
A New Perspective on 
Temperature Shocks 

Nooman Rebei 

WP/25/42

IMF Working Papers describe research in 
progress by the author(s) and are published to 
elicit comments and to encourage debate. 
The views expressed in IMF Working Papers are 
those of the author(s) and do not necessarily 
represent the views of the IMF, its Executive Board, 
or IMF management. 

2025 
FEB 



© 2025 International Monetary Fund WP/25/42

IMF Working Paper 
Institute for Capacity Development 

A New Perspective on Temperature Shocks 
Prepared by Nooman Rebei 

Authorized for distribution by Mercedes Garcia-Escribano 
February 2025 

IMF Working Papers describe research in progress by the author(s) and are published to elicit 
comments and to encourage debate. The views expressed in IMF Working Papers are those of the 
author(s) and do not necessarily represent the views of the IMF, its Executive Board, or IMF management. 

ABSTRACT: Prevailing research suggests that climate change disproportionately burdens emerging markets 
and developing economies with greater output losses compared to advanced economies, positing that colder 
regions are less impacted than their warmer counterparts. This study revisits the empirical relationship between 
temperature fluctuations and real growth, with a novel focus on differentiating between transitory versus 
permanent temperature shifts, aligning naturally with the definitions of weather and climate change, 
respectively. Our findings reveal that richer and colder economies exhibit better adaptation only in response to 
weather shocks, whereas the pattern reverses for climate change disturbances, challenging the conclusions of 
previous studies.  

JEL Classification Numbers: C51, E01, O44, O50, Q51, Q54 

Keywords:  
Climate change; Climate damages; Temporary and permanent 
shocks; Kalman filter; Bayesian estimation. 

Author’s E-Mail Address: nrebei@imf.org 

mailto:nrebei@imf.org


WORKING PAPERS 

A New Perspective on 
Temperature Shocks 

Prepared by Nooman Rebei1

1 We are grateful for helpful comments from ICD-Climate group seminar participants as well as Ali Alichi, Michal Andrle, Karim 
Barhoumi, Andrew Berg, Reda Cherif, Hasan Dudu, Xiaochen Feng, Mercedes Garcia-Escribano, Fuad Hasanov, Luciana Juvenal, 
Eliakim Kakpo, Mohammad Khabbazan, Povilas Lastauskas, Ha Nguyen, Mehdi Raissi, Gregor Schwerhoff, and Tolga Tiryaki. We 
would like to especially thank Gabriela Penaherrera for the outstanding research assistance. 



Contents
1 Introduction 3

2 Model 6

3 Estimation 9

4 Empirical Results 11
4.1 Trend characteristics and cointegration . . . . . . . . . . . . . . . . . 11
4.2 Permanent climate shock transmission . . . . . . . . . . . . . . . . . 13
4.3 Transitory weather shock transmission . . . . . . . . . . . . . . . . . 14
4.4 Climate projection data (SSP5-8.5) . . . . . . . . . . . . . . . . . . . 16

5 How Important are Temperature Shocks for Economic Activity 18

6 Reverse Causality 20
6.1 Model specification and identification restrictions . . . . . . . . . . . 21
6.2 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Conclusion 24

References 25

A Appendices 27
A.1 Stochastic Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Impulse-Response Functions (Transitory Shock) . . . . . . . . . . . . 29
A.3 Real Output under SSP5-8.5 Scenarios . . . . . . . . . . . . . . . . . 31

2



1 Introduction
Surface temperature, at a global and country levels, is known to display and upward
trend (non-stationary). Conventional empirical models designed to assess the impact
of climate change on aggregate output often struggle to distinctly identify permanent
changes in temperature. Instead, many studies incorporate temperature using levels,
growth rates, or a combination of both to explain the dynamics of output growth. In
the field of time series analysis, it is a well-established fact that regressions involving
non-stationary or trending variables generally result in statistical inconsistencies and
can frequently be spurious.

Research that examines the role of climate change e!ects on economic growth
include Dell, Jones, and Olken (2012), Burke, Hsiang, and Miguel (2015), Tol (2018),
Acevedo, Mrkaic, Novta, Pugacheva, and Topalova (2020), and Waidelich, Batibeniz,
Rising, Kikstra, and Seneviratne (2024); who highlight a significant and non-linear
impact of temperature on economic productivity, revealing that productivity declines
sharply at higher temperatures.1 Letta and Tol (2019) and Henseler and Schumacher
(2019) report similar results for total factor productivity growth. In an attempt to
account for long-term shifts of temperature, some proposed averaging the weather
variables over a certain number of years and running longer-di!erence estimates.
Results remain qualitatively similar. Nath, Ramey, and Klenow (2023) challenge the
quantitative findings as they show that output growth losses are amplified due to
omitted lags and serial correlation of temperature. Further, they develop a model
where the impact of temperature shocks, as opposed to temperature levels, on output
depends on the country’s average temperature.2 They still find that hot countries
will be harmed by warming and cold countries less a!ected.

Few papers show distinct results as they find substantial heterogeneity across
countries in the impulse responses of real growth. Kahn et al. (2021) take the persis-
tence of climate change more seriously by introducing deviations of temperature and
precipitation from their long-term moving average historical norms instead of their
levels. Interestingly, shifts in weather patterns, indicative of climate change, impact
not only countries with low incomes or those situated in warm climates but also a!ect
advanced economies and regions with cooler climates. Similar findings are illustrated
by Berg, Curtis, and Nelson (2023) from a country-specific time series perspective
using local projections. Bilal and Känzig (2024) estimate significantly larger impacts
of climate change than previously reported. By analyzing natural fluctuations in

1The general approach consists of using within-country and across-country year-to-year fluctu-
ations in temperature and precipitation to identify their causal e!ect on aggregate output growth,
both contemporaneously and over the medium term.

2In the process of identifying temperature shocks, Nath et al. (2023) adopt an autoregressive
process for temperature including variables that are still trending.
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global temperatures, they document that global temperature shocks lead to adverse
economic e!ects even in higher-income, colder regions. Their findings are motivated
by the observation that global temperature shocks correlate much more strongly with
extreme weather events compared to country-specific temperature changes.

Despite the obvious evidence that trending temperature is a characterization of
climate change, the existing literature is silent about this central identification is-
sue. Furthermore, global and country-specific long-term scenarios of temperatures
are attributed to very persistent pathways for greenhouse gas concentrations and the
amount of warming that could occur by the end of the century.3 To fill this gap,
two motivations drive our inquiry. First, temperature is trending and it is important
to revisit the empiric of the relation between climate change and real growth while
explicitly distinguishing between permanent and transitory temperature shifts. The
second motivation consists of the heterogeneous climate change witnessed during the
recent decades at the country level. We document evidence showing that advanced
economies (AEs) are becoming hotter at a faster pace than emerging markets and
developing economies (EMDEs). This could have a di!erent implications in the long
term depending on the sensitivity of the economic environment to rising temperatures.

We also find the motivation of our analysis in the literature examining the fun-
damental aspects of temperature time series, aiming to detect the source of non-
stationarity and di!erentiate between linear and stochastic trends. Results are in-
conclusive when tests on individual time series are adopted,4 An alternative method-
ology to identify the driver of temperature trend is through testing the cointegra-
tion between temperature and radiative forcing. In the positive case, temperature
should share a common stochastic trend with the variable measuring radiative forc-
ing.5 Kaufmann, Kauppi, Mann, and Stock (2013) adopt cointegration and error
correction approach to explore the relationship between temperature and radiative
forcing, uncovering evidence that temperature anomalies exhibit stochastic rather

3The development of pathways to understand future environmental changes is spearheaded by two
distinct research initiatives: the "Representative Concentration Pathways" (RCPs) and the "Shared
Socioeconomic Pathways" (SSPs). RCPs provide scenarios that outline various levels of greenhouse
gases and other radiative forcings, o!ering insights into potential future atmospheric compositions
without incorporating socioeconomic storylines. On the other hand, SSPs take a comprehensive
approach by modeling potential shifts in socioeconomic factors over the coming century, including
changes in population, economic growth, education levels, urbanization trends, and the pace of
technological innovation.

4Numerous research e!orts have found evidence supporting the existence of a stochastic trend,
as indicated by works from Gordon (1991), Woodward and Gray (1993, 1995), and Kärner (1996).
On the other hand, a significant number of studies have identified evidence suggesting the presence
of a deterministic trend, potentially accompanied by highly persistent noise, as seen in the research
by Bloomfield (1992), Bloomfield and Nychka (1992), Baillie and Chung (2002), and Fomby and
Vogelsang (2002).

5Such cointegration would align with the theory that economic activity and atmospheric lifetimes
introduce a stochastic trend to radiative forcing, which in turn a!ects temperature trends.
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than deterministic trends. Based on trend-stationary long memory models, Chang
et al. (2020) reach the same findings. Based on our regressions, Figure 1 illustrates
the stochastic trend and the non-persistent component of average global temperature,
which are very similar to science-based results illustrated in IPCC (2021).

Figure 1: Global Surface Temperature

Our modeling strategy follows Uribe (2022) and Rebei and Sbia (2021) to account
for temporary and permanent shocks for temperature and real output. The model is
framed using detrended endogenous variables and external shocks. Given that both
the external shocks and stochastic trends are not directly observable, the majority
of the model’s variables are considered latent. However, the estimation leverages the
model’s ability to provide accurate predictions for variables that can be observed. The
likelihood of the data is computed using the Kalman filter, and Bayesian techniques
are applied in the econometric estimation. Our analysis yields three principal findings.
First, in recent decades, there has been a noticeable upward trend in temperature
across countries, with significant disparities. Notably, cold countries have witnessed
the most substantial changes—around 0.5oC higher than hot regions. Second, the
previously reported pattern where poor and hot countries appear more a!ected by
increasing temperatures holds true only in the context of non-persistent shocks. The
impact of climate change turns out to be more pronounced in colder and wealthier
nations and less pronounced in hotter and poorer nations, resulting in an average
output loss of 6 percent and 1 percent, respectively, under the most severe temperature
increase scenario. Third, temperature shocks account for approximately one-quarter
of the observed variations in aggregate economic activity in rich countries, while their
impact is significantly lower in poor and hot countries. Moreover, only one-quarter of
the contribution of temperature shocks is attributed to temporary disturbances, while
the remaining three-quarters are driven by the permanent e!ects of climate change.

Our findings challenge the existing literature, which posits that colder and wealth-
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ier regions are less impacted by climate change than warmer regions due to an as-
sumed, but unproven, greater capacity for adaptation. Burke et al. (2024) examine
the extent to which societies are adapting to climate change by analyzing a broad
array of longitudinal datasets across di!erent geographies and sectors. Empirical re-
sults suggest an observed lack of adaptation including in advanced economies. We
attribute our results to the fact that in wealthier countries, temperature trends are
more pronounced in colder regions, accompanied by a higher frequency and greater
damages from natural disasters. Similarly, Bilal and Känzig (2024) identify extreme
climatic events as the primary transmission channel of climate change impacts.

The remainder of this paper is organized as follows. Section 2 describes the under-
lying assumptions of the empirical model used to disentangle permanent and tempo-
rary temperature components and how they a!ect output growth. Section 3 displays
the estimation methodology. Section 4 explores the empirical implications from the
country-specific regressions. Section 5 undertakes a cross-country analysis of fore-
cast error variances. A robustness check, consisting of potential reverse causality, is
considered in Section 6. Finally, we present concluding remarks in Section 7.

2 Model
Weather describes the short-term state of the lower atmosphere, encompassing ele-
ments such as precipitation, temperature, humidity, wind speed and direction, and
atmospheric pressure. These conditions are in constant motion, leading to frequent
weather changes, as seen with events like the Indian Summer Monsoon Rainfall and
the El Niño-Southern Oscillation. In contrast, climate refers to atmospheric trends
and shifts observed over extended periods of time.

To di!erentiate the e!ects of weather and climate on temperature, we can assume
that temperature consists of both a transitory component and a permanent one. In
the simplest setting, expressing variables in logarithms, one can formalize this as
follows:

Tt = !T
t + ω

T
t , (1)

where !T
t = !T

t→1 + ε
T
t and ω

T
t = ϑω

T
t→1 + ϖ

T
t . The two temperature innovations

ε
T
t and ϖ

T
t are i.i.d. shocks; however, they imply persistent and temporary e!ects,

respectively.
It is important to note that based on the specification of temperature in Equa-

tion 1, this variable is assumed non-stationary by definition.

Now, let’s assume a more general process of evolution of temperature by allowing
it to be autocorrelated—due to the cumulative CO2 emissions. Since the observed
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temperature has a unit root that could be attributed to a stochastic trend, we define a
"detrended" measure of temperature T̂t = Tt →!T

t . Then, we can express the following
autoregressive equation:

T̂t =
p∑

i=1
ϑjT̂t→j + ϱ”!T

t + ω
T
t . (2)

Similarly, we assume that real GDP has a stochastic trend, !̂Y
t , that could be

a!ected by an exogenous trend, !Y
t = !Y

t→1 + ε
Y
t , and the long-term temperature

trend, !T
t (to be statistically tested based on the estimation outcome). Hence, Ŷt =

Yt → !̂Y
t , where !̂Y

t = !Y
t + ς!T

t .
We define the law of motion of the detrended real GDP as follows:

Ŷt =
p∑

j=1
φjẐt→j + ↼”!Y

t + ↽”!T
t + ⇀ω

T
t + ω

Y
t , (3)

where Ẑt→j =
{
T̂t→j, Ŷt→j

}p

j=1
.6

By construction, ”!Y
t and ”!T

t denote changes in the non-stationary innovations
while ω

Y
t and ω

T
t correspond to temporary shocks.

The observable variables used in the estimation of the empirical model are growth
rates of temperature and real GDP. The observable variables are linked to the vari-
ables included in the unobservable system Equations 2 and 3 through the following
relations

”Tt = T̂t → T̂t→1 + ”!T
t , (4)

and
”Yt = Ŷt → Ŷt→1 +

(
”!Y

t + ς”!T
t

)
. (5)

For more generality, we allow shocks to weather and climate change to be serially
correlated. Formally, the transitory and permanent components evolve according to





”!T
t+1

ω
T
t+1

”!Y
t+1

ω
Y
t+1




= #





”!T
t

ω
T
t

”!Y
t

ω
Y
t




+ $





µ
T
t

ϖ
T
t

µ
Y
t

ϖ
Y
t




(6)

where # and $ are 4-by-4 diagonal matrices; µ
i
t and ϖ

i
t (i = T, Y ) are i.i.d. normally

distributed disturbances.
6Other papers such as Burke et al. (2015) and Kahn et al. (2021) include precipitation variables

in the regression arguing that they could also capture climate change. On the other hand, others
like Nath et al. (2023) and Bilal and Känzig (2024) find they were not significant and their presence
did not change the estimated impulse responses.

7



We denote ot be the vector of variables observed in year t, which corresponds to
ot = [”Tt ”Yt]↑. The state-space representation of the system composed of Equations
(2) to (6) can be written as follows:

⇁t+1 = A ⇁t + B εt+1

ot = C
↑ + D

↑
⇁t,

where ⇁t = [Ẑt→1 ... Ẑt→p+1 ut]↑, ut = [”!T
t ω

T
t ”!Y

t ω
Y
t ]↑, and εt = [µT

t ϖ
T
t µ

Y
t ϖ

Y
t ]↑.

The matrices A, B, C, and D are known functions of ϑj, φ
i
j (for i = T, Y ; and

j = 1, ..., p), ϱ, ↽, ⇀, and ς. Let’s define Ii as an identity matrix of order i, ↑i is a
square matrix of order i with all elements equal to zero, while ↑i,j denotes a matrix of
order i by j with all entries equal to zero. Further, let q and n denote, respectively,
the number of the number of shocks (= 4) and the number of endogenous variables
included in the empirical model (= 2). We also define

G ↓


 ϑ1 ... ϑp ↑1,p

φ
T
1 ... φ

T
p φ

Y
1 ... φ

Y
p



 , H ↓


 ϱ 1 0 0
↽ς ⇀ ↽ 1





Hence, for p ↔ 2, we have

A =





G H#[
In(p→1) ↑n(p→1),n

]
↑n(p→1),q

↑q,np #



 , B =





H$
↑n(p→1),q

$





C = [E(”!T
t ) E(”!Y

t )] and D = [Mω ↑n,n(p→2) Mu],

where the matrices Mω and Mu take the form

Mω =


 1 0 →1 0
0 1 0 →1



 and Mu =


 1 0 0 0
ς 1 0 0



 .

To gain deeper insights into how persistent shocks on temperature a!ect real out-
put, we first calibrate a simplified version of the model and then iteratively simulate
the impulse-response functions using di!erent values for the two key parameters ς

and ↽. Figure 2 illustrates the sensitivity of output level responses to a sudden per-
manent increase of 1oC.7 For significantly negative values of ς, the output response

7This is only valid conditional on a one-o! permanent shock, the parameter ω still plays a crucial
role in the shock decomposition including the permanent ones during the estimation process; besides
SSPs and RCPs scenarios would imply a sequence of shocks until 2100 and the response of output
would depend on ω in the long-term.
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reaches a new low, with the transition primarily influenced by ↽, which determines
the speed of convergence. After the sixth year, the output response becomes insen-
sitive to the transition parameter ↽ and is instead driven entirely by the long-term
equilibrium relationship, as indicated by the cointegration term ς. This highlights
the underlying short- and long-term conditional moments that could help identify the
key parameters of the proposed model.

Figure 2: Output growth response to a permanent increase of temperature of 1oC

Notes: The average temperature is assumed to be 68oF (20oC); and
1oC increase would correspond to a shock of magnitude 2.64 percent.

3 Estimation
The two observable variables considered in the regressions are real output and sur-
face temperature. We use real GDP from Penn World Table PWT version 10.01
as it provides the most extensive data both in terms of country coverage and years
availability. Temperature is measured as the observed annual average mean surface
air temperature reported by the World Bank database—Climate Change Knowledge
Portal.8 The model is estimated using data from twenty advanced economies and
twenty emerging markets and developing economies.9

8The Climatic Research Unit (CRU) at the University of East Anglia generates observed, histor-
ical climate data. This data is available at a resolution of 0.5o ↗ 0.5o (50km ↗ 50km).

9AEs correspond to: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Greece,
Ireland, Iceland, Italy, Japan, Korea, Netherlands, Norway, Portugal, Spain, Sweden, United King-
dom, and United States. EMDEs include: Argentina, Bangladesh, Brazil, Chile, China, Cameroon,
Egypt, India, Kenya, Madagascar, Malaysia, Mexico, Morocco, Nepal, Pakistan, Romania, South
Africa, Thailand, Tunisia, and Turkey.
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Table 1 presents the prior distributions for the parameters of our model, following
the Minnesota prior framework, a well-established method for setting macroeconomic
priors in VAR coe"cient analysis. This approach assumes that treating each variable
in the system as an independent random walk is a reasonable representation of their
time series behavior. Consequently, this assumption suggests that a variable’s own
historical data (own lags) typically provide more information than the historical data
of other variables. Furthermore, it posits that more recent data points (lags) of a vari-
able o!er more insight than older ones, emphasizing the importance of recent trends
over distant past behavior. Formally, the coe"cients in the diagonal of the autocorre-
lation matrix in Equation 5 are a priori independent and normally distributed, with
means and standard deviations set to 0.5 and 0.15, respectively. Furthermore, we
choose flat prior distributions for the B matrix coe"cients capturing the contempo-
raneous reaction of the endogenous variables to structural shocks—Gamma (Normal)
distributions with mean values set to 1 (0) and standard deviations equal to 2 or 1.
Permanent and temporary components of temperature and output exhibit a degree of
persistence captured by the diagonal of the matrix #. Autocorrelations follow prior
Beta distributions with mean 0.2 and standard deviations set to 0.15. Finally, we
assume inverse Gamma prior distributions for the standard errors of the structural
shocks as well as measurement errors.10

Table 1: Prior Distributions

Parameter Distribution Mean Std. Dev.

A1(j, j) for j = 1 Normal 0.5 0.15
Ai(j, k) for i = 2, ..., L Normal 0 0.15
→B1,1 (= ϱ) Gamma 1 1
B2,1/↽ (= ς) Normal 0 2
B2,2 (= ⇀) Normal 0 1
→B2,3 (= ↽) Gamma 1 1
diag(#) Beta 0.2 0.15
diag($) Inv-Gamma 1 2

To determine the appropriate lag length for the autoregressive segment, we con-
duct a comparison of the marginal likelihoods across models featuring 1 to 4 lags.
Notably, for most countries, the posterior odds ratio test demonstrates a strong pref-
erence for the model with L = 2, indicating a higher Log data density.

10For simplicity measurement errors are i.i.d. shocks showing no persistence.
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To extract posterior distributions for our estimated parameters, we employ the
Metropolis-Hastings algorithm, initiating a Monte-Carlo Markov Chain (MCMC) con-
sisting of 500,000 draws. We discard the initial 20 percent of these samples as a burn-
in phase to eliminate the potential e!ect of the chain initialization. For the analysis
of impulse responses presented in the following section, we create posterior means and
error bands based on a subsample of 10,000 draws, using a random selection process
with replacement.

4 Empirical Results

4.1 Trend characteristics and cointegration

The estimated model allows us to examine the evolution of two key unobserved vari-
ables, the temperature trend component, !T

t , and the underlying cyclical component,
ω

T
t , since 1950, as characterized in Equation 2.

Figure 3 displays the posterior median temperature stochastic trends in AEs
against EMDEs along with their corresponding 90 percent posterior bands. From
the figure we find that there is no statistically meaningful upward shift in average
temperatures in the two groups of countries until the 1970s. Then, there is a per-
sistent increasing temperature in both AEs and EMDEs during the 1980s, which is
statistically similar. Importantly, the speed at which climate change materializes is
more pronounced in colder countries starting from 1990, leading to an average ab-
solute increase of temperature of 1.5oC, 0.5oC larger than what hot countries have
registered.

Figure 3: Temperature Stochastic Trends: AEs versus EMDEs
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Since we define persistent fluctuations of temperature as an outcome of permanent
shocks, the uneven estimated trend with adverse consequences only in countries with
cold climates should be attributed to larger shocks on the permanent component.11

In other terms, climate change shocks are larger in cold climates or high-income
countries, which could yield larger economic losses despite their higher capacity to
deal with changes in temperature (capacity to adapt).

Another important determinant of the the e!ect of climate change on economic
activity is captured by the the coe"cient ς, as discussed in the previous section.
Figures 4a and 4b display the posterior distributions of the highest versus lowest
cointegration coe"cients estimated in the groups of AEs and EMDEs, respectively.

Figure 4: Posterior Distributions of the parameter ς

(a) AEs (b) EMDEs

While the long-run relation between output and temperature does not have a
structural interpretation, it does measure the conditional reduced-form relationship
between the two, which can provide a summary of the climate change impact on
economic activity in the long run. From the figures, we find that the response can
have a positive or negative sign regardless of the level of income and historical average
temperature. Besides, there is some evidence that growth e!ects of persistent weather
shocks are more dispersed in cold climates with the most severe negative (positive)
e!ect is registered in Sweden (UK) with a long-term impact of 3 percent loss (gain)
in output following a 1 percent permanent change in temperature. In contrast, lower
income countries exhibit a squeezed distribution of the long-term correlation varying
between only →2 and 2 percent. In conclusion, while rich countries are found to

11As shocks are interpreted in deviations and not in absolute terms, permanent shocks on tem-
perature in cold countries would be much larger to reflect on a average absolute increase of 1.5oC.
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be disproportionately a!ected by weather shocks, poor countries are by no means
immune to climate change once we consider real output loss as a metric.

4.2 Permanent climate shock transmission

Country-specific impulse response functions are simulated following an annual 0.04oC
permanent shocks over the period 2019–2100 (when compared to a baseline scenario
under which temperature in each country increases according to its historical trend
of 1950–2019).12 This broadly corresponds to 3.5oC permanent increase of temper-
ature by 2100. Figures 5a and 5b display the posterior averages of the long-term
impact on output with countries grouped based on income level and historical aver-
age temperature, respectively. As previously discussed, the cointegration coe"cient,
ς, significantly influences the sign and magnitude of the responses. However, other
estimated parameters, such as the degree of shock persistence (see Equation 6), could
also a!ect the output’s reaction to permanent temperature shocks.

In response to a positive (unfavorable) permanent temperature surprise, real out-
put in most AEs countries significantly declines, with a larger e!ect on higher income
countries also exhibiting low historical average temperatures. Only four countries
could benefit from permanent rise of temperature, with Ireland as an outlier regis-
tering output gains slightly below 8 percent. All the remaining AEs are estimated to
su!er output declines. The Nordic region (Denmark, Finland, Iceland, Norway, and
Sweden) along with USA are the most significantly a!ected, with losses between 12
percent (in USA) and 18 percent (in Sweden), assuming a severe scenario of climate
change.

Considering the responses from EMDEs to persistent temperature increases, it is
observed that the cross-country heterogeneity is not as significant as in AEs. The
long-term reaction of output ranges from a decrease of 14 percent (Malaysia) to an
increase of 9 percent (Nepal). A reduced number of countries are expected to benefit
from climate change leading to an average loss of output around 1 percent by the end
of the century in EMDEs or hot countries—6 percent lower than the average of AEs.

Figures 5a and 5b also present a comprehensive comparison of the long-term re-
lationship between income levels and vulnerability to climate change, di!erentiating
between AEs and EMDEs, as well as between historically cold and hot countries.
The figures provide visual confirmation that the poorest countries, also hottest, are
estimated to experience significantly lower economic growth deterioration to positive

12Note that depending on the historical average of temperature, country-specific sizes of the annual
shocks should be adopted in the simulations of the impulse-responses functions. Hence, for cold
countries the size of innovations should be larger compared to that considered in the case of hot
countries.
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persistent temperature shocks. This evidence reverses the common wisdom that cli-
mate change is largely a!ecting poor and hot countries whereas rich and cold countries
could rather benefit from rising temperature associated with climate change.

Figure 5: Distribution of Output Loss by 2100

(a) Income group e!ect (b) Average temperature e!ect

Notes: Blue triangles: AEs. Green squares: EMEDEs. Orange dots: Cooler group. Red
diamonds: Hotter group. Dashed lines: Group trend.

4.3 Transitory weather shock transmission

To examine the impact of stationary change in temperature on real output, we con-
sider the case of 1oC shock on the transitory component, ω

T
t . Although the shock

is allowed to persist over time, its posterior average autocorrelation is generally esti-
mated at low levels, consistent with its very nature.

Figures 6a and 6b display the absolute maximum impulse responses of output in
the twenty AEs and EMDEs to a temporary shock. Detailed impulse-response func-
tions with confidence intervals are reported in Appendix A.2. The figures also include
trends of country subgroups based on income levels and average historical temper-
atures. Real output reaches its maximum response with a delay that could reach
four years following the shock depending on the estimated auto- and cross-correlation
coe"cients of the model. All EMDEs experience an contemporaneous overshooting
as a reaction to the sudden temporary change in temperature. By contrast, most
of AEs exhibit hump-shaped response functions. Focusing on the posterior average
conditional comovement between real output and weather shocks reveals interesting
results, which are threefold. First, during upturns of temperature, the distributions of
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responses are almost centered around zero regardless of countries’ grouping. Second,
several countries exhibit opposite sign reactions following temporary versus perma-
nent temperature shocks. For instance, Canada and Nordic region are estimated to
benefit from non-persistent rise in temperature, ranging between 1 and 5 percent, as
opposed to dramatic losses once we consider permanent shifts. This finding is also
present in several EMDES such as Argentina, Pakistan, Nepal, and Romania. The
novel aspect of the result documented here proves that stationary and nonstationary
temperature shocks—namely, weather and climate change, respectively—have sig-
nificantly distinguishable e!ects on economic activity that could yield responses of
opposite signs for the same country. Third, consistent with existing findings in the
literature, there is a negative relation between the degree of wealth in a country and
output losses from (temporary) surges in temperature. As reported in Figure 6b, this
pattern is also evident when considering the historical average temperature. This cor-
relation has been interpreted as reflecting the extensive adaptive capacity of advances
economies. Hence, a possible explanation for our findings is that the adaptation ca-
pacity in AEs helps mitigate short-term temperature fluctuations but is insu"cient
to address the long-term detrimental e!ects of climate change, which manifest as
permanent disturbances in our model.

Figure 6: Distribution of Output Loss Following a Temporary +1oC Shock
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4.4 Climate projection data (SSP5-8.5)

To ensure better comparability with previous papers, we also conducted a counter-
factual exercise where temperature increases followed commonly adopted country-
specific temperature pathways. From the Shared Socioeconomic Pathways (SSP),
we adopt the SSP5–8.5 scenario representing the high end of the range of future
pathways—corresponding to RCP8.5 as defined in Representative Concentration Path-
ways (RCPs).

The methodology involves using the Kalman filter to extract the shocks from the
model. The process is as follows: First, we represent the model in its state-space
form. Second, we apply the Kalman filter to construct the likelihood function of the
observed data and estimated the structural parameters of the model.13 Third, using
these estimated parameters, we determine the values of the model perturbations over
the sample period, conditional on all observed data corresponding to forecasts of
temperature from 2020 to 2100 as defined in the SSP5–8.5 scenario.14 Applying this
methodology results in a structure of the underlying persistent and non-persistent
shocks that exhibits both positive and negative values, in contrast to the simplistic
scenario adopted previously.

Figure 7: Distribution of Output Loss by 2100: SSP5–8.5

(a) Income group e!ect (b) Average temperature e!ect

13Values of the structural parameters, including shock volatilities, are set to their posterior median
point estimates.

14See Bauer, Haltom, and Rubio-Ramírez (2003) for details on using the Kalman filter to smooth
the shocks in endogenous models.
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Figures 7a and 7b depict county-level long-term output changes in response to the
derived sequence of shocks. Among AEs, permanent temperature shocks result in real
output changes ranging from →25 to +8 percent. The Nordic region, Canada, and
the United States experience the most significant output losses. In EMDEs, output
responses range from →15 to +13 percent, with Malaysia, Tunisia, South Africa, and
Mexico estimated to su!er the most from climate change. Overall, most countries are
more a!ected than under the initial scenario, which assumes an annual temperature
increase of 0.04oC.

Figure 8: Comparative Analysis of Natural Disasters
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The inverse relationship between losses and historical temperature aligns with
our initial findings. This e!ect is particularly prominent in colder countries, which
typically belong to the group of advanced economies. As historical average temper-
atures rise, the case of EMDEs, output losses become less sensitive to the e!ects
of climate change. There are two possible and non-mutually exclusive explanations
for the higher adverse e!ects of persistent temperature increases in AEs compared
to EMDEs. First, as shown in Figure 3, AEs are experiencing a precipitous rise of
temperature in absolute terms (0.5oC higher than EMDEs). This reflects in more
prominent size of permanent temperature shocks in deviations from the historical
trend. Second, It is widely believed that in the context of future global climate
change, factors such as rising sea levels, increasing frequency of natural disasters, and
biodiversity loss could negatively impact economic activity. Based on the EM-DAT
database, we contract times series of five-year average frequency of natural disasters in
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AEs and EMDEs along with aggregated incidences measured as percentage of GDP.15

Figure 8a illustrates the upward trend in the global frequency of natural disasters.
Notable di!erences in the long-term trajectories of natural disaster frequency may
explain the greater vulnerability of AEs to climate change. In addition, Figure 8b
shows the impact of historical incidents, measured as average capital loss in percent
of GDP, over the last two decades. Once again, wealthy countries have experienced
greater capital loss due to natural disasters, particularly following storms and wild-
fires. Bilal and Känzig (2024) demonstrate that when global temperature, rather than
local temperature, is used in regressions linking output growth to climate change, the
correlation between the two variables is stronger, as extreme weather events are more
closely linked to global temperature variations.

5 How Important are Temperature Shocks for Eco-
nomic Activity

So far, we have examined the dynamic e!ects of weather and climate shocks. A natural
question that arises is whether temperature shocks are important from an economic
point of view. This section delves into the relative importance of temperature shocks
in influencing fluctuations in country temperatures and economic activities. Specifi-
cally, we investigate whether changes in temperature serve as a significant indicator
of shifts in real output and whether persistence is a major driver of business cycles.

Tables 2 and 3 show the amount of temperature forecast error variances at di!erent
horizons for AEs and EMDEs, respectively, that are attributable to the structural
shocks identified by our model.16 Results show that in the present sample of 20
AEs, the vast majority of fluctuations in average temperature is driven by stationary
shocks. The median share of !T

t in the forecast error across the ranges from 1 percent
at the 1-year horizon to 35 percent at the long-run horizon showing an increase
over time for all countries. This suggests that climate change has a heterogeneous
e!ect on this group of countries with the most a!ected are Portugal, Spain, and
Australia. Transitory shocks to in EMDEs are equally important drivers of country-
specific temperatures in average and across horizons, while the spread of variance
decomposition contribution is significantly lower compared to AEs. In particular,

15The EM-DAT database provides foundational data on more than 22,000 significant disasters
worldwide, spanning from 1900 to 2023. This comprehensive repository is sourced from a diverse
array of contributors, including United Nations agencies, non-governmental organizations, insurance
firms, research institutions, and media outlets.

16In addition to the structural shocks reported in the tables, the model reflects measurement error
shocks, which are not reported as their contributions to the forecast error variances—mainly owing
to the low values of the posterior median standard deviations of these shocks.
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long-run forecast errors attributable to permanent shocks range from 19 to 43 percent
with the largest levels are recorded in Tunisia, Egypt, and Chile.

Table 2: Variance Decomposition of the Change in Temperature (AEs)

Shock ”!T
t ω

T
t

Horizon 1 2 3 ↘ 1 2 3 ↘

AUS 21.7 28.9 29.2 29.4 75.5 69.3 69.0 68.9
BEL 7.9 9.7 9.9 10.0 91.5 89.9 89.7 89.7
CAN 1.1 1.4 1.5 1.5 98.8 98.5 98.4 98.4
DEU 7.2 8.7 8.9 8.9 92.4 91.0 90.8 90.8
DNK 4.1 5.3 5.4 5.4 95.5 94.4 94.4 94.3
ESP 26.5 32.6 32.7 32.8 72.0 66.5 66.4 66.3
FIN 1.9 2.2 2.2 2.2 98.0 97.7 97.7 97.7
FRA 17.9 20.5 20.7 20.7 80.9 78.7 78.6 78.5
GRC 17.9 20.4 20.6 20.6 80.9 78.8 78.7 78.6
IRL 23.0 27.6 27.8 27.9 75.4 71.2 71.1 71.0
ISL 19.1 22.1 22.1 22.3 80.5 77.7 77.6 77.5
ITA 22.2 28.0 28.2 28.3 76.0 70.9 70.7 70.6
JPN 20.1 23.9 24.1 24.2 78.2 75.0 74.8 74.8
KOR 15.9 19.1 19.4 19.4 83.1 80.2 80.0 79.9
NLD 21.4 22.1 22.1 22.2 78.0 77.5 77.4 77.4
NOR 5.2 6.3 6.4 6.5 94.1 93.2 93.1 93.0
PRT 27.1 34.3 34.4 34.6 70.4 64.2 64.1 63.9
SWE 2.3 2.7 2.7 2.8 97.5 97.2 97.1 97.1
UK 8.0 10.3 10.5 10.6 90.9 88.9 88.7 88.7
USA 15.4 17.4 17.5 17.5 83.2 81.6 81.7 81.7

Note:The table displays the percentage of the temperature growth variance attributed to the
country specific nonstationary temperature shock, !”T

t and stationary shocks, εT
t . These

values are averaged from 10,000 samples of the posterior distribution for the variance
decomposition.

Table 3: Variance Decomposition of the Change in Temperature (EMDEs)

Shock ”!T
t ω

T
t

Horizon 1 2 3 ↘ 1 2 3 ↘

ARG 18.9 24.7 24.9 25.0 78.7 73.8 73.6 73.5
BGD 18.2 24.3 25.0 25.1 77.3 72.4 72.1 72.0
BRA 15.1 21.8 22.3 22.4 79.3 74.3 74.0 73.9
CHL 21.6 27.9 28.1 28.3 75.4 70.1 69.9 69.8
CHN 18.4 22.9 23.2 23.3 79.4 75.5 75.3 75.2
CMR 17.0 23.2 23.7 23.8 76.5 72.1 72.0 71.9
EGY 26.6 33.8 33.9 34.1 71.7 65.2 65.1 64.9
IND 19.1 25.1 25.4 25.5 75.9 71.3 71.2 71.1
KEN 17.1 23.1 23.8 23.9 78.0 73.4 73.2 73.2
MAR 22.0 27.3 27.5 27.6 76.1 71.5 71.3 71.2
MDG 19.5 25.9 26.2 26.4 75.5 70.6 70.4 70.3
MEX 20.6 27.8 28.0 28.2 74.7 69.1 69.0 68.8
MYS 16.4 26.4 27.0 27.8 75.8 67.7 67.3 66.8
NPL 19.4 23.9 24.3 24.3 78.1 74.4 74.2 74.2
PAK 19.5 24.9 25.1 25.2 78.4 73.7 73.6 73.5
ROM 20.9 24.1 24.3 24.4 78.3 75.4 75.2 75.1
THA 20.5 25.9 26.2 26.3 75.7 71.5 71.3 71.3
TUN 33.6 42.5 42.7 43.1 63.4 55.6 55.4 55.1
TUR 15.9 18.6 18.7 18.7 83.4 81.0 80.9 80.9
ZAF 23.1 26.7 27.1 27.1 74.1 71.1 71.0 70.9

One corollary of these findings is that the significant impact of temporary shocks
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on the volatility of temperature growth rates could lead to the misidentification of the
permanent climate change component if a researcher uses the temperature variable
in level or growth form in regression analysis. In such cases, the majority of temper-
ature fluctuations are temporary rather than permanent, resulting in a conditional
correlation between output and temperature shocks that could be similar to our iden-
tified responses following perturbations on the non-persistent component. In fact, we
find that adverse temporary shocks on temperature are a!ecting mostly hot and poor
countries, which corresponds to what the literature reports as it abstracts from the
distinction between persistent and non-persistent determinants of temperature.

Rows of Table 4 show that, on average, temperature shocks significantly con-
tribute to the volatility in real activity. Namely, 24 and 12 percent of to output
growth fluctuations are attributed to jointly temporary and permanent temperature
disturbances in AEs and EMDEs, respectively. The explanatory preponderance of
permanent temperature shocks in accounting for movements in output manifests it-
self in the context of AEs—19 percent in average and approximately twice as much
as in EMDEs. These results find their roots in the sizable stochastic shocks combined
with the large cointegration coe"cient estimated in the context of AEs.

Table 4: Variance Decomposition of the Change in Real GDP

Shock ”!T
t ω

T
t ”!Y

t ω
Y
t ”!T

t ω
T
t ”!Y

t ω
Y
t

AUS 18 5 52 24 ARG 5 2 74 19
BEL 21 6 53 19 BGD 6 2 79 13
CAN 31 7 46 15 BRA 4 1 86 8
DEU 12 4 73 10 CHL 4 2 77 17
DNK 35 5 44 15 CHN 5 3 88 4
ESP 9 5 77 9 CMR 4 1 82 12
FIN 25 5 60 9 EGY 7 4 77 11
FRA 11 4 69 14 IND 13 3 67 17
GRC 12 4 68 14 KEN 6 1 61 31
IRL 10 3 78 9 MAR 8 3 32 56
ISL 28 6 56 10 MDG 7 1 78 13
ITA 12 4 70 14 MEX 8 3 77 12
JPN 7 3 81 8 MYS 17 3 67 12
KOR 10 3 79 8 NPL 16 5 60 19
NLD 17 5 64 12 PAK 17 7 54 17
NOR 31 5 47 15 ROM 7 3 85 5
PRT 7 3 82 8 THA 3 1 88 7
SWE 35 6 37 18 TUN 11 3 78 8
UK 32 6 31 29 TUR 22 7 60 10
USA 22 5 51 21 ZAF 14 10 62 12

6 Reverse Causality
It is of interest to ascertain the e!ects of the climate change particularly for large
economies. In fact, the identification of the macroeconomic e!ects of climate change
could be altered by the reverse causality between the two variables as economic ac-
tivity leads to emissions and changes in temperature, at least in the case of large
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greenhouse gas emitters. This selection criteria results in the following 10 countries:
Australia, Brazil, Canada, China, Germany, India, Japan, Korea, United Kingdom,
and the United States.

6.1 Model specification and identification restrictions

A large economies block, Yt, consists of 10 real GDP time series expressed in loga-
rithms. In each country, we assume that output is cointegrated with a linear combi-
nation of a country-specific nonstationary shock, !y

i,t (i = 1..., 10), and the nonsta-
tionary component of same country’s temperature, !T

i,t. Formally, we define a 10-by-1
vector of deviations of output from trend, Ŷt, as follows:

Ŷt =





Ŷ
1

t

Ŷ
2

t
...

Ŷ
10

t




=





Y
1

t → !Y
1,t → ς

1!T
1,t

Y
2

t → !Y
2,t → ς

2!T
2,t

...
Y

10
t → !Y

10,t → ς
10!T

10,t




. (7)

We introduce a new variable in the model to capture deviations of global emissions
from its long term trend, denoted as Êt, is defined as deviations of global emissions
from a long-term trend that could be attributed to economic activity. Then,

Êt = Et → !E
t . (8)

The trend of global emissions are assumed to be cointegrated with all countries’
output trends:

!E
t =

10∑

i=1
δ

i!Y
i,t, (9)

where δ
i (fori = 1, . . . , 10) correspond to the cointegration between global emissions

and output of the 10 considered countries.
Next, we define the vector of country-specific temperature deviation from trend,

T̂t, as follows

T̂t =





T̂
1
t
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2
t
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T̂
10
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1
t → !T
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1!E

t

T
2
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2,t → ⇁
2!E

t
...

T
10
t → !T

10,t → ⇁
10!E

t




, (10)

where ⇁
i (fori = 1, . . . , 10) correspond to the cointegration between temperature and

emissions and global emissions.
The detrended global emission, temperatures, and real outputs evolve according
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to the following vector autoregressive processes of the stationarized variables:

Êt =
p∑

i=1
B

i
E,EÊt→i +

p∑

i=1
B

i
E,Y Ŷt→i + CE,Y ”!Y

t + ω
E
t , (11)

T̂t =
p∑

i=1
B

i
T,T T̂t→i +

p∑

i=1
B

i
T,EÊt→i + CT,T ”!T

t + CT,E”!E
t + ω

T
t , (12)

and

Ŷt =
p∑

i=1
B

i
Y,Y Ŷt→i +

p∑

i=1
B

i
Y.T T̂t→i +

p∑

i=1
B

i
Y.EÊt→i+

CY,Y ”!Y
t + CY,T ”!T

t + DY,T ω
T
t + ω

Y
t ,

(13)

where p is the number of lags, ”!Y
t = [”!Y

1,t ... ”!Y
10,t]↑, ”!T

t = [”!T
1,t ... ”!T

10,t]↑,
ω

T
t = [ωT

1,t ... ω
T
10,t]↑, and ω

Y
t = [ωY

1,t ... ω
Y
10,t]↑. Matrices of coe"cients B

i
T,T , B

i
Y,Y , and

B
i
Y,T (i = 1, . . . , 10) are of orders 10-by-10; B

i
T,E and B

i
Y,E (i = 1, . . . , 10) are 10-

by-1 matrices; while BE,E and BE,Y have orders of 1-by-10 and 1-by-10, respectively.
Matrices embedding correlations of endogenous variables to permanent and transitory
shocks, are CT,T , CY,Y , CY,T , and DY,T with the same order of 10-by-10, while CE,Y

is a 1-by-10 matrix.
Let’s define the vector of exogenous shocks ut =

[
”!Y

t , ”!T
t , ”!E

t , ω
Y

, ω
T
, ω

E
]↑

and assume that it obeys the low of motion:

ut = # ut→1 + % ▷t, (14)

where ▷t is a vector of 42 i.i.d. normally distributed disturbances. For simplic-
ity, # and % are assumed to be diagonal implying that permanent and transitory
country-specific shocks are uncorrelated with each other and with other country-
specific shocks.

Assuming the observable variables are measured with error, and denoting the
vector of observables as ot, we have

ot =
[
”T

1
t , . . . , ”T

10
t , ”Et, ”Y

1
t , . . . , ”Y

10
t

]↑
+ &µt (15)

where µt is a 21-by-1 vector of i.i.d. normally distributed measurement errors and &
is a diagonal matrix.

Combined together, Equations (7)–(15) can be written in a state-space format
that can be estimated with Bayesian techniques while using the Kalman filter to
evaluate the likelihood function. Further, we assume that the correlation of output
across countries is entirely driven by global emission shocks through the channel
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of country-specific temperatures. Therefore, the matrices B
i
Y,Y (i = 1, . . . , 10) and

CY,Y are constrained to be diagonal. Sign restrictions are imposed to be able to
identify the structural shocks: (i) real output positively a!ects global emissions in
the long-term—i.e., δi > 0 for i = 1, . . . , 10; and (ii) persistent shocks on emissions
are positively correlated with temperature—i.e., ⇁

i
> 0 for i = 1, . . . , 10.17

6.2 Empirical results

Figure 9 presents the estimated e!ects of the sequence of permanent temperature
shocks under the SSP5–8.5 scenarios, based on the alternative specifications. Models
(1), in blue, and (2), in brown, refer to original version of the model and the one
accounting for reverse causality, respectively.

Figure 9: Change in output 2020-2100

Model 1 (in blue): Without reverse causality. Model 2 (in brown): With reverse causality.

The impact of economic activity on temperature through global emissions chan-
17We assume Minnesota priors to the coe"cients of Bi

E,E , Bi
E,Y , Bi

T,T , Bi
T,E , Bi

Y,Y , Bi
Y,T , and

Bi
Y,E for i = 1, 2. All estimated elements of the matrices CE,Y , CT,T , CT,E , CY,Y , CY,T , and DY,T

are assumed to have normal prior distributions with mean zero and unit standard deviation. The
diagonal elements of the matrix #, representing the standard deviations of the innovations in the
exogenous shocks are all assigned Inv-Gamma prior distributions with mean and standard deviations
equal to one and 2, respectively.
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nels appears significant in Brazil, China, and Germany. In the simple model, output
shows a mild response to permanent temperature disturbances. However, accounting
for reverse causality reveals significant output losses in Brazil and Germany, while
China is estimated to experience substantial growth gains. In contrast, the esti-
mated long-term e!ects of climate change on the remaining seven large economies
are virtually una!ected by the reverse causality assumption. Finally, we argue that
for the remaining countries not included in this regression, the results should remain
unchanged as global emissions are exogenous to their economic performances.

7 Conclusion
In this paper, we develop an empirical model to evaluate the impact of climate
change, identified as permanent temperature shocks, on economic activity. Addi-
tionally, country-specific estimates enable us to reexamine the widely held belief that
cooler or wealthier economies will remain una!ected or may even benefit from ris-
ing temperatures, while hotter and poorer countries will su!er the adverse e!ects of
climate change.

The econometric contribution of the paper is twofold. First, we allow temperature
shocks to materialize in the form of non-persistent and persistent disturbances to
temperature, aligning naturally with the definition of climate change. Second, we
use Bayesian estimation with the Kalman filter to identify country-specific shocks
and their e!ects on real GDP in cold advanced economies along with warm emerging
markets and developing economies.

Our results underscore the importance of considering the degree of persistence
of temperature shocks. While cold and wealthy nations experience smaller output
losses than warm and poor countries in response to temporary temperature increases,
the situation reverses with the permanent temperature rises associated with climate
change. In this scenario, cold and rich countries su!er greater economic damage
than their warmer and poor counterparts. The rationale behind this result is that,
according to country-specific estimates, the magnitude of permanent temperature
shocks is greater in both absolute and relative terms in colder regions. Additionally,
in recent decades, these countries have faced a notorious increase in the frequency
and intensity of climate-related disasters, namely storms and wildfires.

To address the potential problem of reverse causality, we introduce a model that
links output of the world’s ten largest polluters, thereby influencing climate change.
Our conclusions are robust, suggesting that discrepancies observed in previous studies
may stem from limitations in e!ectively separating the enduring patterns of climate
change from short-term weather fluctuations.

24



References
Acevedo, S., Mrkaic, M., Novta, N., Pugacheva, E., and Topalova, P. (2020). The ef-

fects of weather shocks on economic activity: What are the channels of impact?
Journal of Macroeconomics, 65 , 103207.

Baillie, R. T., and Chung, S.-K. (2002). Modeling and forecasting from trend-
stationary long memory models with applications to climatology. International

Journal of Forecasting, 18 , 215–226.
Bauer, A., Haltom, N., and Rubio-Ramírez, J. F. (2003). Using the kalman filter to

smooth the shocks of a dynamic stochastic general equilibrium model (Working
Paper 2003-32). Federal Reserve Bank of Atlanta.

Berg, K. A., Curtis, C. C., and Nelson, M. (2023). Evidence on cross-country response
heterogeneity (Working Paper 31327). National Bureau of Economic Research.

Bilal, A., and Känzig, D. (2024). The macroeconomic impact of climate change:
Global vs. local temperature (Working Paper 32450). National Bureau of Eco-
nomic Research.

Bloomfield, P. (1992). Trends in global temperature. clim. change. Climate Change,
21 , 1–16.

Bloomfield, P., and Nychka, D. (1992). Climate spectra and detecting climate change.
Climate Change, 21 , 275–287.

Burke, M., Hsiang, S., and Miguel, E. (2015). Global non-linear e!ect of temperature
on economic production. Nature, 527 , 235–239.

Burke, M., Zahid, M., C. M. Martins, M., W. Callahan, C., Lee, R., Avirmed, T., . . .
Lobell, D. (2024). Are we adapting to climate change? (Working Paper 32985).
National Bureau of Economic Research.

Chang, Y., Kaufmann, R. K., Chang, S. K., Miller, J. I., Park, J. Y., and Park, S.
(2020). Evaluating trends in time series of distributions: A spatial fingerprint
of human e!ects on climate. Journal of Econometrics, 214 , 274–294.

Dell, M., Jones, B. F., and Olken, B. A. (2012). Temperature shocks and economic
growth: Evidence from the last half century. American Economic Journal:

Macroeconomics, 4 , 66–95.
Fomby, T. B., and Vogelsang, T. J. (2002). The application of size-robust trend

statistics to global-warming temperature series. Climate Change, 15 , 117–123.
Gordon, A. H. (1991). Global warming as a manifestation of a random walk. Journal

of Climate, 4 , 589–597.
Henseler, M., and Schumacher, I. (2019). The impact of weather on economic growth

and its production factors. Climatic Change, 154 , 417–433.
IPCC. (2021). Technical summary [Book Section]. In V. Masson-Delmotte et al.

25



(Eds.), Climate change 2021: The physical science basis. contribution of work-
ing group I to the sixth assessment report of the Intergovernmental Panel on
Climate Change (pp. 33–144). Cambridge, United Kingdom and New York,
NY, USA: Cambridge University Press.

Kahn, M. E., Mohaddes, K., Ng, R. N., Pesaran, M. H., Raissi, M., and Yang, J.-C.
(2021). Long-term macroeconomic e!ects of climate change: A cross-country
analysis. Energy Economics, 104 , 105624.

Kärner, O. (1996). Global temperature deviations as a random walk. Journal of

Climate, 9 , 656–658.
Kaufmann, R. K., Kauppi, H., Mann, M. L., and Stock, J. H. (2013). Does temper-

ature contain a stochastic trend: Linking statistical results to physical mecha-
nisms. Climatic Change, 118 , 729–743.

Letta, M., and Tol, R. (2019). Weather, climate and total factor productivity. Envi-

ronmental Resource Economics, 13 , 283–305.
Nath, I. B., Ramey, V. A., and Klenow, P. J. (2023). How much will global warming

cool global growth? (Working Paper). University of California San Diego.
Rebei, N., and Sbia, R. (2021). Transitory and permanent shocks in the global market

for crude oil. Journal of Applied Econometrics, 36 , 1047–1064.
Tol, R. (2018). The economic impacts of climate change. Review of Environmental

Economics and Policy, 12 , 4–25.
Uribe, M. (2022). The neo-fisher e!ect: Econometric evidence from empirical and

optimizing models. American Economic Journal: Macroeconomics, 14 , 133–
162.

Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S., and Seneviratne, S. I. (2024).
Climate damage projections beyond annual temperature. Nature Climate

Change, 14 , 592–599.
Woodward, W. A., and Gray, H. L. (1993). Global warming and the problem of

testing for trend in time series data. Journal of Climate, 6 , 953–962.
Woodward, W. A., and Gray, H. L. (1995). Selecting a model for detecting the

presence of a trend. Journal of Climate, 8 , 1929–1937.

26



A Appendices
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A.2 Impulse-Response Functions (Transitory Shock)

Figure A.2.1: Output Response to a +1oC Transitory Shock: AEs

Notes: Blue solid lines correspond to the posterior median impulse responses in the
model. Shaded areas correspond to the 90, 84, and 68 percent confidence intervals.
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Figure A.2.2: Output Response to a +1oC Transitory Shock: EMDEs

Notes: Green solid lines correspond to the posterior median impulse responses in the
model. Shaded areas correspond to the 90, 84, and 68 percent confidence intervals.
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A.3 Real Output under SSP5-8.5 Scenarios

Figure A.3.1: SSP5-8.5 Scenario Impact on Output: AEs

31



Figure A.3.2: SSP5-8.5 Scenario Impact on Output: EMDEs
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