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I. Executive Summary 
Among bank resolution strategies, private sector solutions entailing merging the failing bank with a strong 
healthier institution have often been supervisors’ preferred option. This has been the case for many reasons, 
not least because of absence of disruption to the rest of the financial sector, to depositors, to the payment 
system and, importantly, to public expense. Such mergers prevent social losses associated with bank 
liquidation proceedings, prevent fiscal costs, and contagion. In addition, this bank resolution strategy enhances 
financial stability by minimizing moral hazard. However, critics have pointed out that larger institutions may just 
delay the problem and would magnify social welfare costs when they themselves eventually fail; see Beck 
(2004) and (2011), Hoggarth et al (2004). 
 
We use simulations from a model based on the metaphor of a sand pile to investigate whether this strategy 
indeed minimizes social welfare losses from failing banks. The model generates losses for banks that, as sand 
grains, accumulate and eventually trigger a sand “slide” or “failing bank”. We assume supervisors follow one of 
two possible bank resolution policies when a bank is failing, either they let it to its shareholders to deal with the 
problem or they “arrange” a merger with the strongest institutions they can find at that moment. We ask which 
of the two supervisory strategies minimizes social welfare losses stemming from bank failures. We assume that 
banks fail when accumulated losses reach a regulatory threshold, as is the case across many jurisdictions. 
Social welfare losses will arise in those cases when shareholders do not have enough capital to support their 
bank. When supervisors follow a strategy of allocating losses from failing banks to the strongest institutions in 
the system, shareholders are still called to support their institution when it fails after having supported other 
banks’ failures. We assume that this occurs because the banks in the network have become systemic and 
therefore no other bank in the network can absorb it. ”Systemic” banks fail when significant losses have already 
been absorbed by the system through the mergers. The pattern of welfare losses that follows occasional 
events of a bank failing, uses standard assumptions for the social welfare function. The simulations suggest 
that when supervisors direct mergers total welfare losses over the longer term are lower than if they do not 
intervene, even if failures are, on average, more costly when they occur. 
 
We also search for the characteristics that a financial system (network) should have to minimize the average 
welfare loss per failing institution, whether a merger is sought or not; and for the network characteristics which 
would minimize the frequency of failing bank events (rather than minimizing welfare losses), when supervisors 
manage the resolution of a failing bank via a merger. We find that the characteristics of the optimal network 
depend on the chosen bank resolution policy and on supervisors’ preferences between minimizing the 
frequency of failing bank events and minimizing total welfare losses when they choose to manage failing banks. 
The analysis of the characteristics of the different financial networks would allow supervisors to assess how 
inherently prepared (robust) their system is to withstand failures. Thus, these results could inform the 
supervisors on the relative efficiency or cost of their chosen resolution strategy.  
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II. Introduction 
The inherent fragilities in financial intermediation and banking activities—such as asymmetric information and 
imperfect contract enforcement—have manifested themselves time and time again, under different 
semblances, to cause banks to fail. The question of how to manage failing banks has never lost its relevance 
and reemerges with force, albeit sporadically, at each new instance. 1 The interconnected nature of banks and 
financial institutions, their role in safeguarding savings and ensuring the smooth functioning of the payment 
system underscore how the appropriate management of a single institutions’ demise is a necessary element to 
avoid the occurrence of bank runs, large-scale failures by contagion, and the impairment of the credit flow to 
the economy. 
 
Among the different bank resolution policies designed to address an illiquid and potentially insolvent banking 
institution, the preferred ones are those that minimize public costs, disruption to the system, and moral hazard. 
In this respect, mechanisms where supervisors manage the take-over of the failing banks by a stronger 
healthier institution fare well when compared to alternatives (Beck 2004 and 2011). 2 Evidence of this can be 
found in an early study by Hoggarth, Reidhill, and Sinclair (2004) where they evaluate resolution policies 
adopted in 33 banking crises over the world during 1977–2002 and find that, when faced with individual failing 
banks, authorities have usually sought a private-sector resolution policy where arranged takeovers avoided 
losses to be passed onto taxpayers. While analyzing bank resolution strategies during the Global Financial 
Crisis, White et al (2014) specifically evaluate the different strategies in terms of feasibility, system disruptions 
and fiscal costs. Indeed, they find that the private sector solutions where failing banks are taken over by 
healthier institutions as those with the lower overall costs.  
 
These resolution options go under the more general name of mergers or partial mergers. In its most simple 
form, the process entails seeking for a “white knight”, a stronger healthier, financial institution that would take 
over the failing one. In a more general application of the concept, the merger may be designed to be whole or 
just partial. In cases where it is partial, shareholders of the failing bank are made sound to the extent there is 
remaining value in the parts of the institution which are not sold, while the healthier institution that takes over 
part of the failing bank assets and deposits is compensated by the franchise value of the absorbed assets. 
Such procedures are commonly referred to in the US by the name of purchase and assumption (P&A) or 
outright sale of business. In the broad review of bank resolution strategies that followed the GFC, the practice 
has been often praised albeit considered as of limited benefit in cases of a systemic crisis (White 2014). 
Nevertheless, it is explicitly referred to in the Financial Stability’s Board Principles for Systemic Bank Resolution 
(FSP 2014) as one of the strategies to resolve systemic banks.  
 
Only very recently in the US, we have witnessed a well-known pattern unfold again: a bank is considered 
unsafe, depositors rush to get their money out, and authorities have to step in to assuage fears and to resolve 
an illiquid and insolvent bank. The causes may be different and the regulation may be adjusted to try to prevent 
similar occurrences going forward, but a very common immediate reaction, as in the case of Silicon Valley 
Bank and Credit Suisse, is to distribute remaining good assets and deposit-like liabilities of the failed entity 
across larger, more robust and healthy institutions in the system. 
 

    
1 FSB (2014) “Key Principles for Systemic Bank Restructuring”.  
2 White et al. (2014) 
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From a theoretical point of view, supervisors’ practice of supporting the merger of a failing bank with a stronger 
healthier one appears to offer a rapid, feasible, solution but has been seen to have two, potentially opposite, 
effects on financial stability. On the one hand, it may boost financial stability by minimizing moral hazard 
because it provides bankers with incentives to be solvent so as to profit from their competitors’ failure. On the 
other hand, the creation of larger institutions may spoil financial stability as it could potentially magnify the 
problems in the long term by creating “Systemically Important Financial Institutions” (Perotti and Suarez 2002) 
and V. Acharya, T. Yorulmazer (2007). (A. Pais, P.A. Stork (2011). Such institutions either increase risk-taking 
behaviour and, thereby, the cost of failures or reduce overall liquidity in the system and increase the risk of 
connected failures (Acharya and Yorulmazer (2008)). However, the effect of increased bank concentration on 
financial stability in itself is debated (K. Schaeck, M. Cihak, S. Wolfe (2009) ) as larger banks are thought to 
help with economies of scale in the provision of financial services and to contribute in reducing excessive risk-
taking behavior from excessive competition. 3 In seminal work, Acharya and Yorulmazer (2008) show that even 
accounting for some downside effects on system-wide liquidity following the mergers, supporting the merger of 
failing institutions with stronger healthier ones is a resolution option preferable to others, to the extent that it is 
worthwhile for the public sector to support it with its own funds.  
 
The intent of this paper is to analyze whether bank resolution strategies where supervisors direct mergers 
entail lower welfare losses than strategies where failing banks are left to their shareholders to resolve. It also 
questions whether the structure of a financial sector, in terms of its network characteristics, influences the 
welfare losses stemming from the chosen resolution strategy. In this respect, it follows a small literature in 
financial economics that models financial systems in terms of banks as nodes connected in a network through 
their balance sheet relationships. In particular, Allen and Gale (2000) use a network model with equal nodes to 
analyze how random liquidity shocks can propagate and spread through financial systems and analyze which 
characteristics of the network increase the possibility of contagion. The financial system as a network is used to 
identify those institutions that are “too big to fail” in Alentorn et al. (2007). Nier et al (2007) analyze the 
transmission of financial shocks through interbank exposures depending on the characteristics of the network, 
the size of the nodes and the size of the exposures. Elliott, et al (2014) develop a general model that simulates 
financial contagion and cascades of failures among organizations linked through a network of financial 
interdependencies (cross-holdings) before analyzing how the characteristics of the cross-holdings influence 
results. Acemoglu et al (2015) study the network’s role as a shock propagation and amplification mechanism, 
highlighting the implications of the network’s structure on the extent of financial contagion and systemic risk.  
 
Differently from the above-mentioned papers, we use the Abelian “sand pile” model (also known as chip-firing 
game) to simulate the effects of the welfare losses from the chosen bank resolution mechanisms in the 
financial system. In the late 90s as member of the Center for Computable Economics at UCLA, one of the 
authors was invited to participate in a research workshop at the Santa Fe’ Institute. In that occasion, they were 
exposed for the first time to the sand pile model by Scott Page. In his presentation, professor Page talked 
about a few experiments that his group had run on the sand pile model with the following twist: the sand grains, 
rather than falling randomly on the surface of the pile, were artificially addressed to the spot where the 
probability of a slide was the smallest at that time. According to his account, the simulations showed that the 
slides were rarer, but more pronounced when they eventually occurred. 
 
We use the Abelian model to construct a metaphor: the financial sector is represented by spots on a sand pile 
(nodes) which represent the banks. The behavior of economic agents generates losses for the banks. These 
losses can be either random, generated by episodes of borrower defaults, or “directed” because supervisors 
are merging institutions that fail with the strongest banks in the network.  Within the network itself, any bank 
    
3 Allen and Gale (2004), Beck and DeJonghe (2013) Noy (2017) 
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fails after accumulated losses reach a threshold. This will be equivalent to the sand pile collapsing thus 
generating a “slide”. When a “slide” occurs, the shareholders will have to absorb the losses from the failure. If 
there are not enough shareholders to absorb the full amount of their accumulated losses, then the system will 
suffer a welfare loss (for example a loss of savings deposits) which we will call a “crisis”. 
 
Our model is built on a directed graph, a network of nodes tied by directed links. The number of nodes in the 
system is constant. Each node represents a bank and the links represent shareholder relations. We assume 
that only financial institutions can own other financial institutions in a strict “fit and proper” requirement. 
Shareholders are randomly assigned to banks and are represented by the number of links of each node. In the 
network, all banks of the system are initially endowed with a random amount of capital at the beginning of each 
simulation. They all will be exceeding the minimum capitalization ratio. If a bank accumulates financial losses in 
excess of 4 it will be failing. In other words, after the losses surpass the threshold, they will lead to a “slide”—an 
example of a self-organized criticality.   
 
For pure computational reasons, a simplifying assumption had to be made on how losses from failing entities 
are distributed to their shareholders, which does not change the overall behavior of the system. We assume 
that supervisors will only allow shareholders to take on assets and liabilities of their failing owned institutions 
equivalent to one unit of their capital. This will occur independently of how many shareholders there are (i.e. 
how much each shareholder has contributed to the initial capital). We assume this could embody a supervisor 
strategy of limiting systemic risk through network and that banks will not be aware of this until the moment a 
related institution fails. This also will require that, where there are more than 4 shareholders, the supervisor will 
have to allocate randomly the losses from the failing bank. In this way, both losses stemming from borrower 
defaults and losses stemming from failing controlled institutions are also random in this system. However, when 
shareholders are less than 4, there will be social welfare losses in the system because there will be losses that 
cannot be absorbed by the shareholders.  
 
Each time an owned bank fails, a shareholder will be allocated ¼ of the failing bank balance sheet. This implies 
it will have to absorb assets, liabilities in excess of the remaining capital of the bank that failed and thus it will 
have to put up 1 unit of its own capital to absorb them. This will be registered as a reduction in capital by 1 unit. 
Each time a shareholder absorbs a loss from an owned bank, it grows in terms of assets and liabilities. When 
there are less than four shareholders, the part of the bank balance sheet that could not be allocated will have to 
be liquidated and thus will generate a social welfare loss. This will occur for example, because deposits are 
lost. 
 
In a first scenario, we consider the financial losses accruing to the banks to be credit losses which, as sand 
grains, randomly fall on the surface of a sand pile and accumulate in banks, nodes, because borrowers are hit 
by random shocks and become unable to repay their loans. When the amount of accumulated credit losses 
surpasses the minimum capital threshold (4), the bank will become “failing or likely to fail” and thus a resolution 
event will be triggered. In our metaphor, the threshold will be established by the supervisors, and will be 
equivalent to a sort of minimum capitalization ratio. In the first scenario, when resolution events are triggered, 
supervisors do not intervene and leave shareholders absorb the failing institution, where there are not enough 
shareholders, there will be social welfare losses as described above. 
 
In a second scenario, we replicate the dynamic of a resolution mechanism where supervisors direct the 
strongest institutions in the system to absorb the failing banks.  When, a bank reaches the minimum capital 
threshold, the supervisor distributes the losses among the most robust nodes in the system (the ones with the 
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highest level of capital at that moment). This is equivalent to the process of directing the sand grains to the 
“safest” current position on the sand pile surface. However, as discussed above, each bank requested to 
become a “white knight” will be able to absorb only one unit of loss, and therefore the resolution strategy is 
equivalent to conducting P&A operations, each one of them equivalent to ¼ of the failing bank’s balance sheet. 
The white knight will thus receive assets and liabilities from the failed bank corresponding to one unit of its 
capital. In this respect, this strategy spreads the losses among a wider numbers of banks implicitly creating 
larger and larger institutions. We ask whether this strategy of directing losses/sand grains is able to reduce the 
welfare losses when the slides/failures of the “white knights’ eventually occur: Would the resulting “sandcastle” 
be more resilient to these shocks, less prone to avalanches?  
 
In the second scenario, welfare losses will eventually erupt when the shareholders of the institutions that had 
been identified as the strongest, our white knights, fail themselves, and there is no bank in the network that is 
able to absorb their losses. Thus, the losses generated by their failure will have to be borne by 
depositors/taxpayers. In short, the supervisors’ strategy of allocating the losses to the strongest institutions 
allows for losses to accumulate (an increase in pressure) before “crises” are triggered, and a domino effect is 
unleashed in a “systemic failure” in terms of welfare losses. 
 
To our knowledge the Abelian model has not been used before in the context of financial contagion analysis. In 
part, this exercise builds on that approach to address policy questions related to procedures and desirable 
structural features of the financial system. However, we believe this is the first time a self-organizing criticality 
model is employed to analyze the impact of policy options to address bank failures.  
 
Our results show that when the supervisors direct mergers, events where the white knight (or their 
shareholders) eventually fail—i.e. when there is not enough capital in the system that can take over their 
losses—occur indeed less frequently but each event is on average more onerous in terms of social welfare 
because the accumulated financial losses are large, as would be expected. However, most interestingly, we 
find that in the medium/long term the total social welfare loss is smaller if the authorities support mergers rather 
than leaving shareholders to deal with the failing banks themselves. We also find that the bank resolution 
strategy also determines which financial network structure is optimal in the sense that it minimizes average 
losses per failing institution.  
 
The rest paper is organized as follows: Section I recounts a series of historical events that put into question the 
efficacy of the strategy of “merging” ailing banks with stronger ones to show that in several cases such 
measures delayed the inevitable and possibly lead to much worse results. Section II presents in detail the 
network model and describes in what way it is useful to represent two bank resolution strategies that authorities 
may choose to pursue; then compares the outcomes of the two bank resolution strategies across different 
networks. Section III presents a methodology to seek for the best performing network assuming that regulators 
can have different optimization strategy; when the networks have higher dimension and when supervisors have 
different optimization strategy. Section VI discusses the results of the model  when the number of simulations is 
increased, when the characteristics of the network are different and in the case symmetric link among 
institutions would be disallowed; Section V briefly discusses the results and concludes with policy implications 
and possible extensions of the work. 
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III. Merging Failing Banks on Both Sides of the 
Atlantic 

One of the historic notable examples of the repeated implementation of merger strategies toward failing banks 
is Austria during the interwar period.4  Historians report that, at the beginning of World War I (WWI), in Austria 
there was a network of banks of approximately 300 small, specialized banks and ten universal banks. Among 
the smaller banks were the Sparkassen (savings institutions) and entities with small operations. Profitability 
issues in the corporate productive sector at the end of the war rapidly led to non-performing assets and distress 
in the banking sector. Two of the universal banks were acquired by foreign competitors. Many of the smaller 
entities that ended up falling into distress were either merged into competitors or were liquidated. To be noted 
in particular, one of the universal banks, the Bode the Boden-Credit-Anstalt absorbed a multitude of small- and 
medium-sized banks. Those universal banks which suffered from high levels of NPLs were merged and 
reorganized as needed and by 1927 only four remained.5  In 1927, three of the remaining universal banks 
experienced an increasing amount of non-performing loans. In 1930, the Union Bank UB and the Verkehrbank 
(VB) were merged into the B the Boden-Credit-Anstalt (BCA). In 1931, the BCA itself had to be absorbed by the 
largest universal bank remaining, the CreditAnstalt (CA), (which ended up with 90 million schillings of capital, 
but 140 million schillings of accumulated non performing loans). Unfortunately, but not surprisingly, at the end 
of 1931 the CA also collapsed. The total losses of the bank were estimated at 1,070 million schillings, 7 times 
the original amount of assets absorbed. Many historians agree that the absorption of the other three universal 
banks directly contributed to the CA’s demise. Finally, the large scale exceptional liquidity support awarded to 
CA by OENB out of its own gold reserves, is sometimes thought to have contributed to the end of the gold 
standard in Europe. 6 
 
On the other side of the Atlantic, the political debate in the US Congress during the pre-WWI period had 
favored developing the so-called unit banking model. In this setup, banks are restricted in size and geographic 
breadth so as to become local in nature, the intent of the legislators was to avoid contagion and systemic 
losses from individual failures. The oversea experiences in Austria gave additional ammunition to politicians 
against the universal banking model. The McFadden Act of 1927 (Banking Act, 1927), as amended by the 
Banking Act of 1933, prohibited banks from establishing branches across states. The states soon followed suit 
by establishing that branches should be limited to the central office county or to counties adjacent to it or by 
restricting branching altogether. States in the latter category are referred to by historians as Unit Banking 
states. The landscape of US banking after the Great Depression remained fairly unchanged with reduced 
merger and very limited acquisition activities, in part due to a 1963 US Supreme Court decision which held that 
a merger was illegal if it resulted in a firm controlling an undue share of the relevant market (373 U.S. 321 and 
”Clayton Act” 1914).  
 
However, competitive and technological pressures were building toward a de-regulation of the banking system. 
At the end of the seventies, regulators had to confront with the inefficiencies of the unit-banking model, what is 
now called the “Savings and Loans (S&Ls) crisis”. The need to address promptly episodes of banking distress 

    
4 Marcus (2011) Macher, F. (2018) 
5  - the Verkehrsbank (VB), the Unionbank (UB), the Boden-Credit-Anstalt (BCA), and the CreditAnstalt - 
6 The money that had to be printed by the Austrian government to face domestic depositors’ withdrawals in CA and the drop in 

foreign reserves generated by the pull back of foreign creditors, eventually caused Austria to abandon the gold standard and the 
rest of creditor countries, beginning with the UK followed suit. 
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pushed legislators towards relaxing restrictions on banking activities and, eventually, the passing of the Garn-
St. Germain Act of 1982 (Depository Institutions Act, 1982), which permitted limited interstate expansion by 
allowing failing institutions to be acquired by out-of-state institutions.7 By the end of the 1980s the risks posed 
by geographic lending concentrations were well understood, so attempts were made to eliminate the remaining 
legal impediments to full interstate banking. In fact, several state actions had enabled many banking firms to 
use bank holding company affiliations to circumvent geographic restrictions. In 1983, the rising amount of non-
performing loans in the banking sector lead to estimate that it would cost roughly $25 billion to pay off the 
insured depositors of failed institutions, however the thrifts’ insurance fund, known as the FSLIC, had reserves 
of only $6 billion and the authorities declined to close down distressed institutions. As a result, the total assets 
of the S&L industry continued to grow rapidly until 1985, when the whole industry came under distress. 
According to historical records between 1980 and 1994 more than 1,600 banks insured by the FDIC were 
closed or received FDIC financial assistance. 8From 1986 to 1995, the number of federally insured savings and 
loans in the United States declined from 3,234 to 1,645. In 1989 Congress instituted the Resolution Trust 
Corporation (RTC). This agency was created to deal with failures and had the task of dealing with distressed 
assets and customer deposits of the S&Ls. Estimations put the cost to taxpayers through the RTC to be as high 
as $124 billion. 
 
Figure 1. presents the number and average size of failed institutions in the US in the period 1970 to 1990. On 
the right vertical axis the average size of bank failures in a given year which were resolved through purchase 
and assumption transactions, in other words, by re-distributing assets and deposits across the system. 
Specifically, P&A are a process whereby the failed banks’ assets are purchased by other banks and liabilities 
are assumed. On the left vertical axis, we included the total number of bank failures in that year: 
 

    
7 More specifically, during the bank distress years of 1920-1939, 15 states relaxed their branching restrictions, while in the four 
decades that followed (1939-1979) only four states relaxed branching limits. When bank distress returned in the 1980s, 15 states 
relaxed their branching rules (Mengle 1990, Calomiris 2000, pp. 63-7). 
 
8 Federal Reserve History 
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Figure 1. US bank failures 1975-1990 

 
 

Source: FDIC Dataset on US Bank Failures and Assistance and authors calculations. 
The chart displays the average size of banks, in terms of total assets, that failed in any given year and were resolved through 

Purchase and Assumptions (P&A) and includes the estimated loss per bank (as presented in FDIC statistics). 
 
In our terminology, this would represent the increasing losses that are generated as the assets of the failed 
banks are distributed across the system. We chose this specific and limited period because of the significant 
overhang of bad assets in the system at the time which would make it closer to the closed model of 
sandcastles we are examining later as a theoretical model. 
 
Figure 2. presents the relationship between bank size and number of failures in a given year of distress. It can 
be noted that the larger the number of banks that failed in a year, the larger their average size (Figure 2). It is 
important to note the data here below do not include a dynamic pattern though. Together with the previous 
graph, FDIC data for the distress period appears to suggest that both the average size of banks and the 
average amount of losses per bank tend to increase in the sample of banks resolved through P&A as the 
situation of distress persists: 
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Figure 2. Number of Banks Failing in a Given Year (1975-1990) 

 
 

Source: FDIC Dataset on US Bank Failures and Assistance and authors calculations. 
The chart displays the average size of banks, in terms of total assets, that failed in any given year and were resolved through 

Purchase and Assumptions (P&A) and the total number of failed banks. 
 
In our terminology this represents the outcome the authorities achieve through “distributing” the assets of the 
failed banks to the remaining banks in the system and thus achieving larger and larger banks that in turn, when 
they fail, generate higher and higher losses. 
 
 
 

IV. The Model 
The sand pile model is a simplification of the original Abelian9 setup which generates a self-criticality and could 
be referred to as an example of catastrophe theory. In the model, sand grains, fall randomly on the surface of a 
sand pile, thus a “dune”, and as they do so they potentially trigger “slides” i.e. they cause the sandpile to 
collapse. While traditionally the sand pile is modeled to grow into a dune by the grains of sand falling randomly, 
the sand grains can also be modelled to be directed to the location in the pile that is less likely to collapse. 10In 
these cases, the pile becomes a “sand castle”. We ask whether, the castle obtained would be able to endure 
more shocks than a randomly obtained dune. In addition, we ask whether, if the castle were eventually to 
collapse, will its slide be broader than that of a dune. Would the slide be wider than the sum of all the slides 
that would have occurred if the pile had not been tampered with? Although the idea was proposed in various 

    
9 The name, as suggested by Kumaraswamy Velupillai, could be linked to the Norwegian mathematician Niels Henrik Abel probably 

for his work on group theory. So far, however, we must confess, we have not been able to confirm this hypothesis. 
10 We give the source of this “inspiration” in the next section. However, we have learned that such a twist has been studied and 

classified in the combinatorics literature as “chip-firing games” on a graph. See for example Spencer (1986) and Bjorner et al 
(1991) 
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contexts (see Holroyd et al 2008), the model is often referred to as the Bak–Tang–Wiesenfeld model (Bak, et 
al. 1987) and proposes a dynamic framework exhibiting self-organized criticality. For the purpose of this 
exercise, rather than operating in a two-dimensional grid, we set up a network or, more precisely, a directed 
graph. 
 
In our model, borrowers are hit by random shocks, they cannot repay their loans, and thus generate credit 
losses that accumulate in banks reducing their capital. When capital breaches the minimum regulatory level the 
losses generate a “slide” or a failing bank event. In the first scenario supervisors do not intervene (we dub this 
“laissez faire”) and leave shareholders deal with their institution, thereby the system mimics the dynamics of a 
“dune” in our metaphor.  
 
In a second scenario, when a bank’s capital falls below the regulatory minimum, supervisors assign losses from 
failing banks to the strongest elements in the network: the “white knights”. The allocation of losses to healthier 
ones with capital in excess of regulatory limit makes the system able to withstand the losses without generating 
a crisis. In our metaphor, we are moving away from the “dune” to generate a “sandcastle”.  
 
It is important to note that in both scenarios the system is hit by the same number of random shocks. We ask 
which of the two strategies, bank resolution policies in our case, is most advantageous for the system in terms 
of minimizing social welfare losses.  
 
As mentioned above, the banking system represented in the model is composed of banks endowed with 
random levels of capital above the minimum required. Institutions also differ in the number of shareholders. The 
shareholders of each bank are represented by the number of connections each entity has to the rest of the 
network. It is assumed only banks can own other banks, sort of a stringent version of a “fit and proper” 
requirement. The number of directed links in and out of each node (bank) is randomly determined when the 
network is created. The number of shareholders determines the amount of support each bank has before it 
generates a welfare loss for the system. Banks that have an “insufficient” number of shareholders when they 
fail, will generate a welfare loss for the system of the magnitude of the capital shortfall that its current 
shareholders cannot absorb. 
 
Also, the higher the number of “shareholders” the larger the financial conglomerate each banking institution 
belongs to. In this respect, we assume that each financial network can be defined in terms of: (i.) size or 
number of total number of links/relationships across financial institutions that belong to the network; (ii) average 
clustering coefficient11, or number of shareholding relationships among institutions that are connected within a 
“financial group”; and iii) the average minimum path of the network, which is the average number of 
shareholding relationship that link any two nodes in the network. This latter measure resembles the notion of 
“completeness” in the literature on financial networks introduced by Allen and Gale (2009) whereby 
“complete”12 networks are those where each group is connected to every other group in the system. As 
mentioned above, the networks we will be analyzing may in some cases be incomplete. 
 
While randomly generated networks can have reciprocal connections, in most regulatory frameworks, cross-
ownerships among deposit-taking financial institutions are either not allowed or have to be deducted from 

    
11 A clustering coefficient is a measure of how nodes in a graph/network tend to cluster together. For a precise definition of this 

measure we refer the interested reader to https://en.wikipedia.org/wiki/Clustering_coefficient  
12 In graph theory these are called “strongly connected” graphs 

https://en.wikipedia.org/wiki/Clustering_coefficient
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regulatory capital. These types of regulations acknowledge the issue that cross-holdings actually implies less 
capital for the aggregated financial group13. To make the network simulation closer to a banking system with 
restrictions on cross-ownerships, a second set of simulations will be run on a network without reciprocal 
connections and the implications for the results will be discussed subsequently. 
 
The network is closed, so that it represents banks in a specific region. However, the network is not fully 
connected as to present the semblance of large and interconnected banking groups. In this respect, it may 
happen that the network is not “complete”14 as discussed in Allen and Gale (2000) whereby it may not be 
possible to find a connection between any two financial institutions in the network. This is consistent with the 
idea of large financial groups that operate separately in the financial sector. Also, differently from the setup in 
Allen and Gale (2000) in our case links are representing ownership relationships and not interbank 
deposits/credits. 
 
More specifically, we assume that at the beginning of time banks are randomly endowed 15 with a min of 8 and 
a max of 12 capital units. We assume that prudential regulations in the model require banks to hold a minimum 
8 units of capital (comparable to the 8 percent of minimum capital requirement as a share of total assets) and 
thus each bank will be able to withstand up to 4 units of losses before failing (depending on its initial 
endowment). When a bank goes below the 8 percent level of capital, it is categorized as “failing” and a 
resolution strategy is followed.   
 
We also assume that the banking network is subject to effective prudential oversight by the network’s banking 
regulator. This implies that any expected losses the banks may have at any moment in time have to be fully 
covered by adequate provisions. Thus, the only losses that can occur to the banks in the network are 
unexpected, thus random, and will have to be covered by capital16.  
 
In our simulations, borrowers from the banks in the network are assumed to default randomly and 
unexpectedly. Thus, the banks in the network that own the defaulted loans will have to recognize the loss 
against their capital as they have not had a warning to make a provision. For simplicity, each loan that 
becomes non-performing (NPL) in the model has a value of one unit. The occurrence of a new, unexpected, 
NPL will generate a loss of capital of one unit for the bank. This implies that at each new NPL, the total amount 
of capital of the banking sector is reduced by the total amount of the new random NPLs generated. After the 
occurrence of a credit loss, the number of shareholders of each bank remains unchanged.  

 In the Abelian model, credit losses are the equivalent of the grains of sand falling onto the pile. All grains 
(hence NPLs) are assumed to be equally sized. Following the sand pile metaphor, once the number of grains 
piled up in the same place has reached a threshold, a “slide” occurs and the grains move to the downstream 
nodes in the directed graph. If a bank goes below the 8 minimum capital level is declared as failing or likely to 
fail and a resolution event is triggered. 

In a first set of simulations, supervisors do not intervene and leave shareholders to absorb the losses. 
Shareholders however will be allowed to absorb only one unit of losses for each bank they own which fails.  
When they take over the failing bank, they will each receive its assets and liabilities equivalent to the ¼ of the 
assets and ¼ of the liabilities of the failing institution and they will have to put up 1 unit of their own capital to 

    
13 FDIC “…Reciprocal Cross Holdings: Under the agencies' capital rule, a banking organization must deduct from regulatory capital” 
14 In other words, the graph underlying the network may not be “strongly connected”. 
15 The initial distribution is random to depict some heterogeneity in the starting situation. 
16 As per usual banking regulations, expected losses have to be covered by provisions while unexpected losses will be covered by 

capital. In this setup, if the bank gets hit by an unexpected NPL its capital will be reduced by 1. 
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absorb them. If there are more than 4 descending connections, we assume that shareholders will be randomly 
selected to take over the losses. 

 By construction of the original network, there may be fewer than four (4) shareholders (remember that the links 
are random so it may well be that a node does not have 4 descendants/shareholders). It may also be the case 
that some shareholder bank has already failed by reaching its minimum capital threshold and is tagged as 
under distress, and isolated from its controlled institutions (the upstream nodes). It is thus important to note that 
shareholder banks in distress cannot support their affiliated banks: all “incoming links” for such banks are 
broken for that period.  

When there are banks with less than 4 shareholders, it is assumed nobody else in the system wants to acquire 
the remainder part of the portfolio of the failing institutions and supervisors do not intervene. Therefore, the 
equivalent proportion of loans has to be recalled (to repay the depositors). This, in turn, will generate a welfare 
loss in that (credit/production/output) will have to be reduced proportionally to the total amount of the capital 
shortfall. We call welfare losses only those losses the network does not absorb and, as a result, explicitly fall on 
the general public (the deposit insurance corporation or eventually taxpayers).  Historically, this operation has 
been carried out by the deposit insurance corporation (DIC) that provided resources to pay out depositors and, 
in this way, would spread the losses across the system. 

When there is a welfare loss in the system as a result of a failing bank, i.e. there are not enough shareholders 
to absorb all the losses of the failing institution, we call it a “crisis”. In this respect, it is important to note that 
there can be bank failures that do not generate “crisis”, this will happen if there are at least 4 shareholders and 
each of them has enough capital to support the institution. 

Also, since each shareholder will be requested to absorb ¼ of the losses of each failing entity they own, there 
will be instances when the nth failing entity will cause one of its “shareholders’” capital to fall below the 
minimum and thus fail itself17 in a domino effect. So, in the more general form, we associate “slides” with failing 
bank events, where the extent of the total losses to the system from each event will depend on the 
characteristics of the network and the extent of accumulated losses in the network. Therefore each “slide” or 
“failing bank event” will be characterized by the amount of failing institutions and the total welfare loss. 
 
In a second set of simulations, supervisors direct the strongest institutions (nodes) in the system to absorb the 
losses of a failing bank18. In this setup, the stronger institutions, the “white knights” are defined to be those with 
a higher amount of remaining capital. If a bank is called to absorb a failing one, it will suffer a “loss”, in the 
sense it will have to use its own capital to support the acquisition of assets and liabilities from the institution it 
absorbs.  
 
To recall, we have assumed, that the mergers are never “total” but rather P&As for ¼ th of the balance sheet. 
Thus, every institution called to become a “white knight” will only purchase assets and liabilities which it can 
support with one unit of capital, and thus will see its own capital reduced by one as a result of each of the P&A 
operation it is called to participate in. In this way the supervisors’ strategy implicitly generates larger and larger 
banks to avoid banks’ failures. 
 We also assume that, to begin with, an institution can only participate in taking over a failing institution if its 
capital is at or above 9. However, because of the nature of the simulations, eventually the stronger institutions 

    
17 The status “under distress” will last for one day. Since the objective is to gauge the characteristics of a specific network, the same 

network will be used on each day in the life of a generation. The structure itself can be modified only across generations, as we 
will discuss later. 

 
18 Note that these chosen banks may not be the shareholders of the failing one, hence the losses are distributed more “widely” 

across the system. 
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will have a capital of 9 and thus the nth failing institution will generate a social welfare loss because of the 
accumulated losses already in the system. Eventually, the “white knights” themselves will fail, and no other 
institution in the system will be strong enough/willing to absorb them and thus losses from the failure will either 
burden their shareholders or become welfare losses as those described above. 
 
Also in this second scenario, we also expect “slides” i.e. shareholder bank failures to be associated with other 
banks failing if they also happen to be the shareholders of the original shareholders of the “white knight” bank. 
In this respect, the loss allocating algorithm is generating “systemic banks” i.e. banks the failure of which is 
eventually associated with a large number of connected failures. 

A. Laissez-faire 
 
As discussed above, the first set of simulations assumes that supervisors do not intervene when banks are 
failing. In this case, the banks’ shareholders will have to take over the failing institution to the extent possible. 
They acquire a share of their assets (loans) and liabilities (deposits) and will have to provide the supporting 
capital on account of their larger balance sheet. We will refer to this scenario as “laissez faire”, i.e. where the 
regulators do not intervene in the process such that the random structure of the system (i.e. shareholders) take 
care of the failure. In this first scenario, supervisors take a passive role and only require related parties to have 
capital above minimum regulator levels 19.  
 
For these simulations, we have fixed the dimension of the directed graph at 15 nodes and a typical network 
would look like the one depicted in Figure 3. 
 

    
19 Since a failed bank has deposits in excess of assets as a result of the random occurrence of 4 NPL shocks, each of its 

shareholding connections are called to absorb its losses. It is assumed that supervisors will distribute the assets and the 
liabilities of the failed bank in such a way that each shareholder bank can acquire at most 1 capital unit of the failed entity and 
thus put up at most 1 unit of their current capital resources. This occurs because it is assumed that each entity can absorb a 
loss of 1 unit of its capital and still remain above minimum regulatory requirements--i.e. all institutions are assumed to have a 
max of 12 capital units to begin with against a minimum of 8 in the capital regulation, so that absorbing 1 unit of the total loss of 
the failing entity would bring them down by 1 unit closer to the 8 threshold, which is still acceptable to supervisors. Thus, the 
additional capital necessary to support the failed institution balance sheet is put up by other institutions in the conglomerate so 
that the original loss is shared across institutions. 
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Figure 3. Generic financial system as directed graph 

 

It is important to stress that the graph is not fully connected: the number of directed links in and out of each 
node is randomly determined when the network is created. This implies that power relations are not symmetric, 
so the shareholders and controlled institutions of each bank (node) are well identified. In this case, there could 
be cross-ownership and in Figure 3, the symmetric relations (when they exist) are represented by lines with 
arrow points at both extremes like the one linking node 6 ad 11 (on the lower right corner). On the other hand, 
the link between 10 and 11 is only unidirectional: from 10 to 11 (in our model this is to be interpreted as “bank 
11 is a shareholder of bank 10”). 

The directed network is first built by generating an asymmetric square matrix (15 x 15) with zeros along the 
diagonal (to avoid the paradox of a bank transferring a liability to itself). The following matrix lies behind the 
directed graph depicted in Figure 1. It won’t be a surprise that such a representation is very convenient. It is the 
perfect set up to apply a simple genetic algorithm, that will split and recombine the sequence of zeros and 
ones. In Figure 4, row n collects the “address” of all shareholders of the nth node. For example, the first row 
(indexed as zero in python), links node 0 to nodes 3,4, 7, 8, 9, 12, and 14. It means that banks 3, 4, 7, 8, 9, 12, 
and 14 are shareholders of bank 0. 
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Figure 4. Matrix representation of the financial system network 

 

As mentioned above, the threshold that will trigger an event (a slide/failing bank) is set at 4 (this number seems 
very common among the simulations found on the web; see for example 
http://www.natureincode.com/code/various/sandpile.html and also is designed to be consistent with the banks’ 
regulatory framework we suggested as the requirement is to remain above 8).  

The first round of simulations is organized on a set of 300 iterations (they could be interpreted as days) and the 
performance of the network is calculated at the end of the “year.” Initially, the network allows for cross-holdings 
across institutions. The performance focuses on three dimensions: i) the average time (number of days) 
between failing bank events, ii) the average number of connected banks failing (slides) in the network each 
time there is a bank that is failing (we call this a crisis event), and iii) the average welfare loss generated by 
each failing bank (crisis) event. In our terminology, an event of a bank failing is associated with a “slide” in the 
model, but such event may not translate into a public welfare loss at every instance of occurrence. For 
example, if there is enough capital in the system and the shareholders are strong enough, the bank failure is 
fully absorbed by its shareholders. We call the ‘slide” event a “crisis” if there is a welfare loss associated with it. 

B. Supervisors’ Directed Mergers (the Managed case) 
 
We use the model discussed above to analyze the behavior of the system if regulators were to direct losses of 
a failed bank to the strongest institutions in the network (managed case)20.  

Regulators’ intervention is reflected by allocating assets and liabilities of a failing bank to the banks (nodes) that 
are the strongest in the network in terms of remaining capital. This process will then represent closely the 
process of “looking for an appropriate match”. The banks receiving the assets and liabilities will have to put up 
one unit of their own capital, thus their capital level will be reduced by one. As discussed above, the process of 

    
20 There are, in principle various ways to model this scenario. The simplest would be to direct each new shock to the strongest 

institution. This would correspond to the “benevolent dictator” case, in the sense that losses would be managed “centrally” from 
an institution that has full control of the system. Alternatively, the supervisor may intervene only when a specific bank has 
reached the threshold and goes bankrupt, before involving its official shareholders. This is the option we have chosen, and the 
results reported in this paper refer to such a case. However, we have also run all the same simulations for the “benevolent 
dictator” case. The results are qualitatively equivalent, but more “extreme” since the supervisor in that framework, has more 
latitude and can potentially identify the best allocations. This is the actual experiment performed with the dune by Professor 
Page and his team: the sand grains are immediately directed to the “safest spot” in the pile. 

0 0 0 1 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
1 1 0 1 0 1 0 1 1 0 0 1 0 0 1
1 0 0 0 1 1 0 1 1 0 1 1 0 1 1
0 1 1 0 0 1 0 1 1 0 1 0 1 1 1
1 0 1 1 1 0 1 0 0 0 0 1 1 1 0
0 0 0 1 1 0 0 0 1 0 0 1 1 0 0
1 0 1 0 0 1 1 0 1 1 0 1 0 1 0
1 1 1 0 1 1 0 1 0 0 1 1 0 1 1
1 1 1 0 1 1 0 0 0 0 1 0 1 0 1
1 1 1 0 1 1 0 1 1 1 0 1 0 0 0
0 1 1 1 1 0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 1 0 1 1 0 0 1 0 0 1
1 0 1 0 1 1 1 1 1 0 1 1 1 0 1
0 1 1 1 0 0 1 1 1 0 0 1 0 0 0

http://www.natureincode.com/code/various/sandpile.html


IMF WORKING PAPERS Sandcastles and Financial Systems: A Sandpile metaphor 

 

INTERNATIONAL MONETARY FUND    18 
 

receiving assets and liabilities from failed institutions equivalent to one unit of capital will imply that these white 
knights are becoming larger and larger institutions (sort of “systemic banks”) 

These simulations are also done for the 300 “days” period as in the previous case. The banks that are called to 
be “white knights” remain exposed to the same random shocks as the rest of the system and may eventually 
generate losses to their shareholders if they fail and no other institution in the network is able to support 
them21. The same will be true if their own shareholders fail, no stronger institution would be considered able to 
absorb them. In this way these simulations replicate, in a simplified way, the welfare effects from a “systemic 
bank failure”. 

Results from the two sets of simulations are then compared to assess whether the process of directing 
mergers, and thus directing the losses to the strongest institutions, will result in a reduction of the frequency of 
welfare-loss generating crisis events and to identify possible side effects. In particular, we are most interested 
in assessing whether these rarer events of crisis, i.e. where shareholders are not able to absorb the losses, are 
more costly to the system as a whole than those when losses occur randomly and single institutions are left to 
their shareholders to handle.  

C. Comparing system performance under the two strategies 
 
The outcome from the simulations records the average time to a failing bank event (crisis), the average number 
of failing banks associated with crisis events (like in a domino effect), and the average welfare cost incurred in 
a crisis.  

In Figure 5, these series are collected under the two sets of simulations dynamics on a group of 50 randomly 
generated networks (on the x axis).  

    
21 In this model, there is no “recapitalization option” in the sense that no new capital can be created, but only “consumed” by shocks. 

This is clearly a simplification that allows us to address more directly the question of “how a network should be structured to face 
efficiently the shocks” 
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Figure 5. Simulation Outcomes 
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Results suggest that when supervisors direct the losses to the strongest institutions, the frequency of crises22 
(meaning events that generate welfare losses for the system) is reduced as expected. (because even if each 
institution fails after 4 losses, a simplifying assumption, only the institutions that each time have more capital 
are called to be white knights. However, as expected, simulations also show that when institutions eventually 
fail as a result of the built-up pressure in the system, the average welfare loss at each of the crisis event is 
larger because it is associated with a higher number of connected institutions also failing (the supervisors’ 
intervention eventually leads to the failing of systemically important financial institutions). Thus, our initial 
results, support the view that supervisors’ interventions that seek to merge failing institutions with stronger, 
healthier ones lead, on average, to a deeper social welfare loss per outcome when the crisis eventually 
happens.  
 
However, when the total social welfare cost of bank failures to the system is computed over the full period23 
(300 “days”) our simulations find that total welfare loss is typically lower in the “managed (shotgun marriage)” 
case (Figure 6: “tot Loss man” in the graph). This implies that the benefit from the lower frequency of the 
recorded crises, more than compensates for the higher average welfare cost of each occurrence24. 
 

Figure 6. Total social welfare loss 

 

In this respect, regulators’ decision to pursue a resolution strategy by directing mergers, as discussed, appear 
to yield a superior outcome from a total welfare cost point of view, despite each crisis becoming more costly.  
 
 
 

    
22 Note that the average period of time that leads to a crisis event, sometimes less than two days, may seem too short. This is due 

to the high number of shocks/losses occurring in the simulations which was not chosen to deliver realistic time to crisis, but 
rather to study the network characteristics. 

23 The Y axis records the sum of all losses induced by all crises over the period of 300 days. In the “benevolent dictator” case 
mentioned above, the total losses in the managed case are strictly smaller: the supervisor has control over the whole system 
and manages to “optimize” the loss allocation. So the contrast between “managed” and “Laissez faire” is even starker than in the 
case depicted in Figure 6. 

24 This is true also when symmetric links are excluded. 

2020.00

2030.00

2040.00

2050.00

2060.00

2070.00

2080.00

2090.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Total Welfare Loss

Laissez Faire Managed



IMF WORKING PAPERS Sandcastles and Financial Systems: A Sandpile metaphor 

 

INTERNATIONAL MONETARY FUND    21 
 

V. Searching for the Optimal Network Structure 
We now try to ascertain whether certain characteristics of the network structure (financial system) may be 
generating lower welfare losses upon a failing bank depending on which of the two resolution strategies are 
followed. The analysis of the network characteristics would allow the supervisory authority to assess how 
inherently prepared (robust) that very structure is to withstand shocks, in terms of avoiding large welfare losses, 
given the chosen bank resolution policy. In addition, it would inform the regulatory authority on which structures 
it could promote or prevent in order to minimize welfare losses from failing banks.  
 
To assess the potential performance of a network, and/or to improve upon the current network structure, it is 
necessary to identify in the first place the characteristics of the “champions”. These are the networks with 
structural features that have been consistently exhibiting the “best performance” and that can, hence, safely be 
employed as benchmarks. In our case these are the networks that minimize total welfare losses, or 
alternatively, as we will see later, the ones who minimize the frequency of the crisis. 
 
One strategy to identify the best performing networks would be to run the same set of simulations over all 
possible network structures. Such an analysis is feasible only for rather small networks. For example, we 
constructed all possible networks of size 4, that is, with 4 nodes. A simple calculation shows that a directed 
graph with 4 nodes can be constructed in 212 possible ways (4096).25  
However, already the equivalent calculation for a system composed of 15 institutions shows that there are 2210 
possible network structures or 
1,645,504,557,321,206,042,154,969,182,557,350,504,982,735,865,633,579,863,348,609,024. This implies that 
for a realistic financial system, with more than 15 institutions, the optimization problem, i.e. finding the network 
structure that minimizes total welfare losses, would not be simple. However, with 15 nodes our network may 
well represent the banking relationships in a small country. For example, in Rwanda there are 16 commercial 
banks26.  
 
We begin by analyzing the 4 node networks27 and we expose each of them to the same set of 100 shocks. We 
conduct the simulations first assuming that the shareholders are left to take care of the failing institutions and 
then assuming that the losses created by each new bankruptcy are directed by the supervisors to the stronger 
institutions in the network. Figure 7 represents the distribution of results in terms of average welfare loss of 
crisis events under the laissez-faire and the managed strategy. 

 

    
25 As mentioned above, links from and to the same node are excluded so there are 12 possible connections. Each of these can be in 

two directions, hence the total 212 

26 In fact, the financial system in Rwanda is also composed of several microfinance institutions, but microfinance and rural institution 
have their own regulator and in general work differently. 

27 For this exercise, since all possible networks are considered, we do not focus on the case where symmetric links are excluded. 
For a 4 node system, the possible networks without symmetric links are only 729. 
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Figure 7. Average welfare loss. Four-node networks 

 

The difference in the average welfare loss distribution under the two bank resolution strategies is quite striking, 
while in keeping with the earlier result that total welfare losses are typically lower in the managed case over a 
period of time. In particular, when supervisors actively manage the allocation of losses to the stronger 
institutions, not only there is a higher average welfare loss per occurrence of crisis, as a result of the many 
losses accumulated in the system, but also a very volatile distribution of average welfare losses across the 
different networks.  

In addition, we find only one configuration that behaves as a “champion” (i.e. minimizes the average welfare 
loss in a crisis event) when shareholders are left to take over the failing institution (the “laissez-faire” case). It 
averages a loss of slightly over 3.5 units per crisis (which occurs on average every 2.37 “days” for a total loss 
of 147.68 over the 100 days). However, we find 64 configurations that lead to the minimum average loss of 7.1 
units per crisis event (on average after 4.84 “days” for a total loss of 146.69), for those cases in which the 
supervisor intervenes managing the resolution process of the failing bank(s) (the “managed” strategy).  
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It is important to note that, this set of simulations confirms that the “managed” strategy results in smaller losses 
over the “longer period” and that it may generate a larger number of networks, or “states of the world”, that lead 
to the best outcome and therefore there is a higher probability that it can be achieved. 

A. The relevance of symmetric relationships 

As mentioned above, in many countries the regulatory framework for banks either forbids or requires capital 
deductions for cross-holdings for financial corporations. These regulations are imposed because cross-holdings 
effectively reduce the total amount of capital available for the financial group (or cluster in these simulations). 
We sought to account for this by generating a set of networks that have the same number of nodes but 
disallowing symmetric relationships. We find qualitatively very similar results for the set of networks that 
exclude symmetric links. The total welfare loss over a period of time remains lower in the case of the 
“managed” bank resolution strategy28, thus supporting our important finding that the supervisors’ strategy of 
allocating losses to the healthier banks has beneficial effects in the long term. As in the previous simulations, 
the average loss per crisis event continues to be lower in the “laissez-faire” simulations than in the managed 
one despite being the size of the population much reduced. 

    
28 The minimum Total Loss for the managed case is 137 and for the laissez faire case is 141. The average Total Loss is 146.79 for 

the laissez faire, and 142.70 fo the managed case. 
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Figure 8. Average welfare loss. Four-node networks without symmetric links 

 

B. Increasing the Network Dimension 

We now ask whether it would be possible to identify (perhaps converge to) the “champion” network(s) in a 
higher dimension universe of potential networks that would represent more closely actual banking sectors. We 
would like to identify the characteristics of the network(s) that would minimize total welfare losses whichever of 
the two bank resolution strategies is followed. For the case of networks of 4 nodes, Figure 9 suggests that 
performance in terms of average loss per crisis event is widely different across networks. In particular, we find 
that each network, represented by one point on the x axis, differs from its immediate neighbors only for one 
link, but the difference in average welfare loss per crisis event is stark. 
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Figure 9. Network landscape, 4 nodes 

 

With such a rugged landscape, the search for the network that minimizes the total welfare loss is likely to get 
stuck in some local optimum for every dimension of the network above 4 nodes, especially in the “managed” 
case where we see several large plateaus. For this reason, the search for the “champion” will have to employ a 
procedure that is robust with respect to such very high nonlinearity. We have decided to use a genetic 
algorithm. 
  
In particular, in our search for networks that successfully minimize the total welfare loss, we have set up the 
following procedure.  First, we create a population of (15-node) networks and expose them to the same set of 
shocks under both strategies (laissez-faire and managed) for addressing failing banks. At the end of this set of 
shocks, we identify the network that has had the best overall performance in terms of total welfare loss. 
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Second, we generate a new population of networks (a new generation) employing a genetic algorithm that 
exploits only cross-over and is designed to implement a search routine over a highly non-linear landscape29. 
 
Each generation—composed of 26 “individuals30”—is exposed to the same set of shocks and the selection 
process is repeated 30 times ( i.e. 30 generations). At the end of the overall exercise the characteristics of the 
best network of the first generation are compared with those of the best network of the last generation that, in 
our set up, has necessarily exhibited an equal or better overall performance. We say “necessarily” because we 
are using one of the tricks employed in this sort of simulations: our generations maintain a “ratchet”; that is, the 
best performer of the current generation remains the incumbent champion in the following generations until a 
better performer emerges. Furthermore, to make sure the results do not depend on the specific set of shocks 
employed, we also repeat the full set of exercises with a different series of shocks31. 
 
The simulations with the same set of shocks and the same initial number of banks in the network (population) 
are repeated under the two “bank resolution strategies” as above: the case in which related entities take care of 
the failing institution and the case in which regulators manage the failing banks. 
 
It is important to note that the number of network structures tested in this exercise, a total of 780 (26 x 30), is 
only a minuscule portion of the whole potential universe of networks for a 15 node system. This is clearly a 
limitation on the possibility of identifying the absolute optimum, but it should still give an indication of the 
characteristics of the networks that would be associated with the minimum welfare losses upon the event of a 
crisis.  

C. Changing Regulators’ Objectives while Managing Failures: the Cynical 
Supervisors 

We now assume that rather than minimizing social losses from crises, the regulatory authorities’ primary 
objective becomes that of preventing any crisis as long as possible, while still assuming that they resolve failing 
banks by assigning losses to the strongest banks in the network. We consider this to be a reasonable strategy 
for supervisors that are drawn back (or operate in a world characterized by less than perfect foresight where 
“total welfare loss” cannot be the argument of the objective function and determine the on-going behavior). 
Indeed, one can observe that the occurrence of a crisis always suggests supervisory and regulatory failures in 
the real world and is usually associated with calls for resignation and regulatory overhaul. Thus, we assume 
that regulators, given the choice, would choose a network that reduces the probability they would have to deal 
with a failing bank during their tenure, which would also maximize their chances to remain in the job. Such 
strategy would be in line with a political economy of the banking sector “à la Acemoglu“32, i.e. where the 

    
29 As, mentioned above, each network is described by a string of zeros and ones. To obtain a new network via the “cross-over” 

procedure, we randomly select two points in the string of one network and substitute the middle section with the equivalent 
segment taken from another string. We could have set up a two-stage approach. The first would have been based on genetic 
programming to search for an effective combination of routines (i.e. the genetic algorithm we employ or the random exploration, 
or the “gradient” approach sketched above). The result would have been a routine to apply in the selection process of the “best” 
network. So, we see genetic programming as a way to select algorithms (using the genetic principle of the survival of the fittest), 
while a genetic algorithm is only one such an approach to select the solution. We are aware that the distinction is more semantic 
than substantial. However, it requires a programming competence that we are currently acquiring and could lead to a more 
efficient search process, hence the application of the metaphor to a larger network. 

30 An “individual” in this context is a network structure. 
31 We are not testing (or comparing) the champion emerged from one set of shocks on (with) another set because the intent here is 

not the search for some “global” optimum, but rather the identification of the typical characteristics that a good network should 
have. 

32  Acemoglu and Robison (2006) AER “ De Facto Political Power and Institutional Persistence” 
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system is regulated in such a way whereby supervisors would not need to take any action during their tenure 
leaving the potential negative consequences from their action to the next generation of supervisors. We dub 
this regime as “supervisory cynicism”. It translates in doing “whatever we can” given the available 
instruments/resources for bank resolution, but not believing in benefits of any “long-term” planning. In fact, this 
is the only “managed case” that could lead over time to the selection of “better” structures with only limited 
“cognitive resources” on the part of the policy maker. This is because the objective function (time to failure) is 
“local” and observable, whereas the “total welfare function” is observable only at the end of a very long period: 
it hence requires very long-term planning. 

This means that the criterion for selecting the benchmark structures while searching the optimal network has 
changed. This time, rather than considering the networks that minimize total social welfare losses when the 
supervisors manage the failing bank, the optimization algorithm is set to identify those network structures that 
allow for the maximization of the time between crisis events or, equivalently, the minimization of the number of 
crises per period of time. 
 
 
 

VI. Analysis of Results 
The results from the optimization process described above, are presented for the three cases: 1) where 
supervisors follow a resolution policy of “laissez-faire”: 2) where they manage failures through directed 
mergers, and 3) where, while they manage failures, they prefer to have the longest possible time span across 
episodes (i.e. minimize the frequency of crises) rather than minimizing total welfare losses. Figure 10 captures 
the starting and end value33 for several variables: i) average time until a failing bank event (crisis episode), ii) 
average number of failing banks (“slides”) per crisis episode, iii) average welfare loss per crisis episode, iv) 
total welfare loss for the period considered. In addition, some structural features of the networks are presented: 
v) size of the network (total number of links/relationships across financial institutions that belong to the 
network), vi) average clustering coefficient34, in our metaphor this would indicate the probability that the banks 
have common shareholders and vii) average minimum path of the network (this is the average of the number of 
steps to link any two nodes in the network and it is another measure of how interconnected the overall network 
is), in our metaphor this would indicate how closely connected is the financial network in terms of shareholders 
holding multiple institutions. An average minimum path equal to one would represent the notion of 
“completeness” in graph theory (with every node directly connected with every other node in the network) and 
in the literature on financial networks introduced by Allen and Gale (2009) whereby “complete” networks are 
those where each group is connected to every other group in the system.  
 
Each of the seven frames of Figure 10 shows 3 pairs of bins. The first bin of each pair is the initial champion’s 
performance (e.g. average loss in the third frame), while the second bin records the performance of the final 
champion (after 30 generations created with the GA described above).  

    
33 The beginning value is the one recorded for the “champion” of the first generation, whereas the end value is recorded for the 

champion prevailing after 30 generations. In some cases, the value does not change, indicating that the initial selection got 
stuck on a rather “strong” local optimum or that the global optimum was found right away. 

34 A clustering coefficient is a measure of how nodes in a graph/network tend to cluster together. For a precise definition of this 
measure we refer the interested reader to https://en.wikipedia.org/wiki/Clustering_coefficient  

https://en.wikipedia.org/wiki/Clustering_coefficient
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The first pair reports on the performance of the dynamics during “laissez-faire”. The second pair is for the 
performance when the supervisors allocate losses to strongest institutions, i.e. the “managed” rule is employed. 
The third pair is devoted to the performance of cynical supervisors, who do not believe minimizing social 
welfare losses is beneficial to them and/or doable. We assume that regulatory authorities are able to influence 
the network structure by issuing regulations and thus they can achieve their intentions in terms of their ultimate 
objective. So, in this third case, the GA algorithm which picks the “best performers” is applied to a different 
objective function: the minimization of the frequency of crises.  
 
The comparison of the optimization results, between the network structures that minimize welfare losses 
occurred randomly and the ones generated by the resolution strategy, unsurprisingly evidences a direct 
relationship between average time to crisis and the magnitude of the average crisis event. Typically, the longer 
it takes for a crisis to erupt, the larger the welfare loss that that crisis will generate. This result is consistent with 
the general criticism of resolution policies where supervisors support the takeover of failing institutions by larger 
healthier ones. 

However, as noted above, the optimization results computed over a significant number of “generations” of the 
network confirms the initial observation of Figure 6, i.e. that total welfare loss is either equal or lower when 
supervisors allocate losses identifying white knights than when shareholders are left to take care of their 
institution (fourth frame of Figure 10 (total welfare loss per period)) 

In addition, when observing the results for the “managed case” across all characteristics of the network that 
minimize social welfare losses, results suggest that regulators who prefer to minimize total welfare losses (at 
the end of the period), could improve the performance of their financial system by promoting certain features in 
the financial sector network through regulatory intervention. In particular, we find that networks that are larger in 
terms of total number of shareholding relationships, are more closely connected via shareholding relationships 
(have a lower average minimum path), and where institutions are more clustered, also generate the lowest 
welfare losses.  

This series of results is particularly interesting in the context of understanding the discussion behind the 
negative externalities brought by the systemic impact of large and interconnected financial institutions: it 
appears that the chosen bank resolution strategy also influences the structure of the network that would lead to 
the minimal total welfare loss, and therefore there is no single solution. 
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Figure 10. Comparison of pre and post optimization variables 
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A. Increasing the number of simulations 
 
To further test the hypothesis suggested above of an interaction between regulators’ behavior and optimal 
characteristics of the system, we have run a larger number of simulations. We have performed three sets of 
1000 simulations for the three bank resolution policies. Each one of the 1000 simulations starts with a different 
population and runs over 10 generations. The data of the “champions” at the end of each simulation give 1000 
sets of observations for each case. Figure 11 depicts the total loss distribution for each exercise. 

 
Figure 11. Total loss distribution 

 

The results indicate that in the “unmanaged/laissez faire” case—where losses are random and 
shareholders/related parties take care of the failing institutions—the total welfare loss performance is clearly 
worse than in the managed case. Notably, the distribution of the welfare loss when supervisors allocate the 
losses from failing banks is significantly smaller than the “laissez faire” case and almost totally (947 cases out 
of 1000) concentrated in one outcome (2046). This result appears to confirm the observation that allocation of 
losses creates some rather flat landscape that could trap the search algorithm in a local optimum. Alternatively, 
we could conclude that the GA algorithm is so powerful that it manages to find the global optimum in about 95 
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percent of the cases. Of course, we cannot be sure of this latter hypothesis as the proof would require 
spanning the full space of 15-node networks, which cannot be done at this time. 
 
Finally, when supervisors are allocating losses to white knights, and the objective function maximizes the time 
between crises (cynical supervisors), the total welfare loss results are much more volatile. In its best case, (in 
about 2% of the cases at 2046) they are comparable with the losses obtained for the total-welfare loss 
minimizing network of the “managed case”. However, the average total loss (at 2063) is larger than the average 
of the “Laissez faire” case (at 2055.5). Furthermore, it is important to note that only in 4% of the cases, will the 
total loss under “moral hazard” be smaller than the minimum of the laissez faire regime while in about two 
thirds of the cases, it will be worse than the “laissez faire” worst case.  
 
Clearly, simulations suggest that “cynical supervisors” would have the easiest time achieving their optimal 
framework, but the risk involved appears to be quite high. In particular, in the large majority of cases total 
welfare losses would be in excess of the general “managed case” where regulators are seeking to minimize 
social welfare losses. 

B. Comparing Different Network Structures 
 
We now seek to identify the characteristics that the optimal network should have to guarantee the best results 
in terms of minimum welfare loss for the event when an institution fails within the network regardless of which 
resolution strategy is applied. We use OLS regressions on the data generated by the 3000 simulations. 
 
The first exercise has been to regress, for each of the three scenarios, “Total Loss” on: i. the size of the 
network, ii. the cluster coefficient, and iii. the average minimum path length. However, since “Total Loss” has 
very low variation, the constant intercept is the only significant coefficient. We do not report those results. 
 
As a second exercise, we decided instead to regress the “ Average35 welfare loss” on: i. the size of the 
network, ii. the cluster coefficient, and iii. average minimum path length. As in the first exercise, the regression 
was repeated on the simulation results for each of the resolution regimes (laissez faire, managed) and for the 
case of cynical supervisors. Only in the case of “laissez faire” the coefficients are statistically significant, but the 
fit is very poor in all cases. (Annex 1). 
 
Finally36, we pooled all the data obtained from the simulations across the three “regimes” and ran instead three 
separate equations, regressing each time “Average loss” on only one of the independent variables: average 
size, average cluster coefficient, and average minimum path (we can do this because each of the network 
characteristics will be independently distributed from the other) . The results (in Annex 2) add an interesting 
twist to the analysis suggesting that the best network structure, in terms of loss minimization “winning 
structure”, depends on the supervisor’s chosen resolution strategy and therefore is not unique.  
 
In particular, we find that the size of the network in terms of total shareholding relationships plays a positive role 
in reducing the average loss when supervisors choose the “laissez faire” strategy (which tends to minimize 
    
35 In all scenarios, “laissez faire”, “managed” and “moral hazard”, the correlation between average and total loss is positive, although 

small, ranging from 0.3, to 0.05. 
36 We thank our colleague Carlos de Resende for suggesting this approach, but do not hold him responsible for how we 

implemented it. 



IMF WORKING PAPERS Sandcastles and Financial Systems: A Sandpile metaphor 

INTERNATIONAL MONETARY FUND  32 

average losses in general). However, we find that when supervisors manage losses and prefer networks 
structures to minimize the number of crisis events, they will also benefit from networks with a higher number of 
shareholding relationships 

In general, and consistently with the results discussed above, a network that is more connected (as 
represented by a larger size and a higher cluster coefficient) tend to fare worse when losses are allocated by 
the supervisors, independently of whether they are minimizing total losses or the time between failure events. 

C. Avoiding Symmetric Links

As noted above, many regulatory frameworks for banks either forbid or require capital deductions for cross-
holdings for financial corporations. Thus, we generated networks with the same number of nodes, but without 
any symmetric relationships, such that cross-holdings are completely disallowed for purposes of assessing 
capital37. Detailed results are reported in Annex 3.  Figure 12 presents the distributions of the simulation results 
to compare the performance of the networks with and without symmetric links (i.e. without or with netting cross-
holdings). 

37 To be precise, we have eliminated all direct cross-holding. In terms of the directed network this means: if A is connected to B, we 
made sure that B is not connected to A. However, we did not prevent triangular cross holding like A connected to B, B 
connected to C, and C connected to A. This aspect should be taken in to consideration in real world calibration which also 
consider weighted links. 
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Figure 12. With and without symmetric links. Comparison of results 
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We find that, when cross-holdings are prohibited, the occurrence of crises is very different depending on the 
resolution strategy chosen by the supervisors. If the supervisors follow a “laissez-faire” approach crises tend to 
occur more frequently (i.e. at shorter intervals), than if symmetric links are allowed. This result seems intuitive 
because there are less shareholders to absorb losses. The average loss is also lower, as one would expect 
because the system has less time to build “pressure” before the crisis erupts. These findings are also 
supportive of the intuition behind the regulations, i.e. that by appropriately identifying the extent of supportive 
shareholders, the system doesn’t overleverage and thus causes institutions to fail more frequently, but also to 
remain smaller--because we have properly counted the extent of capital in the system.  
 
When supervisors follow a resolution strategy allocating the losses from failing banks to white knights, the 
absence of symmetric links tends to significantly increase the period between crisis events especially when 
supervisors are cynical. We assume this depends on the fact that the shareholders of each institution are 
“stronger” in the sense there is a limited number of institutions they can receive losses from. In effect, it 
appears to be that the absence of symmetric links associates more closely the number of shareholders with the 
actual amount of supporting capital and therefore the algorithm picks “better” “white knights”.  However, as we 
found earlier, when crises are less frequent, they are always associated with a higher average welfare loss as 
the failing institutions tend to be larger, or more numerous in such cases.  
 
In general, the total welfare loss associated with crisis episodes when symmetric relationships are not allowed 
does not change much with respect to the case in which symmetric links are allowed (as would be expected 
because the total amount of capital in the system is not different). However, it does appear that the chosen 
institutions currently with the highest amount of “capital” are somewhat better insulated in the absence of 
symmetric links and therefore can withstand a longer period of time without crisis. Indeed, the cluster coefficient 
is lower and the minimum average path is larger, both indicating more sparsely connected networks. 
 
Furthermore, the absence of symmetric links allows supervisors to significantly increase the period between 
crisis events when supervisors actually choose to do so within their regulatory objectives. As in the cases 
discussed above, despite the average loss being larger as more institutions are affected in the domino effect, 
total loss for the system is not necessarily larger, so, once again, disallowing symmetric links is an efficient way 
of diminishing the incidence of crisis events. Finally, and consistently with the results in the ”managed” case, 
less clustered networks also have a lower frequency of crisis. 
 
Therefore, our results are supportive of the notion that, in the case of an active role played by regulators in 
managing crises (“managed” and “cynical supervisors“ scenarios), prohibiting cross-holdings in financial 
institutions (or netting cross-holdings from total capital) is beneficial to the system in the sense that such a 
measure increases the period between crisis event without automatically increasing total welfare losses.  
 
In the process of generating networks without symmetric links, a significant portion of these networks turned 
out to be “not-strongly connected”, meaning that there is no path that links each node with every other one 
else; in other words, one or more of the network nodes is isolated or create an isolated subnetwork. Clearly, in 
these cases it is not possible to calculate an “average minimum path38”. The share of these “not-strongly 
connected” networks varies between 35 and 50 percent in our simulations. For this reason, the third regression 
in Annex 3 (average loss regressed on average minimum path) has a total of 1655 observations (rather than 

    
38 In Figure 12 above, these cases are bunched in the “0” bin. 
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3000 like the other two) as we could use only the strongly connected networks for that regression. This fact led 
to another interesting observation summarized in Table 1. 
 
TABLE 1 Strongly connected vs not-Strongly connected 

    Ave SIZE Ave CLUSTER Ave TOT LOSS 
    not-connected connected not-connected connected not-connected connected 

Laissez Faire 62.74 68.12 0.30 0.30 2055.25 2055.34 
Managed 64.54 73.86 0.31 0.31 2046.00 2046.02 
Cynical 

Supervisors 60.22 61.54 0.29 0.29 2063.89 2064.47 
 

The average size and cluster coefficient for Not-Strongly connected networks are significantly smaller than for 
connected networks. However, these features do not seem to have any impact on the average Total Welfare 
loss. This would imply that, for optimal networks, the existence of isolated subnetworks does not affect the 
performance of the overall system, at least from a total welfare perspective. 
 
 
 

V. Conclusions and further research plans 
In this paper we asked whether supervisors’ active management of failing banks reduces social welfare losses 
from the incidence of failures. We also analyzed whether there are specific characteristics of the financial 
system structure that may magnify or reduce social welfare losses depending on how supervisors choose to 
manage failing banks.   
 
We used a sandpile model to replicate the welfare losses stemming from the incidences of failing banks. A first 
set of simulations assumed losses were randomly generated and the shareholders of any failing bank would 
have to deal with the entity. A second set of simulations assumed that supervisors allocated the losses to the 
strongest institutions of the network in terms of capital. We assumed that social welfare losses are generated 
when shareholders cannot support their own bank. The simulations allow us to compute the social welfare 
losses and to compare them under both “bank resolution regimes” when using standard assumptions for a 
social welfare function.  
 
As expected, we found that the social welfare losses are less frequent but larger in those cases where failing 
banks are actively managed by supervisors who seek to have them taken over by healthier financial 
institutions. This occurs because pressure accumulates over time in the system and it is released all at once 
when a white knight itself fails, as it generates a domino effect which deepens the welfare loss to the system. 
However, when computed over a period of time, we find that total social welfare losses from actively allocating 
losses to the strongest banks in the system are lower than in the case of “laissez -faire” where shareholders 
are left to deal with their failing institutions. 
 
Our results validate the theoretical belief that resolving bank through directed mergers in the long run reduces 
social welfare costs from failures. When we replicated the simulations for a system where cross-ownerships are 
not allowed, as often required by banking regulations, our results still hold. In this way, our results strengthen 
the arguments in support of supervisors’ active intervention in failing banks. 
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An additional set of simulations assumed that the objective function of supervisors (not necessarily explicitly 
stated), when designing regulations that will affect the structure of the banking system, is the minimization of 
the frequency of crises rather than the minimization of total loss. This strategy was dubbed “cynical 
supervisors”. We searched for the characteristics of such networks and estimated the extent of social welfare 
losses. We found that, unsurprisingly, when failure events become less frequent, the average magnitude of 
each event is larger.  
 
However, in many cases, the total social welfare loss of cynical supervisors is larger than when supervisors’ 
objective was explicitly to minimize total social welfare losses. Most importantly, we found that those networks 
which minimize the frequency of failing bank events also minimize social welfare losses independently of which 
bank resolution regime supervisors follow. In addition, we find that, when supervisors are cynical even if the 
cumulative welfare losses for the system are sometimes lower than in the case where they do not intervene at 
all, often they lead to worse results. 
 
Our analysis of the performance of a network, financial system, based on its characteristics (size, clustering, 
shortest average path), suggests that there does not seem to be one architecture that will always guarantee the 
minimum social welfare losses. This could be either because we have not yet identified this universally optimal 
feature or, as suggested in the second round of econometric analysis, because the winning structure depends 
on the prevailing bank resolution policy followed by supervisors. Features such as size—that leads to a better 
performance in the laissez faire scenario—may be counterproductive in other regimes. Such a result is even 
more evident when symmetric links are excluded from the admissible network structure. 
 
Our findings suggest several possible extensions. One possible direction would be to search for the best 
universal structure, by applying the same methodology we have developed, to a network that is structurally 
similar to a real financial system. This implies building not only a directed graph, but also a weighted one, to 
capture more precisely the ownership and control relations among financial institutions. However, so far, the 
restrictions have been imposed quite crudely on the artificially created networks. In fact, only directly symmetric 
links are excluded. So, if node A is linked to node B, the opposite direction is excluded, but not the case where 
A is linked to B, B is linked to C which in turns is linked back to A. As part of the extension, it may be interesting 
to build networks where all shareholding triangulations are prevented39. Given the continuous discussion about 
the merits of bank capitalization, we could also run simulations with a threshold for “failure” higher than the 
maintained 8. The goal would be to see whether such higher threshold would have some favorable, non linear 
results on frequency and, even better, on total welfare loss of crises. 
 
  

    
39 Such a construction would lead to a clustering index equal to zero 
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Annex Tables 

Annex 1. Laissez Faire case, OLS: Average loss on Network size, Average cluster 
coefficient, and Average Shortest Path 

 
 
2] Managed case, OLS: Average loss on Network size, Average cluster coefficient, and Average 
Shortest Path 
 
Dependent Variable: LOSS_MAN  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 20:27  
Sample: 1 1000   
Included observations: 1000  
LOSS_MAN = C(1) + C(2)*SIZE_MAN + C(3)*CLUST_MAN + C(4) 
        *PATH_MAN   

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) -3.562400 11.28470 -0.315684 0.7523 

C(2) 0.025426 0.039429 0.644853 0.5192 
C(3) 1.705608 3.944882 0.432360 0.6656 
C(4) 18.26081 5.315314 3.435510 0.0006 

     
     R-squared 0.067813     Mean dependent var 27.52884 

Adjusted R-squared 0.065005     S.D. dependent var 2.165686 
S.E. of regression 2.094114     Akaike info criterion 4.320130 
Sum squared resid 4367.770     Schwarz criterion 4.339761 
Log likelihood -2156.065     Hannan-Quinn criter. 4.327591 
F-statistic 24.15164     Durbin-Watson stat 1.976272 
Prob(F-statistic) 0.000000    

     

Dependent Variable: LOSS_LF
Method: Least Squares (Gauss-Newton / Marquardt steps)
Date: 08/28/24   Time: 14:43
Sample: 1 1000
Included observations: 1000
LOSS_LF = C(1) + C(2)*SIZE_LF + C(3)*CLUST_LF + C(4)*PATH_LF

Coefficient Std. Error t-Statistic Prob.  

C(1) 23.69771 2.625495 9.025997 0.0000
C(2) -0.022957 0.008981 -2.556009 0.0107
C(3) -2.472345 0.824850 -2.997329 0.0028
C(4) -5.659769 1.229812 -4.602140 0.0000

R-squared 0.035325     Mean dependent var 11.49479
Adjusted R-squared 0.032419     S.D. dependent var 0.439353
S.E. of regression 0.432173     Akaike info criterion 1.164008
Sum squared resid 186.0260     Schwarz criterion 1.183639
Log likelihood -578.0041     Hannan-Quinn criter. 1.171469
F-statistic 12.15726     Durbin-Watson stat 2.095158
Prob(F-statistic) 0.000000
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     3] Cynical supervisors case, OLS: Average loss on Network size, Average cluster coefficient, and 
Average Shortest Path 
 
Dependent Variable: LOSS_MH  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 21:17  
Sample: 1 1000   
Included observations: 1000  
LOSS_MH = C(1) + C(2)*SIZE_MH + C(3)*CLUST_MH + C(4) 
        *PATH_MH   

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 30.15527 3.972491 7.591022 0.0000 

C(2) -0.004064 0.014649 -0.277464 0.7815 
C(3) 1.114338 1.444334 0.771524 0.4406 
C(4) 2.239361 1.807025 1.239253 0.2155 

     
     R-squared 0.015869     Mean dependent var 33.72440 

Adjusted R-squared 0.012904     S.D. dependent var 0.856391 
S.E. of regression 0.850848     Akaike info criterion 2.518824 
Sum squared resid 721.0458     Schwarz criterion 2.538455 
Log likelihood -1255.412     Hannan-Quinn criter. 2.526286 
F-statistic 5.353304     Durbin-Watson stat 2.077381 
Prob(F-statistic) 0.001167    

     
     

Annex 2. OLS on combined sample 
 
1] Combined Sample, OLS: Average Loss on network size 
 
Dependent Variable: AVELOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 21:55  
Sample: 1 3000   
Included observations: 3000  
AVELOSS = C(4) + C(1)*D1*SIZE+C(2)*D2*SIZE+C(3)*D3*SIZE 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(4) 27.64821 0.401081 68.93423 0.0000 

C(1) -0.152971 0.003826 -39.98229 0.0000 
C(2) -0.001455 0.003814 -0.381618 0.7028 
C(3) 0.059399 0.003954 15.02062 0.0000 

     
     R-squared 0.973651     Mean dependent var 24.24934 

Adjusted R-squared 0.973625     S.D. dependent var 9.467683 
S.E. of regression 1.537591     Akaike info criterion 3.699644 
Sum squared resid 7083.105     Schwarz criterion 3.707652 
Log likelihood -5545.466     Hannan-Quinn criter. 3.702524 
F-statistic 36903.21     Durbin-Watson stat 1.893216 
Prob(F-statistic) 0.000000    
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2] Combined Sample, OLS: Average Loss on Clustering coefficient 
 
Dependent Variable: AVELOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 21:59  
Sample: 1 3000   
Included observations: 3000  
AVELOSS = C +  C(1)*D1*CLUST+C(2)*D2*CLUST+C(3)*D3*CLUST 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C 27.05958 0.366463 73.83979 0.0000 

C(1) -30.96315 0.735540 -42.09579 0.0000 
C(2) 0.864547 0.732593 1.180120 0.2380 
C(3) 13.54831 0.752456 18.00545 0.0000 

     
     R-squared 0.972738     Mean dependent var 24.24934 

Adjusted R-squared 0.972711     S.D. dependent var 9.467683 
S.E. of regression 1.564001     Akaike info criterion 3.733704 
Sum squared resid 7328.515     Schwarz criterion 3.741713 
Log likelihood -5596.557     Hannan-Quinn criter. 3.736585 
F-statistic 35634.00     Durbin-Watson stat 1.884734 
Prob(F-statistic) 0.000000    

     
      

 
3] Combined Sample, OLS: Average Loss on Average Minimum Path 
 
Dependent Variable: AVELOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 22:06  
Sample: 1 3000   
Included observations: 3000  
AVELOSS = C + C(1)*D1*PATH+C(2)*D2*PATH+C(3)*D3*PATH 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C 18.10670 0.824059 21.97257 0.0000 

C(1) -4.371290 0.545530 -8.012918 0.0000 
C(2) 6.249760 0.546427 11.43750 0.0000 
C(3) 10.16341 0.536881 18.93047 0.0000 

     
     R-squared 0.979270     Mean dependent var 24.24934 

Adjusted R-squared 0.979249     S.D. dependent var 9.467683 
S.E. of regression 1.363844     Akaike info criterion 3.459824 
Sum squared resid 5572.773     Schwarz criterion 3.467833 
Log likelihood -5185.736     Hannan-Quinn criter. 3.462705 
F-statistic 47175.38     Durbin-Watson stat 1.957566 
Prob(F-statistic) 0.000000    
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Annex 3. OLS Combined sample without symmetric links 
 
1] Combined Sample no symmetric links, OLS: Average Loss on network size 
 
 
Dependent Variable: LOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 22:20  
Sample: 1 3000   
Included observations: 3000  
LOSS  = C(1) + C(2)*D1*SIZE + C(3)*D2*SIZE + C(4)*D3*SIZE 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 25.41284 0.457731 55.51922 0.0000 

C(2) -0.225445 0.006936 -32.50179 0.0000 
C(3) 0.122138 0.006513 18.75159 0.0000 
C(4) 0.258827 0.007557 34.25095 0.0000 

     
     R-squared 0.957433     Mean dependent var 28.59517 

Adjusted R-squared 0.957391     S.D. dependent var 13.51284 
S.E. of regression 2.789326     Akaike info criterion 4.890810 
Sum squared resid 23309.90     Schwarz criterion 4.898818 
Log likelihood -7332.215     Hannan-Quinn criter. 4.893690 
F-statistic 22462.51     Durbin-Watson stat 1.428259 
Prob(F-statistic) 0.000000    

     
      

2] Combined Sample no symmetric links, OLS: Average Loss on Clustering coefficient 
 
 
Dependent Variable: LOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 22:22  
Sample: 1 3000   
Included observations: 3000  
LOSS = C(4) + C(1)*D1*CLUST + C(2)*D2*CLUST + C(3)*D3*CLUST 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(4) 26.13648 0.434937 60.09252 0.0000 

C(1) -49.41805 1.383307 -35.72458 0.0000 
C(2) 23.41332 1.297799 18.04079 0.0000 
C(3) 51.93344 1.514129 34.29922 0.0000 

     
     R-squared 0.954809     Mean dependent var 28.59517 

Adjusted R-squared 0.954764     S.D. dependent var 13.51284 
S.E. of regression 2.874028     Akaike info criterion 4.950638 
Sum squared resid 24747.07     Schwarz criterion 4.958647 
Log likelihood -7421.958     Hannan-Quinn criter. 4.953519 
F-statistic 21100.02     Durbin-Watson stat 1.469824 
Prob(F-statistic) 0.000000    
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3] Combined Sample no symmetric links, OLS: Average Loss on Average Minimum Path40 
 
Dependent Variable: LOSS  
Method: Least Squares (Gauss-Newton / Marquardt steps) 
Date: 10/12/24   Time: 22:55  
Sample: 1 2075   
Included observations: 2075  
LOSS = C(1) + C(2)*D1*PATH + C(3)*D2*PATH + C(4)*D3*PATH 

     
      Coefficient Std. Error t-Statistic Prob.   
     
     C(1) 22.18174 0.401420 55.25821 0.0000 

C(2) -5.977228 0.205676 -29.06141 0.0000 
C(3) 6.834134 0.216716 31.53498 0.0000 
C(4) 8.556039 0.180972 47.27819 0.0000 

     
     R-squared 0.980187     Mean dependent var 29.79590 

Adjusted R-squared 0.980158     S.D. dependent var 13.40085 
S.E. of regression 1.887668     Akaike info criterion 4.110487 
Sum squared resid 7379.573     Schwarz criterion 4.121355 
Log likelihood -4260.630     Hannan-Quinn criter. 4.114470 
F-statistic 34151.51     Durbin-Watson stat 1.216664 
Prob(F-statistic) 0.000000    

     
      

 

    
40 As noted above, the sample in this case is smaller as it is run only on those networks that are strongly connected. 
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