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1 Introduction

Between 2003 and 2019, Peru experienced over 61,000 emergencies linked to natural hazards
(World Bank, 2022). The acute physical risk profile of the country is dominated by floods, land-
slides, droughts, and storms. These natural hazards weigh heavily on socio-economic outcomes
and constitute recurring fiscal costs as authorities rebuild damaged infrastructure and support
affected populations. For example, economic losses and damages from disasters in 1982-83, 1997-
98, and 2017 amounted to 11.6, 6.2, and 1.6 percent of GDP, respectively (World Bank, 2016).
Approximately 40 percent of total damages in 2017 were inflicted on the road network, claiming
a portion of the county’s fiscal space to fund reconstruction of pre-existing public infrastruc-
ture. Moreover, the IMF-adapted ND-GAIN index ranks Peru as the most vulnerable country
in Latin America 5 (LA5) to chronic physical risks—the slow moving changes in temperature
and precipitation norms.

This vulnerability underscores the importance of quantifying long-term output losses as-
sociated with physical climate risks and evaluating the potential returns on policies aimed at
containing them. Given the multitude of competing policy priorities and often limited fiscal
space, governments must carefully allocate resources across a wide range of needs (IMF, 2020).
Quantitative assessments, such as the one presented in this paper, can inform cost-benefit anal-
yses that should support policymakers’ decision-making (Bellon and Massetti, 2022a). In Peru’s
case, any credible long-term assessment must be grounded in a clear understanding of the short-
term macroeconomic impacts of its most frequent and disruptive weather-related shock—El Niño
Costero.

To this end, this paper begins by estimating the impact of El Niño Costero events on Peru’s
economy between 1980 and 2023 using the Local Projection method (Jordà, 2005). We find that
strong to very strong El Niño Costero events typically trigger temporary but severe inflationary
pressures, sharp contractions in agricultural output and fish production, and a reduction in
the fiscal space. On average, fish production falls by 70 percent and agricultural output by 11
percent in the year following a strong El Niño episode, with recovery to pre-shock trends typically
taking over a year. These shocks also tend to be fiscally costly, as disaster-related expenditures
increase while tax revenues fall due to reduced economic activity, reducing the primary balance
by 2 percentage points of GDP. Additionally, we present evidence of an inflation pass-through
from non-core to core prices that takes approximately one calendar year to materialize.

Building on these estimates, we project Peru’s potential output through 2100 under three
climate scenarios—SSP1-2.6, SSP2-4.5, and SSP3-7.0—by distinguishing between chronic and
acute physical risks. Acute risks are modelled using an extended version of the regime-switching
DSGE framework developed by Fernandez-Corugedo et al. (2023), extended to include non-
destructive repeated disaster shocks in the spirit of drought shocks in Gallic and Vermandel
(2020). Chronic risks are quantified under the assumption of gradual natural adaptation by the
population, using output elasticity estimates from Chirinos (2021). Our simulations produce
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larger output losses than those reported in earlier studies, with cumulative income losses esti-
mated between 13.9 and 18.6 percent of GDP by 2050, rising to between 22.0 and 50.6 percent
of GDP by 2100.

We then evaluate the real and fiscal benefits of strengthening the structural resilience of
public infrastructure and closing implementation gaps in the country’s national adaptation plan
and disaster risk management strategy. These measures could yield significant economic divi-
dends, with potential output projected to increase by 9.3 to 12.3 percent by 2050 and 12.4 to 31
percent by 2100 (relative to a baseline with extreme weather events and persistent temperature
changes). However, these gains tend to materialize gradually and are backloaded, falling short
of fully offsetting the losses expected from chronic and acute physical climate risks.

Importantly, our analysis also suggests that such expenditures can be fiscally self-sustaining
over the long term. By reducing the need for post-disaster reconstruction and emergency relief,
while expanding the tax base through stronger growth and resilience dividends, they generate
positive net fiscal savings. These savings—measured as the difference between fiscal gains and
the costs of measures—are estimated to range from 1.2 to 1.6 percent of GDP per annum by
2050, and from 2.3 to 4.6 percent of GDP per annum by 2100.

The structure of the paper is as follows. Section 1.1 reviews the related literature. Section
2 examines Peru’s vulnerability to both acute and chronic physical risks. Section 3 presents an
empirical analysis of the macroeconomic impact of El Niño Costero events on key macroeconomic
indicators. The structural framework used to quantify output losses from physical risks is
introduced in Section 4. Section 5 explores the potential benefits of investing in structural
resilience and adaptation. Section 6 concludes.

1.1 Literature overview

There is a growing literature on the macroeconomic impacts of climate phenomena at the global
level, particularly from El Niño events. Cashin et al. (2017) employ a GVAR model for 21
countries showing that the impacts of El Niño shocks on growth, inflation and commodity prices
are highly heterogeneous, varying from growth declines in Australia and Chile to improvements
in the US and Europe. Building on this work, Smith and Ubilava (2017) focus specifically
on developing countries, finding El Niño events reduce GDP growth by 1-2 percent annually,
with stronger effects in tropical regions. Our study extends these findings by providing detailed
analysis of El Niño’s sectoral impacts for a country that is highly vulnerable due to its geography,
reliance on climate-exposed sectors, and lack of resilient infrastructure.

Regional studies have highlighted Peru’s particular vulnerability to climate change. Chirinos
(2021) studies the effect of longer-term, slower changes to climate, measured by anomalies from
historical norm in precipitation and temperature in Peru, projecting a 9 percent reduction in
per capita income by 2050 with agriculture and fisheries at greatest risk. SENAMHI (2009)
uses global and regional models incorporating national climate trends to predict changes in
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temperature and precipitation patterns by 2030, emphasizing the heterogeneous climate impacts
across Peru’s diverse geography. Our study takes as inputs potential climate scenarios for Peru
and the estimated costs of longer-term climate changes, building on this literature by quantifying
not only the costs of inaction, but also the potential benefits of adaptation, estimating that
investments in climate resilience could yield substantial output gains and fiscal savings.

The methodological literature has evolved from early efforts like Choi and Fisher (2003),
which employ a 3SLS regression framework to quantify the expected losses from increased natural
disasters generated by human-induced climate change. Auffhammer (2018) highlights challenges
in early studies quantifying climate damages, such as panel data techniques for studying effects
which are heterogeneous across regions and time and the limitation of analysis focusing only on
short-run (intensive margin) or long-run (extensive margin) adaptation to weather fluctuations.
Recent papers have addressed these challenges through various modelling approaches. Gallic and
Vermandel (2020) develop a DSGE model for studying weather shocks to agricultural productiv-
ity, which they calibrate with SVAR model estimates on the short-run effect of weather events in
New Zealand. Fernandez-Corugedo et al. (2023) introduce a Markov-switching dynamic model
for small open economies (hereafter, the FGG model) to study the long-run macroeconomic
returns from adaptation investment to reduce long run-losses from extreme climate events like
those faced by small states in the Caribbean and Pacific. We build on their work by adapting
the FGG model to more frequent but less severe weather events, such as those triggered by El
Niño.
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2 Peru’s vulnerability to climate shocks

The prevailing physical risk profile of Peru is dominated by floods, landslides, droughts, and
storms (Figure 1, panel a). These shocks have followed historical patterns. Peru is particularly
exposed to the El Niño Costero phenomenon, a recurring warming of the sea surface temper-
ature along its coast (Niño 1+2 region) occurring every four to five years. El Niño years are
marked by increased asset losses and a larger affected population due to intensification of natu-
ral disasters (Figure 1, panel b). Furthermore, the country’s complex geography and hydrology
result in a wide range of impacts that systematically vary across regions. In the northern coast,
which typically lacks precipitation, heavy rainfall translates into substantial infrastructure dam-
ages from floods, lower agricultural yields, and a slowdown in the construction sector. In the
southern regions, El Niño Costero manifests as a reduction in precipitation that reduces rain-fed
agriculture’s output. Moreover, the rise in the sea surface temperature during El Niño Cos-
tero adversely affects fish production along Peru’s coastline (e.g., lower anchovy catches) and
associated manufacturing activities (e.g., processing of fishmeal and fish oil), while higher air
temperatures across the country disrupt flowering and pollination (e.g., blueberries, avocados,
mangoes, olives). All of the above results in an uneven distribution of physical risks across time,
geography, and economic sectors, which put a drag on economic growth.

Beyond the immediate impacts associated with the current disaster profile, climate change
is projected to significantly reduce the productivity of key economic sectors, particularly agri-
culture and fisheries. Peru is the most vulnerable country to climate change among the Latin
America 5 (LA5) group and the third most vulnerable country in Latin America (IMF-adapted

(a) Share of population affected and asset losses
by type of disaster.

(b) The index of economic losses and El Niño
Costero.

Figure 1: Peru’s disaster loss profile.

Source: IMF staff calculation using United Nations DesInventar database.
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(a) Adaptive capacity and exposure to climate
change in the Americas.

(b) Projection of Peru’s remaining adaptation
needs (USD, billions).

Figure 2: Adaptive capacity and investment needs.

Source: IMF-adapted ND-GAIN index, IMF staff calculation using authorities’ data.

ND-GAIN, 2021). Climate change is expected to undermine the country’s natural capital and
exacerbate water shortages, likely reducing the stock of fish in the Humboldt current (Salvatteci
et al., 2022) and lowering crop yields across the board (World Bank, 2022). Peru’s economy is
dependent on these resources as agriculture and fish production jointly constitute 7.6 percent of
GDP and employ 28 percent of the workforce (OECD, 2023). Moreover, these sectors represent
a notable part of the country’s trade with the rest of the world, accounting for over 18 percent
of total exports. Medium-term climate variability is also expected to intensify under climate
change scenarios. Cai et al. (2021) suggest that El Niño-related precipitation patterns in the
equatorial Pacific will become more intense and shift eastward.

Importantly, Peru’s vulnerability to climate change predominantly reflects one of the lowest
adaptive capacities in the region (Figure 2, panel a). The wide gap in adaptive capacity relative
to LA5 peers, can be attributed to insufficient water management capacity (e.g., dams, water
treatment plants), as well as a relatively low quality of infrastructure (e.g., ports, railroads, roads,
information technology). Moreover, the potential to enhance adaptive capacity is hindered by
weak public investment management, poor coordination across different levels of government,
and capacity constraints within the civil service. Combined with the chronic under-execution
of capital budgets, these factors pose significant barriers to effective investment in structural
climate resilience. If the recent pace of implementation of measures outlined in the National
Adaptation Plan persists, the country is likely to miss national targets for strengthening its
structural resilience and continue experiencing devastating impacts from climate shocks (Figure
2, panel b).
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3 Empirical evidence

El Niño events in Peru are often associated with significant damages to private and public capital
stocks, which are documented through data on economic losses in major disaster databases (e.g.,
EM-DAT and DesInventar). However, these events also tend to influence the stock of natural
capital and productivity of some economic activities (e.g., agriculture, fisheries, construction)
through channels that are more difficult to account for.

This section aims to quantify the overall economic impact of El Niño Costero on Peru by
estimating impulse response functions for sectoral output, prices, and key fiscal indicators. It
begins by outlining the data sources and empirical methodology, followed by a presentation and
discussion of the main results.

3.1 The model

We use the local projection method proposed by Jordà (2005) to estimate impulse response
functions for strong El Niño events. The impact of an average strong El Niño Costero shock is
estimated for a 1–2 year horizon using the equation below:

yt+h − yt−1 = βh
0 + βh

1 shockt +
4∑

j=1
θh

j ∆yt−j +
M∑

i=1
αh

i x
i
t−1 + νh

t (3.1)

where yt+h − yt−1 represents the cumulative percent change in the dependent variable from
period t− 1 to t+ h, shockt captures the El Niño Costero shock, while ∆yt−j denotes the j-th
lag of the dependent variable’s growth rate. The term xi

t−1 refers to the logarithm of the i-th
control variable from a set of M controls. For each horizon h of the impulse response function
(IRF), βh

0 is the intercept, βh
1 measures the response of the dependent variable to the shock, and

θh
j and αh

i are the coefficients associated with the lags of the dependent variable and the control
variables, respectively.

3.2 Identification of the El Niño shock and data

El Niño refers to the warm phase of the El Niño–Southern Oscillation (ENSO), a periodic fluctu-
ation in sea surface temperatures across the central and eastern Pacific Ocean. Its counterpart,
La Niña, represents the cool phase of the cycle. In the Peruvian context, El Niño events are
typically classified into two types: Costero and Global. This distinction is based on the location
of the temperature anomalies in the Pacific Ocean. El Niño Costero events originate in the Niño
1+2 region, near the coast of Peru, whereas El Niño Global events are associated with anomalies
in the Niño 3.4 region.

To apply the Local Projection method for assessing the impact of El Niño events on Peru’s
economy, we first define and construct El Niño shocks. We use sea surface temperature (SST)
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anomaly data for the Niño 1+2 region, obtained from the National Oceanic and Atmospheric Ad-
ministration (NOAA), as all historical El Niño Costero episodes are characterized by pronounced
and persistent SST increases in this region (Figure 3). To isolate persistent SST increases from
white noise, we compute a 3-month rolling average of the SST anomaly, yielding a variant of the
Oceanic Niño Index (ONI). An El Niño Costero episode is defined as beginning in the month
when this index exceeds +0.5°C. Shocks are then defined as binary variables equal to 1 in the
first month or quarter of each identified event (depending on the estimation frequency) and
0 otherwise. This analysis focuses on strong and very strong events, restricting the sample
to episodes in which the index exceeds +1.5°C at any point during an identified event. This
procedure yields five shocks in our quarterly sample and four shocks in our monthly sample
between.

We estimate IRFs for core and headline inflation at monthly frequency and for sectoral
output and the primary fiscal balance at quarterly frequency. All variables are either seasonally
adjusted by Haver or using E-views X-13. We construct inflation by taking CPI data from Banco
Central de Reserva del Perú (BCRP) and calculating the year over year growth rate. We obtain
data on sectoral output and the central government’s primary balance from Haver Analytics and
BCRP. Our monthly sample covers the period from January 1992 to September 2023, while our
quarterly sample spans from the first quarter of 1990 to the third quarter of 2023.

The set of M controls includes (a) oil price indices for Peru’s main oil import partners, (b)
a global fertilizer index, and (c) a local production index for monthly frequency estimates. The
set of controls for the quarterly estimates excludes the local production index.

Figure 3: Sea surface temperature anomaly in the Niño 1+2 region during past El Niño Costero events.

Source: National Oceanic and Atmospheric Administration.
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3.3 Short-term macro-fiscal implications of El Niño shocks

Our results indicate that strong El Niño events have historically been associated with inflationary
pressures in Peru. Specifically, strong El Niño Costero episodes tend to increase both headline
and core inflation. The impact on headline inflation is immediate, peaking at a 4.4 percentage
point year-over-year increase by the end of the first year before gradually declining and turning
negative as prices revert toward pre-El Niño levels. In contrast, the effect on core inflation is more
gradual, with a noticeable increase emerging about 12 months after the initial shock—suggesting
a potential pass-through from headline to core inflation (Figure 4, panel a).

One of the main channels through which El Niño affects inflation is via food prices. The
increase in non-core food inflation—which captures price fluctuations in perishable items such as
fresh fruits and vegetables—closely follows the trajectory of headline inflation but with signifi-
cantly greater magnitude (Figure 4, panel b). Non-core food inflation peaks at an 8.1 percentage
point increase by the end of the first year. In contrast, core food prices, which are less sensitive
to weather shocks, begin to rise in the second year, reaching a 2.3 percentage point increase in
the inflation rate about 20 months after the onset of an El Niño Costero event. Consistent with
these historical patterns, the 2023 El Niño Costero triggered temporary spikes in year-over-year
CPI inflation for the Fish and Seafood category—rising by 11 percentage points between Febru-
ary and June—and for Fruits, which saw a 22.6 percentage point increase between February and
September.

Strong El Niño events typically last slightly longer than one year. Figure 5 presents the
impulse response results for sectoral output, the primary fiscal balance, and the El Niño Costero

(a) Overall inflation rate. (b) Food inflation rate.

Figure 4: Year-over-year monthly inflation increase following a strong El Niño Costero.

Source: Source: IMF staff calculation.
Note: Shaded areas present the 68 percent confidence interval.
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(a) Fish production. (b) Agricultural production.

(c) Primary balance. (d) El Niño Costero index.

Figure 5: Change in sectoral output, primary balance, and the ONI index following a strong El Niño
Costero shock.

Source: IMF staff calculations.
Note: Relative to a no-El Niño baseline. Shaded areas indicate the 68 percent confidence interval.
”t+x” corresponds to x quarters after the onset of the El Niño Costero event.

index. Within four quarters a strong El Niño Costero shock sharply reduces fishery and agri-
cultural output. On average, fish production drops by 70 percent within the first year, followed
by a rapid recovery as sea surface temperatures normalizes and fish stocks in the Humboldt
Current are replenished. In contrast, agricultural output declines by about 11 percent over the
same period but recovers more gradually. The impact on agriculture is more persistent, with
output remaining 3.4 percent below pre-El Niño levels 18 months after the shock.

Accounting for spillover effects on the manufacturing sector, as well as the impact on con-
struction and mining, El Niño Costero events typically reduce real GDP by approximately 5
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percent within the first year. Increased public spending on infrastructure reconstruction and
support for affected populations aims to contain the overall decline in output. The central gov-
ernment’s primary balance generally deteriorates by about 2 p.p. of GDP within a year of the
shock, reflecting both higher expenditures and reduced revenue collection.

These findings are consistent with the 2023 El Niño Costero episode in Peru, which reached
the “strong” classification in April 2023. The event disrupted two fishing seasons and lowered
agricultural yields. Between March and November 2023, fishing and agricultural output were
27.3 percent and 4.9 percent below trend, respectively, while construction and manufacturing
output declined by 9.2 percent and 6.6 percent. Over the same period, the central government’s
annual primary balance to GDP ratio declined by approximately 1.2 p.p.
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4 Long-term output losses from El Niño and climate change

As demonstrated in the previous section, recurring natural hazards already impose a significant
burden on Peru’s economy. As the country experiences repeated natural disasters, amplified
by ENSO cycles, the cumulative impact of successive shocks results in persistent losses that
weigh on long-term macroeconomic performance.1 Combined with the likely intensification of
existing climate shocks and the emergence of new, slower-moving climate change impacts, Peru
is projected to follow a lower potential output trajectory in the future.

To quantify such trajectories, this section adopts a two-pronged approach. First, we use
a Markov-switching general equilibrium model to estimate the impact of recurring and inten-
sifying shocks on the long-run output level, capturing several key channels discussed earlier.
Second, we combine temperature anomalies from Massetti and Tagklis (2023) and the growth-
temperature elasticities from Chirinos (2021) to assess the effects of slow-moving climate change
on growth—representing chronic climate risks. This approach provides a tractable way to de-
compose the overall challenge into two more manageable components. However, it rests on
the simplifying assumption that acute and chronic climate risks are independent within our
framework.

4.1 Modelling acute physical risk

The IMF’s FGG model is used to quantify the long-term impact of natural disasters on the
economy of Peru. The FGG model (Fernandez-Corugedo et al., 2023) is a Markov-switching
dynamic small open economy DSGE model designed to evaluate the macroeconomic returns
of investment in climate and disaster resilience. It assumes the economy alternates between
two disaster regimes and includes two types of public capital: standard and resilient. Standard
capital is vulnerable to disasters and partially destroyed in the disaster regime, while resilient
capital is immune. Both are used in production alongside private capital and labor. This
distinction is standard in the literature on the macroeconomic effects of natural disasters (Marto
et al., 2018; Cantelmo et al., 2019).

The FGG model is extended to account for the impact of El Niño Costero on natural capital in
determining macro-fiscal outcomes. Following the spirit of the approach in Gallic and Vermandel
(2020), the baseline model is extended to include the natural capital in the production function:

Yt︸︷︷︸
Real GDP

=
[
θ(s)KN

]ω
︸ ︷︷ ︸

Available natural capital

[
(KG

t−1)αG︸ ︷︷ ︸
Public capital

zt︸︷︷︸
TFP

Private factors of production︷ ︸︸ ︷
(Nt)1−αk(Kt−1)αk

]1−ω
(4.1)

1Both positive and negative temperature anomalies, driven by ENSO cycles, have significant effects on economic
activity. Both El Niño and La Niña have capacity to affect output in primary sectors, but this paper focuses
exclusively on assessing the economic losses associated with El Niño events.
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where θ(s) is the parameter capturing the impact of natural disasters on natural capital, KN is
the stock of natural capital, zt is the total factor productivity productivity, KG

t−1 is the stock of
public capital, Nt is the labor input, and Kt−1 is the stock of private capital. The elasticity of
output with respect to natural capital is denoted by ω, to public capital by αG, and to private
capital by αK .

A key feature of the model is the use of a Markov-switching structure, which allows parameter
values to shift across different regimes. These regime-dependent parameters are indexed by ·(s),
where s represents the state of the economy. Our model includes two states: one where natural
disasters cause moderate damage and another where the impact is significantly amplified due to
the presence of El Niño Costero. In line with the standard FGG framework, natural disasters
reduce the stock of physical capital; however, in our extension, they also temporarily degrade
the country’s stock of natural capital. Moreover, the total stock of public capital now includes
adaptation capital, which mitigates the adverse effects of climate events on natural capital by
influencing the parameter θ(s). These shifts between states are governed by the probabilities of
transition, which we calibrate using quarterly data on El Niño occurrences between 1990 and
2023. The transition matrix Pst,st+1 is given by:

Pst,st+1 =
[
p1,1 p1,2

p2,1 p2,2

]
=
[
0.883 0.117
0.311 0.689

]
(4.2)

where p1,1 denotes the probability that a non–El Niño quarter is followed by another non–El
Niño quarter, while p1,2 represents the probability that a non–El Niño quarter is followed by
an El Niño quarter. Conversely, p2,2 is the probability that an El Niño quarter is followed by
another El Niño quarter, and p2,1 is the probability that an El Niño quarter is followed by
a non–El Niño quarter. The transition matrix implies an unconditional probability of 26.01
percent for observing an El Niño Costero quarter in our sample.

The impact of strong and very strong El Niño shocks on physical capital is calibrated at
2.6 percent of the capital stock per quarter, based on the average damages reported for select
severe events in World Bank (2016, 2022). The impact on natural capital, θ(s), is set to ensure
that the total output loss estimated in Section 3 is consistent with the output losses implied by
physical capital damages. Weak and moderate El Niño shocks are assumed to cause one-fourth
of the damages and output losses associated with strong and very strong events. The impact
of other natural disasters (unrelated to El Niño) is calibrated by dividing the average El Niño
impact by 3.13, based on the differential in total losses between El Niño Costero years and other
years as recorded in the DesInventar database (Figure 1, panel b).
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Table 1: Key Parameters for the Steady State

Parameter Description Value

ω Output elasticity to natural capital 0.2
η Scale factor in the utility function 4.3
ξ Inverse Frisch elasticity 0.5
β Discount factor 0.99
ϵw Elasticity of substitution between labor varieties 6
αg Share of public capital on the production function 0.1
αK Share of private capital on the production function 0.2
δgr Depreciation rate of public resilient capital 0.06
αI Share of imported goods for investment 0.5
αC Share of imported goods in the consumption basket 0.3
ηI Elasticity of import substitution for investment goods 0.75
ηC Elasticity of import substitution for consumption goods 0.75
ηX Elasticity of exports to the exchange rate 0.5
aGr Price mark-up for resilient investment goods 1.25
ϕb Fiscal reaction function parameter 0.1
ε Public investment efficiency 0.48

B/Y Net Government Debt over GDP 0.23
GC/Y Government consumption over GDP 0.114
GI/Y Government investment over GDP 0.052
τ/Y Tax revenues over GDP 0.42
Rem/Y Remittances over GDP 0.015
R̄∗

t External interest rate (annual) 0.05

Regime Switching Parameters
(1 = No El Niño Costero, 2 = El Niño Costero)

gA(1) Growth rate 0.028
gA(2) 0.011
δY (1) Depreciation rate private capital 0.06
δY (2) 0.07
δgnr(1) Depreciation rate public non-resilient capital 0.07
δgnr(2) 0.11
θ(1) Utilization of natural capital 0.993
θ(2) 0.978

Moreover, Cai et al. (2021) project that ENSO-related rainfall in the equatorial Pacific
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will intensify and shift eastward under severe climate change, leading to a 59 percent increase
in the frequency of strong El Niño events by the second half of the century. To reflect this
expected intensification, we increase the anticipated losses from an average El Niño Costero
event accordingly. For further details on the model, see Fernandez-Corugedo et al. (2023). Key
parameters used to calibrate the model and compute the steady state are presented in Table 1

In our application, the FGG model is a tool used to produce the long-run (steady-state)
level of potential output under various assumptions about disaster impacts. This output level is
then combined with an estimate of losses from chronic climate risks to produce potential GDP
trajectories, as described in the next section. The model equations are presented in Appendix
A, while a full discussion of modelling assumptions are detailed in Fernandez-Corugedo et al.
(2023).

4.2 Modelling chronic physical risk

Although there is no consensus on magnitudes, most studies agree that temperature increases
tend to undermine economic growth (Tol, 2009; Burke et al., 2013; Kahn et al., 2021; Mohaddes
and Raissi, 2024). Furthermore, adaptation is not a new phenomenon: individuals, firms, and
societies have long adjusted to changing climatic conditions, enabling economic specialization
and resilience (Seo and Mendelsohn, 2008; Kurukulasuriya et al., 2011; Di Falco and Veronesi,
2013; Kahn, 2016; Bellon and Massetti, 2022a). It follows that a realistic framework should
account for temporary declines in economic growth while also allowing for agents to gradually
adapt to slow-moving shifts in climate norms.

To capture the uncertainty surrounding future changes in temperature norms, we produce
three distinct projections of potential output through 2100, each corresponding to a different
global warming scenario. The first is an aspirational scenario aligned with the Paris Agreement,
SSP1-2.6 (Paris). The second, SSP2-4.5 (Intermediate), reflects a continuation of historical
warming trends, and is broadly consistent with current policies. The third is a pessimistic
scenario, SSP3-7.0 (Hot), which assumes policy reversals and higher emissions.

For each scenario i, we decompose potential output trajectories into a time invariant steady
state level and a time varying component:

Ỹt︸︷︷︸
Potential GDP

= 4 × Ȳ︸︷︷︸
Quarterly SS GDP

× T i
t︸︷︷︸

Time-varying trend

(4.3)

where Ỹ i
t is the real value of the country’s potential output at time t, Ȳ is the quarterly steady

state potential output level, and T i
t is a time-varying component that is influenced by tempera-
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(a) Average annual temperature. (b) Temperature anomaly relative to a rolling
30-year temperature norm.

Figure 6: Temperature projections under climate change scenarios.

Source: IMF staff calculation using Massetti and Tagklis (2023).

ture anomalies:

T i
t

T i
t−1︸ ︷︷ ︸

Trend growth

= 1 + gSS,i︸ ︷︷ ︸
Net SS growth

− α

Temp. anomaly︷ ︸︸ ︷[
tit︸︷︷︸

Avg. annual temp.

− 1
N

N∑
m=1

tit−P −m︸ ︷︷ ︸
Rolling temp. norm

]
(4.4)

where gSS,i is the stationary steady state potential output level, tit is the average annual temper-
ature rate recorded in Peru in year t, and 1

N

∑N
m=1 t

i
t−P −m is the temperature norm calculated

as a rolling N -year temperature average (i.e., between years t − P − N and t − P ). α is the
elasticity governing the reduction in the net annual growth rate to increases in temperature
anomaly.

We calculate temperature anomalies for Peru using temperature data from Massetti and
Tagklis (2023). Figure 6, panel a presents the average annual temperature, while Figure 6,
panel b shows the resulting temperature anomalies, derived using N = 30 and P = 15. The
steady-state growth rate, gSS,i, is aligned with the FGG model assumptions. To construct output
trajectories, we combine steady-state growth with a time-varying trend. The time-varying trend
is derived by linking temperature anomalies to output losses, using separate elasticities for
changes in maximum and minimum temperatures, and then averaging the effects on the trend.
Specifically, the elasticity of output losses to minimum temperature changes is 0.4, while the
elasticity for maximum temperature changes is 1.0, both taken from Chirinos (2021).2

2Country-specific output elasticities to average temperature changes are not available for Peru; hence, we rely
on average effect between minimum and maximum temperature changes.
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4.3 Output losses under climate change scenarios

The resulting potential output losses increase over time but depend on the assumed progress
with the global mitigation effort. Combining the additional impact of climate change with the
existing losses from climate, potential output could be up to 13.9-18.6 percent lower by 2050
and 22.0-50.6 percent lower by 2100, relative to the no climate change counterfactual (Figure
8, panel a). This is equivalent to a 0.1-0.3 percentage point reduction in the average annual
potential growth rate due to climate and climate change (Figure 8, panel b).

Importantly, our estimated losses exceed those reported for Peru in Mohaddes and Raissi
(2024) and Kahn et al. (2021). Using the same definitions for climate change scenarios, Mohaddes
and Raissi (2024) projects economic losses for Peru of 0.7–10 percent by 2050 and 1–25 percent
by 2100, relative to a no–climate change baseline. However, unlike our approach, these estimates
are based on cross-country averages of gradual climate change impacts and do not incorporate
the effects of increased disaster intensity.

In all scenarios except SSP3-7.0, potential growth losses are front-loaded. This pattern re-
flects the projected deceleration of global warming under SSP1-2.6 and SSP2-4.5, with tempera-
ture anomalies gradually returning to zero over the long term. For instance, under SSP1-2.6, the
temperature anomaly converges to zero shortly before 2100, implying that the potential growth
rate eventually aligns with the no–climate-change scenario. However, despite this convergence
in growth rates, the level of GDP remains permanently lower due to losses experienced earlier.
Beyond this point, the GDP trajectories under SSP1-2.6 and the no–climate-change scenarios
evolve in parallel.

(a) Potential GDP level. (b) Potential GDP growth rate.

Figure 7: Potential output under climate change scenarios.

Source: IMF staff calculation using the FGG model (Fernandez-Corugedo et al., 2023) and Massetti
and Tagklis (2023).

19



Several limitations of our approach warrant consideration. First, the construction of tem-
perature anomalies relies on median climate model projections, omitting model uncertainty.
Second, the elasticities from Chirinos (2021) are backward-looking, and applying them to future
scenarios assumes no change in technological progress, adaptive capacity, or policy-driven mar-
ket responses. Third, Cai et al. (2021) simulate rising El Niño Global intensity under RCP8.5,
while we assume similar increases under the less severe SSP3-7.0 scenario—likely leading to an
overestimation of climate change costs under SSP3-7.0.
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5 Macro-fiscal implications of climate resilience

To mitigate future output losses from climate shocks, the authorities established a legal frame-
work for climate change in 2018 and developed national strategies for climate adaptation and dis-
aster risk management. Progress has been made in strengthening public infrastructure, enhanc-
ing financial resilience, and identifying key adaptation gaps. However, climate-related spending
remains limited, budget planning does not fully account for the cost of critical adaptation mea-
sures, and territorial planning requires further improvement. Overall, there is considerable scope
to scale up investment in adaptation and resilience—particularly given that the potential bene-
fits are expected to outweigh the costs—and to complement these efforts with reforms aimed at
improving the quality of public investment to maximize returns.

To illustrate the benefits of closing adaptation gaps efficiently, we simulate a comprehensive
reform package comprising three key components. First, we assume full implementation of the
adaptation investments outlined in Peru’s National Adaptation Plan by 2030. Secondly, we
assume full implementation of the expenditures in Peru’s National Disaster Risk Management
Strategy by 2030. Thirdly, we incorporate climate-proofing of 80 percent of the country’s public
infrastructure. An estimate of the macro-fiscal benefits of this reform package is presented
below.

5.1 Potential growth dividends

Our results indicate that investments in adaptation and structural resilience combined with in-
creased public investment efficiency deliver sizable output gains in the long-term. Investing in
resilience and adaptation offsets the impact of natural hazards and climate change on produc-
tive factors and growth. Structural resilience involves making public infrastructure, like roads,
bridges, and schools, climate-proof, effectively representing a shift from standard to resilient
capital. Adaptation investments cover expenditures on knowledge systems, irrigation and water
management, and diversification of crops and livestock, among other items.3 These investments
reduce the impact of natural disasters on natural capital and productive government infras-
tructure, as well as partially offset the reduction in the long run growth rate due to positive
temperature anomalies.

Based on discussions with the authorities, full implementation of measures in the National
Adaptation Plan could mitigate up to one-third of the short-term impact of El Niño Costero
on the country’s natural capital. In the longer term, under the intermediate emissions scenario
(SSP2-4.5), these measures are also expected to reduce by approximately one-third the adverse
effects on productivity in the agriculture and energy sectors, as well as on labor productivity.

3Adaptation investments include expenses on pest management, resistant genetic resources, agricultural risk
transfer systems, crop and livestock diversification, cultivated pasture conservation, soil erosion management
and control technologies, soil fertilization, water supply and sanitation, multipurpose water storage, supporting
technified irrigation, drainage systems, adapting landing sites for artisanal fishing, strengthening early warning
systems, aquaculture management, among others.

21



Combined with the benefits from more resilience government infrastructure, total potential
output gains can be as high as 9.3-12.3 percent by 2050 and 12.4-31 percent by 2100 (Figure 8).

While the proposed policy package does not fully offset the projected decline in potential
output due to climate impacts, it remains cost-effective under all three global warming scenarios.
As Bellon and Massetti (2022b) emphasize, adaptation programs should only be implemented
if they yield a positive net present value (NPV) for society. This condition is met in the case of
the measures analyzed in this paper, as they simultaneously enhance private sector surplus—by
raising the income trajectory—and strengthen the government’s fiscal position through net sav-
ings. However, a key risk to this assessment lies in the low quality of public investment and
constraints related to absorptive capacity. These limitations are not explored in depth here and
are left for future research.

5.2 Fiscal savings

When evaluating the appropriateness of large-scale productive spending programs, it is common
to compare their growth dividends with the associated fiscal costs to get a measure of the
bang for the buck. It is important to consider second-order fiscal effects in such assessments.
Investments in climate resilience and adaptation not only boost productivity but also reduce
physical damages to public capital. In turn, this lowers the need for reconstruction spending
and emergency support to affected populations (avoided expenditures), while supporting a more
stable (revenue stabilization) and, on average, higher stream of tax revenues (growth-induced
revenue gains). If the returns on such investments are sufficiently high—either due to the
availability of cost-effective solutions or high marginal returns driven by low existing capital
stocks—they can generate net fiscal savings over the long term, effectively paying for themselves.
Intuitively, this is especially true for countries most vulnerable to climate shocks and where
average tax revenues constitute a relatively large share of national income.

To assess the magnitude and sign of net fiscal savings in Peru, we begin by quantifying the
fiscal costs. Drawing on estimates from Aligishiev et al. (2022), climate-proofing infrastruc-
ture in the current investment pipeline, retrofitting existing public assets, and implementing
coastal protection against sea level rise are projected to require an additional 0.4 percent of
GDP in public investment between 2024 and 2030. Further spending needs related to disaster
risk management—including the development of early warning systems, acquisition of emer-
gency response equipment, and implementation of other components of the national disaster
risk management strategy—are estimated at 0.2 percent of GDP in additional annual expendi-
ture. Lastly, full implementation of the costed measures outlined in the National Adaptation
Plan is expected to amount to 0.8 percent of GDP per year over the same period. Additionally,
once these investments are made, we assume ongoing fiscal spending equal to 6 percent of the
acquired public capital stock annually to cover depreciation and preserve the asset base.

Our analysis shows that public investments in adaptation and resilience in Peru are associated
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(a) SSP1-2.6 (Paris) scenario. (b) SSP2-4.5 (Intermediate) scenario.

(c) SSP3-7.0 (Hot) scenario.

Figure 8: Potential GDP dividends from investments in resilience and adaptation across climate
scenarios.

Source: IMF staff calculations based on the FGG model (Fernandez-Corugedo et al., 2023) and
Massetti and Tagklis (2023).

with substantial long-term fiscal savings (Table 2). Between 2024 and 2050, these measures are
estimated to generate average annual fiscal savings ranging from 1.2 to 1.6 percent of GDP
(Figure 9, panel a). Over a longer horizon, from 2024 to 2100, average annual savings increase
to between 2.3 and 4.6 percent of GDP. Notably, these savings are primarily driven by growth-
induced revenue gains—that is, a higher GDP trajectory translates into a higher path for tax
receipts. While the annual growth dividends are relatively modest and do not fully offset initial
output losses, as discussed in Section 5.1, their cumulative effect over time leads to substantial
increases in tax revenue levels by the end of the century.

Given that fiscal costs are incurred upfront while benefits accrue gradually over time, a
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Table 2: Discounted Fiscal Savings from Investment in Resilience and Adaptation.
(Present value at a 6 percent annual discount rate, in percent of 2023 GDP)

SSP1-2.6 SSP2-4.5 SSP3-7.0

2050 2100 2050 2100 2050 2100
Total Return (a) 120.25 262.36 122.34 286.80 143.05 336.35

Stock saving 4.53 6.84 4.71 6.89 4.78 6.96
Flow saving 16.28 31.00 16.58 33.92 19.52 39.97
Potential growth 99.43 224.52 101.04 245.99 118.75 289.42

Total Cost (b) 10.53 11.65 10.53 11.65 10.53 11.65
Adaptation 4.84 4.92 4.84 4.92 4.84 4.92
Resilience 5.69 6.73 5.69 6.73 5.69 6.73

Net saving (a) - (b) 109.72 250.71 111.81 275.15 132.52 324.70

Source: IMF staff calculations using the FGG model (Fernandez-Corugedo et al., 2023), Massetti and
Tagklis (2023), Harris et al. (2020), and Chirinos (2021).

(a) Average annual fiscal savings. (b) Present value of fiscal savings by 2100 under
alternative discount rates.

Figure 9: Fiscal savings from investments in resilience.

Source: IMF staff calculation using the FGG model (Fernandez-Corugedo et al., 2023) and Massetti
and Tagklis (2023).

proper assessment of cost-effectiveness requires evaluating fiscal savings in present value terms.
This approach helps determine whether future benefits—realized decades later—are sufficient to
justify the near-term investment. As shown in Figure 9, panel b, even after accounting for the
time value of money and considering a range of discount rates, investments in adaptation and
structural resilience remain cost-effective across all three global warming scenarios.
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6 Conclusion

This study estimates the impact of El Niño Costero events on prices and economic activity in
Peru, revealing significant inflationary effects and contractions in output of primary sectors.
These empirical estimates are then used to calibrate a structural model, which, when combined
with projections of chronic physical risks, yield substantial expected output losses by the end
of the century. The analysis also shows that these losses can be partially offset through invest-
ments in structural resilience and climate adaptation—provided the quality of public investment
improves. Importantly, such investments not only lift long-term output trajectories but could
also be fiscally self-sustaining, as large fiscal savings materialize through reduced reconstruction
needs and broader tax bases in the long term.
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Appendices

A The FGG model

The model of Fernandez-Corugedo et al. (2023) is a Markov-switching dynamic stochastic general
equilibrium (DSGE) framework designed to evaluate the macroeconomic impact of recurrent
climate-related natural disasters and the returns to public investment in resilient infrastructure.
The model incorporates critical features such as financial frictions with collateral constraints,
heterogeneous households, endogenous risk premia, foreign remittances, and a comprehensive
fiscal sector.

We simulate the stationarized version of the modified model using a first-order perturbation
implemented in the RISE toolkit (Maih, 2015). The full set of first-order conditions used to
inform results in Sections 4 and 5 is presented below, maintaining the original notation from
Fernandez-Corugedo et al. (2023). For further details, including variable definitions and expla-
nations, readers are referred to Fernandez-Corugedo et al. (2023) and Section 4 of this paper.
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)
+ T̃W ∗

t (s)

(B̃∗
t − B̃G∗

t ) −R∗
t−1

(
1

gA
t

) 1
1−αK −αg (B̃∗

t−1 − B̃G∗
t−1)

R∗
t = R̄∗ + Ωu

(
exp

(
zt(B̃∗

t − B̃G∗
t )

Ỹt
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