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1 Introduction

Money is a fundamental economic technology characterized by network effects (Menger, 1892;

Fisher, 1911; Krugman, 1984): its value rises with others’ willingness to accept it. Modern digital

payment technologies share this characteristic and could generate even stronger network benefits

(Crouzet, Gupta, and Mezzanotti, 2023; Alvarez, Argente, Lippi, Méndez, and Patten, 2023), cre-

ating a dilemma for the optimal design of payment systems. On one hand, network effects can

concentrate users on a few dominant platforms, limiting user choice and potentially raising con-

cerns of rent extraction (Katz and Shapiro, 1985; Brunnermeier and Payne, 2022, 2023). On the

other hand, introducing new platforms can fragment markets (Vayanos, 1999; Duffie, 2023), re-

ducing the inherent network benefits of converging on leading platforms. This dilemma recurs

in many contexts, from regulating card networks and fintech firms to introducing public payment

options like FedNow or a Digital Euro (Brainard, 2019; Lagarde, 2025; Lane, 2025). Is there a

way to avoid fragmentation without sacrificing user choice?

In this paper, we study payment interoperability, which offers a potential escape from the

dilemma yet has not been widely studied academically. By enabling users to transact seamlessly

across payment platforms, interoperability can unlock the benefits of network unification without

requiring centralization on a single private platform provider—preserving choice for users. It could

therefore allow users to reap the best of both worlds: the freedom to choose their favorite platform,

alongside access to the full network of users. Despite its importance and anecdotal support, data

constraints have made it difficult to study the role of interoperability in encouraging usage of digital

payments.

We present a theoretical framework and tightly connected empirical evidence showing that

interoperability can increase adoption and usage of digital payments by integrating fragmented

networks. To do so, we leverage novel data covering both the universe of payments on India’s

Unified Payments Interface (UPI)—the world’s largest fast payment system by volume—and all

payments on a major pre-existing fintech platform.1 Our data allow us to observe—at a granular

1The fintech firm requested to remain anonymous; we thus refer to it throughout as “the incumbent platform”, or



geographical level—two large payment networks that initially operated separately and then inte-

grated through interoperability. We also observe a proxy for the use of cash with the same level

of geographical granularity. Together, these data allow us to directly examine users’ choices of

payment apps, how payments flowed between them, and the wider transition from cash to digital

payments.

We begin with two new stylized facts—both drawing on our unique data—that suggest that

interoperability accelerated the adoption of digital payments in India. First, cross-app transactions

drove growth in UPI transaction volumes. Indeed, most UPI transactions occur between users of

two different apps, directly utilizing interoperability. Second, after a common shock that increased

demand for digital payments, users largely chose an interoperable option over a closed-loop pay-

ments platform. These telling patterns suggest that interoperability was an important part of the

dramatic growth in digital payments in India.

Building on these stylized facts, we develop a formal conceptual framework that shows how in-

teroperability makes digital payments more valuable by amplifying network effects. Users choose

between two digital payments platforms and an outside option that is already universally accepted

(e.g., cash). Users initially fragment across platforms due to exogenous differences in brand famil-

iarity or personal preferences, limiting the network benefits associated with using digital payments.

By allowing users to choose one platform yet transact directly with users on another, interoperabil-

ity expands the set of accessible users. This, in turn, unlocks the full extent of network benefits,

thereby maximizing digital payment usage and overall welfare.

A novel theoretical prediction of our framework is that the greater the initial fragmentation,

the larger the gains from introducing interoperability. This is because markets that are more frag-

mented have greater unrealized network benefits across platforms. By stitching these previously

more fragmented networks together, interoperability unlocks a larger share of potential new digital

payment transactions. In contrast, in markets that are relatively unified ex ante—i.e., where there

is minimal fragmentation—the gains from interoperability are only marginal, as network benefits

variations thereof, and describe relevant results in event time rather than chronological time.
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are mostly already realized.

Informed by the conceptual framework, we empirically examine the heterogeneous implica-

tions of interoperability by exploiting a unique natural experiment: the integration with UPI of a

large pre-existing payments platform. The incumbent fintech firm initially provided only closed-

loop payment services—i.e., transactions could only take place when both counterparties used its

digital wallet. This platform therefore initially competed with UPI for digital payments users,

fragmenting the digital payments market. However, following a directive from the Reserve Bank

of India (RBI) mandating interoperability, the incumbent connected its network to UPI, enabling

transactions between users of the two platforms. Crucially, the extent of fragmentation of payments

markets prior to integration varied significantly across districts—producing variation in the extent

of unrealized cross-platform network benefits that were unlocked by interoperability. We exploit

this variation in a heterogeneous adoption design (de Chaisemartin and D’Haultfœuille, 2023),

comparing post-interoperability trends in districts whose digital payment markets were more frag-

mented ex ante than the median (hereafter, “more fragmented districts”) to less fragmented dis-

tricts.

To sharpen identification, we include granular fixed effects and control variables. We work at

the district-month level and include district and state-month fixed effects in our baseline specifi-

cation. We also control for differential trends resulting from differences in districts’ total digital

payments usage prior to integration, leveraging only district-wise differences in the composition

of those payments—i.e., differences in the extent to which digital payments were initially unified

on one platform versus fragmented between the two. Conditional on these controls, we do not see

meaningful differential trends in digital payments usage prior to integration in districts with more

ex-ante fragmentation.

We find substantial positive effects of network integration on total digital payments. Over the

year after integration, differential growth in the total value of digital payments in more fragmented

districts amounted to 88% of more fragmented districts’ pre-interoperability mean and to 118%

of less fragmented districts’ post-interoperability mean. Total digital payments also differentially
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increased sharply relative to a proxy for cash usage based on ATM withdrawals. Consistent with

our conceptual framework, the presence of cross-app network effects enabled by interoperability

induced substitution away from cash.

Dis-aggregating the differential increase in total digital payments in more fragmented districts,

we find that newly enabled transactions between the incumbent platform and other UPI apps took

off after integration, providing direct evidence that users valued the cross-network payments capa-

bility created by interoperability. We also observe significant differential increases in transaction

values within both the incumbent platform and other UPI apps after their integration—consistent

with positive spillovers from the ability to reach more users that are also present in our conceptual

framework. In addition, we show that the differential increase in the total value of digital payments

in more fragmented districts was primarily driven by a larger increase in the number of users—

with relative increases in the number of transactions per user and the average size of transactions

also present but playing a quantitatively smaller role.

We present a battery of robustness checks that confirm these empirical findings and support a

causal interpretation. We do not find any evidence of differential pre-trends in high-fragmentation

districts in our main specification, and high-fragmentation districts are similar to low-fragmentation

districts on many observables. Nevertheless, concerns may remain about the potential endogeneity

of ex-ante fragmentation to subsequent trends in usage of digital payments. We show that our re-

sults are similar when using two additional estimation strategies to mitigate such concerns. First,

we explicitly match districts with high ex-ante fragmentation to districts that differ only on ex-ante

fragmentation, not on observables. Second, we use the incumbent’s earlier choices of “hub” cities

in which to launch to construct an instrument for the extent of fragmentation prior to integration.2

Specifically, given that users in districts closer to hubs were more likely to encounter the incum-

bent platform, we use the distance of each district to one of these hubs as our instrument. We also

conduct placebo tests and consider a wide range of alternative specifications.

2Importantly, these hubs were selected by the incumbent more than a year before integration, and before the demon-
etization shock radically changed the landscape of digital payments adoption in India (see, for instance, Chodorow-
Reich, Gopinath, Mishra, and Narayanan, 2020; Lahiri, 2020), mitigating concerns about an interdependency between
hub choice and the decision of the incumbent to integrate.

4



Finally, we explore the broader implications of our analysis in two dimensions. First, we

combine our theory and empirics to derive a model-implied estimate of the aggregate impact of

the two networks’ integration on total nationwide usage of digital payments. While our results

in the cross-section are well-identified, we cannot infer the aggregate impact of integration from

such evidence alone due to a missing intercept problem (e.g., Wolf, 2023; Buera, Kaboski, and

Townsend, 2023). However, our model implies that interoperability brings no additional gains

in markets with no fragmentation prior to integration—enabling us to use districts with very little

fragmentation as a “no-interoperability” counterfactual. Aggregating accordingly, we estimate that

connecting the two networks increased total national usage of digital payments by more than 50%

in the year after integration. Second, we trace the knock-on implications for the real economy of the

increased uptake of digital payments. Using a similar specification to our baseline, we show that

lending likely based on data generated from digital payments activity also accelerated in districts

whose digital payments markets were more fragmented prior to integration. Again, interoperability

had the largest benefits in places where network fragmentation was previously most severe.

Our results have important implications for policymakers across a wide range of both domestic

and cross-border payment settings. Policymakers in many developing economies aim to increase

adoption of digital payments as a stepping stone to broader financial inclusion (Berg, Fuster, and

Puri, 2022; Dubey and Purnanandam, 2023; Alok, Ghosh, Kulkarni, and Puri, 2024). Our results

highlight that integrating fragmented networks can substantially increase uptake of the combined

platform. Conversely, our results warn that introducing a new, non-interoperable payment tech-

nology could exacerbate existing fragmentation. In other developing economies, payment systems

are well developed but currently dominated by a small set of private providers operating distinct,

non-interoperable networks (see, for instance, Yi, 2021). Concerns about market power, limited

user choice, and fragmentation are also relevant for advanced economy payment systems (see, for

instance, Brainard, 2019; Cunliffe, 2023; Lane, 2025). In the realm of cross-border payments, pol-

icymakers have discussed the potential benefits of interoperability between many different types

of domestic systems (Financial Stability Board, 2024). Policymakers are also increasingly raising
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the possibility of a more multi-polar—and more fragmented—global currency paradigm (Lagarde,

2025; Pan, 2025). Our paper speaks to all of these settings, by presenting empirical evidence on

the impact of integrating large payments networks.

Related literature. We contribute to several main areas of research. First, we contribute to the

extensive literature on money and payments. The idea that money functions as a network good

dates back to Menger (1892) and Fisher (1911), and has been formalized in modern economic

models on the emergence of and competition between monies, such as Krugman (1984), Kiyotaki

and Wright (1989), Matsuyama, Kiyotaki, and Matsui (1993), Farhi and Maggiori (2018), and

Coppola, Krishnamurthy, and Xu (2023). Recent innovations in payment systems, including the

rise of public and private fast payment platforms, cryptocurrencies, and central bank digital cur-

rencies (CBDCs), have further transformed the landscape (Duffie, 2019; Benigno, Schilling, and

Uhlig, 2022; Cong and Mayer, 2025; Steinsson, 2025). However, alongside the realization of net-

work benefits, concerns have also emerged about dominant private players in payments and their

potential negative welfare implications (e.g., Brunnermeier and Payne, 2022; Goldstein, Yang, and

Zeng, 2023).

We contribute to this evolving literature by examining the role of interoperability, an increas-

ingly prominent yet understudied feature of payment systems, in shaping the trade-offs between

network benefits and user choice in the evolution of money and payments. In doing so, we fol-

low the recent literature on convenience yield (e.g., Krishnamurthy and Vissing-Jorgensen, 2012;

Stein, 2012) by modeling the convenience users derive from a given payment method, while ex-

plicitly incorporating network externalities—i.e., that a user experiences higher convenience when

more users adopt the same method, as modeled in, for example, Cong, Li, and Wang (2021) and

Crouzet, Gupta, and Mezzanotti (2023). This combination of payment convenience and network

effects allows us to analyze the role of interoperability in a transparent and tractable way, yielding

new and sharp empirical implications.

More specifically, we contribute to the growing literature on the consequences of introduc-
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ing interoperability between payment networks.3 We contribute to this literature through both our

conceptual focus and our empirical methodology. On the former, we offer a detailed examina-

tion of “demand-side” implications of interoperability, in a setting that allows us to abstract from

“supply-side” considerations that have been the focus of recent work. Specifically, recent papers

have highlighted a potential downside of interoperability that can emerge through the impact on

network providers: increased competition can reduce their incentives to invest in expanding plat-

form access (Ferrari, Verboven, and Degryse, 2010; Björkegren, 2022; Brunnermeier, Limodio,

and Spadavecchia, 2023).4 In contrast, in our context infrastructure provision is held fixed as part

of a wider program of investment in digital public infrastructure (Reserve Bank of India, 2022;

Alonso, Bhojwani, Hanedar, Prihardini, Una, and Zhabska, 2023), with low direct costs for private

payment providers. We are therefore able to spotlight demand-side mechanisms. We use our clean

setting to show that interoperability has quantitatively large implications for demand.

Turning to our methodological contribution to the empirical literature, our theory-informed

empirical design allows us to relax a previous trade-off between imposing strong assumptions and

drawing comparisons between relatively dissimilar units of observation. Specifically, a common

challenge for assessing the impact of interoperability empirically is the lack of empirical variation

within a given country, requiring the imposition of significant structural assumptions (as in, for

example, Ferrari, Verboven, and Degryse, 2010; Björkegren, 2022), or the use of other countries

as the counterfactual (as in, for example, Brunnermeier, Limodio, and Spadavecchia, 2023).5 We

therefore innovate by exploiting within-country variation in interoperability: while the integration

of the incumbent platform with UPI occurred nationally, the de facto increase in interoperability

varied across districts depending on their degree of ex-ante fragmentation. When estimating the

3See Bourreau and Valletti (2015) and Bianchi, Bouvard, Gomes, Rhodes, and Shreeti (2023) for recent surveys,
focused on the implications of interoperability in mobile money markets. For recent theoretical work focused on the
implications of strategic decisions taken by platform operators, see Brunnermeier and Payne (2022, 2023), Bourreau
and Kraemer (2023) and Ekmekci, White, and Wu (2025).

4For instance, in Brunnermeier, Limodio, and Spadavecchia (2023) interoperability in the mobile money market—
by lowering user fees—reduces the incentive for vertically integrated mobile network and mobile money operators to
pay the variable costs associated with operating mobile towers, reducing network coverage.

5Brunnermeier, Limodio, and Spadavecchia (2023) do present some results using (cross-operator) within-country
variation in interoperability, but note in their Section 3.1.4 that the vast majority of this variation is driven by country-
level interoperability policies, since African telecoms operators very rarely deviate from national policy.
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impact of interoperability on usage of digital payments, we are thus able to draw a tighter compar-

ison than previous work.6

More broadly, a long literature addresses the adoption and diffusion of network technologies,

including payments. Building on initial theoretical work (e.g., Katz and Shapiro, 1985; Weinberg,

1997; Rochet and Tirole, 2003, 2004), a more recent empirical literature leverages newly avail-

able microdata to test and deepen our understanding of the underlying mechanisms across various

settings, for example, Björkegren (2019) on mobile phones, Higgins (2024) on debit cards and

POS machines, and Wang (2024) on credit cards. Most closely related to our work are papers by

Crouzet, Gupta, and Mezzanotti (2023) and Alvarez, Argente, Lippi, Méndez, and Patten (2023),

which each examine the implications of strategic complementarities for the adoption of a digital

payment platform. We build on their insights by considering the implications of network exter-

nalities when multiple such platforms co-exist. This multiplicity of providers introduces two new

considerations: the potential for network fragmentation, and the amplification of strategic comple-

mentarities that support adoption in the presence of interoperability.

Finally, our paper relates to a growing literature on the downstream impacts of widespread use

of digital payments, particularly in the context of India.7 Reflecting the speed and scale of UPI’s

take-off, these impacts have been pervasive, affecting risk-sharing (Patnam and Yao, 2020), debt

enforcement (Rishabh and Schäublin, 2021), lending (Rishabh, 2024; Ghosh, Vallee, and Zeng,

2022; Alok, Ghosh, Kulkarni, and Puri, 2024), bank deposits (Di Maggio, Ghosh, Ghosh, and Wu,

2024), consumption (Agarwal, Ghosh, Li, and Ruan, 2024) and growth (Dubey and Purnanan-

dam, 2023), among other outcomes. This extensive literature—including some large estimated

benefits of digital payments—raises an important question: What drove such a rapid take-off of

digital payments in India? Several of these papers exploit the demonetization shock of November

2016, following which severe cash shortages prompted widespread substitution to digital alterna-

6Indeed, by including state-time fixed effects in our regressions, we in fact base our estimates on comparisons
across districts within the same state, i.e., within a sub-national region.

7Beyond India, a series of recent papers also examine the impacts of Pix on the financial sector and monetary
policy transmission in Brazil (Sarkisyan, 2023; Sampaio and Ornelas, 2024; Ding, Gonzalez, Ma, and Zeng, 2024;
Liang, Sampaio, and Sarkisyan, 2024).
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tives. However, this shock alone cannot explain longer-term adoption trends: Crouzet, Gupta, and

Mezzanotti (2023) show that adoption of a closed-loop electronic wallet contracted once the cash

crunch subsided, while Lahiri (2020) shows that aggregate digital payment transaction volumes in

India declined in the first half of 2017, before suddenly re-accelerating. Crouzet, Ghosh, Gupta,

and Mezzanotti (2024) offer another explanation for rapid adoption in India: a relatively young

population, who prefer mobile payments and so in turn incentivize businesses to adopt the tech-

nology. In this paper, we contribute a third explanation: the creation of an interoperable retail

digital payments system, UPI, allowed the unification of previously fragmented networks without

sacrificing users’ ability to choose their preferred payment app. This view can explain the rapid

acceleration in digital payments volumes in late 2017, since two major platform operators joined

UPI in that period, bringing with them their existing user bases.

The rest of this paper proceeds as follows. Section 2 summarizes the institutional setting and

our data and presents descriptive evidence that users value interoperability. Section 3 presents our

conceptual framework and highlights that ex-ante fragmentation shapes the benefits of the intro-

duction of interoperability. Section 4 presents our empirical strategy, takes the model predictions

in the cross-section to the data, and explores robustness. Section 5 considers the wider implica-

tions of our results, estimating the total national impact on digital payments usage and examining

spillovers to credit markets. Section 6 concludes.

2 Setting and Descriptive Evidence

This section first provides background on the institutional context of our study, then describes our

data and presents descriptive evidence that users value interoperability.

2.1 Institutional context

UPI is an instant payments platform built on top of the Immediate Payment Service (IMPS) in-

frastructure, India’s pre-existing real-time interbank electronic fund transfer service. The National
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Payments Corporation of India (NPCI, regulated by the Reserve Bank of India) provides pay-

ment rails. UPI apps are provided by both banks and non-bank third-party application providers

(TPAPs), which are typically fintech firms. In the case of bank apps, the bank provides both a

user-facing front-end application and executes transactions on the back end through IMPS. TPAPs

provide the front-end application but partner with a payment service provider (PSP) bank that is

connected to IMPS and executes the transaction.8 Users of any UPI app are thus able to initiate

payments from their accounts at any participating bank to accounts at other participating banks, as

well as to receive notifications of payments received into their accounts.9

UPI enabled new types of transactions between clients of different banks and fintech payment

providers. Prior to UPI, end users could make transfers between some of the participants that

would later join UPI. For instance, users could (i) make bank-to-bank transfers via IMPS, (ii)

transfer money between some bank accounts and electronic wallets issued by closed-loop e-money

providers, and (iii) transfer money between electronic wallets hosted by the same closed-loop

e-money provider. However, users could not initiate transactions between bank accounts using

apps offered by third parties, nor could they transfer money between electronic wallets offered by

different e-money providers. UPI increased interoperability on both these dimensions by allowing

TPAPs—including both new fintech firms and existing e-wallet providers—to interact with NPCI’s

IMPS via a partner PSP.10 End users gained tahe ability to choose their favorite UPI payments app

without affecting either the location of their deposits (which stay in their bank) or the set of other

UPI users with whom they can transact.

This interoperability contrasts with closed-loop digital payment apps, where both the payer

and the payee must use the same payment app. In a typical closed-loop transaction, the payer first

loads money into an electronic wallet hosted by the app provider. If and only if the payee also

maintains a wallet with the same provider, they can then receive a transfer through the provider’s

8Appendix Figure A.1 depicts the steps involved in a UPI transaction. See also Copestake, Kirti, and Martinez Peria
(2025) for further details.

9Settlement for end users is immediate, while settlement among financial institutions is managed through deferred
net settlement with ten daily cycles.

10The extent of this interoperability in practice grew over time as more banks and closed-loop e-money providers
joined the system.
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network. At this point, the payee can either keep the money in the provider’s network for other

payments, or withdraw the funds to their bank account, which may be subject to fees and/or delays.

Crucially, the requirement for both counterparties to hold wallets with the same provider creates

a network effect: the more users a provider has, the more attractive it is to new users, since it

offers more possibilities for transactions. This is not the case with app providers under UPI, where

interoperability means that network effects operate primarily at the platform level.

The UPI ecosystem has grown steadily, and now features several hundred participating apps

and banks (Figure 1). Total transaction values on the platform have grown exponentially to more

than 18 billion per month, with UPI now dominating other forms of electronic retail payments in

India and proxies for cash beginning to decline (Figure 2). Indeed, thanks to UPI India now makes

more fast payments than any other country (Figure 3; see also ACI Worldwide (2023)).

The spread of UPI was facilitated by earlier public and private investments that reduced po-

tential barriers to widespread adoption. The Pradhan Mantri Jan Dhan Yojana (JDY) financial

inclusion program opened hundreds of millions of new bank accounts (Agarwal, Alok, Ghosh,

Ghosh, Piskorski, and Seru, 2017). The Aadhaar biometric ID scheme provided each individual

with a unique, verifiable digital identity that could be used to speed up transaction authentication

and Know Your Customer checks. Lastly, the cost of mobile data fell by roughly 96 percent dur-

ing the mid-2010s, driven in part by the entry of Reliance Jio, a new 4G-only network operator

(Alonso, Bhojwani, Hanedar, Prihardini, Una, and Zhabska, 2023).

2.2 Data

We draw on three key sources of data. First, we use data on the universe of UPI transactions,

provided directly by NPCI and not previously used for academic research.11 We received monthly

totals of value and volume, split by the interaction of the payer’s app and the payer’s bank branch,

11In contrast to previous work on UPI (e.g., Dubey and Purnanandam, 2023; Alok, Ghosh, Kulkarni, and Puri, 2024),
our dataset covers transactions from all apps and banks in the UPI ecosystem, allowing us to provide a comprehensive
picture of UPI usage.

11
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from the beginning of UPI’s pilot phase in April 2016 through to September 2024.12 For the

largest three UPI apps, plus the publicly developed app BHIM (the “Bharat Interface for Money”)

and a consolidated “Other Apps” category, we also received the full matrix of payer and payee

app choices—i.e., for the same period, we have monthly totals of value and volume, split by the

interaction of the payer’s bank branch, the payer’s app and the payee’s app. In both cases, transac-

tion totals are dis-aggregated into peer-to-peer (P2P) and peer-to-merchant (P2M) transactions. We

also observe the number of unique users—proxied by the number of unique phone numbers—per

month at the IFSC level. Second, we use data from a major Indian fintech firm (‘the incumbent’).

This firm pre-dated UPI and offered a popular closed-loop wallet before subsequently integrating

with UPI. We obtain monthly, district-level totals of value, volume and unique users, again split by

P2P and P2M transactions. Third, we obtain data from NPCI on cross-bank cash withdrawals from

automated teller machines (ATMs) across India between April 2016 and December 2023, split by

bank and pincode, which we aggregate to the district level.

Taken together, this unique data allows us to observe two large payment networks that initially

operated separately—and subsequently integrated via interoperability—at a granular geographical

level. Combined with a proxy for cash, this allows us to present empirical evidence that is tightly

connected with our conceptual framework.13

2.3 New stylized facts

In this section, we present two stylized facts that suggest interoperability supported adoption of

digital payments in India. Both draw on our novel data and are new to the literature.

1. Cross-app transactions drove growth in UPI transaction volumes. Figure 4 plots the share

of UPI transactions in which the payer and payee use different UPI apps. On both value and

12Bank branches are identified by Indian Financial System Codes (IFSC), from which we extract the bank name
and pincode, which we use to attribute transactions to banks and districts.

13We also use survey data for a large panel of households covering most Indian districts. Specifically, we use the
Consumer Pyramids Household Survey (CPHS) conducted by the Centre for Monitoring Indian Economy (CMIE).
This provides comprehensive, granular, high-frequency panel data on borrowing at the household level. See Dubey
and Purnanandam (2023) for a more detailed description.
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volume, the share of cross-app transactions consistently tops 40%, with cross-app transactions

playing an especially large role in the early years when the platform reached widespread adoption.

In the absence of an interoperable platform, these transactions could not take place, demonstrating

that users directly value and utilize the ability to make payments to users of different apps. The

strong persistence of cross-app transactions also suggests that—consistent with our conceptual

framework—preferences for payment apps vary across users.

2. Users’ post-demonetization choices indicate a preference for interoperable over closed-

loop payments. As noted above, a wide literature exploits the decline in cash availability after

demonetization as a shock to demand for digital payments. A natural question is then: When

forced to try digital payments, which type of platform did users prefer? The incumbent payments

platform for which we have data still offered only a closed-loop digital wallet in the year after

demonetization—i.e., it had not yet integrated with UPI—allowing us to compare the impacts of

demonetization on usage of closed-loop versus interoperable payments. Figure 5 shows the results.

In November and December 2016, when the cash shortage was most severe, transaction values

increased sharply on both platforms. However, as cash availability returned to normal in early

2017, the trends diverge: growth in total usage of the non-interoperable, closed-loop incumbent

payment platform plateaued, even as adoption of UPI continued to grow exponentially. The differ-

ence in trends is substantial: while adoption of the non-interoperable alternative was flat between

March and October 2017, UPI grew roughly three-fold. Moreover, UPI’s interoperability was

central to this growth. Cross-app payments rose even more than within-app payments (Appendix

Figure A.2), suggesting that the extra feature of UPI relative to the closed-loop incumbent—i.e.,

interoperability—was indeed valued by users.

Both stylized facts are telling and point to an important role for interoperability in driving

the growth of digital payments. However, they do not allow for causal or quantitative inference

about the role of interoperability. Did digital payments grow more than they would have in a

counterfactual without interoperability? By how much? We next turn to tightly linked theoretical
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and empirical evidence that can speak to these questions.

3 Model

This section introduces a stylized model in which “users”, representing both households and firms,

choose a payment method between two digital payment platforms and an outside option that can be

thought of as cash. After setting up the model in Section 3.1, in Section 3.2 we show how interop-

erability can increase usage of digital payments by unifying the platforms’ otherwise fragmented

networks, and that this increase is larger for more fragmented districts. In Section 3.3, we extend

the framework to derive empirical predictions that we then test in Section 4. Section 3.4 discusses

a few modeling choices and assumptions, highlighting how they help isolate the key economic

channels on which we focus. All proofs are provided in Appendix B.

3.1 Setup

Environment. We build a model of payment method choice and competition inspired by the

modern literature on currency competition (e.g., Farhi and Maggiori, 2018; Coppola, Krishna-

murthy, and Xu, 2023). The model is static. Many districts d ∈ {1, ..., D} each contain a closed

unit square of users, and each user seeks to make a within-district payment. Three payment meth-

ods are available and mutually exclusive: digital payment platform a, digital payment platform

b, and an outside option C, which we label as cash.14 Users in each district are distributed uni-

formly along two dimensions, x and y, where (x, y) ∼ U([0, 1]× [0, 1]). These dimensions capture

users’ intrinsic preferences over the payment methods, as we elaborate shortly. All users choose

their payment method pd,x,y ∈ {a, b, C} simultaneously. To focus on how interoperability affects

competition between multiple networks, we abstract from dynamic considerations related to early

versus late adoption decisions within any single payment network, a question that has been studied

extensively in Crouzet, Gupta, and Mezzanotti (2023) and Alvarez, Argente, Lippi, Méndez, and

14Imposing mutual exclusion rules out multihoming in the model. In Appendix D, we discuss the potential impli-
cations of this assumption for our empirical estimates.
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Patten (2023).

Preferences for digital payments. To focus on network effects in the use of money and pay-

ments, we follow the literature (e.g., Krishnamurthy and Vissing-Jorgensen, 2012; Stein, 2012) in

modeling the convenience that users derive from a given payment method, explicitly incorporating

network externalities—that is, a user enjoys higher convenience when more users adopt the same

payment method, as similarly modeled in the recent literature on digital payment adoption (e.g.,

Cong, Li, and Wang, 2021; Crouzet, Gupta, and Mezzanotti, 2023).

Specifically, user (x, y) in district d perceives digital payments platform i ∈ {a, b} to provide

utility in terms of convenience:

ua
d,x,y =


1 + κN∗

d,a if x ≤ x̂d

0 if x > x̂d

ub
d,x,y =


0 if x ≤ x̂d

1 + κN∗
d,b if x > x̂d

(1)

where N∗
d,i is the number of digital payments users that can be accessed through platform i in

district d. In the absence of interoperability, this is simply equal to the number of users of platform

i in district d, which we denote by Nd,i. Intuitively, the inclusion of Nd,i captures the network

externalities: a user of digital payment method i in district d enjoys higher convenience when

more users adopt the same payment method i. The parameter κ > 0 summarizes the intensity of

network benefits that each accessible user generates for each (other) platform user.

Following the literature on payment competition and consumer affinity for different types of

service (e.g., Parlour, Rajan, and Zhu, 2022), we assume that exogenous differences across users—

e.g., brand familiarity, service attachment, or personal preferences—split potential users of the

two digital payment methods a and b into two types along the x-dimension: those who consider

using platform a versus cash, and those who consider using platform b versus cash. Specifically,

the boundary x̂d ∈ (0, 1
2
) in equation (1) above denotes the share of users in each district that

perceive benefits from platform a relative to platform b. We allow districts to differ in the level

of this x̂d. The lower bound x̂d > 0 implies that all districts include some users who consider
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each platform. The upper bound x̂d < 1
2

is without loss of generality and imposed purely for

expositional convenience: it entails that platform b always ends up with more digital payments

users in every district, allowing us to use higher values of x̂d as a monotonic indicator of pre-

interoperability network fragmentation. Aside from differences in x̂d, districts are assumed to be

identical.

Preferences for cash. Similarly, using cash provides utility uC
d,x,y = γy from its convenience,

and we denote by Nd,C the number of cash users in district d. As a benchmark, we assume that

this cash convenience to a given user does not depend on other users’ choices of payment method.

Instead, users differ on a pure cash preference y, which could reflect pure idiosyncratic hetero-

geneity or differences in adoption costs, demographic preferences (Crouzet, Ghosh, Gupta, and

Mezzanotti, 2024), or instrumental motives (e.g., informal merchants seeking to minimize taxable

income). We impose the parameter restriction that γ > 1 + κ, which is sufficient to ensure that

some users always choose cash.15

Expectations and equilibrium concept. Users have rational expectations over others’ choices,

and we focus on stable, rational equilibria in pure strategies. Specifically, any equilibrium consists

of a collection {Nd,a, Nd,b, Nd,C} such that Nd,a + Nd,b + Nd,C = 1 for all d ∈ {1, . . . , D}. In

equilibrium, users’ expectations about the total number of users adopting their chosen payment

method are correct. Moreover, following a deviation by a small but positive mass of users, choices

revert to the same equilibrium, ensuring stability.16

Interoperability. When interoperability is imposed, it entails that each digital payments platform

enables access to the combined user base of both: N∗
d,i becomes ND

d := Nd,a + Nd,b for both

i ∈ {a, b}.

15To see this, note that for the users with strongest preferences for cash (y = 1), even if all other users pooled
on a given digital platform (Nd,i → 1), the payoff from using i would still be less than that from using cash, since
limNd,i→1 u

i
d,x,y(y = 1) = 1 + κ < γ = uC

d,x,y(y = 1).
16We also impose the tie-breaking assumption that users who are indifferent between cash and a digital platform

choose the digital platform. Given that each user has infinitesimal mass, this assumption is without loss of generality.
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3.2 Equilibrium analysis

We first consider the implications of interoperability in a single district d and examine equilibria

in the baseline and when interoperability is imposed. Users’ problem is to choose the payment

method that maximizes their utility, given their perceptions of the value of each option and their

expectations of others’ choices:

max
pd,x,y∈{a,b,C}

Ud,x,y =


ua
d,x,y if choosing digital payments platform a,

ub
d,x,y if choosing digital payments platform b,

uC
d,x,y if choosing cash.

(2)

Since each user’s valuation of cash never changes across scenarios, total welfare rises monotoni-

cally with the number of users choosing to make digital payments in equilibrium, allowing us to

use total digital payments as a proxy for social welfare.17

We first construct a benchmark against which to measure the impact of interoperability by con-

sidering the simplified case in which all users value the two digital payments platforms identically.

Specifically, when equation (1) is replaced with ui
d,x,y = 1 + κNd,i for i ∈ {a, b} we derive the

following lemma:

Lemma 1 (Homogeneous platform valuations). When users’ valuations of the two digital plat-

forms are homogeneous, the only stable equilibria are those in which all digital payments users

pool on one platform. In these equilibria, total digital payments usage is ND,Homog
d = ȳ = 1

γ−κ
.

This outcome is depicted in Figure 6. Intuitively, when all users value the two digital payments

platforms identically, all digital payments users—those for whom the utility of digital payments

outweighs their preference for cash—prefer to be on the larger platform. Such users thus always

choose the platform they expect to have a larger user base, so any outcome in which they end up

17Intuitively, cash is always available to every user, and always provides the same value to them, i.e., γy. Thus each
inframarginal user choosing instead to use digital payments must receive value strictly greater than γy, implying a rise
in total welfare.
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on the smaller platform does not fulfill their expectations, violating our concept of equilibrium.18

Ultimately, this leads to a single dominant platform, realizing the maximum possible network

benefits.

Turning to the baseline, where preferences follow equation (1), the exogenous differences in

familiarity or preferences lead digital payments users to split between the two platforms, leading

to fragmentation and reducing total realized network benefits.

Lemma 2 (Baseline equilibrium). When users’ valuations of the two digital platforms are het-

erogeneous, digital payments users fragment between platforms. Usage of platform a is Nd,a =

x̂dŷd,a = x̂d

γ−κx̂d
and usage of platform b is Nd,b = (1 − x̂d)ŷd,b = 1−x̂d

γ−κ(1−x̂d)
, resulting in total

digital payments usage ND,Baseline
d = x̂d

γ−κx̂d
+ 1−x̂d

γ−κ(1−x̂d)
.

This outcome is depicted in Figure 7a. Intuitively, the heterogeneous preferences among users on

which digital payments platform is preferable leads them to fragment between the two. This, in

turn, reduces the network benefits associated with each platform and lowers total usage of dig-

ital payments and total welfare relative to the pooling equilibria that result from homogeneous

preferences in Lemma 1.

Lemma 3 (Interoperability equilibrium). When users’ valuations of the two digital platforms are

heterogeneous, interoperability raises total digital payments to the level that results when valua-

tions are homogeneous. Usage of platform a is Nd,a = x̂dȳ = x̂d

γ−κ
and usage of platform b is

Nd,b = (1− x̂d)ȳ = 1−x̂d

γ−κ
, resulting in total digital payments usage ND,Interop

d = ȳ = 1
γ−κ

.

This outcome is depicted in Figure 7b. Interoperability unlocks network benefits between users

on different platforms, leading total usage of digital payments to rise to the level that results when

users all pool on one platform. Combining Lemmas 1, 2 and 3, we have:

Proposition 1 (Interoperability and total digital payments). Interoperability resolves market frag-

mentation, increasing total usage of digital payments—and hence welfare—to the level that would
18A third equilibrium does exist where usage of the two digital payments platforms is exactly equal, but this outcome

is unstable: the deviation of an arbitrarily small but positive mass of users ϵ from platform j to platform i would lead
all other digital payments users to also prefer i, implying a pooling equilibrium once again.
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result in the absence of heterogeneous valuations of platforms across users.

Importantly, Proposition 1 highlights that interoperability delivers the network benefits and level

of total adoption that would otherwise require a single, dominant platform while still respecting

users’ heterogeneous preferences across competing platforms. When user preferences are homoge-

neous, the two configurations—either connecting platforms through interoperability or pooling all

users onto a single monopoly platform—lead to the same level of digital payment usage, denoted

ȳ. However, when users have heterogeneous preferences over the competing platforms and do not

naturally converge on one, only interoperability can unify them within a single connected network

while respecting their heterogeneous preferences, thereby maximizing welfare. In this sense, in-

teroperability helps realize the full network benefits of digital payments without sacrificing user

choice.

Immediately, we note that by realizing previously unrealized cross-platform network effects,

interoperability not only increases total adoption of digital payments but also makes both platforms

more valuable to users:

Proposition 2 (Interoperability and usage per digital platform). When users’ valuations of digital

payments platforms are heterogeneous, interoperability increases usage of both platforms, relative

to the baseline equilibrium without interoperability.

This outcome is illustrated by the arrows in Figure 7b. Intuitively, the expanded user base acces-

sible to each platform’s users makes both platforms more attractive. This increased appeal attracts

more users, regardless of their heterogeneous preferences over the two platforms, leading them to

adopt their preferred digital payment method over cash.

An important question is: how do these benefits and improvements vary with the degree of

pre-interoperability fragmentation? Recall that Proposition 1 characterizes the increase in digital

payments usage unlocked by the introduction of interoperability. We examine the heterogeneous

effects across districts by differentiating this quantity with respect to x̂d, which captures the de-

gree of initial fragmentation. The next key result shows that, interestingly, the greater the initial

fragmentation, the larger the gains from introducing interoperability.

19



Proposition 3 (Impact on total digital payments by initial fragmentation). The more fragmented

users of digital payments are across platforms prior to interoperability, the larger the increase in

total digital payments usage—and hence welfare—unlocked by interoperability.

To help understand Proposition 3, Figure 8a illustrates this result by comparing equilibrium out-

comes in two districts, District 0 and District 1, where the latter has a higher share of users that

perceive benefits from platform a relative to platform b (i.e., x̂1 > x̂0). The blue and green areas

respectively show the no-interoperability usage of platforms a and b in District 0, while the dotted

lines trace the corresponding regions in District 1 (which are also the same as the shaded regions

in Figure 7a). Total usage of digital payments in the no-interoperability equilibrium is lower in

District 1 than in District 0: the lower usage of platform b in District 1 more than outweighs the

higher usage of platform a. With interoperability, both districts converge to the same level of to-

tal usage of digital payments ȳ. Combining these two observations reveals that interoperability

increases adoption of digital payments by more in District 1 than in District 0. The top arrow in

Figure 8b shows the comparison being made: both districts see a rise in total digital payments un-

der interoperability—or equivalently, a reduction in usage of cash—but this is largest in the district

with higher x̂d (recalling that x̂d <
1
2
, so both districts are to the left of the peak of the red line).

The key economic intuition underlying Proposition 3 is that more fragmented networks ex ante

imply greater unrealized network benefits ex ante. In the model, greater fragmentation prior to

interoperability, captured by a larger x̂d, implies that users are split more evenly across the two

competing platforms due to differences in preferences or attachments. This fragmentation lim-

its each platform’s effective network size, leaving substantial network benefits unrealized. By

enabling cross-platform transactions, interoperability effectively combines the disjoint user bases

into a unified network, thereby realizing higher previously unrealized network benefits and un-

locking a larger share of potential digital payment transactions over cash. In contrast, when x̂d is

small—i.e., when the district is already relatively integrated and users are concentrated on a single

platform—the marginal gains from interoperability are limited, as most network benefits of digital

payments over cash are already realized.
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Finally, how are the larger gains from interoperability in more fragmented contexts distributed

between platforms? Proposition 2 highlights that interoperability increases usage of each platform

relative to the no-interoperability baseline. Differentiating the gain for each platform with respect

to x̂d, we derive the following proposition:

Proposition 4 (Impact on usage per platform by initial fragmentation). When the no-interoperability

level of fragmentation is relatively low, a marginally higher level of such fragmentation leads to

a larger increase in usage of both digital payments platforms under interoperability. When the

no-interoperability level of fragmentation is relatively high, a marginally higher level of such frag-

mentation can lead to either a larger or smaller increase in usage of a given digital payments

platform under interoperability.

To see these two cases intuitively, consider two districts again and let x̂0 = ϵ and x̂1 = ϵ + ζ . First,

set 0 < ζ < 1
2

and ϵ → 0. As ϵ approaches zero, District 0 approaches full unification (on plat-

form b) even without interoperability—i.e., the no-interoperability level of fragmentation is very

low. In such a case, introducing interoperability has a negligible impact on the utility of digital

payments, since almost all digital payments users can transact with one another even without inter-

operability. In comparison, in District 1 the introduction of interoperability unlocks non-negligible

cross-platform network effects, increasing usage of digital payments on both platforms. Thus inter-

operability increases usage on both platforms by more in the district where usage is initially more

fragmented, as in the first case in Proposition 4. Second, let ϵ → 1
2

and ζ → 0. As ϵ approaches

one half, the impact of further fragmentation on total gains from interoperability levels off—since

once fragmentation peaks at x̂d = 1
2
, further increases in x̂d would imply a reduction in fragmen-

tation. Thus, in the region of x̂d ≈ 1
2
, a higher level of no-interoperability fragmentation x̂d does

not imply any increase in total digital payments in the interoperability equilibrium. Therefore if

one platform is to nonetheless gain greater usage under interoperability when initial fragmentation

rises, the other platform must lose such usage—producing the ambiguity in the second case in

Proposition 4.19

19To see this in Figure 8b, we first highlight that the black curve need not be symmetrical around x̂d = 1
2 (unlike
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3.3 Empirical predictions

The simplest tests of our model would compare the observed usage of digital payments in a given

district before and after the introduction of interoperability. However, such tests would require the

strong assumption that all else remains equal over the same interval. In Appendix C, we extend

the model to allow for external shocks ω that affect ∆ND
d , the change between pre-interoperability

and post-interoperability equilibria in total digital payments. We show that while ω precludes using

∆ND
d (or the single-platform equivalents ∆Nd,a and ∆Nd,b) in a single district to test Propositions

1 and 2, we can nonetheless derive unambiguous tests of the extended model, based on Propositions

3 and 4, by comparing similar districts. Specifically, the extended model implies predictions for

how ∆ND
d , ∆Nd,a and ∆Nd,b vary across districts with (i) common shocks ω and (ii) different

levels of fragmentation in the pre-interoperability equilibrium. Since x̂d is not observable, we

derive predictions that measure (ii) by Fd :=
Nd,a,−1

ND
d,−1

, where Nd,a,−1 and ND
d,−1 are respectively

the (observable) usage of platform a and of both platforms combined in the pre-interoperability

equilibrium. Our predictions, analogous to Propositions 3 and 4, are as follows:

Prediction 1 (Interoperability and total digital payments). Introducing interoperability increases

total usage of digital payments by more in districts where digital payments usage is initially more

fragmented across platforms—i.e., ∂∆ND
d

∂Fd
> 0.

Prediction 2 (Interoperability and usage per platform). When districts’ digital payments users

are relatively unified ex ante, introducing interoperability increases usage on each platform by

more in districts where digital payments usage is initially more fragmented across platforms—i.e.,
∂∆Nd,a

∂Fd
> 0 and ∂∆Nd,b

∂Fd
> 0.

the red curve): for any given x̂d, the increase in usage of platform a (the blue region) could differ from the increase
in usage of platform b (the green region), albeit subject to the constraints that (i) the two increases (regions) sum to
the reduction in usage of cash (i.e., the area under the red curve), and (ii) the increase in usage of platform a for a
given x̂d is equal to the increase in usage of platform b for 1− x̂d, since the two platforms are mirror images of each
other. The condition that “the no-interoperability level of fragmentation is low” in Proposition 4 then equates to the
condition that the districts under consideration are to the left of the peaks of the black line and the equivalent curve for
platform b.
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3.4 Discussion of modeling choices

The baseline model is deliberately kept simple to highlight the key economic channels. Below, we

discuss several modeling choices and assumptions, and assess the extent to which they affect the

scope of our model’s predictions.

Focus on adoption and number of users rather than transactions. In focusing on adoption

decisions, our equilibrium concept is based solely on the equilibrium number of users for each

payment method. Accordingly, the model implies that for each method the total number of trans-

actions is proportional to the total number of users. This modeling choice is supported by the data.

In particular, our empirical analysis disaggregates the effects across three margins: (i) the average

value per transaction, (ii) the number of transactions per digital payment user, and (iii) the number

of users per capita. We find that margin (iii) accounts for the majority of the observed variation,

consistent with the model’s emphasis on adoption as the key driver.

Focus on user rather than platform decisions. The model abstracts from the objectives and

actions of the platform providers, simply assuming that two competing platforms exist and that

interoperability may or may not be exogenously imposed. In this context, users always benefit

from joining a platform with a larger user base and unification of users in a single network is

always beneficial. Unification in a single integrated network through interoperability thus deliv-

ers the same total welfare as the unification on a single private provider that would occur in the

absence of heterogeneous platform valuations. In reality, these two outcomes could have quite

different implications. As discussed in Section 1, “winner-takes-all” private unification could lead

to rent extraction from users or reduce incentives to innovate, leading policymakers to prefer the

interoperability outcome even if rapid unification on a single private platform is feasible.20 We

abstract from these considerations in the model to focus on crystallizing the mechanisms in our

main empirical results. We leave a detailed exploration of provider behavior to future work.
20Even unification on a single interoperable platform could have downsides, however, if doing so slows innovation

on the underlying platform infrastructure. See, for instance, previous debates around introducing ‘New Umbrella
Entities’ to compete with UPI, which ultimately did not proceed.
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Within-district payments only. We focus on within-district payments to simplify the model by

removing cross-district dependencies. We analyze the implications of cross-district payments in

Appendix E. The core implication for our main empirical exercise is that the presence of cross-

district transactions would attenuate our estimates of the impact of integration on digital payments

usage, implying that our empirical results are likely to be a lower bound on the true effect.

Exogenous and discrete preference boundary x̂d. We assume an exogenous and discrete bound-

ary x̂d between the two digital payment platforms, which remains unaffected by the introduction

of interoperability. This modeling choice significantly simplifies the derivation of the equilibrium,

while still allowing the two platforms to compete for users who would otherwise rely on cash.21

One downside is that this eliminates a “platform switcher” margin: for instance, a user might have

an intrinsic preference for platform a yet choose platform b in the absence of interoperability be-

cause it provides access to a larger network; interoperability then unlocks an additional benefit

for the user, since it frees them to switch to the platform that they intrinsically prefer. However,

incorporating this channel would not affect our main empirical predictions, if the proportion of

“potential switchers” is sufficiently small, and our empirical results align with this interpretation.22

4 Empirical Analysis

This section examines the integration of two large payment networks. We examine the heteroge-

neous implications of interoperability due to variation in ex-ante fragmentation in empirical tests

that are tightly linked to the model’s predictions. We consider growth in digital payments in abso-

lute terms and relative to cash.
21Specifically, imposing the exogenous x̂d boundary removes the need to solve a three-way indifference problem,

in which the marginal user is perfectly balanced between the network benefits of platform a, the network benefits
of platform b, and their own preferences for cash. This could be solved by introducing sufficiently strong platform
preferences that vary continuously rather than discontinuously across users, but doing so would add little extra insight.

22Specifically, both platforms grow by more in ex-ante more fragmented districts after integration; we do not find
evidence of overall substitution away from either platform. Of course, “gross switching” (where reallocating users
swap platforms) could still be occurring, even without overall “net switching” (where many move in the same direc-
tion). However, we cannot observe such switching in our data. If it occurs, it simply layers an additional benefit of
interoperability on top of our mechanisms.
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4.1 Estimation strategy

Variation. To test our model predictions, we exploit the integration with UPI of a major incum-

bent fintech firm that previously offered only closed-loop payments. Founded before UPI, this

firm’s platform processed a larger total value of transactions than UPI in the month prior to their

integration, but UPI was growing substantially faster (Figure 9). Moreover, UPI had a much wider

geographical presence: in the median district, the incumbent platform had only a 7.4% share of

total transaction value across the two platforms in the month before integration (Figure 10). Defin-

ing t−1 as the month before integration, we construct the following measure of the presence of the

incumbent across districts d:

Pd :=
Total value of transactions on the incumbent platform in district d in t−1

Total value of transactions across both platforms in district d in t−1

. (3)

Values of Pd closer to 50% imply that users of the two platforms were more fragmented between

platforms prior to the platforms’ integration. Conversely, values closer to zero or 100% imply

greater unification prior to the platforms’ integration. In practice, 97% of districts have incumbent

shares of less than 50% prior to integration (reflecting the skew in Figure 10a), so higher values of

Pd almost always imply higher fragmentation. For our regressions below, we construct a dummy

variable P+
d that takes value one only in districts with above-median values of Pd. The skew in Pd

is such that even the highest value of Pd (87%) implies greater fragmentation than the median value

of Pd (7.4%)—there is no district where the incumbent is so dominant that it reduces fragmentation

to a level below the median. Thus, P+
d serves as an indicator for both (i) districts having an above-

median presence of the incumbent platform prior to integration, and (ii) districts with an above-

median degree of fragmentation between the two platforms prior to integration.23 Consequently,

we use both interpretations interchangeably when describing our results in this section.

23Put differently, P+
d is identical to F+

d , where the latter is a dummy variable taking value one for above-median
values of

Fd :=
Total value of transactions on the smaller platform in district d in t−1

Total value of transactions across both platforms in district d in t−1
(4)

which is the empirical analogue of Fd as defined in Section 3.3.

25



Specification. We adopt a heterogeneous adoption design (de Chaisemartin and D’Haultfœuille,

2023), comparing the average change in outcome variable ydt after integration between districts d

whose digital payments markets were more versus less fragmented ex ante. Specifically, we run

the following specification at the district-month level

ydt =αd + αst + β(P+
d × 1{t≥t0}) + βZ(Zd × 1{t≥t0}) + edt , (5)

where: αd and αst are district and state-time fixed effects; 1{t≥t0} is a dummy variable indicating

post-integration periods; and Zd is the total value of transactions across both platforms in period

t−1 (i.e., the denominator in equation (3)). We include the Zd term to account for the fact that

districts with higher Pd also tend to have higher total pre-integration transaction values, making it

important to distinguish the impact of integrating more fragmented networks from any differential

impact that integration may have had in districts where digital payments usage in general was

greater ex ante. We cluster standard errors at the district level (Bertrand, Duflo, and Mullainathan,

2003).

Our coefficient of interest, β, measures the monthly average increase in ydt after integration

in districts that were more fragmented than the median ex ante, relative to districts that were less

fragmented, after controlling for district and state-time fixed effects and differential trends by total

pre-integration transaction value. Put differently, we use the low fragmentation districts to directly

observe a counterfactual in which de facto interoperability is relatively unaffected by the integra-

tion event—since most digital payments users in such districts could transact with each other even

before interoperability was imposed nationally. To explore the dynamics of this increase, we also

run the corresponding event-study specification:

ydt =αd + αst +
∑
τ ̸=t−1

βτ (P
+
d × 1{t=τ}) +

∑
τ ̸=t−1

ατ (Zd × 1{t=τ}) + vdt , (6)

where the succession of month-wise dummies 1{t=τ} allows us to estimate differences in ydt be-

tween P+
d -groups in each period relative to the difference in the pre-integration baseline period.
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Our primary outcome variable is the total peer-to-merchant (P2M) transaction value, across

both platforms, per capita. This reflects the total transaction value across both platforms, minus

peer-to-peer (P2P) transactions. Excluding the latter provides a closer match to our model—which

focuses on within-district payments—because it eliminates remittances, which can be very large,

are not payments (i.e., transfers of money in exchange for a good or service), and frequently cross

district boundaries.24 In our baseline specification we winsorize the top 1% of ydt to moderate the

influence of a small number of districts with very high transaction values.

Identification: no anticipation. In the model, when users make their payment choices in the

non-interoperability equilibrium they do so with the correct, certain belief that the two platforms

are not in fact interoperable. In reality, users making payment decisions prior to integration may

have anticipated that the two platforms would integrate in future. If users correctly predicted

that digital payments would increase in usefulness by more in high Pd districts relative to low

Pd districts, total digital payments ydt may have increased by more in high Pd districts prior to

integration. For instance, merchants in high Pd districts may have increased their acceptance of

digital payments relative to those in low Pd districts. Such anticipation would bias our estimate

of β, since it is estimated by comparing the average change in the value of digital payments after

integration between the two groups.

Three considerations mitigate this concern. First, the incumbent’s decision to integrate with

UPI was immediately preceded by an RBI directive mandating that digital wallet providers make

their wallets interoperable through UPI. Accurate anticipation would thus have required detailed

knowledge of the regulatory landscape. We do not consider it plausible that such knowledge would

have been sufficiently widespread among the general population to affect our results. Second, such

widespread anticipation—if it did occur—would only bias down our estimate of β in equation

(5), since higher usage of digital payments in above-median Pd districts ex ante would reduce an

estimated increase in usage ex post. Thus this concern would only reduce the likelihood that we

24See Section 3.4 and Appendix E for further discussion of the potential implications of including cross-district
transactions.
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find evidence in favor of Prediction 1 of the model, making our conclusions relatively conservative.

Finally, when we examine the dynamics of our estimated effects using equation (6), we do not see

evidence of differential pre-trends between high- and low-Pd districts, suggesting that anticipation

is not a significant concern for our results.

Identification: parallel trends. In the model, districts d differ only on the exogenous boundary

x̂d, which in turn determines the market shares of each platform in the absence of interoperability

between them. In reality, high- and low-Pd districts could differ in other ways, such that the

observed evolution of outcomes ydt in low-Pd districts does not provide an accurate proxy for the

potential outcomes of the high-Pd districts in the counterfactual world in which they were less

exposed to the platforms’ integration.

We mitigate this concern in five ways. First, we include state-time fixed effects, such that we

only compare high- and low-Pd districts within the same state. Second, we control for differential

trends by total pre-integration transaction value. Thus we control for any factors that affect dis-

tricts’ propensity to use digital payments overall, leveraging only differences in the composition of

that usage. Third, we find no statistical differences in pre-integration trends in ydt between high-

and low-Pd districts using equation (6). Fourth, we show that results remain similar when com-

paring high-Pd districts to a matched sample of low-Pd districts that are otherwise similar on ob-

servables. Fifth, we show that results also remain similar when instrumenting Pd with geographic

decisions taken by the incumbent more than a year prior to integration—before the unexpected de-

monetization shock changed the landscape of digital payments in India. Further details and results

from the matching and instrumental variable approaches are provided in Sections 4.3.1 and 4.3.2

respectively.

4.2 Estimation results

Our baseline estimation results for equation (5) are shown in Table 1. Column 1 shows that the

total P2M transaction value per person increased by 8 Rupees per person per month more after inte-
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gration in high-Pd districts than in low-Pd districts. This response is statistically highly significant

and economically substantial: the increase is 88% of average P2M digital payments in high-Pd

districts in the month prior to integration, and 118% of average monthly P2M digital payments

in low-Pd districts across the year after integration. Consistent with our conceptual framework,

digital payments grew not just in absolute terms but also relative to cash: Column 2 shows that

total P2M digital payments relative to cash withdrawals similarly increased by substantially more

in high-Pd districts than in low-Pd districts. Figure 11 shows the dynamics of these differences:

low-Pd and high-Pd districts do not differ significantly prior to integration, then substantial and

persistent differences emerge after integration.

What drove this relative increase in usage of digital payments? The final three columns of

Table 1 break down the total increase in Column 1 across three different categories of transactions:

transactions where both the payer and the payee used the incumbent’s app (Column 3), transactions

where both the payer and payee used an alternative UPI app (Column 5), and the newly enabled

transactions where one of the payer and payee used the incumbent’s app, and the other used another

UPI app (Column 4). All three transaction categories show increases that are both statistically and

economically significant. The coefficient on the increase in transactions between users of the

incumbent’s app and users of other UPI apps is smaller, since the total value of these transactions

begins at zero, but the magnitude is substantial when compared to the average increase in low-Pd

districts: the differential increase in such payments in high-Pd districts is more than 50% of the

level reached in low-Pd districts. Turning to transactions between users of the incumbent’s app, and

transactions between users of other UPI apps, in both cases districts that were more fragmented ex

ante see substantially larger increases in usage post-integration—implying that the greater increase

in total network size encouraged users of all apps to use the combined platform more intensively,

even for transaction types that were feasible pre-integration. Our results thus suggest that unifying

fragmented networks was a “win-win” in this context: instead of leading to substitution away from

one of the previously separate networks, integration increased usage of both.25

25Appendix Figure A.3 shows the dynamics of these estimates: again, low-Pd and high-Pd districts do not differ
significantly prior to integration, then substantial and persistent differences emerge after integration.
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To unpack the margins underlying the increase in total transaction value per capita, we next

decompose our main estimate (Table 1 Column 1) into the impacts via (i) average value per trans-

action, (ii) transactions per user, and (iii) users per capita. In short, we take the total derivative

of transaction value per capita around the post-interoperability low-Pd sample mean, giving us the

shares of the total effect that are explained by changes in each of (i) to (iii).26 We show the de-

composition in Figure 12, and the constituent estimates in Appendix Table A.1. All three margins

increased significantly more in high-Pd districts than in low-Pd districts, with (i), (ii) and (iii) in-

creasing by 3.0%, 2.6% , and 16% respectively relative to the post-interoperability mean among

low-Pd districts. Overall, growth in (iii), the number of users per capita, explained 72% of the

total increase in digital payments per capita relative to this mean. While significant increases also

occurred on the other two margins, the primary impact of integration was through an increase in

the number of new users, in line with our focus on this margin in the model.

4.3 Robustness

In this section, we explore two complementary extensions of our main specification, both of which

support a causal interpretation of our results. First, we repeat equation (5) when matching high-Pd

districts to low-Pd districts with similar observables, and second, we instrument districts’ Pd-status

using pre-determined geographic decisions taken by the incumbent. Beyond these two approaches,

in Appendix G we also check the robustness of our findings to a wide range of alternative speci-

fications and run placebo tests for both the cross-sectional and temporal variation underlying our

results. In all cases we find that our main results are qualitatively and quantitatively robust.

4.3.1 Matching on district characteristics

For our results to have a causal interpretation, we require that the low-Pd districts provide an

accurate measure of the potential outcomes of the high-Pd districts in the counterfactual scenario

in which they were less fragmented prior to integration. One potential concern is therefore that

26For a full description of our decomposition, see Appendix F.
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the high-Pd districts differed from low-Pd districts in ways not accounted for by our controls and

fixed effects. Appendix Figure A.4 shows the association between P+
d and a range of district-level

observables. While high-Pd and low-Pd are similar on most dimensions, high-Pd districts have

significantly larger populations.

To mitigate concerns that this observable difference in the evolution of digital payments usage

between P+
d -groups after interoperability, we construct a new sample in which we match each

high-Pd district to similar low-Pd districts. We identify the three nearest low-Pd for each high-Pd

district neighbor using Mahalanobis distance matching (with replacement) on the log of population.

Additionally, we exclude 19 high-Pd districts for which no good match exists. This process of

matching allows us to achieve balance across our high-Pd and low-Pd districts on all observables

including population, while retaining 504 districts from our baseline sample.

We repeat our baseline from equation (5) using this matched sample. The results, shown in

Table 2, are qualitatively and quantitatively similar to the baseline, as are the dynamics (Appendix

Figure A.5). As in our baseline, we see no evidence of differential trends in payments prior to

integration.

4.3.2 Instrumenting ex-ante fragmentation

Technologies diffuse through space (see, for instance, Comin, Dmitriev, and Rossi-Hansberg,

2012; Kalyani, Bloom, Carvalho, Hassan, Lerner, and Tahoun, 2025). Like many platform ser-

vices, the incumbent firm’s platform began in a small number of cities before spreading na-

tionally, as a function of a marketing strategy decided well in advance of the subsequent—and

unanticipated—integration with UPI. At any point in time, districts therefore varied in their prox-

imity to the largest clusters of users. Adoption externalities could then imply that, following a

shock that increased demand for digital payments, users closest to these clusters would be more

likely to choose the incumbent’s platform than an alternative, such as UPI (in the pre-integration

world, where they were not yet interoperable).27 We can exploit this variation to isolate variation

27Crouzet, Gupta, and Mezzanotti (2023) provide an extensive discussion of the possible sources of such adoption
externalities in their Online Appendix F.
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in Pd that is unlikely to be correlated with any remaining omitted factors that influence both Pd

and the evolution of outcomes ydt.

Building on Crouzet, Gupta, and Mezzanotti (2023), we identify eight “hub” districts in which

at least 1000 merchants had adopted the platform by September 2016. These districts were outliers:

92% of districts had fewer than 100 merchants signed up, 85% had fewer than 10, and 42% had zero

(Appendix Figure A.6a). However, the districts surrounding these hubs do not look significantly

different from other districts (Appendix Figure A.6b): after all, they were not targeted by the

incumbent firm, they simply happened to be located near a city that was.28 To exploit this variation,

we define a new proximity variable Hd: the negative of the distance in kilometers from the centroid

of district d to the centroid of the nearest hub district. This measure is highly correlated with the

presence of the incumbent in the last month before integration (Appendix Figure A.7a). This is

unsurprising: when demonetization hit in November 2016, firms were more likely to adopt a given

digital payments technology if they were close to other users (Crouzet, Gupta, and Mezzanotti,

2023). Moreover, the variation in Pd that can be explained by Hd is balanced on observable district

characteristics (Appendix Figure A.7b).29

To implement this strategy, we first exclude the hub districts from the sample, then repeat

equation (5) with the following first stage:

(P+
d × 1{t≥t0}) = γd + γst + βH(Hd × 1{t≥t0}) + γZ(Zd × 1{t≥t0}) + udt . (7)

The results, shown in Table 3, are qualitatively similar, and quantitatively somewhat stronger than

the baseline. The dynamics are also similar (Appendix Figure A.8).

28The one exception is that districts closer to hubs have a slightly lower agricultural share of workers, reflecting
that they are more urban. However, given that income, literacy rates and bank and mobile phone coverage do not vary
significantly with proximity to hubs, we do not consider this likely to be driving our results. Any residual concerns are
mitigated by the fact that we find similar results when using our matched sample, described in the previous section,
which is balanced on this variable.

29Again, the one exception is a marginally significant negative correlation with the agricultural share of workers, as
discussed in the previous footnote.
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5 Wider Implications

The analysis thus far focuses on the implications of interoperability for district-level usage of

digital payments. We now widen our analysis in two dimensions. First, we combine our theory and

empirics to derive a model-implied estimate of the aggregate national impact of the two networks’

integration on usage of digital payments. Second, we examine the downstream consequences of

districts’ increased usage of digital payments, specifically the implications for credit markets.

5.1 Aggregate national impact

While the analysis in Section 4 validates our model’s empirical predictions, it focuses on the rel-

ative impact of unifying fragmented networks, identified in the cross-section of districts.30 Put

differently, our well-identified estimates in the cross section do not directly imply an estimate of

aggregate impact. Deriving such an impact requires us to solve a “missing intercept problem”

(e.g., Wolf, 2023; Buera, Kaboski, and Townsend, 2023) to convert the cross-sectional estimates

into aggregates. To solve this problem, we impose additional structure from our model, enabling

us to derive estimates of the absolute impact of unification in each district, which we can then

aggregate to the national level.

We define our object of interest in the model as ∆IND, the total national change in usage

of digital payments that results from integrating fragmented networks. Building on the extended

model in Appendix C, we derive the following result:

Proposition 5 (Aggregate impact). The aggregate impact of integrating the two platforms on total

national usage of digital payments is equal to the sum of the observed changes in usage in each

district, normalized by the observed change in usage in a district whose digital payments users are

30Specifically, our estimates are informative on the differential increase in usage of digital payments after the in-
troduction of interoperability, when comparing a district where digital payments are less fragmented ex ante, to one
where digital payments are more fragmented ex ante.
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already fully unified prior to interoperability. We have:

∆IND =
∑
d

[
∆ND

d −∆ND
d0

]
, (8)

where ∆ND
d0

is the post-interoperability change in usage of digital payments in a district whose

digital payments users are already fully unified on one platform prior to interoperability.

Intuitively, we use the model’s result that connecting the two networks has no impact on a district

that is already fully unified on one platform ex ante: all digital payments users can already interact,

so no new connections are enabled by interoperability. Thus ∆ND
d0

= ω, so we can use the observed

changes in d0 to net out the impact of the unobserved shock in other districts.

Turning to the data, we proxy the “fully unified ex ante” districts d0 with the first decile of the

Fd distribution. Put differently, these districts allow us to directly observe a “no-interoperability”

counterfactual. We can then estimate the impact in a given district d relative to that in d0 by making

the change in usage of digital payments in first-decile districts the baseline value in a version of

equation (5). Specifically, we run:

ydt =αd + αst +
10∑
n=2

βn(F
n
d × 1{t≥t0}) + βZ(Zd × 1{t≥t0}) + edt , (9)

where F n
d is a dummy taking value one if district d is in the nth decile of the distribution of

Fd. By omitting the interaction between F 1
d and the post-interoperability dummy, each coefficient

β2, ..., β10 is estimated relative to the baseline change in the most ex-ante unified districts—i.e.,

each coefficient βn approximates ∆ND
d −∆ND

d0
within decile n of the Fd distribution. Thus under

the assumptions of the model, and the identification assumptions discussed in Section 4.1 and

Appendix C, this method recovers the absolute change in ydt that results from integrating the two

platforms’ previously fragmented networks.

We define ydt as the total P2M transaction value per capita, as in Section 4.1. Thus, each

estimated coefficient β̂n represents the monthly average increase in total P2M transaction value

per capita after interoperability was introduced, across districts in decile n of the Fd distribution,
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relative to districts in the first decile, when controlling for district and state-time fixed effects

and differential trends by total pre-integration transaction value. Appendix Figure A.9 plots the

coefficients. As predicted by the model, we find a limited impact of interoperability in districts

that are initially relatively unified, and an increasing impact in districts that are initially relatively

fragmented.

Finally, we aggregate these estimates to the national level by calculating the empirical analogue

of equation (8). Defining the total national increase in y that is attributable to interoperability as

∆Iy, we calculate:

∆Iy =

∑
d

∑10
n=2 β̂n × F n

d × Populationd∑
d Populationd

, (10)

i.e., we calculate the estimated impact β̂n × F n
d in each district d in each decile n, aggregate

these to the national level by applying population weights Populationd, then re-normalize using

the national population. We find that connecting the two networks increased the total value of

digital payments nationally by ∆Iy = 9.9 Rupees per capita per month within the first year after

integration. Comparing this to the average national P2M transaction value per capita in the month

before integration, this equates to an increase of

∆Iy(∑
d yd,t−1

×Populationd∑
d Populationd

) × 100 = 160%. (11)

This large number partly reflects that overall digital payments grew substantially over the period.

We therefore also compare ∆Iy to an estimate of the monthly average national P2M transaction

value per capita in the month of the reform and over the following year, in the event that integration

had not occurred. This counterfactual is simply the observed average national P2M transaction

value per capita minus the part that we estimate results from interoperability, i.e., ∆Iy. Thus we

estimate that the two networks’ integration raised the average national P2M transaction value per
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capita per month by

∆Iy

1
13

∑
t≥t0

(∑
d ydt×Populationd∑

d Populationd

)
−∆Iy

× 100 = 57% (12)

relative to the value that would have occurred in the absence of the integration event. Thus, our

estimates from combining our model with cross-sectional evidence suggest that integrating frag-

mented networks can have a substantial aggregate impact on usage of a payments network. Consid-

ering that UPI ultimately integrated various other pre-existing networks—although none so large

as the incumbent network that we study—our findings thus suggest that interoperability played a

significant role in the take-off of the platform.

5.2 Downstream impact on lending

We primarily focus on how interoperability supports usage of digital payments in this paper. The

conceptual framework and evidence we present shows that interoperability can increase usage of

digital payments by integrating networks that would otherwise be fragmented. Here, we present

evidence of a natural consequence of this increase in digital payments: increased activity in credit

markets.31

We use a similar heterogeneous adoption design as in our baseline to examine whether higher

usage after fragmented networks are integrated leads to more borrowing. We use the following

specification at the household-survey wave level:

yht =αh + αst + β(P+
d × 1{t≥t0}) + βZ(Zd × 1{t≥t0}) + edt . (13)

Our dependent variable here is the probability of borrowing from non-banks, as non-banks are

more likely to be able to draw on the information generated by greater digital payments activity

31For surveys of the potential channels through which digital payments can facilitate credit provision, see Berg,
Fuster, and Puri (2022) and Ouyang (2021, Section 3.2.1). For additional evidence in the Indian context, see Dubey
and Purnanandam (2023).
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(Ghosh et al., 2022). As in our baseline, this specification asks whether borrowing increased more

in districts that were more fragmented ex ante, relative to districts that were less fragmented, after

controls. In this case, we include household fixed effects αh, as the data is at the household level,

as well as state-time fixed effects αst. We continue to cluster standard errors at the district level.

We find that borrowing does increase more in districts that benefited more from the integration

of previously fragmented networks. Table 4 shows the results. After integration, in districts with

above median fragmentation, the probability of borrowing increases by 1.1% relative to districts

with below median fragmentation, which is economically large given the low baseline probabil-

ity of borrowing. These increases were larger for households more likely to benefit from digital

payments activities, specifically entrepreneurs or hawkers.32

Importantly, consistent with our conceptual framework and evidence on digital payments us-

age, we find that interoperability provides larger downstream benefits in districts with higher ex-

ante fragmentation. As our measure of borrowing focuses exclusively on the extensive margin,

these results show that more households are able to access credit after integration. These results

therefore suggest that greater usage of retail digital payments reduces frictions in credit markets,

allowing more households to borrow, consistent with prior work (Dubey and Purnanandam, 2023;

Alok, Ghosh, Kulkarni, and Puri, 2024).

6 Conclusion

The presence of network effects in payment technologies leads to an important tradeoff in pay-

ment system design. On one hand, stronger network effects lead to concerns about the emergence

of a few dominant platforms. On the other hand, disruption from new entrants—including pub-

lic platforms—could lead to more fragmentation, undermining the inherent network benefits of

payments.

32These households typically lack formal collateral, have significant credit constraints, and also face relatively high
transaction frictions—each of which can be ameliorated by digital payments that create a verifiable record of revenues
(Dubey and Purnanandam, 2023; Berg et al., 2022; Ghosh et al., 2022).
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We use novel data to examine whether interoperability can help resolve this tension by reducing

fragmentation without requiring all users to centralize on a single payments provider. Crucially, we

observe activity on two large payment networks—and a proxy for cash—at a granular geographic

level. This allows us to exploit the unique natural experiment created when the two networks

became interoperable.

By comparing districts in which payments markets were more fragmented prior to

integration—which effectively saw a larger integration shock—to districts with less initial frag-

mentation, we isolate the causal impact of interoperability. We estimate that integration roughly

doubled the monthly value of digital payments in more fragmented districts. Importantly, newly en-

abled transactions between the two platforms rose significantly after integration, highlighting that

users valued the additional options interoperability provided them. We also see positive spillovers

within each network.

These estimates have important wider implications. Aggregating nationally, we estimate that

integrating the two networks increased total nationwide usage of digital payments by more than

50% in the year after integration. Moreover, lending grew by more in districts in which interoper-

ability brought larger gains to users of digital payments, consistent with greater uptake of digital

payments reducing financial frictions.

Our empirical evidence on the impact of integrating large payment networks has important

implications for policymakers focused on both domestic payments and cross-border payments.

Where payment networks are poorly developed or fragmented, our results highlight that increas-

ing interoperability can unlock substantial network benefits for users. Conversely, our results warn

that promoting new, non-interoperable payment platforms risks significant costs by increasing frag-

mentation.

38



References

ACI WORLDWIDE (2023): “Prime Time for Real-Time Report 2023,” .

AGARWAL, S., S. ALOK, P. GHOSH, S. GHOSH, T. PISKORSKI, AND A. SERU (2017): “Banking

the Unbanked: What do 280 Million New Bank Accounts Reveal about Financial Access?”

SSRN Scholarly Paper 2906523, Social Science Research Network, Rochester, NY.

AGARWAL, S., P. GHOSH, J. LI, AND T. RUAN (2024): “Digital Payments and Consumption:

Evidence from the 2016 Demonetization in India,” The Review of Financial Studies.

ALOK, S., P. GHOSH, N. KULKARNI, AND M. PURI (2024): “Does Open Banking Expand Credit

Access?” NBER Working Papers.

ALONSO, C., T. BHOJWANI, E. HANEDAR, D. PRIHARDINI, G. UNA, AND K. ZHABSKA

(2023): “Stacking Up the Benefits: Lessons from India’s Digital Journey,” Tech. rep., Inter-

national Monetary Fund, Washington, D.C.

ALVAREZ, F. E., D. ARGENTE, F. LIPPI, E. MÉNDEZ, AND D. V. PATTEN (2023): “Strate-

gic Complementarities in a Dynamic Model of Technology Adoption: P2P Digital Payments,”

NBER Working Papers, 31280 National Bureau of Economic Research, Inc.

BENIGNO, P., L. M. SCHILLING, AND H. UHLIG (2022): “Cryptocurrencies, Currency Compe-

tition, and the Impossible Trinity,” Journal of International Economics, 136, 103601.

BERG, T., A. FUSTER, AND M. PURI (2022): “FinTech Lending,” Annual Review of Financial

Economics, 14, 187–207, annual Reviews.

BERTRAND, M., E. DUFLO, AND S. MULLAINATHAN (2003): “How Much Should We Trust

Differences-In-Differences Estimates?” The Quarterly Journal of Economics, 119, pp. 249–275.

BIANCHI, M., M. BOUVARD, R. GOMES, A. RHODES, AND V. SHREETI (2023): “Mobile Pay-

ments and Interoperability: Insights From the Academic Literature,” Information Economics

and Policy, 65, 101068.

39



BJÖRKEGREN, D. (2019): “The Adoption of Network Goods: Evidence from the Spread of Mo-

bile Phones in Rwanda,” The Review of Economic Studies, 86, 1033–1060.

——— (2022): “Competition in Network Industries: Evidence From the Rwandan Mobile Phone

Network,” The RAND Journal of Economics, 53, 200–225.

BOURREAU, M. AND J. KRAEMER (2023): “Interoperability in Digital Markets: Boon or Bane

for Market Contestability?” SSRN Scholarly Paper 4172255, Social Science Research Network,

Rochester, NY.

BOURREAU, M. AND T. VALLETTI (2015): “Competition and Interoperability in Mobile Money

Platform Markets: What Works and What Doesn’t?” Communications & Strategies, 1, 11–32,

iDATE, Com&Strat dept.

BRAINARD, L. (2019): “Delivering Fast Payments for All,” Speech at the Federal Reserve Bank

of Kansas City Town Hall, Kansas City, Missouri, August, 5, 2019.

BRUNNERMEIER, M. AND J. PAYNE (2022): “Platforms, Tokens, and Interoperability,” Working

Paper, Princeton University. Economics Department.

BRUNNERMEIER, M. K., N. LIMODIO, AND L. SPADAVECCHIA (2023): “Mobile Money, Inter-

operability, and Financial Inclusion,” SSRN Scholarly Paper 4574641, Social Science Research

Network, Rochester, NY.

BRUNNERMEIER, M. K. AND J. PAYNE (2023): “Strategic Money and Credit Ledgers,” NBER

Working Papers, 31561.

BUERA, F. J., J. P. KABOSKI, AND R. M. TOWNSEND (2023): “From Micro to Macro Develop-

ment,” Journal of Economic Literature, 61, 471–503.

CHODOROW-REICH, G., G. GOPINATH, P. MISHRA, AND A. NARAYANAN (2020): “Cash and

the Economy: Evidence from India’s Demonetization,” The Quarterly Journal of Economics,

135, 57–103.

40



COMIN, D. A., M. DMITRIEV, AND E. ROSSI-HANSBERG (2012): “The Spatial Diffusion of

Technology,” NBER Working Papers, 18534.

CONG, L. W., Y. LI, AND N. WANG (2021): “Tokenomics: Dynamic Adoption and Valuation,”

The Review of Financial Studies, 34, 1105–1155.

CONG, L. W. AND S. MAYER (2025): “Strategic Digitization in Currency and Payment Competi-

tion,” Journal of Financial Economics, 168, 104055.

COPESTAKE, A., D. KIRTI, AND M. S. MARTINEZ PERIA (2025): “Growing Retail Digital

Payments: The Value of Interoperability,” IMF Fintech Note 2025/004, International Monetary

Fund, Washington, DC.

COPPOLA, A., A. KRISHNAMURTHY, AND C. XU (2023): “Liquidity, Debt Denomination, and

Currency Dominance,” Tech. rep., National Bureau of Economic Research.

CROUZET, N., P. GHOSH, A. GUPTA, AND F. MEZZANOTTI (2024): “Demographics and Tech-

nology Diffusion: Evidence from Mobile Payments,” SSRN Scholarly Paper 4778382, Social

Science Research Network, Rochester, NY.

CROUZET, N., A. GUPTA, AND F. MEZZANOTTI (2023): “Shocks and Technology Adoption:

Evidence from Electronic Payment Systems,” Journal of Political Economy, 131.

CUNLIFFE, J. (2023): “The Digital Pound,” Speech at UK Finance.

DE CHAISEMARTIN, C. AND X. D’HAULTFŒUILLE (2023): “Credible Answers to Hard Ques-

tions: Differences-in-Differences for Natural Experiments,” SSRN Scholarly Paper 4487202,

Social Science Research Network, Rochester, NY.

DI MAGGIO, M., P. GHOSH, S. GHOSH, AND A. WU (2024): “Impact of Retail CBDC on Digital

Payments, and Bank Deposits: Evidence from India,” SSRN Scholarly Paper 4779520, Social

Science Research Network, Rochester, NY.

41



DING, D., R. GONZALEZ, Y. MA, AND Y. ZENG (2024): “The Effect of Instant Payments on the

Banking System: Liquidity Transformation and Risk-Taking,” SSRN Scholarly Paper 5250569,

Social Science Research Network, Rochester, NY.

DUBEY, T. S. AND A. PURNANANDAM (2023): “Can Cashless Payments Spur Economic

Growth?” SSRN Scholarly Paper 4373602, Social Science Research Network, Rochester, NY.

DUFFIE, D. (2019): “Digital Currencies and Fast Payment Systems: Disruption Is Coming,” in

Asian Monetary Forum, May, mimeo.

——— (2023): “Fragmentation Risks to the Dollar-Dominated International Financial Order,”

Keynote Speech at Asian Bureau of Finance and Economic Research.

EKMEKCI, M., A. WHITE, AND L. WU (2025): “Platform Competition and Interoperability: The

Net Fee Model,” Management Science.

FARHI, E. AND M. MAGGIORI (2018): “A Model of the International Monetary System,” The

Quarterly Journal of Economics, 133, 295–355.

FERRARI, S., F. VERBOVEN, AND H. DEGRYSE (2010): “Investment and Usage of New Tech-

nologies: Evidence from a Shared ATM Network,” The American Economic Review, 100,

1046–1079.

FINANCIAL STABILITY BOARD (2024): “G20 Roadmap for Enhancing Cross-border Payments,”

Tech. rep., Financial Stability Board, Basel, Switzerland.

FISHER, I. (1911): The Purchasing Power of Money. Its Determination and Relation to Credit,

Interest and Crises, New York: The Macmillan Co.

FROST, J., P. K. WILKENS, A. KOSSE, V. SHREETI, AND C. VELASQUEZ (2024): “Fast Pay-

ments: Design and Adoption,” BIS Quarterly Review.

GHOSH, P., B. VALLEE, AND Y. ZENG (2022): “FinTech Lending and Cashless Payments,” SSRN

Scholarly Paper 3766250, Social Science Research Network, Rochester, NY.

42



GOLDSTEIN, I., M. YANG, AND Y. ZENG (2023): “Payments, Reserves, and Financial Fragility,”

Available at SSRN, 4547329.

HIGGINS, S. (2024): “Financial Technology Adoption: Network Externalities of Cashless Pay-

ments in Mexico,” American Economic Review, 114, 3469–3512.

KALYANI, A., N. BLOOM, M. CARVALHO, T. HASSAN, J. LERNER, AND A. TAHOUN (2025):

“The Diffusion of New Technologies,” The Quarterly Journal of Economics, 140, 1299–1365.

KATZ, M. L. AND C. SHAPIRO (1985): “Network Externalities, Competition, and Compatibility,”

The American Economic Review, 75, 424–440.

KIYOTAKI, N. AND R. WRIGHT (1989): “On Money as a Medium of Exchange,” Journal of

Political Economy, 97, 927–954.

KRISHNAMURTHY, A. AND A. VISSING-JORGENSEN (2012): “The Aggregate Demand for Trea-

sury Debt,” Journal of Political Economy, 120, 233–267.

KRUGMAN, P. (1984): “The International Role of the Dollar: Theory and Prospect,” Exchange

Rate: Theory and Practice, 1, 261–278.

LAGARDE, C. (2025): “This Is Europe’s ‘Global Euro’ Moment,” Op-ed in Financial Times.

LAHIRI, A. (2020): “The Great Indian Demonetization,” Journal of Economic Perspectives, 34,

55–74.

LANE, P. (2025): “The Digital Euro: Maintaining the Autonomy of the Monetary System,” .

LIANG, P., M. SAMPAIO, AND S. SARKISYAN (2024): “Digital Payments and Monetary Policy

Transmission,” SSRN Scholarly Paper 4933059, Social Science Research Network, Rochester,

NY.

MATSUYAMA, K., N. KIYOTAKI, AND A. MATSUI (1993): “Toward a Theory of International

Currency,” The Review of Economic Studies, 60, 283–307.

43



MENGER, K. (1892): “On the Origin of Money,” The Economic Journal, 2, 239–255, [Royal

Economic Society, Wiley].

OUYANG, S. (2021): “Cashless Payment and Financial Inclusion,” SSRN Scholarly Paper

3948925, Social Science Research Network, Rochester, NY.

PAN, G. (2025): “A Few Observations on Global Financial Governance,” Speech at 2025 Lujiazui

Forum.

PARLOUR, C. A., U. RAJAN, AND H. ZHU (2022): “When FinTech Competes for Payment

Flows,” The Review of Financial Studies, 35, 4985–5024.

PATNAM, M. AND W. YAO (2020): “The Real Effects of Mobile Money: Evidence from a Large-

Scale Fintech Expansion,” IMF Working Papers.

RESERVE BANK OF INDIA (2022): “Discussion Paper on Charges in Payment Systems,” Reserve

Bank of India, Department of Payment and Settlement Systems, Central Office, Mumbai.

RISHABH, K. (2024): “Beyond the Bureau: Interoperable Payment Data for Loan Screening and

Monitoring,” SSRN Scholarly Paper 4782597, Social Science Research Network, Rochester,

NY.

RISHABH, K. AND J. SCHÄUBLIN (2021): “Payment Fintechs and Debt Enforcement,” Working

papers, 2021/02 Faculty of Business and Economics - University of Basel.

ROCHET, J. AND J. TIROLE (2004): “Two-Sided Markets: An Overview,” Toulouse, France, The

Economics of Two-Sided Markets.

ROCHET, J.-C. AND J. TIROLE (2003): “Platform Competition in Two-Sided Markets,” Journal

of the European Economic Association, 1, 990–1029, MIT Press.

SAMPAIO, M. AND J. R. H. ORNELAS (2024): “Payment Technology Complementarities and

their Consequences on the Banking Sector,” SSRN Scholarly Paper 5002235, Social Science

Research Network, Rochester, NY.

44



SARKISYAN, S. (2023): “Instant Payment Systems and Competition for Deposits,” SSRN Schol-

arly Paper 4176990, Social Science Research Network, Rochester, NY.

STEIN, J. C. (2012): “Monetary Policy As Financial Stability Regulation,” The Quarterly Journal

of Economics, 127, 57–95.

STEINSSON, J. (2025): “Money and Banking,” in Lectures in Macroeconomics, chap. 14.

VAYANOS, D. (1999): “Strategic Trading and Welfare in a Dynamic Market,” The Review of

Economic Studies, 66, 219–254.

WANG, L. (2024): “Regulating Competing Payment Networks,” working paper.

WEINBERG, J. A. (1997): “The Organization of Private Payment Networks,” SSRN Scholarly

Paper 2129857, Social Science Research Network, Rochester, NY.

WOLF, C. K. (2023): “The Missing Intercept: A Demand Equivalence Approach,” American

Economic Review, 113, 2232–2269.

YI, G. (2021): “China’s Experience With Regulating Big Tech,” Speech at 11th BIS Research

Network meeting.

45



Figures and Tables

Figure 1: Number of apps and banks participating in UPI
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Notes: This graph shows the cumulative number of apps and banks participating in the UPI ecosystem over
time. Source: NPCI.

46



Figure 2: Electronic retail payments in India
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(b) Volume (transactions per capita)
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Notes: This graph shows the value and volume of UPI and other electronic retail payment methods in India.
Pre-paid payment instruments include smart cards and mobile wallets that are pre-loaded with value using
cash, card or other methods. Source: RBI, NPCI, Haver Analytics, WDI.
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Figure 3: Volume of fast payment transactions (millions)
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Notes: Fast payments: real-time or near real-time transfers of funds between accounts of end users as close
to a 24/7 basis as possible (Frost, Wilkens, Kosse, Shreeti, and Velasquez, 2024). US comprises Zelle from
2017 and RTP from 2020. Source: BIS, Statista, The Clearing House.
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Figure 4: Share of cross-app transactions on UPI (%)
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Notes: This graph plots the share of transactions on UPI that occur between two different apps, measured
in turn using transaction value and transaction volume. Since we only observe the full payer app-payee
app matrix for four major apps plus a consolidated “Other app” category, we estimate the share of cross-
app payments in the “Other app” to “Other app” cell using the procedure described in Appendix H. The
shaded areas show the range of possible values without using this procedure, with the maximum (minimum)
values depicting the result when categorizing all (no) “Other app” to “Other app” transactions as cross-app
transactions.
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Figure 5: Closed-loop and interoperable digital payments after demonetization (indexed)
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 Central lines show the median across states, and inner (outer) shaded regions show 25-75th (10-90th) percentiles.

Notes: The green line shows national ATM withdrawals, by value, indexed to 100 in the month before
demonetization (October 2016). The red line shows the total value of transactions on a major closed-loop
incumbent digital payments platform in the median state, again indexed to 100 in October 2016. The blue
line shows the same for transactions on UPI (which did not during this period include the closed-loop
incumbent). The inner (outer) blue and red shaded regions show the 25-75th (10-90th) percentiles across
states.
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Figure 6: Equilibrium when all users value the digital platforms identically

Notes: This figure depicts the outcome in Lemma 1, where users have homogeneous preferences across
digital payments platforms so in equilibrium all pool on one. The resulting level of digital payments usage
ȳ represents the benchmark level achieved when network benefits are maximized, in this case by all digital
payments users being unified on one dominant platform. Shaded regions indicate the equilibrium payment
method choices of the users contained within them.
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Figure 7: Equilibria for a given boundary x̂d

(a) Baseline (b) Interoperability

Notes: Panel (a) depicts the outcome in Lemma 2, in which users are fragmented across platforms and the
number of transactions on platform b is larger, since x̂d < 1

2 by assumption. Panel (b) depicts the outcome in
Lemma 3, in which interoperability unifies the two fragmented networks, increasing total network benefits
and restoring the benchmark level of adoption ȳ in Figure 6. Shaded regions indicate the equilibrium choices
of the users contained within them. Regions containing arrows indicate changes in these choices when
comparing the baseline equilibrium to the equilibrium with interoperability.
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Figure 8: Comparing the impact of interoperability across districts

(a) Pre- and post-interoperability equilibria (b) Impact by district’s user-type share x̂d

Notes: Panel (a) compares the equilibrium outcomes of the district in Figure 7 (shown here as District 1) to
those in another District 0 with x̂0 < x̂1. Without interoperability, total adoption of platform a is smaller and
total adoption of platform b is larger in District 0, relative to District 1. Interoperability increases adoption
of both platforms in both districts, but the increases are larger in District 1 than in District 0, as summarized
in Panel (b). In Panel (a), shaded regions relate to District 0 and indicate the equilibrium choices of the users
contained within them, while regions containing arrows indicate changes in these choices when comparing
the baseline equilibrium to the equilibrium with interoperability. The dotted lines in Panel (a) indicate the
corresponding regions for District 1, which are also the same as the shaded regions in Figure 7. In Panel (b),
the red line plots the total reduction in usage of cash that results when interoperability is introduced, for a
district with share x̂d of users perceiving benefits from platform a relative to platform b. The blue and green
areas then show how the users switching away from cash divide between platforms a and b. The arrows
indicate the differences in the impact of interoperability between District 0 and District 1.
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Figure 9: Aggregate value of transactions on UPI and incumbent platform (Rupees, billions)
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Notes: Each region shows the value of transactions by transaction type. The dark red shaded region shows
transactions using the incumbent’s closed-loop payments technology, which by definition required both the
payer and payee to use the incumbent’s app. The dark blue shaded region shows transactions made using
UPI, excluding any transactions that were made using the incumbent platform’s app on either the payer
or payee side. The gray shaded region shows transactions made through UPI rails, yet where both the
payer and payee used the incumbent’s app. Finally, the light blue shaded region shows the newly enabled
“cross-platform” transactions on UPI, where either the payer or the payee used the incumbent’s app and
their counter-party did not.
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Figure 10: Variation in Pd
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Notes: This figure plots the distribution of Pd, the market share of the incumbent in the month prior to
integration. The first panel plots the estimated probability density distribution using an Epanechnikov kernel
function. The second panel plots the values of Pd by district, with blue districts indicating an above-median
presence of the incumbent and red districts indicating a below-median presence of the incumbent.
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Figure 11: Response dynamics of total digital payments adoption to platform integration

(a) Total P2M transaction value per person (Rupees per capita)
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Notes: This figure plots the dynamics of the difference in total P2M transaction values between high-Pd and
low-Pd districts, based on equation (6). The first panel normalizes total P2M transaction values relative to
population, and the second panel normalizes total P2M transaction values relative to cash withdrawals from
ATMs. Vertical lines show 95% confidence intervals.
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Figure 12: Decomposition of more fragmented districts’ differential response to integration
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Notes: This figure decomposes our main baseline estimate (Table 1 Column 1). That coefficient represents
the monthly average increase after integration in the total P2M transaction value per head of population, in
districts that were more fragmented than the median ex ante, relative to districts that were less fragmented,
after controlling for district and state-time fixed effects and differential trends by total pre-integration trans-
action value. Here, we decompose that result into the portion attributable to corresponding increases in each
of three margins: (i) the average value per transaction, (ii) the number of transactions per user, and (iii)
the number of users per head of population. We perform this decomposition using the estimation proce-
dure described in Appendix F. In short, we take the total derivative of transaction value per capita around
the post-interoperability low-Pd sample mean, giving us the shares of the total effect that are explained by
changes in each of (i) to (iii).
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Table 1: Response of digital payments adoption to platform integration

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 8.010∗∗∗ 0.00334∗∗∗ 11.75∗∗∗ 0.106∗∗∗ 1.989∗∗∗

(4.64) (5.74) (5.95) (2.93) (2.68)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 9.118 0.007 14.365 0 1.936

Mean ydt(P
+
d = 0, t ≥ t0) 6.795 0.012 2.77 0.191 5.179

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5). P+

d is a dummy taking value one for
districts with above-median incumbent market share prior to integration. Outcome variables are, in turn: (1)
total P2M transaction value per person, in Rupees per capita; (2) total P2M transaction value in Rupees per
Rupee of cash withdrawn from ATMs; (3) total P2M transaction values for which the payer and the payee
both used the incumbent’s app, in Rupees per capita; (4) total P2M transaction values occurring between a
payer and payee who between them used both the incumbent’s app and an alternative UPI app, in Rupees per
capita; (5) total P2M transaction values for which the payer and the payee both used an alternative UPI app,
in Rupees per capita. Zd is the total value of digital payments in the month before integration. We control
for district and state-time fixed effects as well as differential trends by total pre-integration transaction value.
The sample period spans from six months before integration to one year after integration. The penultimate
row shows the mean level of the outcome variable in high-Pd districts in the month before integration.
The last row shows the mean monthly level of the outcome variable in low-Pd districts in the year after
integration. Standard errors are clustered at the district level. t-statistics are reported in parentheses. * p
<0.10, ** p <0.05, *** p <0.01.
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Table 2: Response of digital payments adoption to platform integration, matching districts based
on log population size

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 6.777∗∗∗ 0.00336∗∗∗ 9.935∗∗∗ 0.0978∗∗∗ 1.644∗∗

(4.79) (4.51) (6.36) (2.92) (2.45)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5), using a matched sample based on high-Pd

districts’ three nearest neighbors by log population size. P+
d is a dummy taking value one for districts with

above-median incumbent market share prior to integration. Outcome variables are, in turn: (1) total P2M
transaction value per person, in Rupees per capita; (2) total P2M transaction value in Rupees per Rupee of
cash withdrawn from ATMs; (3) total P2M transaction values for which the payer and the payee both used
the incumbent’s app, in Rupees per capita; (4) total P2M transaction values occurring between a payer and
payee who between them used both the incumbent’s app and an alternative UPI app, in Rupees per capita;
(5) total P2M transaction values for which the payer and the payee both used an alternative UPI app, in
Rupees per capita. Zd is the total value of digital payments in the month before integration. We control for
district and state-time fixed effects as well as differential trends by total pre-integration transaction value.
The sample period spans from six months before integration to one year after integration. Standard errors
are clustered at the district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table 3: Response of digital payments adoption to platform integration, instrumented with prox-
imity to incumbent hub districts

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 17.11∗∗∗ 0.0117∗∗∗ 18.67∗∗∗ 0.299∗ 5.046∗

(2.71) (3.30) (3.03) (1.78) (1.90)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
K-P F -Stat 25.25 25.25 25.25 25.25 25.25
N 10,621 10,620 10,621 10,621 10,621
Mean ydt(P

+
d = 1, t = t−1) 6.511 0.007 9.613 0 1.656

Mean ydt(P
+
d = 0, t ≥ t0) 6.729 0.012 2.77 0.188 5.113

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts when instrumenting using proximity to incumbent hub districts Hd,
using second-stage equation (5) and first-stage equation (7). Hub districts are dropped from the sample prior
to estimation. P+

d is a dummy taking value one for districts with above-median incumbent market share
prior to integration. Outcome variables are, in turn: (1) total P2M transaction value per person, in Rupees
per capita; (2) total P2M transaction value in Rupees per Rupee of cash withdrawn from ATMs; (3) total
P2M transaction values for which the payer and the payee both used the incumbent’s app, in Rupees per
capita; (4) total P2M transaction values occurring between a payer and payee who between them used both
the incumbent’s app and an alternative UPI app, in Rupees per capita; (5) total P2M transaction values for
which the payer and the payee both used an alternative UPI app, in Rupees per capita. Zd is the total value of
digital payments in the month before integration. We control for district and state-time fixed effects as well
as differential trends by total pre-integration transaction value. The sample period spans from six months
before integration to one year after integration. The penultimate row shows the mean level of the outcome
variable in high-Pd districts in the month before integration. The last row shows the mean monthly level
of the outcome variable in low-Pd districts in the year after integration. Standard errors are clustered at the
district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table 4: Response of household level NBFC borrowing to platform integration

NBFC Borrowing (Y/N)
(1) (2) (3)

P+
d × 1{t>t0} 0.0113∗∗ 0.0192∗∗ 0.0136∗∗∗

(2.17) (2.54) (3.00)
Household FEs ✓ ✓ ✓
State-Wave FEs ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓
Sample All Entrepreneurs Hawkers
N 898,412 54,161 22,387
Mean ydt(P

+
d = 1, t = t−1) 0.0062 0.0118 0.0049

Mean ydt(P
+
d = 0, t ≥ t0) 0.0137 0.0209 0.0153

Notes: This table shows how the response in household level borrowing from NBFCs (Non-Banking Finan-
cial Company) to integration differed between households in high-Pd and low-Pd districts. This is based
on specification (5), using household level data at a wave frequency of every four months. P+

d is a dummy
taking value one for districts with above-median incumbent market share prior to integration. The outcome
variable in each case is an indicator for households that borrowed in a given wave. Column (1) uses the full
sample of households. Column (2) restricts the sample to only households for which the primary occupation
is ‘entrepreneur’. Column (3) restricts the sample to only households for which the primary occupation is
‘hawker’. Zd is the total value of digital payments in the month before integration. We control for state-time
and household fixed effects as well as differential trends by total pre-integration transaction value. The sam-
ple period spans from twelve months before integration to twelve months after integration. Standard errors
are clustered at the district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Online Appendices

A Additional figures and tables

Figure A.1: Detailed UPI transaction flow (payer initiated)

Notes: This figure shows a detailed breakdown of the steps involved in a payer-initiated UPI transaction.
An initial interaction between the payer and their app provider is conveyed to the app provider’s payment
service provider (PSP), who in turn informs NPCI. The payer’s bank account is then debited, the payee’s
bank account is credited, and notifications are sent to the payer and payee via their app provider and its PSP.
Source: Reserve Bank of India (2022).
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Figure A.2: Cross-app interoperable digital payments after demonetization (indexed)
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 Central lines show the median across states, and inner (outer) shaded regions show 25-75th (10-90th) percentiles.

Notes: The blue and red dashed lines repeat those on Figure 5—i.e., they show the total value of transactions
on UPI and a major closed-loop incumbent digital payments platform in the median state, indexed to 100
in the month before demonetization (October 2016). The solid blue line plots the same for cross-app UPI
payments only. The inner (outer) blue shaded regions show the 25-75th (10-90th) percentiles across states.
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Figure A.3: Response dynamics of digital payments adoption to platform integration, split by
transaction participants’ app choices

(a) Transactions between two users of the incum-
bent app (Rupees per capita)
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(b) Transactions between two users of other UPI
apps (Rupees per capita)
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(c) Transactions between a user of the incumbent
app and a user of another UPI app (Rupees per
capita)
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Notes: This figure plots the dynamics of the difference in P2M transaction values between high-Pd and
low-Pd districts, based on equation (6), for different subsets of transactions based on the transaction par-
ticipants’ app choices. The first panel shows results when including only those transactions for which both
counterparties used the incumbent firm’s app. This includes both transactions that took place on its propri-
etary closed-loop rails, and transactions that took place through UPI. The second panel shows results when
including only those transactions for which both counterparties used other UPI apps. The third panel shows
results when including only those transactions for which one counterparty used the incumbent firm’s app
and the other counterparty used another UPI app. By definition, such transactions were impossible in all
districts prior to integration, hence the zero estimates in pre-integration months. Vertical lines show 95%
confidence intervals.
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Figure A.4: Association of P+
d , raw and matched
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Observations: 521 / 474. R-squared: 0.406 / 0.398. State FEs, and SEs clustered by state.

Notes: The figure plots the correlation of various district characteristics with P+
d controlling for Zd (the total

value of digital payments across both platforms in each district in the month before integration), both in the
raw sample and in the sample formed by matching districts on log population size. Specifically, the figure
plots the coefficients from regressions of P+

d on a series of district characteristics listed in the figure, each
of which is standardized so that the magnitudes of the coefficients are comparable. The regressions include
state fixed effects and standard errors are clustered by state. We measure the intensity of the demonetization
shock to each district using the deviation of observed cash withdrawals in the district from a polynomial pre-
diction based on pre-demonetization observations. The horizontal lines indicate 95% confidence intervals.
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Figure A.5: Response dynamics of total digital payments adoption to platform integration, match-
ing on observables

(a) Total P2M transaction value per person (Rupees per capita)
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(b) Total P2M transaction value relative to cash withdrawals from ATMs
(Rupees of digital payments per Rupee of cash withdrawn)
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Notes: This figure plots the dynamics of the difference in total P2M transaction values between high-Pd and
low-Pd districts when matching districts on log population. The first panel normalizes total P2M transaction
values relative to population, and the second panel normalizes total P2M transaction values relative to cash
withdrawals from ATMs. Vertical lines show 95% confidence intervals.
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Figure A.6: Hub districts

(a) Cumulative distribution of districts by number of merchants using the
incumbent’s platform in September 2016
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(b) Association with proximity to the incumbent’s hubs
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Income (median, 2016)

Literacy rate (2011)

Age (median, 2016)

Agric. share of workers (2011)

Bank account coverage (2016)

Mobile phone ownership (2016)

Mobile internet speed (2019)

Demonetization (2016)

-75 -50 -25 0 25 50 75

All districts Excluding hub districts

Observations: 511 / 521. R-squared: 0.520 / . State FEs, and SEs clustered by state.Notes: The first panel plots the cumulative distribution function of the number of merchants in each district
that used the incumbent’s platform in September 2016. The vertical line indicates the cutoff for defining
a hub city. The second panel shows the correlation of various district characteristics with proximity to the
districts containing the incumbent’s hubs. Specifically, the figure plots the coefficients from regressions of
proximity to the incumbent’s hubs—defined as the negative of the distance in kilometers from the district’s
centroid to the centroid of the nearest hub district—on a series of district characteristics listed in the figure,
each of which is standardized so that the magnitudes of the coefficients are comparable. The regressions
include state fixed effects and standard errors are clustered by state. We measure the intensity of the de-
monetization shock to each district using the deviation of observed cash withdrawals in the district from
a polynomial prediction based on pre-demonetization observations. Estimates in blue show results from a
regression that includes all districts, while estimates in red show results from a regression that excludes the
hub districts (which by definition have proximity equal to zero). The horizontal lines indicate 95% confi-
dence intervals.
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Figure A.7: Instrumenting incumbent presence P+
d with proximity to its initial hubs Hd

(a) Cross-sectional first stage relationship between Hd and P+
d
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(b) Association with P+
d
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Observations: 521 / 521. R-squared: 0.406 / 0.906. State FEs, and SEs clustered by state.

Notes: The first panel shows a binned scatter plot of the cross-sectional first stage relationship between Hd

(on the x-axis) and P+
d (on the y-axis), after residualizing each on state fixed effects and controlling for Zd

(the total value of digital payments across both platforms in each district in the month before integration).
The second panel plots the correlation of various district characteristics with P+

d , both in its raw form and
when instrumented with proximity to the districts containing the incumbent’s hubs. Specifically, the figure
plots the coefficients from regressions of P+

d —or the predicted value of P+
d , when instrumenting with Hd—

on a series of district characteristics listed in the figure, each of which is standardized so that the magnitudes
of the coefficients are comparable. The regressions include state fixed effects and standard errors are clus-
tered by state. We measure the intensity of the demonetization shock to each district using the deviation of
observed cash withdrawals in the district from a polynomial prediction based on pre-demonetization obser-
vations. The horizontal lines indicate 95% confidence intervals.
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Figure A.8: Response dynamics of total digital payments adoption to platform integration, instru-
menting with proximity to incumbent hub districts

(a) Total P2M transaction value per person (Rupees per capita)
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(b) Total P2M transaction value relative to cash withdrawals from ATMs
(Rupees of digital payments per Rupee of cash withdrawn)
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Notes: This figure plots the dynamics of the difference in total P2M transaction values between high-Pd

and low-Pd districts when instrumenting using proximity to incumbent hub districts Hd. The first panel
normalizes total P2M transaction values relative to population, and the second panel normalizes total P2M
transaction values relative to cash withdrawals from ATMs. Vertical lines show 95% confidence intervals.
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Figure A.9: Estimated impacts of platform integration, by ex-ante fragmentation decile

Notes: This figure plots the estimates β̂n from equation (9). Each coefficient’s coordinate on the horizontal
axis reflects the mean value of Fd among districts d in the decile n for which the coefficient is estimated.
Each coefficient’s value on the vertical axis shows the monthly average increase in total P2M transaction
value per capita after interoperability was introduced, across districts in decile n of the Fd distribution, when
controlling for district and state-time fixed effects and differential trends by total pre-integration transaction
value. Vertical lines show 95% confidence intervals.
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Figure A.10: Placebo tests

(a) Repeating Figure 11a for random draws of P+
d
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(b) Repeating Figure 11a for an alternative t0 three months earlier
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Notes: This figure plots the dynamics of the difference in total P2M transaction values between high-Pd and
low-Pd districts, based on equation (6), except changing either the distribution of P+

d or the timing of t0, as
described in Section G.2. In the first panel, the shaded regions depict the distribution of estimated βs across
1000 random reassignments of P+

d , with the inner (outer) shaded regions corresponding to the 25-75th (10-
90th) percentiles. The blue and red plotted lines show the median and mean estimates respectively. In the
second panel, Figure 11a is repeated except setting an alternative tplacebo0 := t0−3. Vertical lines show 95%
confidence intervals.
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Table A.1: Decomposition of impact on value per capita by sub-component

Value / Transaction Transactions / User Users / Population
(|) (#) (#)

P+
d × 1{t>t0} 9.354∗∗ 0.0939∗∗ 0.000832∗

(2.11) (2.48) (1.93)
District FEs ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓
N 10,868 10,860 10,860
Mean ydt(P

+
d = 1, t = t−1) 344.854 3.262 0.002

Mean ydt(P
+
d = 0, t ≥ t0) 309.646 3.625 0.005

Notes: This table shows how the value per transaction, transactions per user, and number of unique users
grew differentially in high-Pd versus low-Pd districts, based on specification (5). P+

d is a dummy taking
value one for districts with above-median incumbent market share prior to integration. Outcome variables
are, in turn: (1) total P2M value per transaction, in Rupees per capita; (2) number of transactions per user;
(3) number of users per capita. The sample period spans from six months before integration to one year after
integration. Standard errors are clustered at the district level. Zd is the total value of digital payments in the
month before integration. We control for district and state-time fixed effects as well as differential trends
by total pre-integration transaction value. The sample period spans from six months before integration to
one year after integration. The penultimate row shows the mean level of the outcome variable in high-Pd

districts in the month before integration. The last row shows the mean monthly level of the outcome variable
in low-Pd districts in the year after integration. Standard errors are clustered at the district level. t-statistics
are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.2: Response of digital payments adoption to platform integration, when defining P+
d using

only P2M transactions

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 7.183∗∗∗ 0.00217∗∗∗ 11.28∗∗∗ 0.0731∗∗ 1.417∗∗

(4.75) (3.57) (6.28) (2.19) (2.20)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 9.118 0.007 14.365 0 1.936

Mean ydt(P
+
d = 0, t ≥ t0) 6.795 0.012 2.77 0.191 5.179

Notes: This table shows how the response of digital payments adoption to the platforms’ integration dif-
fered between high-Pd and low-Pd districts, based on specification (5) except defining P+

d using only P2M
transactions. P+

d is a dummy taking value one for districts with above-median incumbent market share prior
to integration. Outcome variables are, in turn: (1) total P2M transaction value per person, in Rupees per
capita; (2) total P2M transaction value in Rupees per Rupee of cash withdrawn from ATMs; (3) total P2M
transaction values for which the payer and the payee both used the incumbent’s app, in Rupees per capita;
(4) total P2M transaction values occurring between a payer and payee who between them used both the in-
cumbent’s app and an alternative UPI app, in Rupees per capita; (5) total P2M transaction values for which
the payer and the payee both used an alternative UPI app, in Rupees per capita. Zd is the total value of
digital payments in the month before integration. We control for district and state-time fixed effects as well
as differential trends by total pre-integration transaction value. The sample period spans from six months
before integration to one year after integration. The penultimate row shows the mean level of the outcome
variable in high-Pd districts in the month before integration. The last row shows the mean monthly level
of the outcome variable in low-Pd districts in the year after integration. Standard errors are clustered at the
district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.3: Response of digital payments adoption to platform integration, when excluding districts
in which Pd > 0.5

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 5.380∗∗∗ 0.00251∗∗∗ 8.483∗∗∗ 0.0617∗∗ 0.993∗

(5.27) (4.67) (8.50) (2.35) (1.86)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 5.452 0.006 7.638 0 1.643

Mean ydt(P
+
d = 0, t ≥ t0) 6.763 0.012 2.763 0.189 5.179

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5) except excluding those districts for which
Pd > 0.5. P+

d is a dummy taking value one for districts with above-median incumbent market share prior
to integration. Outcome variables are, in turn: (1) total P2M transaction value per person, in Rupees per
capita; (2) total P2M transaction value in Rupees per Rupee of cash withdrawn from ATMs; (3) total P2M
transaction values for which the payer and the payee both used the incumbent’s app, in Rupees per capita;
(4) total P2M transaction values occurring between a payer and payee who between them used both the
incumbent’s app and an alternative UPI app, in Rupees per capita; (5) total P2M transaction values for
which the payer and the payee both used an alternative UPI app, in Rupees per capita. Zd is the total value
of digital payments in the month before integration. We control for district and state-time fixed effects
as well as differential trends by total pre-integration transaction value. The sample period spans from six
months before integration to one year after integration. The penultimate row shows the mean level of the
outcome variable in high-Pd districts in the month before integration. The last row shows the mean monthly
level of the outcome variable in low-Pd districts in the year after integration. Standard errors are clustered
at the district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.4: Response of digital payments adoption to platform integration, when controlling for
differential trends by baseline level of cash withdrawals

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 5.609∗∗∗ 0.00193∗∗∗ 8.301∗∗∗ 0.0929∗∗∗ 1.796∗∗∗

(3.87) (3.17) (4.49) (2.91) (2.90)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
Control: Zcash

d × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,867 10,867 10,867 10,867 10,867
Mean ydt(P

+
d = 1, t = t−1) 9.118 0.007 14.365 0 1.936

Mean ydt(P
+
d = 0, t ≥ t0) 6.795 0.012 2.77 0.191 5.179

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5), except including an additional control for
differential trends by baseline level of cash withdrawals one month prior to integration. P+

d is a dummy
taking value one for districts with above-median incumbent market share prior to integration. Outcome
variables are, in turn: (1) total P2M transaction value per person, in Rupees per capita; (2) total P2M
transaction value in Rupees per Rupee of cash withdrawn from ATMs; (3) total P2M transaction values
for which the payer and the payee both used the incumbent’s app, in Rupees per capita; (4) total P2M
transaction values occurring between a payer and payee who between them used both the incumbent’s app
and an alternative UPI app, in Rupees per capita; (5) total P2M transaction values for which the payer and
the payee both used an alternative UPI app, in Rupees per capita. Zd is the total value of digital payments in
the month before integration. Zcash

d is the total value of cash withdrawals in the month before integration.
We control for district and state-time fixed effects as well as differential trends by total pre-integration
transaction value and by total pre-integration cash withdrawals. The sample period spans from six months
before integration to one year after integration. The penultimate row shows the mean level of the outcome
variable in high-Pd districts in the month before integration. The last row shows the mean monthly level
of the outcome variable in low-Pd districts in the year after integration. Standard errors are clustered at the
district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.5: Response of digital payments adoption to platform integration, using transaction vol-
ume rather than value

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 0.0129∗∗∗ 0.00811 0.0217∗∗∗ 0.000133∗∗ 0.00101

(5.48) (1.61) (5.90) (2.45) (1.15)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zvol

d × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 0.022 0.048 0.034 0 0.004

Mean ydt(P
+
d = 0, t ≥ t0) 0.035 0.187 0.009 0.001 0.029

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5), except all quantities are in terms of volume.
P+
d is a dummy taking value one for districts with above-median incumbent market share prior to integration.

Outcome variables are, in turn: (1) total P2M transaction volume per capita; (2) total P2M transaction
volume per cash withdrawal from ATMs; (3) total P2M transaction volume for which the payer and the
payee both used the incumbent’s app, in transactions per capita; (4) total P2M transaction volume occurring
between a payer and payee who between them used both the incumbent’s app and an alternative UPI app,
in transactions per capita; (5) total P2M transaction volume for which the payer and the payee both used
an alternative UPI app, in transactions per capita. Zvol

d is the total volume of digital payments in the month
before integration. We control for district and state-time fixed effects as well as differential trends by total
pre-integration transaction volume. The sample period spans from six months before integration to one year
after integration. The penultimate row shows the mean level of the outcome variable in high-Pd districts
in the month before integration. The last row shows the mean monthly level of the outcome variable in
low-Pd districts in the year after integration. Standard errors are clustered at the district level. t-statistics are
reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.6: Response of digital payments adoption to platform integration, when winzorizing top
0.5% of districts by value

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 7.394∗∗∗ 0.00346∗∗∗ 11.10∗∗∗ 0.0837∗ 1.520∗∗

(3.95) (5.55) (4.98) (1.71) (1.97)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 9.118 0.007 14.365 0 1.936

Mean ydt(P
+
d = 0, t ≥ t0) 6.795 0.012 2.77 0.194 5.297

Notes: This table shows how the response of digital payments adoption to the platforms’ integration dif-
fered between high-Pd and low-Pd districts, based on specification (5) except reducing the stringency of
winsorization to 0.5% from 1%. P+

d is a dummy taking value one for districts with above-median incum-
bent market share prior to integration. Outcome variables are, in turn: (1) total P2M transaction value per
person, in Rupees per capita; (2) total P2M transaction value in Rupees per Rupee of cash withdrawn from
ATMs; (3) total P2M transaction values for which the payer and the payee both used the incumbent’s app, in
Rupees per capita; (4) total P2M transaction values occurring between a payer and payee who between them
used both the incumbent’s app and an alternative UPI app, in Rupees per capita; (5) total P2M transaction
values for which the payer and the payee both used an alternative UPI app, in Rupees per capita. Zd is the
total value of digital payments in the month before integration. We control for district and state-time fixed
effects as well as differential trends by total pre-integration transaction value. The sample period spans from
six months before integration to one year after integration. The penultimate row shows the mean level of the
outcome variable in high-Pd districts in the month before integration. The last row shows the mean monthly
level of the outcome variable in low-Pd districts in the year after integration. Standard errors are clustered
at the district level. t-statistics are reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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Table A.7: Response of digital payments adoption to platform integration, controlling for urban-
time fixed effects

Total/pop Total/cash (Inc→Inc)/pop (Inc↔Oth)/pop (Oth→Oth)/pop
(1) (2) (3) (4) (5)

P+
d × 1{t>t0} 5.829∗∗∗ 0.00314∗∗∗ 8.844∗∗∗ 0.0767∗∗ 1.292∗∗

(4.40) (5.36) (5.71) (2.32) (2.06)
District FEs ✓ ✓ ✓ ✓ ✓
State-Time FEs ✓ ✓ ✓ ✓ ✓
Urban-Time FE ✓ ✓ ✓ ✓ ✓
Control: Zd × 1{t≥t0} ✓ ✓ ✓ ✓ ✓
N 10,868 10,867 10,868 10,868 10,868
Mean ydt(P

+
d = 1, t = t−1) 9.118 0.007 14.365 0 1.936

Mean ydt(P
+
d = 0, t ≥ t0) 6.795 0.012 2.77 0.191 5.179

Notes: This table shows how the response of digital payments adoption to the platforms’ integration differed
between high-Pd and low-Pd districts, based on specification (5) except additionally controlling for differen-
tial trends in urban districts, defined as districts with above-median population density. Outcome variables
are, in turn: (1) total P2M transaction value per person, in Rupees per capita; (2) total P2M transaction
value in Rupees per Rupee of cash withdrawn from ATMs; (3) total P2M transaction values for which the
payer and the payee both used the incumbent’s app, in Rupees per capita; (4) total P2M transaction values
occurring between a payer and payee who between them used both the incumbent’s app and an alternative
UPI app, in Rupees per capita; (5) total P2M transaction values for which the payer and the payee both
used an alternative UPI app, in Rupees per capita. Zd is the total value of digital payments in the month
before integration. We control for district and state-time fixed effects as well as differential trends by total
pre-integration transaction value. The sample period spans from six months before integration to one year
after integration. The penultimate row shows the mean level of the outcome variable in high-Pd districts
in the month before integration. The last row shows the mean monthly level of the outcome variable in
low-Pd districts in the year after integration. Standard errors are clustered at the district level. t-statistics are
reported in parentheses. * p <0.10, ** p <0.05, *** p <0.01.
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B Proofs

B.1 Proof of Lemma 1

Assume a fulfilled-expectations equilibrium in which utility-maximizing digital payments users

divide unequally between the two platforms based on their initial expectations of others’ platform

choices. Label the platform with more users b. Then we have that

ub
d,x,y = 1 + κNd,b > 1 + κNd,a = ua

d,x,y (B.1)

since Nd,b > Nd,a, so all users prefer b over a. This contradicts the decision of some users to adopt

a, implying that the assumed equilibrium cannot exist.

Two possibilities remain: (i) digital payments users divide equally between platforms, or (ii)

digital payments users pool on one platform. In case (i), we have that

ua
d,x,y = 1 + κNd,a = 1 + κNd,b = ub

d,x,y (B.2)

for all users because Nd,a = Nd,b. However, in this equilibrium, a deviation to platform i from

the other platform j by a small but positive mass of users ϵ would raise Nd,i > Ndj , implying

ui
d,x,y > uj

d,x,y and so causing the market to tip to i. Thus this equilibrium is not stable.

In case (ii), define by ȳ the cash preference of the marginal users between C and the adopted

platform i. These marginal users must satisfy:

1 + κNd,i = γȳ. (B.3)
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Since all users with y ≤ ȳ choose digital payments, we have Nd,i = ȳ. Substituting in, we have:

1 + κȳ = γȳ

1 = ȳ(γ − κ)

ȳ =
1

γ − κ
, (B.4)

which is positive since γ > κ by assumption.

To test the stability of this equilibrium, consider a deviation of the marginal ϵ users from C to

i (equivalent to the horizontal line in Figure 6 shifting up by ϵ). The new marginal users derive

utility 1 + κ(ȳ + ϵ) from i and utility γ(ȳ + ϵ) from C. The value of i to the marginal user has

thus increased by κϵ, while the value of C to the marginal user has increased by γϵ. Since κ < γ

by assumption, the new marginal users prefer to stick with C. Thus the market does not tip, and

deviating users would re-adopt cash until equilibrium is restored at ȳ. Analogous reasoning applies

to a shift of ϵ users from i to C, so the equilibrium is stable. ■

B.2 Proof of Lemma 2

The marginal users ŷd,a between a and C satisfy:

ua
d,x,y = 1 + κNd,a = γŷd,a = uC

d,x,y. (B.5)

All users with x ≤ x̂d reason in the same way as each other, conditional on their cash preference

y, so Nd,a = x̂dŷd,a. Substituting in gives:

1 + κx̂dŷd,a = γŷd,a

1 = ŷd,a(γ − κx̂d)

ŷd,a =
1

γ − κx̂d

. (B.6)
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Thus usage of platform a is:

Nd,a =
x̂d

γ − κx̂d

. (B.7)

Similarly, the marginal users ŷd,b between b and C satisfy:

ub
d,x,y = 1 + κNd,b = γŷd,b = uC

d,x,y. (B.8)

All users with x > x̂d reason in the same way as each other, conditional on their cash preference

y, so Nd,b = (1− x̂d)ŷd,b. Substituting in gives:

1 + κ(1− x̂d)ŷd,b = γŷd,b

1 = ŷd,b[γ − κ(1− x̂d)]

ŷd,b =
1

γ − κ(1− x̂d)
. (B.9)

Thus usage of platform b is:

Nd,b =
1− x̂d

γ − κ(1− x̂d)
. (B.10)

Stability in each case follows by analogous reasoning to that in the proof of Lemma 1. Combining

these results then gives total usage of digital payments:

ND,Baseline
d =

x̂d

γ − κx̂d

+
1− x̂d

γ − κ(1− x̂d)
. (B.11)

■

xx



B.3 Proof of Lemma 3

Under interoperability, users of both platforms have access to the same user base, ND
d . Thus the

choice between platform i and cash is the same for potential users of both platforms and does not

depend on x̂d, allowing us to define the same marginal users of each platform: ỹd,a = ỹd,b = ỹ.

These marginal users must satisfy:

ui
d,x,y = 1 + κND

d = γỹ = uC
d,x,y. (B.12)

Since the marginal digital payments users’ choices do not depend on x̂d, we also have ND
d = ỹ.

Substituting in and rearranging gives:

1 + κỹ = γỹ

1 = ỹ(γ − κ)

ỹ =
1

γ − κ
= ȳ , (B.13)

where the final equality follows from a comparison with equation (B.4) in the proof of Lemma 1.

Total digital payments are therefore

ND,Interop
d =

1

γ − κ
(B.14)

and these are distributed between platforms in line with users’ heterogeneous preferences:

Nd,a = x̂dỹ =
x̂d

γ − κ
, Nd,b = (1− x̂d)ỹ =

1− x̂d

γ − κ
. (B.15)

Stability in each case follows by analogous reasoning to that in the proof of Lemma 1. ■
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B.4 Proof of Proposition 1

The results follows directly from (i) noting the presence of market fragmentation in Lemma 2, and

(ii) comparing the outcomes under interoperability in Lemma 3 with the benchmark derived for

the case of homogeneous preferences in Lemma 1. The change in total usage of digital payments

under interoperability, relative to the baseline equilibrium, is given by

ND,Interop
d −ND,Baseline

d =
1

γ − κ
−
(

x̂d

γ − κx̂d

+
1− x̂d

γ − κ(1− x̂d)

)
(B.16)

from Lemmas 2 and 3. Given 0 < x̂d < 1 and γ > κ > 0 by definition, we have that γ − κx̂d >

γ − κ > 0 and γ − κ(1− x̂d) > γ − κ > 0. Thus

x̂d

γ − κx̂d

<
x̂d

γ − κ
(B.17)

and

1− x̂d

γ − κ(1− x̂d)
<

1− x̂d

γ − κ
. (B.18)

Combining these gives

x̂d

γ − κx̂d

+
1− x̂d

γ − κ(1− x̂d)
<

x̂d

γ − κ
+

1− x̂d

γ − κ
=

1

γ − κ
, (B.19)

which implies that equation (B.16) is positive. ■

B.5 Proof of Proposition 2

Lemma 2 gives that usage of platform a in the baseline equilibrium without interoperability is

NBaseline
d,a = x̂d

γ−κx̂d
, while Lemma 3 gives that usage of platform a under interoperability is

N Interop
d,a = x̂d

γ−κ
. The increase in usage of digital payments platform a under interoperability,
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relative to the baseline equilibrium, is therefore given by:

N Interop
d,a −NBaseline

d,a =
x̂d

γ − κ
− x̂d

γ − κx̂d

. (B.20)

Given 0 < x̂d < 1, γ > κ, and κ > 0 by definition, we have that γ − κx̂d > γ − κ, which implies

that the second term in equation (B.20) is smaller than the first. Hence, interoperability increases

usage of platform a.

Similarly, Lemma 2 gives that usage of platform b in the baseline equilibrium is NBaseline
d,b =

1−x̂d

γ−κ(1−x̂d)
, while Lemma 3 gives that usage of platform b under interoperability is N Interop

d,b = 1−x̂d

γ−κ
.

The increase in usage of digital payments platform b under interoperability, relative to the baseline

equilibrium, is therefore given by:

N Interop
d,b −NBaseline

d,b =
1− x̂d

γ − κ
− 1− x̂d

γ − κ(1− x̂d)
. (B.21)

By analogous reasoning to that for platform a, we again have that the second term is smaller than

the first, so interoperability also increases usage of platform b. ■

B.6 Proof of Proposition 3

Differentiating equation (B.16) in the proof of Proposition 1 term by term using the quotient rule

and rearranging gives:

∂

∂x̂d

(
ND,Interop

d −ND,Baseline
d

)
=γ

[
1

(γ − κ (1− x̂d))
2 − 1

(γ − κ x̂d)
2

]
. (B.22)

Since γ > 0, the sign of this expression depends on the sign of the term in square brackets, which

in turn depends on the relative size of the two denominators. Recalling that 0 < x̂d <
1
2
, we know

that 1− x̂d > x̂d, and so

γ − κ (1− x̂d) < γ − κ x̂d (B.23)
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since γ > κ > 0. Noting that both sides of equation (B.23) must be positive, squaring both sides

gives

(γ − κ (1− x̂d))
2 < (γ − κ x̂d)

2 , (B.24)

which in turn implies that the term in square brackets in equation (B.22) is positive. Thus

∂
∂x̂d

(
ND,Interop

d −ND,Baseline
d

)
is positive. ■

B.7 Proof of Proposition 4

Equation (B.20) in the proof of Proposition 2 gives that the change in usage of platform a under

interoperability is:

N Interop
d,a −NBaseline

d,a =
x̂d

γ − κ
− x̂d

γ − κx̂d

. (B.25)

Differentiating with respect to x̂d gives:

∂

∂x̂d

(
N Interop

d,a −NBaseline
d,a

)
=

1

γ − κ
− γ

1

(γ − κx̂d)2
. (B.26)

Recalling that 0 < x̂d <
1
2

and γ > κ > 0 (which also imply γ − κx̂d > 0), this is positive when:

1

γ − κ
− γ

1

(γ − κx̂d)2
> 0

1

γ − κ
> γ

1

(γ − κx̂d)2

(γ − κx̂d)
2 > γ(γ − κ) . (B.27)

xxiv



Noting that both sides must be positive, taking the (principal) square root of each side gives:

γ − κx̂d >
√
γ(γ − κ)

x̂d <
γ −

√
γ(γ − κ)

κ
. (B.28)

Similarly, equation in the proof of Proposition 2 gives that the change in usage of platform b under

interoperability is:

N Interop
d,b −NBaseline

d,b =
1− x̂d

γ − κ
− 1− x̂d

γ − κ(1− x̂d)
. (B.29)

Differentiating with respect to x̂d gives:

∂

∂x̂d

(
N Interop

d,b −NBaseline
d,b

)
= γ

1

(γ − κ(1− x̂d))2
− 1

γ − κ
. (B.30)

This is positive when:

γ
1

(γ − κ(1− x̂d))2
− 1

γ − κ
> 0

γ
1

(γ − κ(1− x̂d))2
>

1

γ − κ

γ(γ − κ) > (γ − κ(1− x̂d))
2 . (B.31)

Noting again that both sides must be positive, taking the square root of each side gives:

√
γ(γ − κ) > γ − κ(1− x̂d)

1− x̂d >
γ −

√
γ(γ − κ)

κ

x̂d < 1−
γ −

√
γ(γ − κ)

κ
. (B.32)
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Defining x̂ :=
γ−
√

γ(γ−κ)

κ
, we thus have that both ∂

∂x̂d

(
N Interop

d,a −NBaseline
d,a

)
> 0 and

∂
∂x̂d

(
N Interop

d,b −NBaseline
d,b

)
> 0 when x̂d < min(x̂, 1 − x̂). Therefore, when x̂d—and hence

the no-interoperability level of fragmentation—is sufficiently low, a marginally higher level of x̂d

leads to a larger increase in usage of both digital payments platforms under interoperability. Con-

versely, if x̂d is above this threshold, a marginally higher level of x̂d leads to a smaller increase in

usage of at least one digital payments platform. Combining this observation with Proposition 3,

which states ∂
∂x̂d

(
ND,Interop

d −ND,Baseline
d

)
is positive, and noting that ND,Interop

d −ND,Baseline
d =∑

i∈{a,b}

[
N Interop

d,i −NBaseline
d,i

]
by definition, we have that a marginally higher level of x̂d leads

to a smaller increase in usage of exactly one digital payments platform if x̂d > min(x̂, 1− x̂), with

the platform (a or b) facing the smaller increase dependent on the value of x̂. ■

B.8 Proof of Lemma 4

The results follow directly from noting that users’ maximization problem in each stage described

in Appendix C is analogous to that described for the original model in Section 3.2. Decisions in the

pre-interoperability stage are equivalent to those in the original model when no interoperability is

imposed. The equilibrium outcomes then follow straightforwardly from Lemma 2. Similarly, since

the ω shock is unanticipated, users’ decisions in the post-interoperability stage are equivalent to

those in the original model when interoperability is imposed, so users’ initial equilibrium choices

follow straightforwardly from Lemma 3. The shock then shifts the ω marginal users from cash to

digital payments. The x̂d · ω users who are marginal between platform a and C choose platform a,

and the (1− x̂d) ·ω users who are marginal between platform b and C choose platform b, increasing

the total number of digital payments users by ω. Since the shock occurs after all users have made

their initial payment choices (but before the payments occur), there is no second-round network

effect of the shocked users’ payment choices on the choices of other users. Thus the post-shock

equilibrium is stable. ■
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B.9 Proof of Lemma 5

From the definition of Fd and equations (C.3) and (C.5) we have

Fd =
Nd,a,−1

ND
d,−1

=

x̂d

γ−κx̂d

x̂d

γ−κx̂d
+ 1−x̂d

γ−κ(1−x̂d)

(B.33)

in equilibrium. Differentiating this with respect to x̂d gives

∂Fd

∂x̂d

=
γ (γ + κ (−2x̂2

d + 2x̂d − 1))

(γ + 2κ(x̂d − 1)x̂d)2
(B.34)

and it can be verified that this is always greater than zero for 0 < x̂d < 1
2

and γ > κ > 0. For

some intuition on this result, note that from equation (B.33) we can already see that (i) Fd = 0

when x̂d = 0, (ii) Fd = 1
2

when x̂d = 1
2
, and (iii) Fd = 1 when x̂d = 1. Between these points, the

curvature of Fd in x̂d depends on the strength of network effects (κ) relative to cash preferences

(γ). ■

B.10 Proof of Prediction 1

We begin by seeking an expression for ∂
∂x̂d

(
∆ND

d

)
—i.e., for how “the change in total usage of

digital payments after interoperability is introduced” itself changes with a district’s user-type share.

Similar to the proof of Proposition 3, we can differentiate equation (C.9) to give:

∂

∂x̂d

(
∆ND

d

)
=γ

[
1

(γ − κ (1− x̂d))
2 − 1

(γ − κ x̂d)
2

]
. (B.35)

Since γ > 0, the sign of ∂
∂x̂d

(
∆ND

d

)
depends on the sign of the term in square brackets, which in

turn depends on the relative size of the two denominators. Recalling that 0 < x̂d < 1
2
, we know

that 1− x̂d > x̂d, and so

γ − κ (1− x̂d) < γ − κ x̂d (B.36)
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since γ > κ > 0. Noting that both sides of equation (B.36) must be positive, squaring both sides

gives

(γ − κ (1− x̂d))
2 < (γ − κ x̂d)

2 , (B.37)

which in turn implies that the term in square brackets in equation (B.35) is positive. Thus

∂
∂x̂d

(
∆ND

d

)
is positive: introducing interoperability increases total usage of digital payments by

more in districts where a higher share of users perceive benefits from the smaller platform relative

to the larger platform.

Finally, since we cannot observe x̂d directly, we aim to express this result in terms of the

variable Fd that we observe. Decomposing the relationship between ∆ND
d and Fd using the chain

rule gives:

∂

∂Fd

(
∆ND

d

)
=

∂
(
∆ND

d

)
∂x̂d

∂x̂d

∂Fd

=

∂(∆ND
d )

∂x̂d

∂Fd

∂x̂d

. (B.38)

Using the preceding conclusion that ∂
∂x̂d

(
∆ND

d

)
> 0, and the result from Lemma 5 that ∂Fd

∂x̂d
> 0,

we have that ∂
∂Fd

(
∆ND

d

)
is the quotient of two positive values, which is itself positive. Thus

“the change in total usage of digital payments after interoperability is introduced” increases with

the extent of fragmentation of digital payments users across platforms in the pre-interoperability

baseline stage. ■

B.11 Proof of Prediction 2

The proof closely follows the proof of Proposition 4. From Lemma 4, the change in usage of

platform a when interoperability is introduced is:

∆Nd,a = Nd,a,1 −Nd,a,−1 =
x̂d

γ − κ
+ x̂d · ω − x̂d

γ − κx̂d

. (B.39)
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Differentiating with respect to x̂d gives:

∂

∂x̂d

(∆Nd,a) =
1

γ − κ
+ ω − γ

1

(γ − κx̂d)2
. (B.40)

Recalling that ω > 0, 0 < x̂d <
1
2

and γ > κ > 0 (which also imply γ − κx̂d > 0), this is positive

when:

1

γ − κ
+ ω − γ

1

(γ − κx̂d)2
> 0

1

γ − κ
+ ω > γ

1

(γ − κx̂d)2

1 + ω(γ − κ) > γ
γ − κ

(γ − κx̂d)2

[1 + ω(γ − κ)] (γ − κx̂d)
2 > γ(γ − κ)

(γ − κx̂d)
2 >

γ(γ − κ)

1 + ω(γ − κ)
. (B.41)

Noting that both sides must be positive, taking the (principal) square root of each side gives:

γ − κx̂d >

√
γ(γ − κ)

1 + ω(γ − κ)

x̂d <
γ −

√
γ(γ−κ)

1+ω(γ−κ)

κ
. (B.42)

Similarly, from Lemma 4 the change in usage of platform b when interoperability is introduced is:

∆Nd,b = Nd,b,1 −Nd,b,−1 =
1− x̂d

γ − κ
+ (1− x̂d) · ω − 1− x̂d

γ − κ(1− x̂d)
. (B.43)

Differentiating with respect to x̂d gives:

∂

∂x̂d

(∆Nd,b) = γ
1

(γ − κ(1− x̂d))2
− ω − 1

γ − κ
. (B.44)

xxix



This is positive when:

γ
1

(γ − κ(1− x̂d))2
− ω − 1

γ − κ
> 0

γ
1

(γ − κ(1− x̂d))2
>

1

γ − κ
+ ω

γ
γ − κ

(γ − κ(1− x̂d))2
> 1 + ω(γ − κ)

γ(γ − κ) > [1 + ω(γ − κ)] (γ − κ(1− x̂d))
2

γ(γ − κ)

1 + ω(γ − κ)
> (γ − κ(1− x̂d))

2 . (B.45)

Noting again that both sides must be positive, taking the square root of each side gives:

√
γ(γ − κ)

1 + ω(γ − κ)
> γ − κ(1− x̂d)

1− x̂d >
γ −

√
γ(γ−κ)

1+ω(γ−κ)

κ

x̂d < 1−
γ −

√
γ(γ−κ)

1+ω(γ−κ)

κ
. (B.46)

Defining x̂ :=
γ−

√
γ(γ−κ)

1+ω(γ−κ)

κ
, we thus have that both ∂

∂x̂d
(∆Nd,a) > 0 and ∂

∂x̂d
(∆Nd,b) > 0 when

x̂d < min(x̂, 1 − x̂). Therefore, when x̂d (and hence Fd, by Lemma 5) is sufficiently low—i.e.,

when digital payments users are relatively unified ex ante—introducing interoperability increases

usage on both platforms by more in districts with higher x̂d (or equivalently, higher Fd). ■

B.12 Proof of Proposition 5

Define the district-level counterpart of ∆IND, ∆IND
d , as the post-interoperability change in usage

of digital payments in district d that results from integrating fragmented networks. From equation

xxx



(C.9), we see that this impact—which excludes the effect of shocks ω—is:

∆IND
d =

1

γ − κ
− x̂d

γ − κx̂d

− 1− x̂d

γ − κ(1− x̂d)
. (B.47)

By definition the aggregate national impact is equal to the sum of the impacts in all districts, so we

also have:

∆IND =
∑
d

∆IND
d . (B.48)

To identify ∆IND, we therefore proceed in three steps. First, we derive the missing intercept from a

district where users are almost entirely unified on one platform prior to interoperability. Appendix

C gives that the post-interoperability change in total digital payments usage in district d is:

∆ND
d =

1

γ − κ
+ ω − x̂d

γ − κx̂d

− 1− x̂d

γ − κ(1− x̂d)
. (B.49)

Taking limits as x̂d → 0, we have

lim
x̂d→0

∆ND
d =

1

γ − κ
+ ω − 1

γ − κ

= ω . (B.50)

Similarly, from equation (B.33) we have limx̂d→0 Fd = 0. Thus in the limit as x̂d, and hence Fd,

approaches zero, the observed change ∆ND
d in district d reveals the size of the external shock—i.e.,

we have:

∆ND
d0

= ω . (B.51)

Second, we use this intercept to derive the impact of integrating fragmented networks on each
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district. Combining equations (B.47), (B.49) and (B.51) gives:

∆ND
d −∆ND

d0
= ∆IND

d . (B.52)

Finally, summing over these differences and comparing to equation (B.48) gives

∑
d

[
∆ND

d −∆ND
d0

]
=

∑
d

∆IND
d = ∆IND (B.53)

as required. ■

C Extended model allowing for external shocks

We extend the model described in Section 3.1 by distinguishing three stages, −1, 0 and 1. In Stage

−1, the digital platforms are not interoperable and users make payment choices as in the baseline

version of the model described above. In Stage 0, platform interoperability is announced. In Stage

1, users again make payment choices, but this time as described in the version of the model with

platform interoperability. However, after these choices have been made, but before the payments

occur, an unanticipated shock shifts the marginal ω users from cash to digital payments, where

0 < ω < γ−κ−1
γ−κ

.

We denote the consequences of users’ choices in the two payment stages t ∈ {−1, 1} with a t

subscript and we use ∆ to denote the change in such choices between those stages. For example,

∆ND
d = ND

d,1 − ND
d,−1 is the pre-interoperability to post-interoperability change in total usage of

digital payments in district d. We assume that users’ types xy, districts’ user-type shares x̂d, and

parameters κ and γ are constant. Users’ problem in Stage t ∈ {−1, 1} is therefore to choose

a payment method pd,x,y,t ∈ {a, b, C} that maximizes their utility, given their perceptions of the
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value of each option and their expectations of others’ choices:

max
pd,x,y,t∈{a,b,C}

Ud,x,y,t =


ua
d,x,y,t if pd,x,y,t = a

ub
d,x,y,t if pd,x,y,t = b

uC
d,x,y,t if pd,x,y,t = C

(C.1)

where

ua
d,x,y,t =


1 + κN∗

d,a,t if x ≤ x̂d

0 if x > x̂d

ub
d,x,y,t =


0 if x ≤ x̂d

1 + κN∗
d,b,t if x > x̂d

(C.2)

and uC
d,x,y,t = γy. We collect equilibrium outcomes in the following lemma:

Lemma 4 (Equilibrium outcomes in extended model). In the pre-interoperability stage, equilib-

rium usage of platform a, of platform b, and of both platforms combined is:

Nd,a,−1 =
x̂d

γ − κx̂d

(C.3)

Nd,b,−1 =
1− x̂d

γ − κ(1− x̂d)
(C.4)

ND
d,−1 =

x̂d

γ − κx̂d

+
1− x̂d

γ − κ(1− x̂d)
. (C.5)

In the post-interoperability stage, equilibrium usage of platform a, of platform b, and of both

platforms combined is:

Nd,a,1 =
x̂d

γ − κ
+ x̂d · ω (C.6)

Nd,b,1 =
1− x̂d

γ − κ
+ (1− x̂d) · ω (C.7)

ND
d,1 =

1

γ − κ
+ ω . (C.8)

Intuitively, the maximization decision within each period described in equation (C.1) is directly
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analogous to that in equation (2), so the equilibrium outcomes are directly analogous to those

described in Lemmas 2 and 3, except for the impact of the shock in Stage 1.

Combining equations (C.5) and (C.8), the change in total usage of digital payments between

the pre-interoperability and post-interoperability stages is:

∆ND
d = ND

d,1 −ND
d,−1 =

1

γ − κ
+ ω − x̂d

γ − κx̂d

− 1− x̂d

γ − κ(1− x̂d)
. (C.9)

The empirical identification problem is that while we can observe ND
d,−1 and ND

d,1, we do not

observe ω, so we cannot attribute ∆ND
d to interoperability alone—any observed change could

instead be driven by the shock. However, when comparing two districts with the same ω, the ω

terms cancel out, so any differences between the districts on ∆ND
d must reflect differences in x̂d.

Thus we are able to derive clear predictions for ∆ND
d (Prediction 1), and similarly for ∆Na

d and

∆N b
d (Prediction 2). The requirement that the districts being compared face the same shock ω is

the “parallel trends” assumption that we discuss in detail in Section 4.1.

Finally, while the equilibrium quantities in Lemma 4 are expressed as functions of districts’

user-type shares x̂d, we cannot observe these directly since we only observe the platform choices of

those users who do in fact adopt digital payments. We therefore express our empirical predictions

as functions of Fd :=
Nd,a,−1

ND
d,−1

, which measures the share of all digital payments that occur through

the smaller platform (platform a) in the pre-interoperability stage. We note that this can be used as

a proxy for x̂d:

Lemma 5 (User-type shares and observed baseline fragmentation). The degree of fragmentation in

a district in the non-interoperable baseline, measured by the share Fd of digital payments occur-

ring through the smaller platform (platform a), is a strictly increasing function of x̂d, the district’s

share of users that perceive benefits from that platform relative to the other platform (platform b).

Intuitively, when comparing two districts with different levels of x̂d, the district with higher x̂d has

more users that perceive positive utility from platform a, so will also have higher usage of platform

a in the absence of interoperability. This can be seen in Figure 8a, where Fd equates to the ratio
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of the blue area to the sum of the blue and green areas. District 0 has low x̂d and the blue area is

relatively small; District 1 has higher x̂d, and the corresponding blue area (shown in Figure 7a) is

relatively large.

D Implications of potential multihoming

In the model, each user makes only one payment, so they only choose one payment method and

there is no need to multihome. In reality, users could have maintained accounts on both platforms

(UPI and the pre-existing closed-loop incumbent) prior to them becoming interoperable. If mul-

tihoming were frictionless, such that switching between platforms carried no cost, then all users

would effectively have access to the combined network across both platforms even prior to in-

teroperability, since they could readily switch to their counterparty’s platform. Thus, introducing

interoperability would have no effect on total usage of digital payments. To the extent that multi-

homing did in fact occur prior to interoperability, it would therefore make us less likely to find a

positive impact of network integration. Our empirical results can thus be interpreted as the impact

of introducing interoperability even net of any multihoming that did in fact occur ex ante—i.e., as

a lower bound on the true effect of introducing interoperability in a world where no multihoming

occurs ex ante.

E Implications of cross-district transactions

To illuminate the implications of including cross-district payments in the model, we first consider

the polar case where payments from district d flow equally to all districts, rather than only to

other users within d. Users’ welfare from using digital payments platform i thus depends on the

total accessible national user base
∑D

d=1N
∗
d,i, rather than only the accessible within-district user

base N∗
d,i. As the total number of districts D tends to infinity, the importance of N∗

d,i within∑D
d=1N

∗
d,i thus tends to zero. Thus in the limit the extent of local fragmentation—which impacts

N∗
d,i—is irrelevant. Instead, only the degree of national fragmentation across networks matters
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for the decision of a user in d. But since the degree of national fragmentation is the same for all

districts, by definition, this implies that the impact of introducing interoperability is also the same

for all districts. Thus Predictions 1 and 2 no longer hold: instead, we predict that introducing

interoperability increases total digital payments by the same amount in all districts, regardless of

each district’s ex-ante level of fragmentation.

This extreme case highlights the different forces affecting within-district versus across-district

payments. Payment choices for within-district payments depend on local fragmentation, whereas

payment choices for across-district payments depend on fragmentation in the destination districts.

We do not observe the destination district in our data, so we focus our analysis on the implications

of local fragmentation for within-district payments. To the extent that our outcome variables do in

fact include some cross-district payments (for instance, payments to online merchants), this would

therefore serve to attenuate our estimates of integration’s impact, implying that our estimates are a

lower bound on the true impact of network unification.

F Decomposition of the change in value per capita

We have a variable Y = U · V · W and aim to decompose a change in Y in response to another

variable X into the parts resulting from changes in each of the constituent variables U , V and

W . In our case, Y is the total value of digital payments per capita, U is the average value per

transaction, V is the number of transactions per user, W is the number of users per capita, and X

is our “treatment” variable P+
d interacted with the post-interoperability dummy 1{t≥t0}. The total

derivative of Y with respect to X is:

∂Y

∂X
=

∂U

∂X
VW︸ ︷︷ ︸

via U

+U
∂V

∂X
W︸ ︷︷ ︸

via V

+UV
∂W

∂X︸ ︷︷ ︸
via W

(F.1)

Table 1 Column 1 gives an estimate of ∂Y
∂X

that we denote by βY
X . Similarly, Appendix Table A.1

Column 1 gives an estimate of ∂U
∂X

that we denote by βU
X , Column 2 gives an estimate of ∂V

∂X
that
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we denote by βV
X and Column 3 gives an estimate of ∂W

∂X
that we denote by βW

X . To estimate the

contribution of each margin, we use the “non-treated” districts’ sample means for each variable in

the post-interoperability period (i.e., the mean for P+
d = 0 and t ≥ t0), which we denote by Ū , V̄ ,

and W̄ . Substituting in, we define:

b := βU
X · V̄ W̄︸ ︷︷ ︸

via U

+ Ū · βV
X · W̄︸ ︷︷ ︸

via V

+ Ū V̄ · βW
X︸ ︷︷ ︸

via W

. (F.2)

We can then estimate the normalized relative contribution of each margin by the following shares

s:

sU :=
βU
X · V̄ W̄

b
, sV :=

Ū · βV
X · W̄
b

, sW :=
Ū V̄ · βW

X

b
. (F.3)

Finally, we use these shares to decompose the overall estimated impact βY
X across margins U , V ,

and W , giving estimated impacts βY
X · sU , βY

X · sV and βY
X · sW respectively, as shown in Figure 12.

G Additional robustness checks

This appendix contains additional checks on the robustness of our baseline results. First we exam-

ine results from a range of alternative specification choices, then we run placebo tests for both the

cross-sectional and temporal variation underlying our results.

G.1 Alternative specifications

Our baseline regressions estimate Pd using all digital payments transactions, not just P2M trans-

actions. This reflects that even a user who, for example, only adopts digital payments to send

P2P remittances is nonetheless joining a platform, increasing that platform’s share of all users,

and hence affecting the size of the user base that that platform brings to the combined network at

integration. Nonetheless, Appendix Table A.2 shows that our results are robust to instead defining

Pd using only P2M digital payments.

xxxvii



As discussed in Section 4.1, our baseline P+
d measure includes some districts where the incum-

bent platform has a greater than 50% share of pre-integration transaction values. One could thus

interpret fragmentation in these districts as being driven by the incumbent’s platform being too

small, rather than too large (as in the vast majority of districts, where UPI was dominant ex ante).

To avoid concerns that these districts are qualitatively different, and such should not be included in

our comparisons, Appendix Table A.3 repeats our main results when dropping these districts (and

re-computing P+
d accordingly). Our results remain similar.

Our baseline results control for differential trends according to the total value of digital pay-

ments across UPI and the incumbent platform in the month before integration in a given district.

In the stylized framework of our model, where users can only choose between the two digital pay-

ments platforms and cash, such a control suffices to also control for differential trends by the level

of cash usage ex ante. In reality, while UPI and the incumbent platform accounted for a large share

of the total non-cash transaction value prior to integration (see Figure 2), other payment methods

were available. The existence of other electronic payment options (e.g., credit and debit cards)

could thus lead to variation in the ex-ante proportion of digital payments usage relative to cash

that is not accounted for by our baseline control (Zd × 1{t≥t0}). To address this potential concern,

Appendix Table A.4 shows that our results remain robust when also controlling directly for differ-

ential trends by cash usage—i.e., when adding an extra control for differential trends by the total

value of cash withdrawals in a district in the month prior to integration.

Our baseline results focus on transaction values rather than volumes, since these capture both

the price and quantity margins of digital payments usage. Nonetheless, in Appendix Table A.5 we

show that our main findings remain similar even when constructing ydt, Pd and Zd using volumes

alone rather than values. Similarly, our results do not depend on our choice to winsorize values at

the 1% level: Appendix Table A.6 shows that our results hold even when restricting winsorizing to

the top 0.5% of districts.

Finally, we account for potential differences in trends between rural and urban areas. We

construct an indicator for districts that are above the median population density, then repeat our
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baseline specification with the addition of the interaction between this indicator and period-specific

fixed effects. The results, shown in Appendix Table A.7, confirm the robustness of our baseline

estimates.

G.2 Placebo tests

We conduct two placebo tests to confirm that our results are not driven by some combination of

our specification design and the context we study. First, we confirm that randomly re-assigning

districts between P+
d -groups produces median estimated effects centered on zero. Appendix Figure

A.10a shows the results. Second, we confirm that our results are not driven by a combination of

exponential growth in digital payments and our choice of baseline period. Appendix Figure A.10b

repeats Figure 11a for an alternative t0 set three months prior to that in our baseline specification,

and confirms that the differential increase in total digital payments usage does not take off until the

true month of integration.

H Estimating cross-app “Other-Other” transactions

As described in Section 2.2, we only observe a condensed version of the matrix of payer and payee

app choices, containing four major apps and a consolidated “Other” category. This entails that

for transactions in the “Other to Other” cell we cannot determine whether the transaction occurred

between two users of different apps or between two users of the same app. To construct our central

estimate of the share of cross-app transactions, we therefore distribute these transactions between

the cross-app and within-app categories by combining (i) information revealed in the remainder

of the condensed matrix, and (ii) the fact that we can estimate the dimensions of the full matrix

(since we also observe information on the full distribution of payer-side app choices, as described

in Section 2.2).

To illustrate our procedure, consider the following example where the “full” matrix (Matrix

1) contains five apps but we only observe a “condensed” matrix (Matrix 2) of two apps plus one
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aggregate “Other” category:

Matrix 1: Full

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

Matrix 2: Condensed∑3
i=1 ai1

∑3
i=1 ai2

∑3
i=1

∑5
j=3 aij

a41 a42
∑5

j=3 a4j

a51 a52
∑5

j=3 a5j

We thus aim to estimate the share of cross-app transactions in the blue square of Matrix 1, using

only the information in Matrix 2 and the dimensions of Matrix 1. To solve this identification

problem, we first define a ratio ϕ = Racv

Rawv
where Racv and Rawv are respectively the average cross-

and within-app transaction values within the red region. We then estimate the equivalent statistics

(denoted Bacv and Bawv) in the blue region by applying this ratio. Specifically, we construct

estimators by solving the following system of equations

BwB̂awv +BcB̂acv = Bv (H.1)

B̂acv = ϕB̂awv (H.2)

where: Bv is the observed total value in the blue “Other-Other” cell, Bw is the observed number

of within-app relationships aggregated within the blue cell, and Bc is the observed number of

cross-app relationships. We thus estimate the average cross-app value in the blue region by

B̂acv =
ϕBv

(Bw + ϕBc)
(H.3)

and the average within-app value in the blue region by

B̂awv =
Bv

(Bw + ϕBc)
. (H.4)
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This allows us to estimate the total value of within-app transactions in the blue region by calculating

B̂wa = B̂awvBw (H.5)

and similarly we estimate the total value of cross-app transactions in the blue cell by calculating

B̂ca = B̂acvBc. (H.6)

Turning to our context—with a larger number of apps in both the full and condensed matrices—

we apply the same approach. We know that Bw = n and Bc = n(n− 1), where n is the number of

apps we observe on the UPI network in our complete payer-side data, minus four—i.e., minus the

number we observe in our payer-payee matrix. We then construct our central estimate of the share

of cross-app transactions (shown in Figure 4) using Bc and B̂acv.
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