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I. Introduction 

Housing census, along with population, is one of the foundations of statistical systems that is essential to 

formulate, implement and monitor policies. The United Nations define housing census as the operation that 

provides at regular intervals the official counting or benchmarking of all housing stock and their occupants in 

the territory of a country and in its smallest geographical subterritories.1 Traditional housing census operation 

involves a complex process of collecting information from individuals and households across geographic areas 

simultaneously, making it one of the most complex and costly data collection activity.2 As a result, most 

housing censuses are conducted decennially and countries with limited resources and capacity often have 

outdated censuses. In addition, most housing census are not spatially explicit limiting their application for 

emerging policy issues, such as climate risk assessment that require information on the geographic location of 

housing units. This paper examines the potential use of opensource satellite and building footprint data to 

compile spatially explicit housing (residential building) census and shows its application in climate risk 

assessment.3 Using readily available aggregate capital stock data, the paper also introduces a simple 

technique of assigning monetary value to residential buildings.  

The paper focuses on the housing sector because housing is a peculiar asset. It is both investment and a 

significant part of the consumption basket.4 It also accounts for the largest share of national wealth making it 

one of the most important assets in many economies. It is closely linked to the health of the financial systems 

of countries as booms and busts in the housing markets are major sources of financial crisis across the world. 

Further, mortgage markets are key transmission channel for monetary policies (IMF, 2008; IMF Global Housing 

Watch). In addition to its importance in the financial system, housing provides essential social services to a 

population. It provides security, a place to gather, to entertain, and work. These essential services are key 

dimensions of economic wellbeing. In democratic systems, spatial distribution of population and housing serve 

as the basis for distribution of political representation and funding and often constitutionally mandated in 

advanced and democratic societies (Ericksen and Kadane, 1985).5 However, up-to-date and spatially explicit 

housing censuses are lacking in many countries due to cost, capacity, and other factors posing significant 

challenge in performing timely policy formulation, implementation and monitoring on key policy issues such as 

climate change.  

The housing sector is crucial to both climate mitigation and adaptation, consuming a significant amount of 

energy in the construction and use of residential buildings. The United Nations Environment Programme 

(UNEP) reports that in 2015, construction and building operations contributed to 38%, or 13.1 gigatons, of 

global energy-related CO2 emissions (United Nations Environment Programme, 2021). Moreover, residential 

properties form an essential part of the capital stock, which includes machinery, equipment, structures, and 

urban land. IMF data from 2019 estimated the total capital stock at $316,253 billion in international dollars.6 

The built-up area, mainly comprising residential zones, accounts for approximately 83% of the variation in total 

capital stock (see Figure 1 in Appendix A).7 The Network for Greening the Financial Sector (NGFS) also 

 

1 Alternatively, housing census is defined as the total process of collecting, compiling, evaluating, analyzing and publishing or 

otherwise disseminating statistical data pertaining, at a specified time, to all living quarters1 and occupants thereof in a country or 

in a well delimited part of a country (UN, 1980).  
2 United Nations Statistics Division - Demographic and Social Statistics 
3 “A building is any independent free-standing structure comprising one or more rooms or other spaces, covered by a roof and 

usually enclosed within external walls or dividing walls that extend from the foundations to the roof.” (UN, 1980). 
4 Housing Markets, Financial Stability and the Economy (imf.org) 
5 Why Does the Census Matter? | Council on Foreign Relations (cfr.org). 
6 WhatsNewinIMFInvestmentandCapitalStockDatabase_May2021.pdf. See Figure A.1 in Appendix A. 
7 OECD Data: Built-up area and built-up area change in countries and regions (oecd.org) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiNy5jP8JuDAxXBMlkFHRf6DPMQFnoECBsQAQ&url=https%3A%2F%2Fwww.imf.org%2F-%2Fmedia%2FWebsites%2FIMF%2Fimported-flagship-issues%2Fexternal%2Fpubs%2Fft%2FGFSR%2F2011%2F01%2Fpdf%2F_textpdf.ashx&usg=AOvVaw1-373xkm-yMKWMK1KwDU8q&opi=89978449
https://www.imf.org/external/research/housing/index.htm
https://www.imf.org/external/research/housing/index.htm
https://unstats.un.org/unsd/demographic/sources/census/alternativecensusdesigns.htm#register
https://www.imf.org/en/News/Articles/2015/09/28/04/53/sp060514
https://www.cfr.org/backgrounder/why-does-census-matter
https://infrastructuregovern.imf.org/content/dam/PIMA/Knowledge-Hub/dataset/WhatsNewinIMFInvestmentandCapitalStockDatabase_May2021.pdf
https://stats.oecd.org/Index.aspx?DataSetCode=BUILT_UP
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recognizes housing or residential properties as Climate Policy Relevant Sectors (CPRS).8 However, unlike data 

on machinery, equipment, and urban land area, detailed and timely spatial data on residential buildings are 

lacking for many countries.  

At the UN Climate Change Conferences (COP27 and COP28), countries collectively agreed to increase climate 

finance, establish a "loss and damage fund" to aid vulnerable developing countries, and committing to transition 

away from fossil fuels.9,10 Further, several countries are advancing towards a low-carbon future, enacting policy 

reforms, and implementing regulations to promote voluntary carbon trading mechanisms.11 These actions, 

alongside various policy instruments, are facilitating the energy transition. Much of these efforts are intertwined 

with the physical structures that constitute our built environment—the buildings we live in and produce; the 

transportation networks (roads, railways, bridges, ports and airports) that we use to move people and goods; 

and the utility systems (dams, powerplants, and transmission lines) that we use to produce and supply 

essential services such as electricity, clean water, and ICT.12 Residential buildings are primary component of 

the physical structures or built-environment. However, there are significant data gaps regarding these 

structures and their interactions with climate—a gap acknowledged by the G20 Data Gap Initiative phase III 

(DGI-3) recommendations for climate data and statistics.  

From a policy perspective, detailed and global-scale data on residential property is crucial for quantifying 

financial and economic exposure, and vulnerability to climate hazards. It also facilitates policy analysis of 

transition risks and opportunities. Transition to low-carbon economy implies risks for some and opportunities for 

others arising from either policy and legal reforms on emissions requirements, innovation and disruptive 

technologies in energy use, market changes due to changes in demand and access to raw materials, or 

reputation due to negative consumer sentiment.13 For instance, new regulations on residential energy use 

efficiency or retrofitting could require information on building energy use which in turn requires detailed 

information on location, size, construction materials, age, purpose of buildings, etc. However, such detailed 

building data have been lacking, particularly in Low Income and Developing Countries (LIDCs) and Emerging 

Markets (EMs) (Eberenz et al. 2020).  

Traditionally, housing data are collected through administrative channels or using housing survey instruments 

that are time-consuming, costly, and in most cases prone to mismeasurement (Angrist et al., 2021). Although 

many countries collect such data for form alternative sources and for various reasons—taxation, permits, urban 

planning/zoning, safety, and regulations—complete housing information is often not available due to data being 

scattered across different agencies, access may be restricted, or it may not adhere to international standards. 

With some caveats, leveraging publicly available satellite data could be a cost-effective alternative for national 

statistical agencies to compile granular data on structures in general and residential buildings, in particular.  

This paper presents a methodology to compile a census of residential buildings using open-source building 

footprint data and shows its application for climate risk analysis. It follows a census approach, which is suited to 

buildings due to their inherent characteristics: fixed location, construction year, size, shape, height, and 

8 Climate Policy Relevant Sectors | FINEXUS: Center for Financial Networks and Sustainability | UZH 
9 Sharm el-Sheikh Climate Change Conference - November 2022 | UNFCCC. 
10 UN Climate Change Conference - United Arab Emirates | UNFCCC. 
11 Examples include the EU Emissions Trading System (EU ETS). 
12 Basic Information about the Built Environment | US EPA 
13 “Transition risks are those associated with the pace and extent at which an organization manages and adapts to the internal and 
external pace of change to reduce greenhouse gas. Transitioning requires policy and legal, technology, and market changes to 
address mitigation and adaptation requirements related to climate change. Depending on the nature, speed, and focus of these 
changes, transition risks may pose varying levels of financial and reputational risk to organizations. Alternatively, if an organization is 
a low-carbon emitter and in the renewable energy or climate transition market, they could experience market, technological, and 
reputational opportunities.” Climate Risks and Opportunities Defined | US EPA. 

https://www.finexus.uzh.ch/en/projects/CPRS.html
https://unfccc.int/cop27
https://unfccc.int/cop28
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en
https://www.epa.gov/smm/basic-information-about-built-environment#:~:text=Built%20Environment%20important%3F-,What%20is%20the%20Built%20Environment%3F,get%20from%20place%20to%20place.
https://www.epa.gov/climateleadership/climate-risks-and-opportunities-defined#:~:text=Transition%20risks%20are%20those%20associated,and%20transition%20to%20renewable%20energy.
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construction materials (including wall and roofing), as well as purpose. More importantly, major space agencies 

like the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) 

provide raw and processed satellite imagery to the public at no cost. Similarly, major technology companies 

provide detailed data about our built environment through applications on personal and business devices, such 

as navigation maps and business directories. As part of their "Data for Good" initiatives, commercial companies 

like Google and Microsoft have made such data publicly accessible.14,15  

Our paper is related to similar studies in the literature which proposed approaches to construct a global model 

of asset exposure to climate risks. De Bono and Mora (2014) in the Global Assessment Report (2013) is 

among the early studies which developed a global exposure database utilizing open-source datasets on 

population and building typology with a spatial resolution of 5 km. This early work focused on compiling 

exposure data for urban building stock broadly and using low-resolution satellite imageries. Our study extends 

this research but introduces significant enhancements. Firstly, we employ detailed building footprint data from 

Google Open Buildings which utilizes Google’s advanced Deep-Learning models and high-resolution (~10 

meters) satellite imagery to detect and classify buildings. The work takes advantage of high-resolution Sentinel-

2 imageries which has substantial improvement over the previous reliance on NASA’s Landsat imagery, which, 

with its 30-meter resolution, misses most building structures. Secondly, we refine building attributes to include 

ground-level area, height, and classification of buildings as residential or non-residential. Recently, Eberenz et 

al. (2020) proposed a similar method for compiling global asset exposure data for physical risk assessment, 

albeit without employing a census approach for identifying building structures. Our research also relates to a 

recent methodology paper by Doan et al. (2023), which assesses the exposure of populations to extreme 

weather events and their vulnerability. 

The paper contributes to data collection and methodological efforts of national statistical offices with limited 

resources to leverage open-source satellite and geospatial datasets for compilation of spatially explicit housing 

census data. It also contributes to the global effort to addressing gaps in climate data and statistics, a key 

obstacle in tracking the progress in low-carbon transitions and climate adaptation and mitigation policies.16 It 

aligns with the Data Gap Initiative phase III (DGI-3) spearheaded by G20 leaders which tasked the IMF to 

coordinate efforts with the Financial Stability Board and statistical authorities on several data gap 

recommendations.  

The rest of the paper is organized as follows. Section 2 discusses various data sources used to compile 

exposure layers and provide summary statistics. Section 3 discusses methods and proposed indicators.  

Section 4 discusses the analytical results and limitations of the proposed indicators, and section 5 concludes 

the paper.  

II. Data and Description 

We use processed satellite and geospatial datasets from different sources to compute residential properties 

exposure layers. These datasets include building footprints, estimated building height and classification, 

 

14 We use the term “building footprint” as a two-dimensional representation of building outline or polygon (see for example, Wang et 

al. 2016)).  
15 Google Open Buildings, Microsoft Building Footprint.  
16 Bridging Data Gaps Can Help Tackle the Climate Crisis (imf.org) 

https://sites.research.google/open-buildings/#download
https://www.microsoft.com/en-us/maps/bing-maps/building-footprints
https://www.imf.org/en/Blogs/Articles/2022/11/28/bridging-data-gaps-can-help-tackle-the-climate-crisis
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gridded population data, urbanization, nighttime light, and dwellings capital stock.17 We describe each of these 

datasets in the following. 

Google’s Open Buildings 

The primary dataset that we use to construct residential property layer is Google’s Open Buildings dataset.
18

 

This dataset, developed by Google Open Building researcher team, leverages high-resolution (~50 

centimeters) daytime satellite imagery and Deep Learning models for the identification and classification of 

buildings (Sirko et al., 2021). The coverage is for the Global South and publicly available under the Creative 

Commons Attribution (CC BY-4.0) license and the Open Data Commons Open Database License (ODbL) v1.0 

license. The latest version (v3) of the dataset, released in May 2023, covers about 1.8 billion buildings across 

continental Africa, South Asia, South-East Asia, Latin America and the Caribbean. The data have information 

on the building polygon, latitude and longitude of the centroid, area in meters, and confidence levels for each 

detected building. One of the limitations of Google’s building footprint dataset is that it does not have 

information on building heights and other attributes necessary to compute our proposed indicators of residential 

properties exposure. To overcome this limitation, we use building height, classification, and other key layers 

from the European Commission Joint Research Center (EC-JRC) Global Human Settlement Layer (GHSL), 

enriching detected buildings with more attributes. 

Additional building attributes: Height and Classification 

The building attributes were derived from the Global Human Settlement Layers (GHSL). The GHSL building 

height estimates are based on a method developed by Pesaresi et al (2021) and Pesaresi and Politis (2023). 

The methods utilize Digital Elevation Models (DEMs) sourced from the Advanced Land Observing Satellite 

(ALOS) Global Digital Surface Model (AW3D30) and the digital topographic database of Earth by the Shuttle 

Radar Topography Mission. Additionally, they incorporate shadow markers extracted from Sentinel-2 image 

composites for 2018 to approximate building heights. For this study, we use the average net building height 

(ANBH) estimates for 2018, which has a resolution of 100𝑚𝑥100𝑚.
19

  

The other key dataset is functional classification of buildings into residential and non-residential. We use GHSL 

built-up characteristics layer (GHS-BUILT-C) that classifies structures into residential and non-residential at a 

resolution level of 10 meters. For our analysis, we use the building classification data from 2018 which aligns 

with the relevant period for our study. Pesaresi and Politis (2023) and European Commission, GHSL Data 

Package (2023) provide detailed technical descriptions on method of classification.  

Gridded Population  

To filter buildings within populated and non-populated grid cells and to downscale aggregate dwellings capital 

stock values to pixel level, we use Gridded Population of the World Version 4 (GPWv4) data from NASA 

Socioeconomic Data and Applications Center (SEDAC). A notable advantage of the GPWv4 dataset is 

calibration of estimated population densities to correspond with the United Nations World Population Prospects 

(UN WPP) country totals, ensuring global consistency and reliability (Center for International Earth Science 

 

17 Table A.1 presents description of these data sources. Figure A.4 shows the imageries for Nairobi area. 
18 Microsoft’s Building Footprint is another opensource building data. It covers about 1.2B buildings across the world. Microsoft also 
has 174M building height estimates providing 3D polygons for some areas.  
19 Building height estimates are also available at a higher resolution level of 10mx10m. For the purpose of this study, we used the 
lower resolution layer of 100mx100m. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://opendatacommons.org/licenses/odbl/1-0/
https://opendatacommons.org/licenses/odbl/1-0/
https://ghsl.jrc.ec.europa.eu/download.php?ds=builtH
https://ghsl.jrc.ec.europa.eu/download.php?ds=builtC
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11
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Information Network – CIESIN, 2018). The data comes at 30 arc-second resolution (~1 km at the equator) and 

covers the period from 2000 to 2020 in five-year intervals. 20 We use the 2020 global population estimates for 

our analysis.  

Nighttime Light 

In addition, we use nighttime light data, which is a good proxy measure of human and economic activities, to 

proportionally downscale country-level dwellings capital stock values. Specifically, we use the corrected Visible 

and Infrared Imaging Suite (VIIRS) annual average nighttime light imageries from the Earth Observation Group 

(EOG) at Colorado Mines. The VIIRS was designed and calibrated to detect electric light from earth’s surface.21 

It is one of the most prominent sources of low-light imaging data used to measure human activities (Elvidge et 

al., 2021). Institutions such as the Earth Observation Group22 at Colorado Mines and NASA Black Marble
23

 

process raw satellite images for extraneous artifacts and biases, such as sunlit, moonlit, and cloudy and other 

light contaminants and provide users ready-to use and high-quality VIIRS DNB composites. These images are 

cloud and lunar-BRDF-corrected to remove noise from extraneous artifacts and biases. The corrected monthly 

and annual VIIRS imageries are available since 2014 at a resolution of 15 arc second (around 500 meters at 

the Equator). For this study, we use annual nighttime light composite for 2020 that corresponds with the 

GPWv4 gridded population data. 

Dwellings Capital Stock 

Given the lack of subnational data on property values across many countries, we propose a method to 

downscale aggregate dwellings capital stock values using nighttime light and population data. We draw upon 

the Investment and Capital Stock Datasets (ICSD) compiled by the IMF Fiscal Affairs Department (FAD), which 

provide comprehensive information on public and private capital stock for approximately 170 countries from 

1960 to 2019.
 24

 We specifically use the most recent private fixed capital stock data from the ICSD to estimate 

dwellings capital stock value at the square meter level.
25

 One of the key advantages of using capital stock data 

is that it is readily available and compiled as part of investment data (De Bono and Mora, 2014). However, due 

to the lack of specific information on the dwelling component of fixed capital stock for many countries, we use 

the average share of dwelling in fixed capital formation from countries with available data. These averages are 

calculated by country income group—Low Income and Developing Countries (LIDCs), Emerging Markets 

(EMs), and Advanced Economies (AEs).26 The corresponding average shares of dwellings for the years 

between 2015 and 2019 in real gross fixed capital stock for LIDCs, EMs, and AEs, respectively, are 0.748, 

 

20 To cross-examine our analysis, we also use gridded population data from GHSL which has 100m (~3 arcsec) and 1km (30 
arcsec) resolutions with global coverage. The data are available for period between 1975 and 2020 in five-years interval and 
projections into 2025 and 2030 (Schiavina et al., 2023; Freire et al., 2016). 
21 Mounted on Suomi NPP, the VIIRS is an optical spectrum sensor capturing imagery at high spatial resolution ranging from 0.375 
to 1.6 km, depending on band. It is equipped with low-light sensor, the Day/Night Band (DNB) and has a global coverage of 3,000-
km-wide (Miller et al., 2012). The VIIRS imaging data have several improvements over the older version from DMSP-OLS. These 
improvements include in-flight calibration, finer resolution, low-light detection, and a much larger Day-Night Band with no saturation, 
making it one of the preferred nighttime light data sources to study human activities (Miller et al., 2012; Elvidge et al., 2013; Gibson 
et al., 2021). 
22 VIIRS Nighttime Light (mines.edu) 
23 VIIRS/NPP Lunar BRDF-Adjusted Nighttime Lights Monthly L3 Global 15 arc-second Linear Lat Lon Grid 
24 IMF Infrastructure Governance. InvestmentandCapitalStockDatabaseUserManualandFAQ_May2021.pdf (imf.org).  
25 Investment and Capital Stock - At a Glance - IMF Data 
26 Using data from the Federal Reserve Bank of St Louis (FRED). 

https://eogdata.mines.edu/products/vnl/#annual_v2
https://eogdata.mines.edu/products/vnl/#annual_v2
https://ghsl.jrc.ec.europa.eu/ghs_pop2023.php
https://eogdata.mines.edu/products/vnl/
https://data.nasa.gov/dataset/VIIRS-NPP-Lunar-BRDF-Adjusted-Nighttime-Lights-Mon/qud5-u2qk/data
https://infrastructuregovern.imf.org/
https://infrastructuregovern.imf.org/content/dam/PIMA/Knowledge-Hub/dataset/InvestmentandCapitalStockDatabaseUserManualandFAQ_May2021.pdf
https://data.imf.org/?sk=1ce8a55f-cfa7-4bc0-bce2-256ee65ac0e4
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0.362, and 0.171.
27

 We downscale values to the pixel level based on population and nighttime lights, with the 

pixel resolution determined by the higher resolution of either the nighttime light or gridded population layers. 

Pixel level average values are then further downscaled to square meter levels using share of the building area 

within a pixel as downscaling factor. These methods are described in section III below.  

Descriptive Statistics 

In this study, we compute residential buildings stock and value data using Google Open Buildings data.28 Due 

to the size of the building data and other geospatial layers we use, we demonstrate our approach with Kenya29 

as a case study. We also illustrate how the data could be used as key asset exposure layer for granular climate 

risk assessment.  

Table 1 summarizes some of the key variables. The total number of buildings detected by Google Open 

Building is 26,405,031. The average ground-level building area is around 50 square meters. The aggregate 

ground-level building area is 1,324,699,574 square meters and the aggregate height-adjusted building areas is 

1,367,850,580 square meters. The average confidence score is 0.78 with minimum and maximum values of 

0.65 and 0.99, respectively, and more than 83 percent of detected buildings have confidence scores of 0.7 and 

above. For each detected building, we extract the average building height from GHSL ANBH layer, which has a 

pixel size of 100m x 100m. The average net building height for Kenya is 1.29 meters and the maximum is 42.5 

meters.30 In this paper, we assume that buildings within 100m x 100m GHSL ANBH pixel have the same height.  

One of the challenges in using GHSL ANBH layers, however, is that about 51 percent of the pixels have zero 

values, possibly due to model performance, poor building shadows at the time day-time satellite imageries 

were taken, etc. We therefore impute pixels within which buildings are detected and GHSL ANBH have 

estimated value of zero with the minimum non-zero ANBH for the country. In the case of Kenya, the minimum 

non-zero ANBH is 2.5 meters. By dividing imputed building heights by the minimum non-zero height value, we 

obtain the approximate number of stories/floors for each detected building. We, then compute the estimated 

total area of the building by multiplying ground-level area by the number of stories, ruling out below ground 

floors.  

The other key set of layers that we use in our analysis is GHSL built-up area classification. We use this 

information to filter out buildings that are predominantly used for non-residential purposes. As shown in the 

table, there are three classifications: non-built-up, residential, and non-residential areas. Unfortunately, more 

than 83 percent of the pixels within which buildings are detected are misclassified as non-built-up area. For this 

analysis, we only remove pixels that are classified as non-residential and keep detected buildings located in 

pixels with a human settlement. 

 

27 Group of countries for which dwelling data was available were Indonesia (EM), Mexico (EM), Argentina (EM), Australia (AE), 
Japan (AE), Republic of Korea (AE), and United States (AE). Due to lack of data, we used Indonesia’s share of dwelling in capital 
stock, which is the height among EMs, as a proxy for LIDCs. 
28 Building-level residential exposure data in meter square area, population, nighttime light, and downscaled dwellings capital stock 
value are computed for 48 countries in Africa with more countries to be added. The size of the data is greater than 50Gb.  
29 We selected Kenya as a case study to illustrate the approach for two reasons. First, housing properties survey data is available 
which will help us estimate and validate property values at next phase of the study. Second, it is one of the low-income countries 
where detailed residential properties data are lacking.  
30 The other key information that comes with each detected building is the level of confidence associated with each detection. This will 
help to perform robustness checks in areas where height, population, and building classification are either zero or null.  
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Table 1. Descriptive Statistics of the Data, Kenya 

  Mean Median Min Max 

Ground-level area (square meters) 50.19 30.54 2.51 49,630.01 

Confidence score 0.78 0.78 0.65 0.99 

Buildings with confidence score (%):     

[0.9, 1.0) 2.65    

[0.8, 0.9) 36.14    

[0.7, 0.8) 44.07    

[0.65, 0.7) 17.07    

Average net build height (meters) 1.29 0.00 0.00 41.52 

Proportion of zero building heights (%) 50.93       

Built-up area classification (%):       

Non-built-up 83.19     

Residential 16.78     

Non-residential 0.03     

Estimated average # of building stories/floors* 1.02 1.00 1.00 17.0 

Population per pixel (2018)—GHSL (100m)  4.42 0.00 0.00 5,329.20 

Proportion of zero (%)—GHSL  51.4       

Population (2020) per pixel—GPWv4 1,340.10 502.4 0.00 143,427.70 

Proportion of zero (%)—GPWv4 0.00       

Nighttime light radiance per pixel (nW/cm2/sr) 1.54 0.00 0.00 75.8 

Proportion of zero NTL 63.65     

No. of buildings 26,405,031     

Note: *The estimated average number of building stories computed after imputing zero height with minimum non-zero 
average building height of 2.5 meters for Kenya.  

We use the GPWv4 gridded population data which have 1000m x1000m resolution. For comparison, we also 

considered the GHSL population layer which has a higher resolution of 100mx100m. For instance, the average 

number of persons within pixels where buildings are detected is 4.42 per 100m x 100m and about 1,340 per 

1000m x 1000m, respectively, for GHSL and GPWv4 layers. However, more than half of the GHSL population 

layer pixels with detected buildings have zero values, whereas GPWv4 pixels within which buildings are 

detected have all positive values. For these reasons, we use GPWv4 gridded population layer for our 

downscaling analysis. Finally, we use nighttime light images from EOG in combination with GPWv4 population 

data to downscale country-level dwellings capital stock value to pixel level. The average nighttime light 

radiance is 1.54 nW/cm2/sr, and about 63.65 percent of the pixels within which buildings are detected have 

zero values. 

We encounter additional challenges of extreme values in detected building footprints. As indicated in Table 1, 

nearly all key datasets have extreme values, potentially impacting downscaling and summary values of 

indicators. This issue arises from structure like greenhouse sheds, industrial parks, and schools, which, due to 

large rooftops, are mistakenly classified as residential buildings or non-built areas by the GHSL.31 We use a 

simple statistical rule of thumb to identify and remove such outliers which tend to be on the right tail of the 

distribution. Specifically, we remove outliers if |
𝑥𝑖−𝑥

𝑠𝑑(𝑥)
| > 3, where 𝑥𝑖 the value of pixel 𝑖, 𝑥̃ is the median and 

 

31 Image A.1 in Appendix A shows a satellite and street view of a Greenhouse shed with large roof. Similarly, image A.2 shows a 
building with large roof in an industrial park. Similarly, we encounter outliers in gridded population data as well as nighttime light 
luminosity. However, we keep these pixels which are more likely to be densely populated.   
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𝑠𝑑(𝑥) is the standard deviation. Furthermore, we exclude buildings smaller than 10 square meters and those 

within GPWv4 pixels (1 square km) and with fewer than four people which is the average household size in 

Kenya32.  After filtering out outliers, the total number of buildings dropped from 26.41 million to 22.04 million. 

III. Methods and Proposed Indicators 

Developing new statistical indicators requires consensus on principles and conceptual framework. As part of 

the effort of developing statistical indicators to measure development goals, the United Nations Inter-Agency 

and Expert Group on MDG Indicators (IAEG-MDG) suggested key considerations in selecting indicators (UN, 

2013). These include adherence to the principles of indicator selection, statistical criteria, and other 

considerations. In this study, we propose the following residential properties exposure indicators that have 

three main dimensions of quantity, density, and monetary value:  

i) Quantity indicators: square meters of residential properties per geographic unit (square km, grid cell, 

administrative boundary, etc.).33 

ii) Value indicators: value of residential properties per geographic unit (square km, grid cell, 

administrative boundary, etc.).  

iii) Density indicators: square meters of residential properties per person; national share of residential 

properties per geographic unit (square km, grid cell, administrative boundary, etc.); and national share 

of residential properties value per a geographic unit (square km, grid cell, administrative boundary, 

etc.). 

These indicators align with most recommended criteria for effective indicators, including the principle that 

indicators should be directly linked to the objectives and targets under consideration. They also fulfill statistical 

criteria such as relevance, methodological soundness, measurability, and clarity (UN, 2013). More indicators 

could also be derived from the underlying data. 

Downscaling Aggregate Dwellings Capital Stock Values 

Compiling residential property indicators from open-source data presents challenges, particularly the lack of 

detailed, reliable, and consistent information on property value. To overcome this, we propose downscaling 

aggregate dwelling capital stock values to the square meter level using a downscaling method which builds 

upon the work of Zhao et al. (2017), Eberenz et al. (2020), and, more recently, Wang and Sun (2022). These 

studies used a population and nighttime light (LitPop) approach to downscale aggregate figures such as GDP 

to grid level. This approach is employed in generating gridded datasets that are used to for common climate 

projection scenarios or models such as the Shared Socioeconomic Pathway (SSP) framework and the 

Representative Concentration Pathways (RCP). Grubler et al. (2007) developed a similar method to calculate 

gridded GDP and population datasets, which have been widely used in the United Nations Intergovernmental 

Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) and related climate 

research.
 34

 De Bono and Mora (2014), in their study on a global exposure model for disaster risk assessment, 

also applied this method to downscale aggregate values to the grid cell level, using population as the 

 

32 Household Size and Composition | Population Division (un.org) 
33 This indicator could be further disaggregated by the number of stories. For instance, square meters of single-story, two-story, 
three-story, etc., buildings per geographic unit.  
34 SEDAC - MVA - Downscaling (columbia.edu) is part of NASA's Earth Observing System Data and Information System (EOSDIS). 

https://www.un.org/development/desa/pd/data/household-size-and-composition
https://sedac.ciesin.columbia.edu/mva/downscaling/
https://earthdata.nasa.gov/
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downscaling factor. Following this methodology, we use population and nighttime light data to estimate the 

value of buildings, downscaling aggregate dwelling capital stock to the grid level. 

Adopting the approach of Wang and Sun (2022), let 𝑉𝑐 denote country 𝑐’s dwellings capital stock and 𝑉𝑐𝑖 is the 

downscaled value for pixel 𝑖, which takes the minimum of resolution of gridded population or nighttime light 

layers.  

                                                                 𝑉𝑐𝑖 =
𝑉𝑐

∑ 𝐿𝑖𝑡𝑐𝑖 ∙ 𝑃𝑜𝑝𝑐𝑖
𝑁
𝑖

× 𝐿𝑖𝑡𝑐𝑖 ∙ 𝑃𝑜𝑝𝑐𝑖 ,                                                                               (1) 

where, 

𝐿𝑖𝑡𝑐𝑖 ∙ 𝑃𝑜𝑝𝑐𝑖 = {

𝑃𝑜𝑝𝑐𝑖          𝑖𝑓 𝐿𝑖𝑡𝑐𝑖 = 0                     

𝐿𝑖𝑡𝑐𝑖 ∙ 𝑃𝑜𝑝𝑐𝑖   𝑖𝑓 𝐿𝑖𝑡𝑐𝑖 > 0 & 𝑃𝑜𝑝𝑐𝑖 > 0 
𝐿𝑖𝑡𝑐𝑖             𝑖𝑓 𝑃𝑜𝑝 = 0                   

, 

𝐿𝑖𝑡𝑐𝑖 ∙ 𝑃𝑜𝑝𝑐𝑖 is the product of nighttime light radiance and population count for pixel 𝑖, N is the total number of 

pixels for country 𝑐. One of the issues we encounter in using LitPop approach is its sensitivity to extreme 

values. As an alternative, we use log transformed values, i.e., 𝑙𝑜𝑔𝐿𝑖𝑡𝑐𝑖 ∙ 𝑙𝑜𝑔𝑃𝑜𝑝𝑐𝑖 = log (𝐿𝑖𝑡𝑐𝑖 + 1) ∙ log (𝑃𝑜𝑝𝑐𝑖 +

1), which addresses issues of extreme values and yields a well-behaved distribution compared to the LitPop 

approach. Figure A.2. shows the kernel distributions of downscaled property values using these two 

approaches.  

From the downscaled pixel level values of residential properties, 𝑉𝑐𝑖 , we obtain residential property value per 

square meter as follows:  

                                                                         𝑉𝑐𝑖
𝑠𝑞𝑟.𝑚

=
𝑉𝑐𝑖

∑ 𝑎𝑐𝑖,𝑗

𝑛𝑗

𝑗=1

,                                                                                   (2) 

where, 𝑉𝑐𝑖
𝑠𝑞𝑟.𝑚

 is the average residential property value per square meter within pixel 𝑖, 𝑎𝑐𝑖,𝑗 is the area of 

residential building 𝑗, and 𝑛𝑗 is the number of residential buildings within pixel 𝑖. 

Weighted Downscaling  

One key limitation of the downscaling approach proposed in equation (1) is it assigns equal value to residential 

properties in a country regardless of location and other amenities, such as urban vs. rural. Although nighttime 

light and population density capture the spatial variation property value arising from some of these amenities, 

the model assigns equal weight of unity to nighttime and population. This presumes that nighttime light and 

population have equal contribution to the disaggregation function. Following Eberenz et al. (2020), we assign 

different weights to nighttime light and population as follows: 

                                                            𝑉𝑐𝑖̃ =
𝑉𝑐

∑ 𝐿𝑖𝑡𝑐𝑖
𝛼 ∙ 𝑃𝑜𝑝𝑐𝑖

𝛽𝑁
𝑖

× 𝐿𝑖𝑡𝑐𝑖
𝛼 ∙ 𝑃𝑜𝑝𝑐𝑖

𝛽
,                                                                               (3) 

where  𝑉𝑐𝑖̃ is the downscaled dwellings capital value for pixel 𝑖 using weighted downscaling, and 𝛼 + 𝛽 = 1 are 

weights assigned to nighttime light and population, respectively. To address varying weights by urban and rural 

locations, which are key factors in determining property values, we let 𝛼 and 𝛽 to assume different values for 

urban and rural locations, i.e., 𝛼𝑢 + 𝛽𝑢 = 1 for urban and 𝛼𝑟 + 𝛽𝑟 = 1 for rural areas. The challenge in 

implementing equation (3) is that these weighting parameters are unknowns and needs to be calibrated. To this 
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end, we estimate log-transformed Cobb-Douglas model of residential property value from survey data on 

nighttime light and population as follows: 

                                                      log(ℎ𝑖𝑗) = 𝛼 log(𝐿𝑖𝑡𝑖𝑗) + 𝛽 log(𝑃𝑜𝑝𝑖𝑗) + 𝜀𝑖 ,                                                                      (4) 

where ℎ𝑖𝑗 is residential property value per square meters from survey data for house 𝑖 in location 𝑗, 𝛼 +  𝛽 = 1 

are parameters to be estimated, and 𝜀𝑖𝑗~𝑖𝑖𝑑 is normally distributed error term. We estimate equation (3) for 

pooled sample as well as split sample for urban and rural areas to estimate respective weighting parameters—

𝛼𝑢 and 𝛽𝑢 for urban areas, 𝛼𝑟 and 𝛽𝑟 for rural areas. We use the 2012/2013 Kenya National Housing Survey 

data35 that has information on value of residential properties to estimate the weighting parameters. The 

estimated values of the parameters are 𝛼 = 0.9, 𝛽 = 0.1, 𝛼𝑢 = 0.95, 𝛽𝑢 = 0.05, 𝛼𝑟 = 0.88, and 𝛽𝑟 = 0.12. 

These estimates show that within a given grid, nighttime light have higher weight compared to population in 

determining the values of residential properties in Kenya. The weight for nighttime light is higher in urban areas 

compared to rural areas. The estimated weights are then plugged in to equation (3) to obtain the weighted 

downscaled capital value of properties.   

Aggregation Level 

In climate risk assessment literature, the selection of an aggregation level is determined by various factors, 

including the nature of the climate hazards and the available data types. Aggregation can be done at census 

tracts/blocks, districts, region, or geographic fishnet/grid cell levels. For example, the national risk index 

developed by the US Federal Emergency Management Agency (FEMA) employs a mix of these aggregation 

levels, tailored to the data sources and specific climate risks under consideration. In this study, we show 

computed residential property indicators using two aggregation approaches: equally spaced grid cells and level 

3 administrative boundaries36. Both approaches have advantages and drawbacks. Equally spaced grid cells 

provide flexibility in performing aggregations at different levels of climate risk, exposure area, and vulnerability 

analysis scale. We employ the Uber hexagonal global gridded system, utilizing a hierarchical spatial indexing 

system (H3), which stands out among various open-source spatial indexing libraries.
37

  

 

IV. Results and discussions 

Table 2 presents summary statistics of the computed residential properties indicators for Kenya. It shows the 

estimated areas of residential buildings, values per square meters, and per capita building values obtained by 

employing unweighted and weighted downscaling methods. The average total building area is 46 square 

meters. The estimated values vary depending on the specific downscaling method. Generally, the unweighted 

LitPop approach yields lower average property value per square meters compared to the values obtained using 

the logLit+LogPop approach. The variations of downscaled values, as measured by (CV = SD/Mean) are, 

however, are much lower in logLit+logPop approach compared to the LitPop approach, reflecting the 

 

35 The sample size is 8,884 households. 
36 The lowest available administrative level for Kenya. 
37 H3: Uber’s Hexagonal Hierarchical Spatial Index | Uber Blog. H3 | H3 (h3geo.org). Another openly available library is Google’s S2 
Geometry Library. See About S2 | S2Geometry. The cons of using equally spaced grid cells are demarcations could be arbitrary and 
not straightforward for subnational regional- or municipality-level policy analysis. Administrative boundaries, on the other hand, are 
demarcated with settlement, population density, political representation, topology, etc. under consideration. Figure A.3 in Appendix 
A illustrates H3 grid cells and administrative boundaries for Kenya. 

https://www.uber.com/blog/h3/
https://h3geo.org/
http://s2geometry.io/about/
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importance of addressing extreme values that potentially inflate standard deviations and averages. As for the 

distribution of the values using weighted downscaling approach, the averages are slightly higher than the 

values obtained from the unweighted approach.    

Table 2: Summary of Selected Estimated Residential Property Indicators, Kenya 

Variable Mean Std. Dev. Min Max 

Building area (sqr meters) 46 (39) 10 2,128 

     

Unweighted downscaling     

Value per sqr meter: LitPop  $102 ($723) $0 $14,170 

Value per sqr meter: logLit+logPop   $197 ($973) $2 $97,244  

Building value: LitPop  $6,678 ($58,041) $0 $8,209,556 

Building Value: logLit+logPop  $6,676 ($19,109) $27 $1,658,925 

     

Weighted downscaling     

Value per sqr meter: LitPop (pooled) $130 ($372) $0 $659,723 

Value per sqr meter: LitPop (urban/rural)  $152 ($373) $0 $385,948 

Value per sqr meter: logLit+logPop (pooled) $207 ($1,141) $2 $114,297 

Value per sqr meter: logLit+logPop (urban/rural)  $206 ($1,121) $2 $117,546 

Building value: weighted LitPop (pooled) $6,678 ($18,246) $0 $22,794,341 

Building value: weighted LitPop (urban/rural) $6,677 ($12,611) $6 $12,552,431 

Building value: weighted logLit+logPop (pooled) $6,676 ($22,067) $31 $1,668,971 

Building value: weighted logLit+logPop (urban/rural) $6,676 ($21,741) $31 $1,639,328 

     

No. of buildings 22,044,652    

Note: Values are in constant 2017 international dollars using the GFCF deflators and purchasing power parities taken 
from the OECD and PWT depending on data availability. See IMF Infrastructure Governance. 
InvestmentandCapitalStockDatabaseUserManualandFAQ_May2021.pdf (imf.org).  

Leveraging the granularity of the data, summary statistics can also be computed at various sub-national levels. 

Figures 1 show H3 grid-aggregated values of total residential area (log square meters), average area (log 

square meters), sum of the nighttime light radiance values, population, downscaled dwellings capital stock 

values in international dollars, and national shares of capital stock values and residential area. For illustration 

purposes, we use a wider aggregation grid with hex resolution of five that is approximately 252.9 square km. 

https://infrastructuregovern.imf.org/
https://infrastructuregovern.imf.org/content/dam/PIMA/Knowledge-Hub/dataset/InvestmentandCapitalStockDatabaseUserManualandFAQ_May2021.pdf
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Figure 1: Spatial Distribution of Residential Properties Indicators for Kenya, by Grid Cell at a 

Resolution Level of 5 

 

 



IMF WORKING PAPER Satellite-Based Census of Residential Buildings: Application for Climate Risk Assessment 

 

17 

  

  

  
Source: Authors’ computation. 
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Figure 2 shows aggregation of total residential area (in log square meters), average building heights (meters), 

nighttime radiance value, population, and shares of value of residential properties by level 3 administrative 

boundaries.  

Figure 2: Spatial Distribution of Residential Properties Indicators for Kenya, by Admin Level 3 
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Source: Authors’ computation. 

 

Validation Exercise 

In this section, we validate the downscaled building values using data from housing survey. Housing survey 

data comes from the 2012-2013 Kenyan National Housing Survey. The survey was carried out in 44 counties 

across the country providing a nationally representative sample, covering both urban and rural areas. The total 

number of observations in the sample is 8,884 with key information on housing units, including area, floor, the 

amount of money spent to construct or purchase the property and rental value it was rented out. Figure 3 

shows scatter plots of housing value from survey and downscaled dwellings capital stock value for unweighted 

and weighted downscaling approaches. The values averages for a given H3 polygon (at resolution 7) and 

spatially joined. It shows that the downscaled capital stock values are generally positively correlated with the 

actual house values collected from housing survey.38 

Figure 3: Scatter plot housing value from survey and downscaled dwelling capital stock value 

 

38 The survey values are in Kenyan Shilling. The values of downscaled dwellings capital are in 2017 constant international dollars. 
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Source: authors’ computation. 

 

The pearson correlation between the log of house value per square meters and log of unweighted, weighted 

(pooled), and weighted (urban/rural) downscaled dwellings capital stock value are, respectively, 0.3, 0.27, and 

0.14. These underscore that unweighted downscaled dwellings capital stock values have stronger correlation 

with housing value from survey compared to the weighted downscaling that assign higher weights to nighttime 

light. These correlations are however not without limitations. One of the limitations in this exercise is that there 

is a seven year difference between the time the housing survey was conducted (2012/2013) and the capital 

stock value was obtained (2020). Several factors could change during this period that could potentially change 

the home values in 2020 resulting in poor correlation. Regardless, we show that the downscaled values are 

indeed positively correlated.   

Exposure to riverine flood risk: an illustration for Kenya 

In this section, we demonstrate how residential building exposure data that we compiled above could be used 

to riverine flood risks using the EC-JRC Global Flood Hazard Map. 39 This layer highlights areas prone to 

flooding on a global scale for various flood events, presented at a resolution of 30 arcseconds (approximately 1 

km). Each grid cell indicates the water depth in meters. Figure 4 illustrates the flood hazard map for return 

periods of 10 years and 20 years, providing important and granular insights into flood risk (European 

Commission Joint Research Centre [EC-JRC], 2023). A 10-year flood risk has a 1-in-10 (10%) chance of 

happening in any one year, whereas a flood hazard with a return period of 20-year has 1-in-20 (5%) chance of 

happening in any one year.40     

 

39 Another important global flood risk map is the Dartmouth Flood Observatory (DFO). The DFO was established in 1993 and 
records the extent and temporal distribution of flood events occurring between 2000 and 2018 with each pixel classified as water (in 
meters) or non-water at 250-meter resolution. 
40 See Floods and Recurrence Intervals | U.S. Geological Survey (usgs.gov) for more discussion of flood recurrence intervals and 
likelihood of occurrence.  

https://floodobservatory.colorado.edu/
https://www.usgs.gov/special-topics/water-science-school/science/floods-and-recurrence-intervals
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Figure 4: Flood Hazard Map of 10-year and 20-year Return Periods, Kenya 

 

 

Source: Authors’ illustration using Flood Hazard Map of the World (Dottori et al., 2016) at Joint Research Centre 
Data Catalogue – Flood hazard map of the World – 10-year return per–… - European Commission (europa.eu) 

Combining residential properties layer with flood risk map, we calculate the aggregate residential properties 

and the dollar values that are at risk. For the purpose of this illustration, we use the unweighted downscaled 

capital stock values. Our calculation shows that the total area of residential properties in 2019 Kenya were 

915.1 million square meters that are estimated to be worth 147.2 billion in 2017 constant international dollars 

(PPP adjusted). Out of these properties, more than 3.5 and 4.1 million square meters are exposed to 10-year 

return and 20-year return period riverine flood, and the corresponding estimated monetary value of these 

properties, respectively, are 915.5 million and 1 billion in constant 2017 international dollars. The corresponding 

real GDP data from the same source was 228 billion in constant 2017 international dollars. Figure 4 panels (a)-

(d) shows the quantity and estimated values of residential properties within riverine flood risks of 10-year return 

and 20-year return periods. These figures indicate that the estimated total area or stock of residential properties 

within flood risk zones decreases with severity as measured by depth in meters. The same pattern is observed 

with the total estimated monetary value. These are intuitive results which show that people avoid flood prone 

https://data.jrc.ec.europa.eu/dataset/jrc-floods-floodmapgl_rp10y-tif
https://data.jrc.ec.europa.eu/dataset/jrc-floods-floodmapgl_rp10y-tif
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zones when choosing a site to building their houses. However, there are buildings within sever flood risk areas, 

presumably due to factors, such as urban residential land shortage or poverty.  

Figure 4: Quantity and Value of Residential Properties Exposed to Riverine Flood Risks, Kenya 

    

  

Source: Authors’ computation. Monetary values are in constant 2017 international dollars (PPP adjusted). The vertical 

axis represents of panels (a) and (c) represent the quantity of residential properties in meter square, whereas vertical axis 

of panel (b) and panel (d) represent estimated values of residential properties in international dollars (2017 constant 

prices). The horizontal axis represents flood depth in meters.   

Given that the focus of this paper is to illustrate approaches on constructing residential buildings exposure 

layers using existing building footprint and processed satellite data, we do not delve deep into the analysis of 

exposure to flood risks. However, the computation above illustrates simple approaches to estimate the quantity 

and value of residential property at a risk of a specific climate risk with greater detail. 
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Limitations and further discussions 

Compiling a residential building census data using various open-source datasets has several limitations. A 

primary concern is the GHSL's estimated average net building heights, which are zero for a significant 

proportion of the pixels where buildings were detected. In such instances, we imputed zero values with a 

minimum non-zero height, approximately 2.5 meters for Kenya. Reliance on such ad-hoc imputations raises 

potential questions about the accuracy of the GHSL's height estimates. Furthermore, GHSL's building 

classification sometimes inaccurately labels pixels as neither residential nor non-residential, despite buildings 

being detected and classified by Google Open Building. To address this, pixels with detected buildings were 

reclassified as residential, assuming most misclassified structures are in non-urban areas, thus unlikely to be 

commercial. Additionally, GHSL population estimates are zero for pixels where buildings are detected, while 

GPWv4 provides non-zero estimates. Also, the absence of detailed information on the dwelling component of 

gross capital stock for many countries presents a major limitation. Another potential bottleneck in using such 

layers that are generated using machine learning models involves the propagation of algorithmic biases and 

model errors. These biases can stem from statistical errors, incomplete data, human bias in labeling training 

data, or variations in terrain/topology across different regions, potentially exacerbating inaccuracies. For 

instance, the building footprint data from Google, which utilizes a deep learning algorithm, along with building 

classifications, estimated building heights, and population data from EC-JRC, all apply various machine 

learning models with differing performance levels.  

 

V. Conclusion 

Many countries have a rich set of housing statistics from which they can formulate, implement, and monitor key 

policies pertaining to the housing sector. They have access to regular census information, property values from 

local governments, prices information from real estate boards and property assessment programs. Other 

countries have a large data gap in this area and therefore struggle to formulate effective policy to help manage 

this significant national asset and associated risks. This impedes countries’ ability to assess financial markets, 

the supply and demand of housing, and increasingly, the impact climate change is having on the housing stock. 

This study shows how to leverages opensource satellite data to compile a spatially explicit census of housing 

or residential buildings.    

We follow a census approach using high-precision building footprint data from Google Open Buildings. We also 

leverage capital stock data to impute monetary value to building level using downscaling technique that uses 

gridded population and nighttime light as weighting factors. As climate actions take more concrete steps and 

the need for granular exposure and vulnerability data grows, we show that such data could close existing data 

gaps and better inform policies. Using Kenya as a country case, we illustrate how the data could be used to 

perform detailed climate risk analysis on residential buildings exposure to riverine flood risk. The data could 

also feed into the existing macroeconomic models of the IMF, such as the Debt-Investment-Growth-Natural-

Disasters (DIGNAD) model. Given that the lack of spatially explicit and comparable housing exposure data has 

been recognized as key area of data gap under the G20 Data Gap Initiative phase III (DGI-3) recommendation 

five, we believe that the research presented in this paper will contribute to the extensive literature assessing the 

economic impact of climate change. 
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Appendix: Additional Figures 

Figure A.1: Built Up Area and Capital Stock 

 

Source: Authors’ computation using built-up area data are from OECD (https://stats.oecd.org), capital stock 
data from IMF (https://data.imf.org).  
Note: Capital stock values are in billions of constant 2017 international dollars (ppp adjusted). Bubble size is 
proportional to population.  

  

https://stats.oecd.org/
https://data.imf.org/
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Figure A.2: Density of Log Estimated Property Values 

 

Source: Authors’ computation. 
Note: solid lines show distribution of computed values using LitPop as downscaling factors. Dotted 
line shows distributions using log (lit) + log(Pop) as downscaling factors. Vertical lines show mean 
values. 
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Figure A.3: Illustration of Hierarchical Grid Cells and Level 3 Admin Boundaries, Kenya 

 

Source: Authors’ illustration. 
Note: The number of equally spaced H3 grid cells for Kenya are, respectively, 2,212, 315, and 45 for resolution levels 
of five, four, and three. The highest hex resolution is 0 which has an area of 4,250,547 square km whereas the lowest is 
15 which has an area of 0.0000009 square km. 
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Figure A.4. Key Satellite Datasets and Sources Used for this Study – Extracted from Nairobi Area, 

Kenya 

Source: Authors’ illustrations. 
Note: These images are excerpts of the different datasets used in this study, extracted from the Nairobi urban core. They 
are approximately from the same locations but at varying scales which comes from the original dataset.  
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Image A.1: Example of Large, Misclassified Structure: Greenhouse 

Satellite view (roof) Google Streetview 

 
 

Source: Google Open Buildings Open Buildings 
(research.google).  
Note: Longitude and Latitude: 36.92190,-1.56517375 
(Pluscode address: 6GCRCWMC+WQJ5) 

 

Source: Google Map Street View  
Note: Longitude and Latitude: 36.92190,-1.56517375 
(Pluscode address: 6GCRCWMC+WQJ5) 

Image A.2: Example of Large Industrial Structure: Industrial Park

 

Source: Google Open Buildings Open Buildings (research.google).  
Note: Longitude and Latitude: 37.00587-1.44221322 (Plus Code address: 6GCVH254+489H) 

  

https://sites.research.google/open-buildings/
https://sites.research.google/open-buildings/
https://sites.research.google/open-buildings/
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Table A.1: Description of Key Data Sources 

Data Source Coverage Resolution Period/Epoch 

Building polygon (v3) Google 

Open 

Building 

Africa, South Asia, 

South-East Asia, Latin 

America and the 

Caribbean  

(1.8 billion) 

Building level 

<10m 

2023 

Building heights EC-JRC- 

GHSL 

Global 100m 2018 

Building classification EC-JRC-

GHSL 

Global 10m 2018 

Population EC-JRC- 

GHSL 

Global 100m 2019 

UN WPP-Adjusted 

Population Density, 

v4.11 

SEDAC/ 

CIESIN 

Global 1km 2000-2020 (five years 

interval) 

Urban-Rural 

classification 

GHSL Global 1km 1975-2030 (five years 

interval) 

Nighttime Light (VIIRS) EOG Global ~500m 2013-present 

Investment and Capital 

Stock Datasets (ICSD) 

IMF Global n.a. 1960-2019 

Global Flood Hazard 

Map 

EC-JRC-

GHSL 

Global 3 arc seconds 

(~90 m) 

- 

Note: EC-JRC-GHSL=European Commission Joint Research Center Global Human Settlement Layer. 
SEDAC/CIESIN = Socioeconomic Data and Applications Center (SEDAC), Center for International Earth Science 

Information Network (CIESIN). EOG=Earth Observation Group at Colorado School of Mines. 


