor market data, including unemployment, vacancies, hours

worked, and some wage series, are all monthly, as are detailed data on consumer and

producer prices. So too are data on trade, financial markets (including interest rates,

exchange rates, and the like), federal government accounts, housing starts, indus-

trial production, and many more. Yet perhaps the single most important summary

measures of economic performance—GDP and its expenditure components—are only

available quarterly.

This gap in the data forces researchers to make a particularly frustrating choice.

One option is to use monthly data in their regressions or models, but then their

results are not directly comparable to the national accounts. Alternatively, one can

use quarterly data, aggregating where required. This way, GDP is included, but at

the cost of throwing away much of the other data, including potentially identifying

variation.

This situation is made all the more frustrating by the fact that many monthly data

series are very close, and in some cases exact, substitutes for many GDP components.

This is clearest for consumption, where the quarterly national accounts series is just

the three-month sum of the monthly personal consumption expenditure. For imports,

exports, and inventories monthly data are close analogues of the quarterly national

accounts series, but the correspondence is not exact and coverage is partial. Yet for

other the components, i.e. fixed investment and government spending, there are no

such equivalent data.

The preceding suggests that it might not only be very useful to have a set of

monthly series directly comparable to GDP and its major constituents, but also that

it should be feasible to so.

This paper makes three contributions to tackling this problem. The first is to

provide a set of monthly point estimates for GDP and nine subcomponents1 from

January 1950 to March 2025. I derive these estimates using a Kalman filter, which

allows me to include information using three types of data: the quarterly national

income and product accounts accounts (NIPA); exact monthly data for some compo-

1These are: private goods consumption, private services consumption, residential fixed invest-
ment, non-residential fixed investment, inventories, imports, exports, and government spending.
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nents; and other monthly indicators. This latter category is, in principle, a broad one

and could include anything from near-exact monthly estimates of (e.g. monthly trade

data from the Census Bureau) to more distantly-related ones (e.g. housing starts).

The resulting estimates add up to the quarterly NIPA data almost exactly.

A key novelty of this paper is that I use a generalized method of moments (GMM)

approach to estimate the parameters of the Kalman filter. Usually, Kalman filters

are estimated by maximum likelihood, but in this application the parameter space

grows quickly enough that this would suffer from an acute curse of dimensionality.2

Instead, I exploit a particular feature of the data in this setting: that the NIPA data

provide quarterly averages of all the hidden states. This means that one can compute

any moment of the quarterly average of the data exactly and choose parameters to

set the equivalent theoretical moments equal to the values of the data.

The resulting moment conditions can be divided into two subsets: those defining

parameters governing the dynamics of the GDP components, and everything else.

The first group is over-identified by a subset of moments of the data. Conditional on

estimated of the first group of parameters, all the other parameters are just-identified.

This makes GMM fast and easy: one can estimate the parameters governing the dy-

namics of each GDP component one-by-one, then compute the remaining parameters

as the exact values which solve their relevant moment conditions.3

There is a cost to using GMM: moving average components at higher-than-quarterly

frequency cannot be identified from this data. The stance in this paper is that this

is price worth paying for the speed and simplicity of GMM.

The second major contribution of this paper is to provide confidence intervals for

the monthly point estimates. These are narrow. The estimated standard error for

monthly GDP is less than 0.3 percent from 1970, and falls further in later decades.

At the same time, the monthly point estimate captures considerable month-to-month

variation in economic activity relative to its precision. From 1970 onward, the one-

2The baseline model has 60 parameters, and versions used in the various robustness checks push
this higher, making maximum likelihood difficult. This also suggests an answer to an obvious
question: why hasn’t someone else done this already? One possibility is that ML estimation is just
too painful. Indeed, Aruoba et al. (2009) note the computational expense of estimating the Kalman
likelihood in a similar setting.

3This is only true for unweighted GMM. For efficient GMM, the moments are not separable
in this way and one must minimize the weighted moment errors together. In practice, this does
not matter. The sequentially-estimated parameters provide an excellent starting guess for efficient
GMM, and the gains from efficiency are very small.
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period-ahead standard deviation in the GDP point estimate is more than four times

its standard error. Post-2000, this ratio rises to around seven.4

The confidence intervals are themselves the sum of two parts, reflecting two sources

of uncertainty. The filter uncertainty arises because the signals are noisy, and remains

even if the model parameters are known perfectly. However, the model parameters

are not known; they are estimated. And so the estimated monthly GDP components

are also subject to estimation uncertainty. Filter uncertainty is straightforward to

calculate, and is computed using the error covariance of the Kalman smoother. Esti-

mation uncertainty is given by the covariance of the GDP component point estimates,

which can be computed using the delta method. Adding the two source of uncertainty

gives time-varying confidence intervals for each GDP components.

The confidence intervals also illuminate the drivers of uncertainty over monthly

GDP. Because it reflects the information content of the noisy signals given the pa-

rameters, filter uncertainty is typically constant over periods of time, dropping in

steps as new data become available. This is most obvious when exact consumption

data become available in January 1959. Of course, the filter uncertainty over the

consumption series drops to zero. But because I allow for correlated innovations in

the GDP components, the filter uncertainty for other series also falls, by around half.

For example, residential investment and goods consumption are positively correlated

at quarterly frequency, since when people build new houses they also tend to buy

refrigerators, televisions, and such. By exploiting this correlation, the Kalman fil-

ter can thus use the increased precision of the consumption series to improve the

precision of the residential investment estimate. Estimation uncertainty, in contrast,

is time-varying and increases when monthly indicators are more variable, since the

uncertainty over the model coefficients is multiplied by the variation in the data.

I also apply this measurement of uncertainty to create confidence intervals for

peaks and troughs in output. I compare these to NBER recession dates and find that

output peaks tend to align more closely with the NBER start dates than the troughs

do. Moreover, differences in dating peaks largely reflect “false start” recessions, where

output shows a slight dips before a more decisive decline a few quarters later. In

such cases, disagreements between different measures are not material. However, the

disagreements on the end dates of the recession are more systematic and more often

statistically significant, with the monthly GDP measure tending to call an end to

4The signal-to-noise ratio is usually defined as the square of the numbers cited here.
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recessions earlier than the NBER dates. I also decompose business cycle variation in

monthly GDP, finding that quarterly NIPA data understate the variation in monthly

GDP due to government spending prior to the 1990s.

The third major contribution is to provide evidence that the confidence intervals

described above are valid. The ideal test would be to check the coverage ratios of my

confidence intervals against the data. This is impossible since the monthly data are

unobserved. As a second best, I construct an alternate version of my estimates where

I re-run the entire process pretending that one of the known monthly consumption

series is unobserved. I re-estimate all the parameters using only some noisy monthly

indicators instead (real retail sales or durable goods consumption). This aims to

mimic what I do for the other GDP components, where there is no exact data and

only noisy indicators. But because the consumption data do exist, I can assess the

confidence intervals, checking if x% of outcomes fall inside any given x% confidence

interval. The confidence intervals are almost exactly correct for any x. Although

proving it is impossible, this is at least strong suggestive evidence that this method can

correctly characterize the distribution of the unknown monthly series. This exercise

also highlights the importance of including estimation uncertainty. Without filter

uncertainty alone, the confidence intervals for the goods consumption series are much

too narrow.

Related Literature. There is a rich literature producing monthly estimates of real

activity for the United States. The earliest versions (Stock and Watson (1988), Stock

and Watson (1989)) were factor models which aimed to produce activity indices from

common components in various monthly data series. Mariano and Murasawa (2003)

were one of the first to produce an index comparable to real GDP data by using a state

space model to impose quarterly adding-up constraints, something almost universally

imposed in subsequent works (including this one). Aruoba et al. (2009) use a similar

framework, estimating a Kalman Filter by maximum likelihood to produce estimates

of daily GDP, using high-frequency observable data. These papers typically use rather

small sets of observable data, most commonly only four series plus quarterly GDP.

Stock and Watson (2010) and especially Brave et al. (2019) use much larger sets of

observable data in state space frameworks to extract more potential information about

monthly GDP, with the latter using over 500 different monthly variables. Stock and

Watson (2010) also outline methods for estimating both GDP and GNI separately,
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an idea developed further in Koop et al. (2023) who explicitly reconcile expenditure

an output measures of GDP in a single framework. In contrast, I focus on providing

monthly equivalents to the expenditure-side accounts only.

There is also a large literature seeking to increase the frequency of data in low-

income countries using alternate data sources. These include work aiming to produce

quarterly real activity measures in countries where only annual data is available (see

Stanger (2020), and Akbal et al. (2023) among others), as well as work on extending

and validating national accounts using satellite imagery (most notably Hu and Yao

(2022) and Beyer et al. (2022)).

Outside of the academic literature, Standard and Poor’s also estimate monthly

GDP, with the headline series freely available. However, little information is available

on exactly how this is computed beyond a brief heuristic description.

This paper relates the statistical model to the data in Section 2, introduces the

data in Section 3, describes the GMM estimation strategy in Section 4, presents the

main results in Section 5, and validates those results in Section 6. Section 7 concludes.

2 Set up

2.1 Overview

I assume that real monthly GDP can be written as the sum of N components:

gdpt =
N∑
i=1

yit (1)

where t ranges from 1 to T . In the baseline specification, N = 8 and the components

are goods consumption, services consumption, residential investment, non-residential

investment, imports, exports, government consumption & investment, and changes

in inventories.5

5Strictly speaking, this does not sum exactly the GDP, since chain-linking means that there is
an aggregation in the quarterly NIPA data. This is close to zero near to the base year, 2017, but
is larger earlier in the sample. To avoid extensive modeling of the aggregation error, my baseline
results abstract from this, omitting the errors and defining “GDP” as the sum of the components.
In robustness checks and in the data made available with this paper, I also include outputs including
the aggregation error.
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Letting yt = (y1t , . . . , y
N
t )′, I aim to estimate a vector of conditional means and

variances:

µt = E(yt|IT ) Σt = V ar(yt|IT )

The conditioning set IT consists of observations t = 1, . . . , T for three sources of

information. Also summarized in Table 1, these sources are:

1. Quarterly NIPA data. We denote these Y i
t for i = 1, . . . , N and write Yt =

(Y 1
t , . . . , Y

N
t )′. For t = 3, 6, 9, . . ., we observe:

Y i
t =

2∑
l=0

yit−l (2)

2. Exact monthly data for some components. For components i = 1, . . . , K we

have exact monthly data, at least in some periods. The most prominent such

series is consumption, which comes from the monthly BEA income and outlays

report (see Section 3 for other cases). These “hard” data are denoted xi
t, with

xt = (x1
t , . . . , x

K
t )

′ the vector of these observations.

3. Other monthly indicators correlated with yit. For example, monthly federal

spending, government employment, partial inventories or investment data, and

such. We denote the time-t vector of such indicators for component i as qit, the

full set of indicators as qt = (q1t
′
, . . . , qNt

′
)′, and the total number of indicators

as P .

Component index Quarterly NIPA data Exact monthly data Monthly indicators

i = 1, . . . , K ✓ ✓ Possibly
i = K + 1, . . . , N ✓ ✗ ✓

Table 1: Data structure

Given estimates for the conditional mean and variances of the component, the

conditional mean and variance for monthly GDP is given by:

E(gdpt|IT ) = 1′N µ̂t V ar(gdpt|IT ) = 1′N Σ̂t1N (3)
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2.2 The Kalman form

I use a Kalman filter to estimate µt, Σt. The Kalman Filter assumes that a vector of

hidden states ξt and observables Zt are generated by stochastic process:

ξt = Ftξt−1 + Vt cov(Vt) = Qt

Zt = Htξt +Wt cov(Wt) = Rt

The key assumption underpinning the Kalman filter is that the state and observation

errors Vt and Wt are each serially uncorrelated.

The rest of this section is devoted to defining 1) the mapping of the elements of

this problem into ξt and Zt, and 2) the structure of the matrices Ft, Ht, Rt and Qt.

2.3 The state equations

For each i, I assume that the data generating process for yit is given by departures

from a long-run polynomial growth path which can be modeled as an AR(L)6 process

with correlated errors:

yit = ȳit(1 + ŷit) (4)

log ȳit =
M∑

m=0

γi
mt

m (5)

ŷit =
L∑
l=1

ρilŷ
i
t−l + wi

t (6)

The assumption that the trend growth path is polynomial is merely a flexible way to

capture (possibly differing) trends in the GDP components. Since this is an exercise

of interpolation, not forecasting, we can sidestep questions over stationarity and coin-

tegration. Here, the main role of the trend in this case is just to provide a rescaling

which means that the stochastic part of yit is plausibly covariance-stationary.

To first order, defining ŷit =
(

ȳit
ȳit
− 1
)
is the same as defining it as ŷit = log

(
ȳit
ȳit

)
.

However, using ratios is preferable because 1) it makes imposition of the quarterly

6In the exposition, I assume that all monthly GDP components series have the same lag length.
However, when estimating the model I relax this assumptions. Extending the notation to reflect
this is straightforward but ugly, so is omitted here.
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adding-up constraints a little easier, and 2) changes in inventories can be negative.7

Although the Kalman form requires that the wi
t are serially uncorrelated, I allow

for cross-correlation across the monthly GDP components. That is, Cov(wi
t, w

j
t ) ≡ σ2

i,j

may be different from zero. Such cross-correlations are potentially an important

source of information. For example, one might expect abnormally high consumption

to be correlated with both increased imports and reduced inventories.

In terms of the Kalman form above, this means that ξt is merely the L stacked

lags of ŷt, Ft is the appropriate matrix of ρi coefficients, and Qt is an LN×LN matrix

which is all zero except for the top-left L×L block which is the covariance matrix of

the wi
t.

Some more notation is useful when writing down the moment conditions used to

estimate the model later. I assume ŷit is invertible with moving average representation:

ŷit =
∞∑
l=0

alw
i
t−l (7)

And the covariances of ŷit are given by:

Cov (ŷit, ŷ
i
t−l) = θil l = 0, . . . ,∞ (8)

2.4 The observation equations

Given that there are three distinct sources of information, Yt, xt, qt, it will be helpful

to divide the elements of the Kalman observation equations Zt, Ht, and Rt into three

parts:

Zt
(N+K+P )×1

=


ZY

t
N×1

Zx
t

K×1

Zq
t

P×1

 Ht
(N+K+P )×LN

=


HY

t
N×LN

Hx
t

K×LN

Hq
t

P×LN

 Rt
(N+K+P )×(N+K+P )

=


RY

t
N×N

0 0

0 Rx
t

K×K

0

0 0 Rq
t

P×P


In this section, I define the structure of each of these submatrices.

7Similarly, I also assume that the trend for inventories is polynomial in the level, not the log.
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2.4.1 Quarterly NIPA data

The quarterly NIPA aggregation constraint can be written as:

Yt =
2∑

l=0

(
ȳit−l

Ȳ i
t

)
(1 + ŷit−l)

⇒ Ŷ i
t =

2∑
l=0

(
ȳit−l

Ȳ i
t

)
ŷit−l

where Ŷt = Yt

Ȳt
− 1 is the deviation of quarterly NIPA data from trend and Ȳ i

t =∑2
l=0 ȳ

i
t−l. Thus, Z

Y
t = Ŷt with missing observations for two months in every quarter

(the Kalman filter can handle missing data very easily). The state loading matrix

HY
t has entries given by the appropriate

ȳit−l

Ȳ i
t
. And since the aggregation equations

hold exactly, RY
t is zero (although in practice, numerical stability requires using

RY
t = ηIN×N where η is a very small number).

2.4.2 Exact data

Likewise, the observations for the exact data can be written as:

xi
t

ȳit
− 1 = ŷit

Thus Zx
t = (xi

t/ȳ
1
t − 1, . . . , xN

t /ȳ
N
t − 1)′, Hx

t has ones along the primary diagonal

and zeroes elsewhere, and Rx
t is also zero.

2.4.3 Other monthly indicators

I denote by qi,jt the j-th element of qit, and fit each qi,jt to its own polynomial time

trend, q̄i,jt where:

log q̄i,jt =
M∑

m=0

ηi,jm tm (9)

And departures from trend are: q̂i,jt =
qi,jt

q̄i,jt

− 1.

To eliminate serial correlation, I estimate ARIMA processes for each monthly

indicator q̂i,jt with lag length chosen by AIC, and denote the serially uncorrelated
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residuals by ϵi,jt . I assume that these are related to the innovations in ŷit by:

ϵi,jt = κi,jwi
t + ui,j

t (10)

where ui,j
t is white noise and cov(wi

t, u
i,j
t ) = 0. Concerns about the validity of this last

assumption are not relevant here, since equation (10) expresses a statistical relation-

ship and not a causal one. It just aims to capture the systematic correlation of the

data with the state. Indeed, the orthogonality of wi
t and ui

t defines the decomposition

of ϵi,jt into a part correlated with wi
t and a part which is a residual.

Since the left hand side of equation (10) is just data, it can easily be written as:

ϵi,jt = κi,j ŷit −
L∑
l=1

κi,jρilŷ
i
t + ui,j

t (11)

Then Zq
t is the stacked vector of the ϵi,jt and Hq

t is the appropriate matrix of the κi,j

or κi,jρil. Both the κi,j terms and the full set of entries of Rq
t are unknown and will

be estimated by GMM as described in Section 4. To avoid the size of the parameter

space growing with the square of the number of indicators, I let Rx
t be block-diagonal,

restricting the cross-correlation of monthly indicators for different components to zero.

An inferior specification of the observation equations. The set-up in equation (10)

puts the indicator residual on the left hand side and hidden state on the right hand

side. This might seem like it is the wrong way round. The reader may be wondering:

shouldn’t the NIPA component be on the left, and the indicator on the right? That

argument is all the more compelling if the indicator is itself a component of the hidden

state: for example, if ŷit were the export component of GDP and ϵi,jt were the residual

on monthly goods exports. And with ŷit on the left, one could put all the relevant

indicators on the right hand side, like a multiple regression. This would also save on

a lot of extra equations. Such a set-up would look something like this:

wi
t =

∑
j

βi,jϵi,jt + ũi,j
t (12)

This is a feasible alternative to equation (11), but it has no clear advantage over

it. Since equation (11) is a purely statistical relationship rater than a causal one,

we cannot give a different interpretation to one side over the other. This is just
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two variables covarying, not one driving the other. And by allowing for non-zero

cross-equation covariances in Rx
t , the Kalman filter’s inference about yit is a function

of multiple monthly indicators, substituting for the direct role played by the linear

combination of indicators on the right hand side of equation (12). Indeed, the same

covariation in the ϵi,jt determines the cross-equation residual covariance from equation

(10) as would show up in the denominator of βi,j when expressed as a regression

coefficient.

However, specifying the observation equations as in equation (10) rather than

(12) has a key advantage: it handles missing observations much better. If different

monthly indicators are only available for different subsamples of the data, the Kalman

filter handles this by dropping the appropriate restrictions from the filter algorithm

in those periods. With a set-up like equation (10) this permits dropping just the

missing subset of monthly indicators. But if the observation equations are specified

as in equation (12), this would involve dropping all observations where any monthly

indicator is missing.

An incorrect specification of the observation equations. An important property of

equation (10) is that it is consistent with zero serial correlation of the error terms.

Other specifications can easily violate this. For example, consider the alternative

observation equation:

q̂i,jt = αi,j + βi,j ŷit + ũi
t (13)

This is somewhat simpler than equation (10), and although equation (13) has the

advantage that it is easy to estimate8 it comes at the cost of producing entirely incor-

rect estimates of ŷit. This occurs because the residuals on this observation equation

will also be serially correlated, in violation of the assumptions of the Kalman filter9

Thus, using equation (13) as one of the observation equations would mis-attribute

the timing of the information in the monthly indicator q̂i,jt , assigning all variation to

ŷit, when instead this should be apportioned across ŷit and its lags.

8In that a regression of 1
3

∑2
l=0 q

i,j
t−l on Y i

t would provide consistent estimates of αi,j , βi,j .
9Except in the knife-edge case where the lag structure of q̂i,jt is exactly the same as that of ŷit.
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3 Data

3.1 Quarterly National Income and Product Accounts

Quarterly data come from the national income and product accounts (NIPA). These

are available back to 1950Q1. This defines the starting data for my monthly GDP

series, January 1950. These data are shown in Figure 1, which also includes the

estimated trends (on which, more later).

6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Figure 1: Quarterly NIPA data

Figure shows quarterly National Income and Products Account Data (solid line) with estimated
trends (dashed lines). Sample: 1050Q1-2025Q1

3.2 Monthly indicators

The BEA publishes monthly data for two of the GDP components: consumption of

goods and services. These are the direct monthly analogues of the corresponding

quarterly NIPA series, and add up to them. I use eight further monthly data series as

indicators for the remaining GDP components. These are summarized in Table 2 and

their time series shown in Figure 2. The residualized versions are shown in Figure A1

in Appendix A.

The selection of the monthly indicators is an important choice in constructing

a monthly GDP series. A full discussion of model selection is postponed to section
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6.3. However, as a general principle, there should be a high bar to including extra

series as indicators, since adding extra data series will often worsen the accuracy of the

estimated monthly GDP series. Adding extra data series reduces filter uncertainty but

increases estimation uncertainty.10 When the relationship between the data and the

hidden state is poorly estimated, the increased estimation uncertainty will dominate.

As we do not actually see the hidden state, this is likely the case. Just throwing extra

data series at the model may make estimated monthly GDP worse.

An important exception is cases where there are strong a priori reasons to believe

that the monthly indicators are very close substitutes for the GDP components or

subset of them. For example, the Census Bureau’s monthly import and export series

are not only conceptually very similar to the BEA’s quarterly equivalents – with slight

differences in coverage – but are in fact inputs to the BEA’s calculations. Likewise,

the BEA’s own monthly change in inventories series is very close to being exact data

for monthly inventories. If this were available prior to 1997, it would be the only data

series necessary for estimating monthly inventories. Since it is not, I also include

the change in manufacturing inventories, which covers only part of total inventories.

For the investment and government spending series, there are no similarly obvious

monthly analogues.

yit xi
t qi,jt Starting

Goods Consumption ✓ Jan 1959
Services Consumption ✓ Jan 1959
Non-residential fixed investment ✗ Non-residential construction Jan 2002
Residential fixed investment ✗ Housing starts Jan 1960

Single-family housing starts Jan 1959
Government spending ✗ None
Exports ✗ Census export volume Jan 1992
Imports ✗ Census import volume Jan 1992
Inventories ✗ Change in manufacturing inventories Jan 1950

Change in inventories Jan 1997
Aggregation error ✗ None

Table 2: Monthly data series used

10In Section 5.3, I decompose the uncertainty over the estimated monthly series for GDP and
components into contributions from these two sources.
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9. Change in manufacturing inventories

5. Census Exports Volumes 6. Census Imports Volumes 8. Change in Real Inventories
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Figure 2: Monthly Indicators

Figure shows monthly indicators (solid line) with estimated trends (dashed lines). Sample: Various-
Mar 2025

4 Estimation Streategy

4.1 Trend

To estimate the γi time trend parameters, I first regress the quarterly NIPA data Y i
t

on a polynominal time trend:

log Y i
t =

M∑
m=0

γ̃i
mt

m + eit

Then I set:

log ȳit =
1

3

M∑
m=0

γ̃i
m(t+ 1)m (14)

This means that Ȳ i
t = ȳit−1, and Ȳ i

t = 1
3

∑2
l=0 ȳ

i
t−l holds only to first order. But in

practice, the errors are very small. For given M , equation (14) can be inverted easily

to recover the γi
m in equation (5). In the baseline case, where M = 2, this gives:

γi
0 =

1

3

(
γ̃i
0 + γ̃1 + γ̃i

2

)
γi
1 =

1

3

(
γ̃1 + 2γ̃i

2

)
γi
2 =

1

3
γ̃i
2
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4.2 The state equations

To estimate σi, ρ
i
1, . . . , ρ

i
L by GMM, I compute the relationship between the autoco-

variances of Ŷ i
t and those of ŷit using the approximation that ȳit ≃ 1

3
Ȳt:

V ar Ŷ i
t =

1

9
V ar

(
2∑

j=0

ŷit−j

)

≃ 1

9

(
3θi0 + 4θi1 + 2θi2

)
(15)

Cov(Ŷ i
t , Ŷ

i
t−3k) =

1

9
Cov

(
2∑

j=0

ŷit−j,

2∑
j=0

ŷit−3k−j

)

≃ 1

9

(
θi3k−2 + 2θi3k−1 + 3θi3k + 2θi3k+1 + θi3k+2

)
k ≥ 1 (16)

This is a set of over-identifying moment conditions for σi, ρ
i
1, . . . , ρ

i
L. Since the right-

hand side formulas are all functions of σi, ρ
i
1, . . . , ρ

i
L, replacing the autocovariances

of Ŷ i
t with their sample analogues gives a set of relationships ready to include in a

GMM estimation routine.

Not all stochastic processes for ŷit are identified by this set of moment conditions.

For example, an MA(3) process for ŷit is not identified by these moment conditions.

Intuitively, matching the moments of quarterly averages will not distinguish between

models which differ at frequencies shorter than one quarter. However, strictly autore-

gressive processes can be identified by their effect on covariances of quarterly averages

at sufficiently distant horizons.11

We can also derive a set of moment conditions for the covariance of the residuals

analytically from the covariances of the Ŷt.

Cov(Ŷ i
t , Ŷ

j
t ) =

1

9

(
ai0a

j
0 + (ai0 + ai1)(a

j
0 + aj1) +

∞∑
s=0

(
2∑

l=0

ais+l

)(
2∑

l=0

ais+l

))
σ2
i,j

(17)

where σ2
i,j = Cov (wi

t, w
j
t ). Replacing the covariance with its sample analogue gives

another moment condition, which we can add to the GMM estimation.

11The identification may not be very good, since long-duration covariances tend all to be close to
zero. But that is an empirical matter, and will show up as large standard errors on the parameter
estimates.

16



4.3 Observation equations

To estimate equation (10), I again form moment conditions using the quarterly aver-

age data. To start with, I construct the equivalent quarterly residual for the indicator

qi,jt as:

Ei,j
t =

1

3

2∑
l=0

ϵi,jt−l

By expanding the definitions of Ei,j
t and Ŷ i

t we get that:

Cov(Ei,j
t , Ŷ i

t ) = Cov

(
1

3

2∑
l=0

ϵi,jt−l,

2∑
l=0

(
ȳit
Ȳ i
t

)
ŷit−l

)
≃ 1

9

(
3ai0 + 2ai1 + ai2

)
Cov(ϵi,jt , wi

t)

Then since Cov(wi
t, u

i,j
t ) = 0, we have that κi,j = Cov(ϵi,jt , wi

t)/σ
2
i Where σ2

i is the

variance of wi
t. Substituting in, we get:

Cov(Ei,j
t , Ŷ i

t ) =
1

9

(
3ai0 + 2ai1 + ai2

)
κi,jσ2

i (18)

Again, we can replace Cov(Ei,j
t , Ŷ i

t ) with its sample analogue to get a moment con-

dition suitable for GMM.

To calculate Cov (ui,j
t , uk,l

t ), we can form another moment condition:

Cov (ϵi,jt , ϵk,lt ) = Cov (κi,jwi
t + ui,j

t , κk,lwk
t + uk,l

t )

= κi,jκk,lσ2
i,k + Cov (ui,j

t , uk.l
t )

⇒ Cov (ui,j
t , uk,l

t ) = Cov (ϵi,jt , ϵk,lt )− κi,jκk,lσ2
i,k (19)

And again, we can replace Cov (ϵi,jt , ϵk,lt ) with its sample equivalent to form the

relevant moment condition.

4.4 Implementation

Together, equations (15), (16), (17), (18), and (19) form sufficient moment conditions

to identify all the parameters of the Kalman filter, Ft, Ht, Rt and Qt. Of course,

one could estimate these parameters by brute force, piling up all the equations into

one big GMM estimation. However, the structure of the moment conditions means

17



that there is an easier way to do this. Equations (15) and (16) are self-contained in

that they depend only on σ2
i , ρ

i
1, . . . , ρ

i
L. And equations (17) through (19) are just-

identified conditional on estimates for σ2
i , ρ

i
1, . . . , ρ

i
L. This means that the model can

be estimated in two stages. First, use regular GMM applied to the sample versions

of equations (15) and (16) to estimate σ2
i , ρ

i
1, . . . , ρ

i
L separately for each i. Then,

solve directly for all the other parameters simply by inverting the sample analogues

of equations (17) through (19). Since 1) the errors on the moment conditions for

equations (15) and (16) are minimized independent of the other parameters, and 2)

equations (17) through (19) are solved with zero error, minimizing the moment errors

over all parameter simultaneously cannot improve the fit of the moment restrictions.

This will yield the exactly the same estimates as one big GMM using all the moment

conditions.12

This two-stage approach is also much quicker and easier than the obvious al-

ternative: maximum likelihood. Estimating Kalman parameters this way requires

computing the likelihood of the model for each candidate parameter value. Moreover,

because the Kalman smoother is a sequential estimator, this calculation cannot be

parallelized for speed. This is combined with a curse of dimensionality. Because es-

timated covariances are so important, the number of parameters in the model grows

with the square of the number of components and data series, producing a large num-

ber of parameters quickly. In the baseline model L = 1, N = 9, K = 2, and P = 9,

and so there are 60 parameters to optimize over. Estimating even a very simple

likelihood function over such a massive parameter space quickly becomes prohibitive.

4.5 Measuring uncertainty via the delta method

A key contribution of this paper is in trying to accurately capture the uncertainty

around the estimated monthly series. This requires taking account of two sources of

uncertainty: the Kalman prediction error, which is conditional on parameters, and

the parameter estimation uncertainty.

More formally, let Ψ be a given parameterization of the Kalman filter, containing

12Strictly, this is only true for unweighted GMM. If the moment conditions are weighted then they
are no longer separable. This risks producing monthly national accounts estimates which are less
precise than they could be. However, as I show later in Section D, the gains from efficient GMM
are very small, and typically not worth the extra time or complexity. In the baseline, I employ an
intermediate approach, using efficient GMM to weight the estimation of the dynamic time series
parameters and then unweighted GMM for the remaining conditions.
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all the parameters of the model. Then for each i, the output of the Kalman filter is

two time series:

The Kalman mean: Ê(yit|IT ,Ψ)

The Kalman prediction error variance: V̂(yit|IT ,Ψ) = E
(
(
(
yit − Ê(yit|IT ,Ψ)

)2
|IT ,Ψ

)
where the hats on Ê and V̂ remind us that the Kalman filter only provides estimates

of the true conditional mean of yit.
13

Assuming that the model is correctly specified, and denoting by Ψ∗ and Ψ0 the

GMM point estimates and the true value of Ψ respectively, then the consistency of

Ψ∗ implies that the Kalman mean is a consistent estimate of the conditional mean.

That is:

Ψ∗ → Ψ0 ⇒ Ê(yit|IT ,Ψ∗) → E(yit|IT ) (20)

However, since the Kalman filter is conditional on the parameters, the variance

does not take into account uncertainty over them. As a result, confidence intervals

based on V(ŷit|IT ,Ψ) will be too narrow.

To see this, let Fn(Ψ) be the sampling distribution for Ψ for a sample of size n.

Then:

V ar(yt|IT ) = E
[
(yt − E(yt|IT ))2

∣∣ IT ]
=

∫
E
[
(yt − E(yt|IT ,Ψ))2

∣∣ IT ,Ψ] dFn(Ψ)

=

∫
E
[(

yt − Ê(yt|IT ,Ψ∗)
)2∣∣∣∣ IT ,Ψ] dFn(Ψ)

+

∫
E
[(

Ê(yt|IT ,Ψ∗)− E(yt|IT ,Ψ)
)2∣∣∣∣ IT ,Ψ] dFn(Ψ)

=

∫
V̂(yt|IT ,Ψ)dFn(Ψ)︸ ︷︷ ︸

Avg. Kalman pred. error variance

+

∫ (
Ê(yt|IT ,Ψ∗)− E(yt|IT ,Ψ)

)2
dFn(Ψ)︸ ︷︷ ︸

Variance of the Kalman mean over the parameters

where the first line follows from the law of iterated expectations. The final line says

that the error variance including parameter uncertainty is the sum of average the

13Recall that IT is the information set containing the data.
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Kalman prediction error variance plus the variance of the Kalman mean over the

estimated parameters. Given Ψ∗ is consistent, the point estimate for the Kalman

error variance is a consistent estimate of the first term. To compute the second term,

I use the delta method. That is, I compute the sequence of derivative of Kalman

means in each period with respect to the parameter vector, Ψ. This is relatively

straightforward to calculate numerically by perturbing the parameter vector Ψ in

each dimension and computing the marginal change in the resulting Kalman mean.

I thus calculate the covariance for the estimated national accounts components

by:

Σt = V̂(yt|IT ,Ψ∗)︸ ︷︷ ︸
Filter uncertainty

+
dÊ(yt|IT ,Ψ∗)

dΨ

′

V arΨ∗dÊ(yt|IT ,Ψ∗)

dΨ︸ ︷︷ ︸
Estimation uncertainty

(21)

where Ψ is the just the asymptotic GMM estimator covariance for Ψ. Consistency of

Ψ∗ means that Σt is a consistent estimator of V ar(yt|IT )

Appendix B summarizes the steps required to produce the final monthly national

accounts estimates.

5 Results

5.1 Estimated equations

The first step is to de-trend the data. The results are not essential so details on the

estimated polynominal trends are deferred to Table A1 in Appendix A.

Table 3 reports the coefficients of the dynamic state equations. To determine the

lag length Li of each dynamic state equation, I apply the BIC-based consistent model

and moment test of Andrews and Lu (2001). This selects a one-lag model for all

variables. I also use this test to assess the number of over-identifying restrictions to

include, i.e. the number of autocorrelations of the quarterly data to use in equation

16. With L = 1, the test fails to reject arbitrarily many over-identifying moments,

suggesting that there is little extra information gained by adding more data to the

model.14 Accordingly, I somewhat arbitrarily use eight quarterly autocovariance mo-

14Intuitively, since the long-lagged auto-correlation of any time series processes tends to the largest
characteristic root, the ratio of autocovariances at lag j and j + 1 becomes constant as j gets very
large. That is, ever more autocovariance moments contain no extra information about the underlying
parameters.
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ments, but in Section 6.4 I check that using a different number of over-identifying

restrictions changes the results little.

The GMM estimates in Table 3 generally produce highly persistent dynamic pro-

cesses, with monthly persistences for all components except inventories over 0.95.

One concern about these estimated processes is that, since they estimate monthly

processes using quarterly data, they may be failing to pick up important higher-

frequency variation. As a test of this, I also estimate the dynamic state equations

for goods and services consumption directly from the monthly data by ordinary least

squares (columns headed “OLS”) in Table 3. Although the coefficients are not exactly

the same (since the use different information sets – GMM matches nine moments and

OLS implicitly only two), they produce similar estimates, with a difference in the

estimates for ρ1 of less than one standard error. The fit of the equations is also good,

with the average moment error less than 2 percent for all NIPA components except

the volatile investment series.

OLS GMM

Services Goods Services Goods NRFI RFI Gov. Exports Imports Inv.

ρ1 0.973*** 0.969*** 0.979*** 0.978*** 0.965*** 0.971*** 0.96*** 0.976*** 0.985*** 0.808***

(0.0082) (0.00878) (0.00421) (0.00361) (0.00527) (0.00584) (0.00954) (0.00399) (0.003) (0.0334)

100× σ2
i,i 0.00348*** 0.0163*** 0.00267*** 0.0104*** 0.0419*** 0.161*** 0.0282*** 0.0608*** 0.0479*** 66.8***

(0.000285) (0.00133) (0.000716) (0.00192) (0.00691) (0.0355) (0.0091) (0.0126) (0.0108) (17.3)

Observations 795 795 301 301 301 301 301 301 301 301

Moment error 0.001 0.015 0.055 0.049 0.007 0.005 0.004 0.016

Table 3: Estimated coefficients for the state equations

Table reports the estimated coefficients for the state equations. Columns labeled “GMM” use
quarterly data to estimate coefficients by GMM as described in Section 4.2, with asymptotic standard
errors in parentheses. Those labeled “OLS” are for comparison, and use monthly data for the two
exact series. All GMM estimates use eight lags of the quarterly data, i.e. k = 1, . . . , 8 in equation
(16). The row labeled “Moment error” is average weighted square error on the moment conditions,
in percent deviation from trend. Sample: 1950Q1-2025Q1 (GMM), Jan 1959-Mar 2025 (OLS).

As mentioned before, the cross-correlation of the states is an important input into

the Kalman filter. The joint movement of the components is defines the extent to

which information about one component affects the estimates of the others. Figure

3 reports the estimated innovation correlation matrix for the dynamic states. Some

patterns stand out. The four components of domestic private demand, the invest-

ment and consumption series, are highly correlated, consistent with the notion that

demand shocks drive much of the variation in these series. Likewise, the importance

21



1. Services consumption

2. Goods consumption

3. Non−residential Fixed Investment

4. Residential Fixed Investment

5. Government

6. Exports

7. Imports

8. Inventories

1.
 S

er
vic

es
 co

ns
um

pt
ion

2.
 G

oo
ds

 co
ns

um
pt

ion

3.
 N

on
−r

es
ide

nt
ial

 F
ixe

d 
Inv

es
tm

en
t

4.
 R

es
ide

nt
ial

 F
ixe

d 
Inv

es
tm

en
t

5.
 G

ov
er

nm
en

t

6.
 E

xp
or

ts

7.
 Im

po
rts

8.
 In

ve
nt

or
ies

Pearson
Correlation

−1.0

−0.5

0.0

0.5

1.0

Figure 3: Estimated correlation of innovations to hidden states.

Figure shows correlations of the innovations to the monthly GDP components, estimated by GMM.
Colors in each cell correspond to the value for σ2

i,j/(σi,iσj,j).

of imported goods in consumption and investment explains the high correlation of

these series (especially goods consumption) with imports. In contrast, exports and

government spending are much less correlated with domestic demand components.

Table 4 reports the estimated coefficients for the κi,j coefficients for the non-

observed NIPA components. In general, coefficients are highly significant and the

statistical fit of the estimated relationships is generally strong.15 In the case inven-

tories, there is a trade-off between the informativeness of the monthly indicator, and

the sample for which the indicator is available – the manufacturing inventories series

is a worse proxy for actual inventories than monthly real inventories, but is available

for a shorter period.

5.2 Estimated Monthly GDP

Figure 6 shows the estimated monthly series for GDP and its components for the full

sample. Since the details of the series are hard to see over long periods of time, Figures

4 and 5 present more detailed views of the estimated series near the start and end of

the sample, including confidence intervals computed using the variance calculation in

15I report a pseudo-R2 because, unlike OLS, GMM estimates are not bound to lie inside [0, 1].
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yit qi,jt κi,j Cor(Ei,j
t , Ŷ i

t ) Nobs Pseudo-R2

Exports Census Exports Volumes 0.595*** 0.21 133 0.62

(0.1)

Imports Census Imports Volumes -0.0835 -0.02 133 0.01

(0.213)

Inventories Change in Real Inventories 1.26*** 0.75 113 0.90

(0.134)

Change in manufacturing inventories 0.628*** 0.23 268 0.12

(0.198)

Non-residential Fixed Investment Non-residential construction spending 0.313*** 0.22 93 0.26

(0.0893)

Residential Fixed Investment Housing starts 0.416 0.07 261 0.08

(0.332)

Housing starts, total multifamily 0.511 0.03 265 0.02

(0.765)

Table 4: Estimated coefficients for the observation equations

Table reports the estimated coefficients for the observations equations. Estimates are by GMM,
using method outlined in Section 4.2. Standard errors computed by asymptotic GMM. Data sample
is quarterly and varies with qi,jt , starting in the first complete quarter given monthly start dates in
Table 2 and ends in 2025Q1. Column “Nobs” gives the number of quarterly observations for each
estimated relationship. The Pseudo-R2 is a measure of the implied fit of the monthly observation

equation, computed as the ratio of explained to total variance:
(
κi,j
)2

var wi
t/varϵ

i,j
t . Finally, the

column labeled “Cor(Ei,j
t , Ŷ i

t )” is the sample correlation of the quarterly data and is included only
for reference. Sample: various-2025Q1

Section 4.5.16 In Figure 4, the confidence intervals are relatively wide since no relevant

monthly indicators are available prior to 1959. Consistent with this, the estimated

monthly time series is much smoother. However, after 1959 things change with the

introduction of the monthly consumption data. Thereafter, the estimates are more

informed and so become more volatile. Note in particular how much more sharply-

identified are the declines in the investment series in the 1960 recession versus the

one in 1957. The correlation of state residuals also means that confidence intervals

on all variables shrink, not just on consumption (more on this below). By the onset

of COVID (Figure 5) much more monthly indicators are available, resulting in much

more precise series and tighter confidence intervals. The abrupt halt in activity due

to COVID-19 is precisely identified as staring in March 2020, as one would hope.

16Charts for four other episodes are presented in Appendix C.

23



6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption

1958 1960 1962 1958 1960 1962 1958 1960 1962

190

200

210

350

370

390

410

430

−20
−10

0
10
20

420
440
460
480
500
520

70

80

90

100

34
36
38
40
42

1100
1150
1200
1250
1300

55

60

65

30

35B
ill

io
ns

 c
ha

in
ed

 2
01

7 
do

lla
rs

Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure 4: Estimated Monthly National Accounts Series: Late 1950s

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 1957-Dec 1961.
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Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure 5: Estimated Monthly National Accounts Series: COVID-19

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 2019-Dec 2022.
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Figure 6: Estimated Monthly National Accounts Series: Point Estimates

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded areas are NBER recessions. Sample:
Jan 1950-Mar 2025.
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5.3 Measuring uncertainty

The confidence intervals for the estimated monthly series are narrow. As shown in

Figure 7, the standard errors for GDP are 0.3 percent of trend or less since the 1960s,

and less than 0.2 percent since the late 1990s (COVID is a notable exception). The

gradual decrease over time is principally due to the increasing share of consumption

(which is known precisely) in GDP. However, the introduction of monthly data on

exports and inventories in the 1990s dramatically reduces the uncertainty stemming

from these components.

Figure 7 also shows the information spillovers between components. Most notably

in 1959, monthly consumption data become available. This has a direct and obvious

impact on the standard errors for the two consumption series, reducing them to zero.

But the uncertainty for other components – notably the two investment series and

imports – also declines, by almost one half in the case of imports. Note that there is

no additional information directly relevant to these series added to the model at this

point, the only extra information is the two consumption series. The reduction in

uncertainty for the investment and imports series occurs as a result of the strong esti-

mated correlation residual correlation between these series and consumption shown in

Figure 3. Intuitively, because investment and imports are positively correlated with

consumption, more precise signals about consumption are informative for investment

and imports.

Finally, Figure 7 also presents the decomposition of uncertainty over monthly se-

ries into the two components in equation (21). Most of the time, the main source

of uncertainty over the monthly estimates comes from the filter. This is constant

over intervals where there is no change in the information set available to the model

(except for GDP, which is calculated a sum of components, and so the filter uncer-

tainty changes as the shares of those components change). In contrast, estimation

uncertainty is not constant, and varies over time. Mechanically, this arises because

estimation uncertainty enters multipliciatively with the data. The estimates are linear

combination of the data, where the coefficients are (combinations of) the estimated

parameters. And because these coefficients are multipliers of the data, the data are

multipliers of the uncertainty on the coefficients. This is why uncertainty over the

true monthly series increases in times of volatility. This figure also makes clear the

tradeoff between filter and estimation uncertainty in model selection. For example, in

January 1992 the inclusion of monthly census data on exports adds an extra piece of

26



information to the model. Conditional on knowing the correct relationship between

this data and true monthly NIPA-equivalent exports, this mechanically reduces the

uncertainty; more data means less uncertainty. This is seen in the drop in the filter

uncertainty at this time. But this relationship is not known for certain. Thus adding

extra data comes at the price of including an additional uncertain parameter. This is

why higher estimation uncertainty partially offsets the reduction in filter uncertainty

when monthly export data become available. This highlights the model selection

problem: adding more data reduces filter uncertainty but by adding parameters it

increases estimation uncertainty.

6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government
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Figure 7: Times series standard deviation by component

Figure shows quarterly average standard error of the estimated monthly national accounts series,as
a percentage of trend. Quarterly averaging suppresses systematic within-quarter volatility due to
periodic NIPA data releases. Sample: 1950Q1-2025Q1.

A summary measure of the utility of the estimates and their uncertainty is given

by the signal-to-noise ratio. This is typically defined as the ratio of the variance of

a noisy estimate (the signal) to the variance of noise (the difference between the the

signal and the true realization). The idea is that variation in the signal is good but
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√
V arµgdp

t

√
V artµ

gdp
t+1

√
Σgdp,gdp

t Ratios

Decade (1) (2) (3) (1)/(3) (2)/(3)

1950 3.87 1.32 0.56 6.9 2.3
1960 3.23 1.20 0.30 10.7 3.9
1970 2.17 1.16 0.27 8.1 4.4
1980 2.81 1.16 0.24 11.5 4.7
1990 1.86 1.17 0.20 9.4 5.9
2000 2.43 1.22 0.15 16.0 8.0
2010 0.72 1.30 0.15 4.7 8.5
2020 2.79 1.40 0.18 15.6 7.8

Table 5: Signal-to-noise ratios: GDP by decade

Table shows averages by decade of the standard deviation of the (1) unconditional and (2) one-step-
ahead forecasts of monthly GDP, and well as the model-implied standard error (3). Units are in
percentage of trend. Sample: Jan 1950-Mar 2025.

only to the extent that it is informative. One difficulty in implementing this in the

current context is that the the NIPA series have trends, and so we cannot just use

the variance of the point estimate for GDP as the signal variance, since it will be

a function of the trends as well. One way to address this is to use the variance of

the detrended GDP estimate as the signal variance, V arµgdp
t . However, this is not a

perfect solution since it will still include some predictable business cycle fluctuations

in the signal variance, which are not really a measure of the informativeness of the

monthly estimate. So my preferred measure of the signal variance is the one-step-

ahead prediction variance of detrended GDP, V art−1µ
gdp
t . This is the variance of the

detrended GDP series in period t conditional on information in period t − 1, and is

approximately the variation in one-period-ahead growth rates.

Table 5 reports these two measures of the signal-to-noise ratio for GDP by decade.

The preferred signal-to-noise ratio is in the rightmost column. This says that the

one-month-ahead variation in the estimated monthly GDP series is about 2 times the

standard error of the GDP in 1950s and 7 times in the 2010s (and about 4.5 times on

average over the whole sample). Put differently, the monthly GDP estimate in the

2010s is precise enough that its standard error in only one seventh of the volatility

of the one-month growth rate of GDP. Table A2 in Appendix A presents the results

by component. It finds that, except for consumption where we have exact data for
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most of the sample, the signal-to-noise ratio is highest for imports and lowest for

inventories.

5.4 Recession Dating

Via its business cycle dating committee (BCDC), the NBER produces monthly start

and end dates of US recessions. The BCDC defines a recession as “a significant decline

in economic activity that is spread across the economy and that lasts more than a

few months”, and identifies them using a broad set of indicators with considerable

latitude on the importance placed on each. Given its importance as an aggregate

summary measure of economic activity, a monthly GDP data would likely be a key

input into this process.17
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Figure 8: Recession Dates: NBER versus monthly GDP

Figure shows estimated monthly GDP around 11 recessions identified by the NBER. Shaded areas
show NBER recessions and vertical lines local peaks and troughs in estimated monthly GDP. Sample:
Jan 1960 - Dec 2019.

17A point made implicitly by the NBER itself when discussing quarterly and monthly dating, say-
ing “Two measures that are very important in the determination of quarterly peaks and troughs, but
that are not available monthly, are [...] GDP and GDI.” See: https://www.nber.org/research/

business-cycle-dating/business-cycle-dating-procedure-frequently-asked-questions.
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NBER Monthly GDP

Recession Peak Trough Peak Trough

1. Early 1950s Jul 1953 May 1954 May 1953 Jun 1954
(Mar 1953,Aug 1953) (Nov 1953,Aug 1954)

2. Late 1950s Aug 1957 Apr 1958 Sep 1957 Feb 1958
(Dec 1956,Dec 1957) (Jan 1958,Apr 1958)

3. Early 1960s Apr 1960 Feb 1961 Mar 1960 May 1960
(Mar 1960,Apr 1960) (May 1960,Dec 1960)

4. Late 1960s Dec 1969 Nov 1970 Aug 1969 Apr 1970
(Aug 1969,Oct 1969) (Nov 1969,May 1970)

5. Oil Crisis Nov 1973 Mar 1975 Nov 1973 Apr 1975
(May 1973,Nov 1973) (Mar 1975,Apr 1975)

6. 1980 recession Jan 1980 Jul 1980 Jan 1980 May 1980
(Jan 1980,Jan 1980) (May 1980,Sep 1980)

7. Early 1980s Jul 1981 Nov 1982 Aug 1981 Mar 1982
(Jan 1981,Sep 1981) (Feb 1982,Mar 1982)

8. Early 1990s Jul 1990 Mar 1991 Jul 1990 Jan 1991
(Jan 1990,Sep 1990) (Jan 1991,Jan 1991)

9. Dot-com bubble Mar 2001 Nov 2001 May 2001 Sep 2001
(May 2001,Aug 2001) (Sep 2001,Sep 2001)

10. Great Recession Dec 2007 Jun 2009 Jun 2008 Apr 2009
(May 2008,Jul 2008) (Feb 2009,Sep 2009)

11. COVID-19 Feb 2020 Apr 2020 Feb 2020 Apr 2020
(Dec 2019,Feb 2020) (Apr 2020,Apr 2020)

Table 6: Recession dates: NBER versus monthly GDP

Columns show dates of local peaks and troughs of two versions of real activity: that used by the
NBER recession dating committee and estimated monthly GDP. Monthly GDP series include 95
percent confidence intervals in parentheses, computed as the range of dates where point estimates
are within two standard deviations of the estimated peak or trough. NBER dates are in bold when
they fall outside the equivalent monthly GDP confidence intervals. Sample: Jan 1950-Mar 2025.

To see how monthly GDP data might paint a different picture of US economic

history, I compare the NBER recession dates since 1950 to an alternative monthly

recession dating approach using just estimated monthly GDP. To identify recessions,

I identify a series of peak-trough pairs, where each peak is the highest level of GDP

prior to its paired trough, and the trough is the lowest level of GDP after its paired

peak. Imposing that peaks and troughs cannot be in consecutive months, I define

pairs satisfying:

peakj = arg max
t<troughj−1

gdpt troughj = arg min
t>peakj+1

gdpt (22)
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where j indexes the pairs.

Figure 8 presents the results of this exercise, compared to NBER recessions in the

same period. In general, the start dates of the recessions are fairly closely aligned,

but end dates are more often earlier than the NBER dates. Of course, some of

the difference in the recession dating arises because the monthly GDP estimates are

uncertain. And so Table 6 adds 95 percent confidence intervals to the recessions

dates. This computes the range of dates where the point estimate for monthly GDP

is within the 95 percent confidence interval at the peak (or trough).18 Of the eleven

recessions, start dates for three – the late 1960s, the dot-com bubble in 2001, and the

Great Recession – are statistically different. As can easily be seen in Figure 8, all

three episodes feature stuttering starts to the downturn, in contrast to sudden onset

recessions, such as the early 1960s or the COVID-19 pandemic. In such cases, there

is more than one reasonable choice for the star date. For example, one could equally

date the start of the Great Recession to either late 2007, when initial signs of stress

began to appear, or to late Summer 2008, just before the financial sector collapsed.

The dating of the end of business cycles, however, shows larger and more systematic

differences between the two methods. Five of the eleven recessions have statistically

significantly different end dates across the two methods, usually with earlier end dates

using monthly GDP. In contrast to the dating of peaks, where more than one starting

point seems intuitively reasonable, the troughs are almost all cases clear low points in

the monthly GDP series. One interpretation is that the BCDC is slightly conservative

in calling recessions, waiting for a pick-up in a broad swathe of indicators, including

some, such as labor market indicators, which may lag real activity.

5.5 Monthly Business Cycle statistics

To see how the estimated monthly national accounts would give a different picture of

business cycle dynamics than the quarterly data, Table 7 presents a variance decom-

position for business-cycle fluctuations in GDP by component for each frequency.

The decomposition uses the formula:

var ˜gdpt ≃
N∑
i=t

ωi
tcov(ỹ

i
t,

˜gdpt)

18An example: In the early 1960s, the point estimate for monthly GDP peaks in April 1960, but
point estimates for March to October 1960 are all higher than the 95 percent lower bound for April.
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where ỹit and
˜gdpt are the business-cycle-frequency filtered variables, and ωi

t = yit/gdpt

is the level GDP share.19

The main point that stands out from Table 7 is that the quarterly data understate

the importance of government spending in changes in GDP early in the sample.

Through until the 1980s, the fraction of variation in monthly-frequency GDP due

to government spending is much higher in the monthly estimates, suggesting that

quarterly data might underestimate the shift away from fiscal demand management.

Of course, changes in variance contributions could be due to different cyclical cor-

relations, or a combination of weights and relative variances. And so Table A3 in

Appendix A repeats the same exercise for the more familiar correlations of compo-

nents with GDP. Generally, the correlation of all subcomponents with GDP is lower at

the monthly frequency, with non-residential fixed investment showing a much weaker

correlation. This suggests that in general, there is component-specific information

not correlated with overall demand which is driving these series, although that this is

largely offset by changes in relative variances and GDP share in the variance decom-

position in Table 7. The exception is government spending, where the correlation is

much higher in the monthly data, consistent with changes in systematic fiscal policy

driving the changing importance of government spending in business cycles.

6 Validation and Robustness

6.1 Comparison to quarterly NIPA data

To check that the accounting constraints hold as they should, Figure 9 compares

the summed monthly data to the quarterly NIPA statistics. There is essentially no

discrepancy for any of the components. The one exception is for GDP, where the

aggregation error in the NIPA data causes a small discrepancy early in the sample.

Figures A2 and A3 in Appendix A plot the error relative to the NIPA data for the

model with and without the aggregation error and shows that this mitigates the

discrepancy.

19The relationship is approximate because the business cycle filtering process does not respect
additivity. Table 7 thus includes an error component.
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Decade Services Goods NRFI RFI Gov. Exports Imports Inv. Err.

Quarterly
1960s 14.8 20.6 13.2 3.6 34.3 -1.4 -5.8 9.6 11.0
1970s 12.5 22.2 15.2 31.4 -1.5 3.6 -12.1 13.9 14.9
1980s 20.2 15.5 7.6 22.8 20.4 7.8 -15.1 17.4 3.6
1990s 20.2 26.2 34.8 21.4 -8.8 13.4 -34.1 11.5 15.4
2000s 18.3 28.5 33.5 29.0 -11.1 21.7 -45.2 23.7 1.6
2010s 36.9 17.0 24.2 10.8 9.0 -10.1 0.9 13.8 -2.5
2020s 67.8 16.7 13.9 3.2 -2.9 19.5 -32.4 13.4 0.8
All 25.7 19.7 18.9 16.3 8.2 7.5 -18.5 14.6 7.5

Monthly
1960s 16.0 24.3 14.2 8.0 43.8 -2.7 -6.6 11.5 -8.5
1970s 12.9 25.0 12.6 36.2 10.9 1.0 -14.9 12.8 3.4
1980s 22.6 18.5 4.5 28.5 25.7 4.5 -16.3 15.9 -3.8
1990s 25.2 32.8 39.6 25.4 -5.0 13.3 -38.4 15.1 -8.0
2000s 17.6 28.4 31.8 30.1 -10.3 19.4 -44.0 23.6 3.4
2010s 38.7 18.1 21.8 8.4 13.6 -6.4 -4.8 14.3 -3.5
2020s 62.4 20.8 15.6 4.9 1.8 18.8 -34.9 10.0 0.4
All 25.6 21.4 18.0 17.3 19.3 6.4 -20.2 13.7 -1.5

Table 7: Business-cycle statistics: GDP variance shares

Table shows percent of variance in GDP attributable to each component at business cycle frequencies.
See text for details of decomposition. All series are first filtered using a Christiano-Fitzgerald filter to
eliminate fluctuations at horizons longer than 5 years. Monthly data use point estimates. “Services”
and “Goods” columns are private consumption of services and goods respectively. “Err.” is the
approximation error in the variance decomposition. Sample: Jan 1960-Mar 2025.

6.2 Testing against known data

In Section 5.3 I argued that the confidence intervals for the estimated series are tight.

But are they correct? That is, would the true value of GDP, if it were known, fall

inside a x percent confidence interval x percent of the time? Given that monthly

GDP data do not exist, it is impossible to provide a direct answer to this question.

Instead, I provide indirect evidence that the confidence intervals are valid.

To do this, I re-estimate the model without the monthly goods consumption data.

That is, I pretend that the xi
t “hard” data series for goods consumption does not exist

and treat this series as an unobserved state to be inferred from noisy indicators, just

like any of the other GDP components, re-estimating the model accordingly. This

produces a monthly sequence of confidence intervals for goods consumption. However,
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Figure 9: Comparison with quarterly NIPA data

Figure shows quarterly sum of monthly NIPA estimates with actual quarterly NIPA data. Sample:
1950Q1-2025Q1.

since we do have data for goods consumption, we can evaluate the coverage ratios of

the confidence intervals for goods consumption. I do this by computing the p-value of

the outturn under the distribution implied by the baseline model. That is, I compute:

pgoodst = Φ

xgoods
t − µgoods

t√
Σgoods,goods

t

 (23)

Where µgoods
t and Σgoods,goods

t are the mean and variance of the monthly goods con-

sumption estimates. This calculation is useful because if model uncertainty correctly

reflects the true distribution of outcomes, then the distribution of p-values should be

uniform.20

Figure 10 plots the cumulative distribution of p-values for two versions of the

model with different noisy monthly indicators for goods consumption. One uses only

durable goods consumption data (a subset of total goods consumption) and the other

real retail sales.21 A perfect model would produce plots where the empirical p-values

20Computing p-values is also more general than computing coverage ratios of given confidence
intervals, since it characterizes the accuracy of the entire distribution, not just in certain ranges.

21I omit the 1950s and the 2020s from this plot. The former is excluded because it is identical to
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from the model line up identically along the 45 degree line. Both models are remark-

ably close to this, suggesting that the confidence intervals at least for this version of

the model are remarkably good. This agreement is not pre-ordained. Throughout

the sample, different data series become available at different times (not only real

retail sales, which starts in 1967, but also spillovers from the other series) causing the

appropriate degree of uncertainty to change in response. Table 8 formalizes this com-

parison, reporting the p-values for the Kolmogorov-Smirnov test that the distributions

in Figure 10 are uniform, with the durable goods model doing well throughout.

This exercise also highlights the importance of capturing both filter and estimation

uncertainty. The confidence intervals used in Figure 10 use both, but Figure 11

repeats the exercise using only the filter uncertainty. In this case, the resulting p-

values are far from correct.

The foregoing exercise is convincing evidence that a version of the model without

hard data on goods consumption can correctly characterize uncertainty for that indi-

vidual series. But what does this imply for the performance of the baseline model?

This is a different model, with a different data set and results do not map over iden-

tically. This test does at least mimic how the model works in the baseline; all the

non-consumption data remain exactly the same and the estimation process is identi-

cal to the main exercise in this paper. So even if the results for this special case do

not necessarily carry over to the baseline model, this validation exercise is at least an

opportunity for the model to fail. And if it had, one would almost certainly conclude

that the rest of the model performs poorly.

Consumption data 1960s 1970s 1980s 1990s 2000s 2010s All

Using durable goods data 0.078 0.334 0.444 0.971 0.215 0.857 0.145
Using real retail sales 0.000 0.062 0.016 0.016 0.004 0.982 0.000
No monthly data 0.036 0.104 0.110 0.095 0.040 0.955 0.000

Table 8: Kolmogorov-Smirnov p-values for validation using goods consumption

Table reports the p-values for the Kolmogorov-Smirnov test that the distribution of forecasts for
goods consumption equals that in the data. All models are re-estimated without the monthly goods
consumption data. Lower p-values are stronger evidence that the forecast and outturn distributions
differ. Column titled “Consumption data” describes what goods-consumption-relevant monthly data
the model does see. Sample: Jan 1950-Dec 2019.

the baseline model before 1959, since there is no relevant monthly data. And the latter is dropped
because there is only half a decade to test against, and so the results are not comparable.
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Figure 10: Model validation: Goods consumption

Figure shows the cumulative distribution of p-values goods consumption data according to the
monthly estimated distribution including filter and estimation uncertainty. All models are re-
estimated without the monthly goods consumption data. Perfectly accurate confidence intervals
would have p-values exactly on the 45 degree line. Sample: Jan 1960 - Dec 2019.
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Figure 11: Model validation: Goods consumption, filter uncertainty only

Figure shows the cumulative distribution of p-values goods consumption data according to the
monthly estimated distribution using filter uncertainty only. All models are re-estimated without
the monthly goods consumption data. Perfectly accurate confidence intervals would have p-values
exactly on the 45 degree line. Sample: Jan 1960 - Dec 2019.
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6.3 Model Selection

In this section, I address the question of whether there are other data sources which

could help improve the accuracy of the estimated monthly national accounts. In do-

ing so, I consider six alternative models, each including extra data on other monthly

series, which could be used as measures of activity for particular components. These

include various public and sector-specific labor market measures (public wages &

salaries, residential construction employees), as well as sector-specific output (nonde-

fense capital shipments), and cost measures (oil prices).

Table 9 reports the results of this exercise, showing in the top half of the table

the alternate specifications, and in the bottom half various measures of model per-

formance. In-sample measures of fit, as captured by AIC and BIC suggest that there

are gains from adding extra data series to the baseline model. However, the prac-

tical improvements of these changes are are minuscule. The confidence intervals for

GDP in the alternate models are narrower than those in the baseline by at most one

one-hundredth of a percentage point across all specifications.

Why does extra data not improve the monthly estimates by more? One reason

is simply that the series in the baseline model are already among the best available

indicators for monthly activity in the relevant components. Indeed, I include no extra

indicators for the trade or inventories series simply because those already included are

so close to the data. As such, the data sources remaining for inclusion in alternative

models have generally poor correlations with the data (see ‘pseudo-R2’ column in

Table 9, which reports the monthly pseudo-R2 of the bivariate regression, equivalent

to that in Table 4). And even when the bivariate correlation is strong, the marginal

correlation conditional on other observables can be limited (in particular, the impact

of including residential building construction employees). A second reason is that

extra variables reduces filter uncertainty but increases estimation uncertainty. This

is particularly true when the correlations of observables and NIPA series are weak, and

so the estimated relationship is subject to increased uncertainty. The baseline model

is large enough, and the extra data poor enough indicators, that, at the margin, the

filter and estimation uncertainty effects roughly offset. And yet a third reason is that

the implicit criteria for a series to be informative in the Kalman framework is actually

quite restrictive. The data have to say something reliable about the underlying series

in the current month. If there are long and variable lags between the unobserved

NIPA equivalent series and the observable data then this relationship will be very
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weak.

Nevertheless, Table 9 shows that there at least some gains from including extra

data relative to the baseline. So why not use one of these as the baseline? The

answer is that the performance of the models in Table 9 is essentially a tie. In any

practical sense, the gains in reducing uncertainty are indistinguishable from zero. In

which case, other concerns become important, such as numerical stability. And since

the aim of this project is to produce not just a one-time series for monthly GDP,

but something which can be routinely updated by readers with the associated code,

this matters. Not reported are the (many!) failed runs where including too many

near-colinear observable data series causes a matrix inversion to fail.

6.4 Robustness to model specification

To check that the baseline results are not unduly sensitive to assumptions about

details of the model specification other than the monthly indicators, I compute esti-

mated monthly national accounts series for in four further cases. In one, I use efficient

GMM, rather than unweighted. In another, I fit the model to more dynamic moments,

matching 12 autoregressive equations. In a third I consider a higher-order polynomial

trend. And in the last specification, I model the aggregation error in the national

account specifically as a ninth component of GDP. Tables A4 and A4 in Appendix

D report the average and average absolute deviations from the baseline. In all cases

except the last, the differences are minimal. When including the aggregation error,

difference for the GDP series are naturally larger – GDP itself in the quarterly data

is now different, and includes an explicit aggregation error. Reassuringly, though,

the inclusion of the aggregation error has no noticeable effect on any of the other

components of GDP. In other words, including the aggregation error in the monthly

series has exactly the same effect as it does on the quarterly data – it drives a wedge

between the components and the total. In the data associated with this paper I report

two series for GDP: one including the aggregation error and one excluding it. This

means that the choice facing prospective users of the monthly data is identical to that

they would face with the quarterly data anyway: either include the aggregation error

and match headline GDP exactly, or drop it and have the components sum exactly.
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psuedo-R2 Baseline Gov. (small) Gov. (large) NRFI RFI Everything

Extra variables
Government Federal outlays 0.053 ✗ ✗ ✓ ✗ ✗ ✓

Value of Public Construction 0.001 ✗ ✗ ✓ ✗ ✗ ✓
Public Wages and Salaries 0.127 ✗ ✓ ✓ ✗ ✗ ✓

Non-residential Fixed Investment Industrial Production 0.042 ✗ ✗ ✗ ✓ ✗ ✓
Nondefense Cap. Goods Shipments 0.018 ✗ ✗ ✗ ✓ ✗ ✓
Oil Price 0.025 ✗ ✗ ✗ ✓ ✗ ✓

Residential Fixed Investment All Employees, Res. Bldg. Const. 0.900 ✗ ✗ ✗ ✗ ✓ ✓

In-sample Fit
N params. 60 62 69 72 64 85
BIC -61877 -66990 -72087 -72044 -65328 -85687
AIC -62165 -67288 -72419 -72390 -65635 -86096

St. dev. of GDP estimate (percent)
All 0.271 0.268 0.266 0.270 0.272 0.266
2020s 0.176 0.174 0.173 0.175 0.185 0.181
2010s 0.151 0.148 0.147 0.151 0.152 0.148
2000s 0.159 0.154 0.153 0.159 0.160 0.154
1990s 0.201 0.197 0.195 0.201 0.200 0.194
1980s 0.244 0.241 0.239 0.244 0.245 0.240
1970s 0.278 0.274 0.272 0.278 0.278 0.272
1960s 0.319 0.314 0.312 0.319 0.319 0.312
1950s 0.597 0.597 0.595 0.592 0.597 0.589

Table 9: Alternative models

Table reports performance of alternate models. Upper half of the table lists specification details: extra variables considered, and the total
number of Kalman parameters resulting. Lower half reports in-sample fit, as measured either by BIC or AIC, as well as the width of the
confidence intervals. All models include all the observation variables listed in Table 2. pseudo-R2 is that implicit in the bivariate regression
in monthly terms, equivalent ot that reported in Table 4. Sample: Jan 1959-Dec 2024
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7 Conclusions

In this paper, I estimated monthly national accounts series consistent with the quar-

terly NIPA data, exactly monthly data for components, and other monthly indicators.

I provide both point estimates and confidence intervals, and validate their coverage

on known data. I also conduct simple analysis of recession dates and business cycle

statistics using this data.

There may be ways to improve on the estimates provided here, either by using

alternate statistical frameworks or by using extra data sources. However, the narrow-

ness of the confidence intervals for the constructed series suggests that any potential

gains are likely small.

In any case, the constructed series are precise enough to be useful in a wide range of

applied research, opening up other avenues for future work where the lack of monthly

national accounts data would otherwise be a constraint.
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A Baseline: Extra charts and tables

9. Change in manufacturing inventories

5. Census Exports Volumes 6. Census Imports Volumes 8. Change in Real Inventories
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Figure A1: Monthly Indicators

Figure shows residualized monthly indicators.
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GDP Services Goods NRFI RFI Inv. Exports Imports Gov.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Order 1 time polynomial 11.375∗∗∗ 12.292∗∗∗ 12.492∗∗∗ 17.056∗∗∗ 6.916∗∗∗ 178.464∗ 20.733∗∗∗ 21.377∗∗∗ 7.340∗∗∗

(0.114) (0.114) (0.159) (0.169) (0.274) (92.866) (0.446) (0.513) (0.174)

Order 2 time polynomial −1.085∗∗∗ −1.742∗∗∗ −0.036 −0.718∗∗∗ −1.941∗∗∗ −4.049 −1.643∗∗∗ −1.337∗∗ −1.178∗∗∗

(0.098) (0.100) (0.135) (0.198) (0.392) (66.321) (0.524) (0.557) (0.174)

Constant 9.062∗∗∗ 8.256∗∗∗ 7.382∗∗∗ 6.579∗∗∗ 6.191∗∗∗ 33.880∗∗∗ 6.213∗∗∗ 6.402∗∗∗ 7.667∗∗∗

(0.007) (0.007) (0.012) (0.012) (0.018) (5.339) (0.031) (0.036) (0.013)

Observations 301 301 301 301 301 301 301 301 301
R2 0.998 0.999 0.995 0.993 0.840 0.037 0.991 0.990 0.977

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A1: Estimated coefficients for the polynomial trends

Table reports the estimated trend coefficients from the quarterly data, the γ̃i of equation (14) for
each of the GDP components. Sample: 1950Q1-2024Q4.

√
V arµi

t

√
V artµi

t+1

√
Σi,i

t Ratios

Variable (1) (2) (3) (1)/(3) (2)/(3)

GDP, sum of components 3.81 1.23 0.26 14.5 4.7
Services consumption 2.59 0.52 0.03 75.1 15.0
Goods consumption 4.98 1.02 0.07 73.0 14.9
Non-residential Fixed Investment 8.07 2.22 0.86 9.3 2.6
Residential Fixed Investment 18.14 4.32 1.60 11.4 2.7
Government 6.45 1.90 0.89 7.2 2.1
Exports 11.46 2.65 0.97 11.8 2.7
Imports 12.52 2.30 0.72 17.5 3.2
Inventories 138.51 145.46 120.35 1.2 1.2

Table A2: Signal-to-noise ratios: GDP components, sample average

Table shows averages by decade of the standard deviation of the (1) unconditional and (2) one-step-
ahead forecasts of monthly national accounts series, and well as the model-implied standard error
(3). Units are in percentage of trend. Sample: Jan 1950-Mar 2025.
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Decade Services Goods NRFI RFI Gov. Exports Imports Inv.

Quarterly
1960s 0.88 0.95 0.91 0.15 0.68 -0.20 0.66 0.59
1970s 0.69 0.85 0.75 0.67 -0.03 0.32 0.65 0.55
1980s 0.73 0.76 0.39 0.69 0.53 0.43 0.79 0.59
1990s 0.87 0.94 0.92 0.81 -0.30 0.64 0.91 0.50
2000s 0.86 0.84 0.81 0.66 -0.59 0.64 0.94 0.79
2010s 0.76 0.58 0.47 0.24 0.15 -0.21 -0.02 0.42
2020s 0.94 0.52 0.81 0.29 -0.23 0.83 0.81 0.60
All 0.77 0.77 0.72 0.54 0.29 0.40 0.73 0.42

Monthly
1960s 0.81 0.93 0.82 0.27 0.74 -0.31 0.63 0.57
1970s 0.64 0.88 0.58 0.73 0.23 0.08 0.75 0.46
1980s 0.80 0.84 0.23 0.83 0.66 0.24 0.83 0.50
1990s 0.84 0.92 0.83 0.75 -0.13 0.50 0.81 0.50
2000s 0.84 0.84 0.78 0.71 -0.55 0.58 0.94 0.78
2010s 0.79 0.57 0.42 0.19 0.23 -0.13 0.09 0.40
2020s 0.93 0.62 0.83 0.43 0.12 0.81 0.83 0.48
All 0.63 0.63 0.52 0.45 0.46 0.25 0.58 0.32

Table A3: Business-cycle statistics: Correlation with GDP

Table shows correlations of GDP with each component at business cycle frequencies. All series are
first filtered using a Christiano-Fitzgerald filter to eliminate fluctuations at horizons longer than 5
years. “Services” and “Goods” columns are private consumption of services and goods respectively.
Sample: Jan 1960-Mar 2025.
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6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Figure A2: Error on sum of monthly series versus NIPA data: Baseline model.

Figure shows percentage error on GDP and components for the quarterly sums of the monthly series.
Here “GDP” is the sum of components only, excluding the aggregation error. Sample: Jan 1950-Mar
2025.
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8. Inventories 9. NIPA Aggregation error

4. Residential Fixed Investment 5. Government 6. Exports 7. Imports

 GDP 1. Services consumption 2. Goods consumption 3. Non−residential Fixed Investment
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Figure A3: Error on sum of monthly series versus NIPA data: Model with aggregation
error,

Figure shows percentage error on GDP and components for the quarterly sums of the monthly series.
Here “GDP” includes the aggregation error. Sample: Jan 1950-Mar 2025.
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B An algorithm for estimating monthly national

account series

To summarize, the steps used to compute estimated monthly national accounts data

are as follows.

1. Estimate trends and compute departures from trend as described in Section 4.1.

This gives the trends Ȳt, ȳt and departures from trend Ŷt, ŷt

2. Fit ARIMA processes to clean the predictors to form the ϵi,jt .

3. Estimate the parameters of the Kalman framework by GMM as described in

Section 4.4. Denote the GMM point estimate by Ψ∗.

4. Compute the point estimate and Kalman prediction error covariance for ŷt using

a Kalman smoother with parameters Ψ∗. The point estimate for the compo-

nents, µt, is complete.

5. Multiply the estimates in step 4 by their trends to obtain the point estimate

and filter covariances for yt.

6. Calculate the numerical derivative of the point estimate by perturbing each

entry in Ψ∗ by a small amount and repeating steps 4 and 5.

7. Multiply the derivative in step 6 by the asymptotic parameter covariance of

Ψ∗ from GMM estimation and add to the Kalman prediction error covariance

computed in step 4. This is the final sequence of covariance estimates of the

GDP components, Σt.

8. Compute the point estimate and variance of GDP using equation (3).
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C Other episodes

6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure A4: Estimated Monthly National Accounts Series: Early 1970s

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 1969-Dec 1976.
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6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure A5: Estimated Monthly National Accounts Series: Volkler disinflation

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 1979-Dec 1983.

6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure A6: Estimated Monthly National Accounts Series: Late 1990s/early 2000s

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 1997-Dec 2004.
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6. Exports 7. Imports 8. Inventories

3. Non−residential Fixed Investment 4. Residential Fixed Investment 5. Government

 GDP, sum of components 1. Services consumption 2. Goods consumption
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Broken lines show 95 percent confidence interval including estimation uncertainty.

Figure A7: Estimated Monthly National Accounts Series: Global Financial Crisis

Figure shows estimated monthly national accounts series plus 95 percent confidence interval. Shaded
areas are NBER recessions. Sample: Jan 2006-Dec 2010.
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D Robustness

Decade GDP Exports Goods Gov. Imports Inv. NRFI RFI Services

Efficient GMM 1950s -0.000 -0.000 -0.000 -0.000 0.000 0.388 -0.000 0.000 -0.000
1960s -0.000 -0.001 -0.000 -0.000 0.000 -2.358 -0.001 0.002 0.000
1970s -0.000 -0.001 0.000 -0.000 0.000 7.305 -0.001 0.001 -0.000
1980s -0.000 -0.002 0.000 -0.000 0.001 -24.164 -0.001 0.002 -0.000
1990s -0.000 -0.002 -0.000 -0.000 -0.000 -1.792 -0.001 -0.001 0.000
2000s -0.000 -0.001 0.000 0.000 0.000 -0.088 -0.001 0.001 -0.000
2010s -0.000 -0.001 -0.000 0.000 -0.000 -0.871 0.000 -0.000 0.000
2020s -0.001 0.007 0.000 -0.002 0.009 0.660 -0.012 -0.008 -0.000

Fitting 12 AR equations 1950s -0.000 0.000 -0.000 0.000 -0.000 -2.706 -0.000 -0.000 -0.000
1960s 0.000 0.001 -0.000 0.000 0.000 4.118 -0.000 0.002 -0.000
1970s 0.000 0.001 -0.000 0.000 0.000 -11.276 -0.000 0.001 -0.000
1980s 0.000 0.002 -0.000 0.000 0.000 1.970 -0.000 0.002 0.000
1990s -0.000 0.000 0.000 0.000 -0.000 -1.503 -0.000 0.001 -0.000
2000s -0.000 0.001 -0.000 0.000 0.000 0.156 -0.000 0.001 0.000
2010s 0.000 0.000 -0.000 0.000 0.000 -0.342 -0.000 0.001 0.000
2020s 0.000 0.009 -0.000 0.002 0.011 0.025 -0.002 0.009 -0.000

Third-order trend 1950s 0.000 0.002 0.000 0.000 -0.000 -2.195 0.000 0.000 0.000
1960s 0.000 0.003 -0.000 -0.000 -0.002 7.398 -0.001 -0.001 0.000
1970s 0.000 0.003 -0.000 -0.000 -0.001 -28.436 -0.000 0.000 0.000
1980s 0.000 0.005 0.000 -0.000 -0.001 14.672 -0.001 -0.004 -0.000
1990s 0.000 -0.001 0.000 0.000 -0.000 -6.773 -0.001 -0.001 -0.000
2000s 0.000 -0.001 0.000 0.001 0.000 -1.929 -0.001 -0.003 -0.000
2010s -0.000 -0.000 0.000 0.000 0.000 -5.483 -0.000 0.000 -0.000
2020s -0.000 0.018 0.000 0.011 0.104 9.185 -0.001 0.017 -0.000

Including aggregation eror 1950s -5.593 0.000 -0.000 -0.002 -0.001 0.775 0.000 -0.000 0.000
1960s -4.747 0.001 0.000 0.000 -0.000 -17.491 -0.000 -0.002 0.000
1970s -3.372 0.001 0.000 0.000 0.000 -1.444 -0.001 -0.001 0.000
1980s -2.411 0.005 -0.000 0.000 -0.000 -103.083 -0.002 -0.003 -0.000
1990s -1.652 0.001 0.000 -0.001 -0.000 -6.316 -0.000 -0.001 0.000
2000s -0.801 -0.000 -0.000 0.000 0.002 0.756 -0.008 -0.000 -0.000
2010s -0.177 0.002 -0.000 0.003 0.010 -65.677 -0.044 0.000 -0.000
2020s 0.121 0.003 -0.000 0.011 0.015 -6.907 0.015 0.014 -0.000

Table A4: Robustness to alternate specifications: Average difference versus baseline

Table shows average difference in monthly national accounts series compared to the baseline estimates
for different model specifications. Differences are expressed in percent. Sample: Jan 1959-Mar 2025
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Decade GDP Exports Goods Gov. Imports Inv. NRFI RFI Services

Efficient GMM 1950s 0.034 0.036 0.017 0.030 0.050 5.804 0.051 0.079 0.007
1960s 0.042 0.112 0.000 0.085 0.070 4.974 0.152 0.153 0.000
1970s 0.034 0.098 0.000 0.091 0.061 11.611 0.132 0.192 0.000
1980s 0.042 0.146 0.000 0.093 0.089 28.685 0.179 0.184 0.000
1990s 0.037 0.314 0.000 0.105 0.112 18.207 0.197 0.170 0.000
2000s 0.039 0.298 0.000 0.082 0.062 2.628 0.282 0.175 0.000
2010s 0.036 0.255 0.000 0.087 0.070 2.602 0.208 0.194 0.000
2020s 0.102 0.543 0.000 0.158 0.163 2.208 0.438 0.237 0.000

Fitting 12 AR equations 1950s 0.033 0.031 0.021 0.009 0.056 7.498 0.050 0.082 0.009
1960s 0.011 0.091 0.000 0.019 0.025 5.462 0.021 0.066 0.000
1970s 0.010 0.084 0.000 0.019 0.029 13.918 0.016 0.056 0.000
1980s 0.009 0.121 0.000 0.022 0.036 3.172 0.015 0.071 0.000
1990s 0.012 0.114 0.000 0.017 0.034 5.222 0.061 0.044 0.000
2000s 0.010 0.120 0.000 0.031 0.018 0.443 0.053 0.051 0.000
2010s 0.010 0.077 0.000 0.019 0.017 0.785 0.041 0.041 0.000
2020s 0.028 0.258 0.000 0.070 0.095 0.896 0.089 0.101 0.000

Third-order trend 1950s 0.054 0.113 0.030 0.033 0.132 14.362 0.056 0.126 0.019
1960s 0.035 0.242 0.000 0.066 0.408 12.489 0.114 0.240 0.000
1970s 0.029 0.222 0.000 0.072 0.338 35.160 0.095 0.261 0.000
1980s 0.034 0.284 0.000 0.093 0.515 21.882 0.142 0.368 0.000
1990s 0.067 0.300 0.000 0.276 0.642 26.160 0.113 0.289 0.000
2000s 0.034 0.269 0.000 0.449 0.629 9.825 0.160 0.362 0.000
2010s 0.029 0.228 0.000 0.394 0.648 9.674 0.108 0.486 0.000
2020s 0.054 0.524 0.000 0.644 1.276 21.307 0.162 0.454 0.000

Including aggregation eror 1950s 13.304 0.296 0.182 1.409 1.017 31.257 1.133 0.367 0.282
1960s 7.730 0.480 0.000 0.884 0.222 32.383 1.225 0.104 0.000
1970s 4.742 0.376 0.000 0.719 0.157 30.967 0.895 0.088 0.000
1980s 5.251 0.758 0.000 1.331 0.332 174.000 1.719 0.178 0.000
1990s 4.419 0.539 0.000 1.912 0.666 53.240 2.574 0.185 0.000
2000s 2.700 0.415 0.000 2.550 1.071 7.617 2.854 0.112 0.000
2010s 2.488 2.483 0.000 17.431 8.373 95.004 18.141 0.381 0.000
2020s 1.864 1.373 0.000 7.900 4.448 30.344 8.800 0.297 0.000

Table A5: Robustness to alternate specifications: Average absolute difference versus
baseline

Table shows average absolute difference in monthly national accounts series compared to the baseline
estimates for different model specifications. Differences are expressed in percent. Sample: Jan 1959-
Mar 2025
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